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Abstract  

 
Although trees are key to ecosystem functioning, many forests and tree species across the globe 

face strong threats. Preserving areas of high biodiversity is a core priority for conservation; 

however, different dimensions of biodiversity and varied conservation targets make it difficult to 

respond effectively to this challenge. Here, we (i) identify priority areas for global tree conservation 

using comprehensive coverage of tree diversity based on taxonomy, phylogeny, and functional 

traits; and (ii) compare these findings to existing protected areas and global biodiversity 

conservation frameworks. We find that ca. 51% of the top-priority areas for tree biodiversity are 

located in current protected areas. The remaining half top-priority areas are subject to moderate to 

high human pressures, indicating conservation actions are needed to mitigate these human impacts. 

Our findings emphasize the effectiveness of using tree conservation priority areas for future global 

conservation planning. 
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MAIN TEXT 

 

Introduction 

Trees play a vital role in the Earth system as the principal agents of energy and matter in terrestrial 

ecosystems. The diversity and functioning of trees structure biological diversity and provide 

multiple ecosystem services, with large trees playing an especially vital role in governing rates of 

ecosystem services such as catchment and watercourse protection, carbon sequestration, and climate 

regulation (1–3). Trees provide habitat for many other taxa (4–8). The magnitude of many of these 

functions and services is generally expected to increase with as tree diversity and abundance 

increase.  The functional diversity of tree assemblages enhances ecosystem productivity and 

stability (9–11). However, continued deforestation (12–17) results in biodiversity loss of both tree 

species themselves and tree-dependent organisms (8, 18, 19), decreases in ecosystem productivity 

(20), and also jeopardizes other ecosystem functions such as climate regulation (21, 22). 

Consequently, it is urgent to improve the conservation of high-diversity areas for trees to protect not 

just tree diversity, but also associated biota, the ecosystems in which they occur, and the processes 

and services that these ecosystems provide (23). 

Protected areas (PAs) are the primary conservation strategy for preventing biodiversity loss and 

preserving nature (24–26). In recent decades, the expansion of PAs has been considerable, with 

~15% of the Earth’s land now located within PAs (the World Database on Protected Areas, WDPA; 

https://livereport.protectedplanet.net/chapter-2, accessed on April 15, 2020). This coverage is close 

to the Convention on Biological Diversity (CBD) 2020 target of protecting at least 17% of Earth’s 

land area. Despite the rapid progress of PA expansion worldwide, research has found that current 

PAs do not overlap with certain regions that harbor otherwise high taxonomic diversity (e.g., 

mammals (27, 28). Additionally, approximately one third of global PAs are experiencing intense 
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human pressure (29), and this phenomenon is likely to continue globally as human activity 

increases near existing protected areas (26, 30). 

To halt or slow continuing biodiversity declines, the post-2020 protected area targets are being 

intensely debated (31–33). One initiative that has gained significant momentum is Wilson’s <Half 

Earth= proposal (34), which affirms that half of the Earth’s surface needs to be protected in order to 

safeguard important areas of biodiversity and ecosystem processes and services (35–37). This 

suggestion is also in accordance with the CBD’s proposed 2050 goal related to its Post-2020 

Biodiversity Framework (https://www.cbd.int/conferences/post2020/post2020-prep-01/documents, 

accessed on March 20, 2020). While global conservation targets and locations are negotiated by 

intergovernmental organizations (38), the proposed protected locations should be representative 

areas with high levels of biodiversity, endemics and ecosystem services. Indeed, the emphasis on 

increased biodiversity and ecosystem services can be used to test the effectiveness of existing PAs. 

Given the vital role of tree species to Earth systems, tree diversity is a practical indicator to the 

effectiveness of the existing PAs and predictor to allocate protected targets for CBD 2020 and 

beyond (e.g. CBD 2050). However, neither the effectiveness or predictors to allocate future targets 

were previously investigated, nor the extent of the tree diversity protection. 

Here, we assembled a novel global database to identify priority areas for conservation of tree 

diversity worldwide. Following (39), our analyses use the Zonation method (40–42) and integrates 

multiple measures of diversity including taxonomic distribution data, phylogenetic information, and 

functional trait data.  We then assessed whether or not priority areas for tree conservation 

overlapped or diverged spatially by estimating the proportions of overlap among and between the 

top 17% (i.e., CBD 2020 target) and 50% (i.e., CBD 2050 target) priority areas across three 

dimensions of diversity: taxonomic, phylogenetic, and functional diversity (27, 43). Additionally, 

we selected three existing global biodiversity conservation priority frameworks (the Global 200 
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Ecoregions (G200), the Biodiversity Hotspots (BH), and Last of the Wild (LW), Brooks et al., 

2006) proposed by certain non-governmental organizations (NGOs), and compared the spatial 

overlap between the top priority areas, existing PAs obtained from WDPA, and the selected 

conservation priority frameworks. We made this comparison to identify gaps and overlaps between 

spatial prioritization outcomes, current conservation efforts, and existing global conservation 

frameworks. Moreover, we compared the intensity of human pressure using a human modification 

index (44) (a cumulative measure of human alteration of terrestrial lands) inside and outside current 

PAs for the areas of the prioritization outcomes. Based on multiple facets of tree species diversity 

extracted from the most extensive global tree species distributional database, a dated phylogeny, 

and eight ecologically important functional traits, we assess the quality of current PAs and identify 

and evaluate potential future locations for PA expansion.  

Results 

Global priority areas for tree conservation across the three dimensions of diversity 

Priority areas for tree conservation diverged spatially among taxonomic, phylogenetic, and 

functional diversity metrics. This was more evident in the case of the CBD 2020 target areas (top 

17% priority) than of the CBD 2050 target areas (top 50% priority) (Figs. 1 & S1). The areas that 

were prioritized for all three dimensions occurred primarily in the tropical rainforest regions of the 

Americas, Africa, Indo-Malaya, and Australasia, as well as in subtropical Asia. Generally, areas 

prioritized by just two diversity metrics were adjacent to these areas, such as the inland regions of 

Brazil and Australia (Fig. 1a). High priority sites for tree conservation for any given single diversity 

dimension were scattered globally (Fig. 1a). Although nearly half of the 2020 target areas (8.2% in 

the top 17%) were shared by the priority areas for all three tree diversity dimensions, about 7.4% of 

the 2020 target areas based on taxonomic diversity differed from those based on phylogenetic and 
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functional diversity (Fig. 1b). In contrast, the top 17% phylogeny- and trait-based priority areas 

largely overlapped, reflecting high correlation of phylogenetic and functional diversity in this study 

(Fig. 1a & 1b, Table S1).  

When extending the priority areas to the 2050 target 2050, most areas (38.4% in the top 50%) were 

shared by all three dimensions (Fig. 1d), and located primarily in the tropical and subtropical 

regions, as well as in some temperate regions (Fig. 1c). Relatively large temperate areas were only 

prioritized when evaluating phylogenetic- and functional trait diversity (Fig. 1c). 

Congruence between top tree conservation priority areas, existing PAs, and each conservation 

priority framework 

About half of the 2020 or 2050 target areas for tree priority conservation (jointly optimized in 

taxonomic, phylogenetic, and functional diversity) are currently protected in existing conservation 

sites (51.2% and 44.6% respectively, the proportion of <WDPA only= and <Shared= in Fig. 2a & 

2b). For the three conservation priority frameworks (Fig. S2), the G200 always had higher overlap 

with top priority areas for tree diversity (45.4%), the BH the second (34.8%), and LW the least 

(7.3%) (Fig. 2a). About 91% of the 2020 target areas would be protected if PA expansion is based 

on the G200 framework, while 77% would be protected for the 2050 target areas. On the other 

hand, only about 50% of the top priority areas (56% for 2020 and 52% for 2050 targets) would be 

protected if LW is used to govern future conservation planning. Providing an intermediate case, 

about 73% of the 2020 target and 66% of the 2050 target areas would be protected if the BH 

framework were to be used as the guideline.  

Human pressure of tree priority areas, inside and outside existing PAs  

Most of the top 17% tree conservation priority areas suffered moderate human pressure with human 

modification values between 0.1 and 0.4, such as in southern and eastern Asia, South America 
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outside the Amazon Basin, and Madagascar (Fig. 3). On the contrary, many of the top 50% priority 

areas were subject to high human pressure, with human modification values greater than 0.4 (blue 

and red regions in Fig. 3). These areas included many European countries, India, eastern China, 

Indonesia, Nigeria, Ethiopia, central North America, and eastern Argentina. 

The global average human modification index was lower in the areas inside PAs than in those 

outside PAs (Fig. S3, mean values of 0.07 vs. 0.19, one-way ANOVA, p < 0.0001). The mean 

human modification values inside the top 17% and top 17-50% priority areas were similar (Fig. 4, 

0.10 cf. 0.08), and the same to outside PAs (Fig. 4, 0.25 cf. 0.24), while for both priority areas the 

mean human modification value inside and outside PAs significantly differed (p < 0.0001, Fig. 4). 

Mean human modification values were higher inside PAs than the corresponding global mean 

human modification values (p < 0.0001). 

Discussion 

Given the importance of tree diversity as a component of Earth’s biodiversity, for the functioning of 

forest ecosystems, and for the multiple ecosystem services, conservation and restoration of high 

conservation priority for tree diversity is critical. Using multiple dimensions of diversity, we 

identified areas of high conservation importance across the world. Currently, only about half of the 

most important tree biodiversity conservation priority areas are located inside PAs, which are 

defined by less intense human activities (e.g., the Amazon Basin and middle-west North America). 

However, the other half of high-priority areas for tree diversity conservation are distributed in 

regions with moderate to high human pressures, where certain kinds of threats, e.g., fire, habitat 

conversion, or overgrazing, are likely to negatively impact ecosystems (16, 17, 45, 46). Thus 

passive restoration, such as natural regeneration on degraded lands, is likely to be a more effective 

and affordable approach to recover and conserve the ecosystem structure and function (47, 48), 
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alongside using legal boundaries and designations to protect land from human pressures (49). 

Schemes for conservation of biodiversity outside of PAs (e.g. protection under Payments of 

Ecosystem Services, PES) could also be sponsored by governments, NGOs and companies with 

social responsibility as a tool to preserve biodiversity and reduce the human pressure on these areas 

(50). 

The high overlap between the conservation priority frameworks and the top-priority areas for tree 

diversity, particularly the Global 200 Ecoregions and the Biodiversity Hotspots frameworks, 

pinpointed the representativeness of tree diversity to a broader set of organisms, as these 

frameworks selected ecoregions of most crucial (either high irreplaceability or vulnerability) to the 

global biodiversity (51, 52). On the contrary, the Last of the Wild framework had the worst match 

with the tree conservation priority areas, primarily because this conservation scheme primarily 

prioritizes areas with climates less suitable for tree growth, e.g., arid deserts and cold high altitudes 

or latitudes in the Northern Hemisphere, where tree species diversity is inherently low (53). 

However, these areas have also incurred less overall human pressure (Figs. 3 & 4), making 

conservation implementation less costly (25, 29, 31, 54). 

The tree conservation priority areas based on three dimensions of biodiversity are spatially 

incongruent (Fig. S1), particularly between taxonomic diversity on one hand and phylogenetic and 

functional diversity on the other, indicating the importance of considering multiple biodiversity 

dimensions in conservation planning (27, 43). Previous conservation priority studies have 

frequently used just one dimension, typically taxonomic diversity (55–57), as a surrogate for other 

aspects of biodiversity and ecosystem function (28, 58, 59), and sometimes argued that 

incorporating phylogenetic and functional data would not be necessary.However, each diversity 

facet represents important ecological and evolutionary elements of biodiversity, and many studies 

report spatial mismatches among these dimensions (28, 60–64), as we found for tree diversity 
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globally. We found the non-taxonomic prioritization analysis could provide ca. 10% more high 

priority areas for the top 17% and 50% priority areas (Fig. 1). More importantly, the priority areas 

defined by phylogenetic and functional traits are more spatially continuous than those determined 

by species richness (similar as (27)). Given current conservation planning activities tend to focus on 

large and highly connected areas (24, 34, 65), the incorporation of phylogeny and functional trait 

dimensions could provide additional insights for conservation planning. 

Conclusions 

With the end of the Decade on Biodiversity, a new UN Decade on Ecosystem Restoration starts 

from 2021. Knowing where to protect and restore biodiversity is imperative to support conservation 

activities. Considering the global diversity of trees, we show that about half of the critical sites for 

tree diversity are well protected with little human disturbance. Conversely, the remaining half of 

these priority areas is not protected and largely located in places with high anthropogenic activities, 

thus, future conservation planning should be more based on restoration actions. Meanwhile,  

attention should also be paid to the increasing pressure within the existing protected areas (26, 29, 

38), as rising human pressure is a risk in many places (e.g., the Serengeti-Mara ecosystem (66)), in 

addition to rising pressure from human-driven climate change (67) or extreme disturbance events 

such as mega-fires (68). From the aspect of tree biodiversity, the existing conservation priority 

frameworks are helpful for planning and implementing future PAs, especially the Global 200 

Ecoregion framework, which provides the best overlap with priority areas for global tree diversity 

conservation. 
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Methods 

Tree species and their occurrence records 

In this study, we used the world tree species list and species occurrence data compiled and cleaned 

by (69). Briefly, they extracted the records from the world tree species checklist (GlobalTreeSearch, 

GTS; (70)), and further standardized the taxonomic names via the Taxonomic Name Resolution 

Service (TNRS) online tool (71). The GTS employed the definition of the tree type growth habit 

agreed by IUCN’s Global Tree Specialist Group (GTSG), i.e. <a woody plant with usually a single 

stem growing to a height of at least two meters, or if multi-stemmed, then at least one vertical stem 

five centimeters in diameter at breast height= (70). A dataset of 58,100 tree species was obtained 

(69). 

They further collected the occurrence data for the tree species (69). Five widely used and publicly 

accessible occurrence databases were used: the Global Biodiversity Information Facility (GBIF; 

http://www.gbif.org), the public domain Botanical Information and Ecological Network v.3 (BIEN; 

http://bien.nceas.ucsb.edu/bien/; (72, 73)), Latin American Seasonally Dry Tropical Forest Floristic 

Network (DRYFLOR; http://www.dryflor.info/; (74)), RAINBIO database 

(http://rainbio.cesab.org/; (75)), and the Atlas of Living Australia (ALA; http://www.ala.org.au/). 

Due to well-documented problems of biases and errors in global plant occurrences datasets (76), a 

workflow was further developed for occurrence data quality assessment and control, and 

successfully labelled all the occurrence data with a quality level (69). We initially had 9,032,654 

non-quality assessed occurrence records. We adapted the quality category of the occurrence records 

in the study, and selected occurrence records with quality labels corresponding to AAA, AA, A, and 

C. These correspond to data not being an outlier in the environmental space, and not in urban areas 

or in botanical gardens. Our final list of species was lowered to 46,752 species with a total 
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occurrence dataset of 7,066,785 records. Although we obtained a relatively comprehensively 

geographical coverage of the tree species occurrence data (69), some regional gaps still present, 

such as Russia. We thus downloaded the distribution range data of 44 species from the European 

Forest Genetic Resources Program (EUFORGEN, http://www.euforgen.org/) to fill the coverage 

gaps in Eastern Europe and Russia. 

Species range estimates and external validation 

We constructed alpha hulls to estimate the range of each species with 20 or more occurrence 

records using the <ashape= function of the Alphahull package (77) implemented in R (ver. 3.5.1; 

(78)), which is based on the algorithm by (79). For species with less than 20 occurrences or with 

disjunct records, a 10-km buffer was given to each point record and then combined with the alpha-

hull range. Previously, several alpha levels were recommended for the estimation of species range 

(e.g., (80–83)), four alpha levels (2, 4, 6, 10) were applied to each species here. The obtained 

estimated range maps were rasterized to 110 km equal-area grid cells, a resolution commonly used 

in global diversity studies (e.g., (84–86)), using the letsR package (87).  

To validate the range maps using different alpha levels, we performed an external validation against 

the results of an independent modelling study published by (53). In their study, the authors used 

cross-scale models to predict the tree species richness by integrating 1,336 global forest plots and 

282 regional checklists. They produced two spatial levels of richness maps: one in one ha plots and 

one in 209,903 km2 hexagons. Here we compared our data with their coarse-grained predicted 

richness maps only. By following a similar method (53), we firstly calculated the species richness in 

each 209,903 km2 hexagon for each of the alpha-level range maps. We then plotted the observed 

richness in these hexagons against the predicted richness in ref (53). Although the range extents 

from the four alpha levels were different, the species richness obtained from them were largely 
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consistent, as indicated from the similar intercepts and slopes of the regression lines between the 

predicted species richness from ref (53) and observed species richness of each alpha-level range 

map, although the predicted value of species richness per hexagon were generally higher than those 

from alpha-hull estimations (Figs. S4-S5). In fact, two of the three datasets ref (53) used for 

external validation were the same as ours, i.e., BIEN and RAINBIO. We selected the alpha-hull 

range maps with an alpha parameter of 6 for subsequent analyses, as it is commonly used (82, 83). 

Phylogeny 

We extracted phylogenetic information for the tree species with range maps from the largest seed 

plant phylogeny that is currently available (the ALLMB tree (88)). This phylogeny combines a 

backbone tree (89) reflecting deep relationships with sequence data from public repositories 

(GenBank) and previous knowledge of phylogenetic relationships and species names from the Open 

Tree of Life (Open Tree of Life synthetic tree release 9.1 and taxonomy version 3, 

https://tree.opentreeoflife.org/about/synthesis-release/v9.1). We matched this phylogeny to our tree 

dataset by first removing any species that are not in our data, and then manually adding some 

species that were missing from the phylogeny (due to different taxonomic concepts) following the 

same approach that ref (88) used to add missing species. The resulting phylogeny contained 46,752 

species (Fig. S6). 

To represent the phylogenetic position of each species in our dataset, we calculated phylogenetic 

eigenvectors (90) using the PVR package (90, 91). Because we were mostly interested in the deep 

structure of the phylogeny, and phylogenetic eigenvector calculation for large phylogenies is 

computationally prohibitive, we calculated eigenvectors at the genus level (4,031 genera). To 

accomplish this, we randomly chose one species per genus, removed all other species, and 

computed phylogenetic eigenvectors using the resulting phylogenetic tree. All species were then 
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assigned the eigenvector values of their genus. Because some genera were not monophyletic in the 

tree (largely due to lack of resolution), we repeated this process 800 times to capture phylogenetic 

uncertainty, and averaged resulting eigenvector values across the 800 replicates. In the following 

analysis we used the first 15 eigenvectors, excluding those that captured very little phylogenetic 

variation (eigenvalues <1%, following (27)). These selected eigenvectors accounted for 40.6% of 

the total phylogenetic variation, representing the deep evolutionary history of our study species.  

Phylogenetic eigenvectors represent phylogenetic placement as continuous variables, but our 

subsequent analysis required a binary presence-absence matrix. To accommodate this, we adapted 

from the framework of ref (27, 43). First, we evenly divided each eigenvector into 20 bins. Then we 

created a binary variable for each bin, scoring all species with values within the range of the bin 1, 

and all others 0. This resulted in 20 binary variables for each of the 15 eigenvectors, i.e. a matrix of 

46,752 species × 300 binary variables. We multiplied this matrix with the grid cells × species 

matrix to generate a presence-absence matrix of phylogenetic groups in grid cells (27). This matrix 

showed which parts of the phylogeny (as represented by the binary variables derived from the 

eigenvectors) were present in each grid cell. We used this matrix in the following prioritization 

analysis to find priority regions for the conservation of tree phylogenetic diversity.  

Functional trait data 

Twenty-one functional traits (Table S2) were compiled using the TRY (https://try-

db.org/TryWeb/Home.php; (92, 93)), TOPIC (94–100) and BIEN (http://bien.nceas.ucsb.edu/bien/; 

(72)) databases. As many of the traits had missing values (more than 88% of the data per trait), we 

applied gap-filling with Bayesian Hierarchical Probabilistic Matrix Factorization (BHPMF (101–

103)), which is a robust machine learning gap-filling technique with the consideration of 

phylogenetic trait signal and trait–trait correlations, and has been successfully applied in recent 
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global trait-related studies (e.g., (104, 105)). To increase the imputation accuracy, we included 

phylogenetic information in the form of the phylogenetic eigenvectors (PEs) obtained from 

phylogenetic eigenvector analysis, as suggested by (106). As the inclusion of PEs greatly changed 

the gap-filling results, we ran several trials, and found the Root Mean Squared Error (RMSE) was 

the smallest when the first six PEs were included in the imputation (Fig. S7). We thus used the first 

six PEs in the final gap-filling process. We further used the minimum and maximum values per trait 

of the observed data as thresholds. If the gap-filled data were outside of the thresholds, the observed 

minimum or maximum were used to replace the gap-filled data. As for plant maximum height, we 

further used a height of 2 m to replace any imputed data lower than that, after the definition of tree 

species used in the GlobalTreeSearch database (70). We finally selected eight ecologically relevant 

and common-used traits (104) for further functional diversity analyses, that is, leaf nitrogen content, 

wood density, leaf phosphorus content, leaf dry matter content, plant max height, seed dry mass, 

specific leaf area, and leaf area (107). We used the beanplot package (108) to visually compare the 

observed original and imputed data, and found they generally had similar distribution patterns for 

each functional trait (Fig. S8). 

As all the eight functional traits are continuous, to obtain trait group distribution maps we followed 

a similar procedure as in the case of phylogenetic eigenvectors. Briefly, we split each trait into 20 

equal bins, and then converted it into a binary species × trait matrix for each trait (46,752 × 20). For 

each of the 20 bins, we multiplied it by the 110 × 110 km grid cells × species matrix to obtain a trait 

× grid cells matrix, in which each 110 × 110 km grid cell contained the number of species of trait 

values within the trait interval. Totally, we obtained 160 trait × grid cells matrices, a distribution 

map was generated for each of them, and then all the 160 distribution maps were used in the 

prioritization analysis to locate the priority regions for trait dimension. 

Protected area data 
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The protected area (PA) data were extracted from the December 2019 release of the World 

Database on Protected areas (WDPA) via the wdpar package (109, 110). The release includes 

244,869 PAs globally. According to previous similar global studies (e.g., (29)), we extracted the 

protected areas from the WDPA database by selecting terrestrial areas belonging to IUCN protected 

area categories I to VI and having a status <designated=, <inscribed=, or <established=, and areas not 

designated as UNESCO Man and Biosphere Reserves. We also excluded the PAs represented as 

points. Totally 95,506 PAs were kept and then resampled at the 110 × 110 km grid cell level. 

Global biodiversity conservation priority frameworks 

Many NGOs have proposed frameworks for global biodiversity conservation prioritization, e.g., the 

Biodiversity Hotspots (BH) by Conservation International (51), the Last of the Wild (LW) by the 

Wildlife Conservation Institute (111), and the Global 200 Ecoregions (G200) by the World Wide 

Fund For Nature (52). However, these frameworks vary in both location and coverage, largely due 

to the different emphasis of the nature conservation organizations. Although the two central aspects 

of systematic conservation planning, irreplaceability and vulnerability (24), are equally important, 

some of the conservation organizations concentrate only on irreplaceability, while others focus 

more on vulnerability (25). Under the framework of irreplaceability and vulnerability, Brooks et al. 

(25) summarized nine major frameworks, dividing them into three groups: prioritizing high 

vulnerability (regions of high threat, purely reactive, e.g., BH), low vulnerability (regions of low 

threat, purely proactive, e.g., LW), or high irreplaceability (e.g., G200). However, how these 

prioritization frameworks apply to global tree diversity and their respective effectiveness for tree 

conservation remains an open question despite the ecological and societal importance of trees.  

We selected three frameworks of global biodiversity conservation prioritizations(25), namely the 

BH ((51) and Conservation International), the G200 (52), and LW (111). BH is defined as regions 
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containing at least 1,500 vascular plants as endemics (standing for irreplaceable) whilst having less 

than 30% of its original natural habitats remaining 

(https://www.conservation.org/priorities/biodiversity-hotspots). Globally 36 biogeographically 

similar aggregations of ecoregions are proposed, which represent 2.4% of Earth’s land surface, and 

support 77% of the world’s plant endemics, and nearly 43% of endemic tetrapods (bird, mammal, 

reptile, and amphibian species) (112). G200 (World Wildlife Fund) is a suite of 238 ecoregions 

within biomes characterized by high species richness, endemism, taxonomic uniqueness, unusual 

ecological or evolutionary phenomena, or global rarity of major habitat type (irreplaceability or 

distinctiveness) (52), and includes 142 terrestrial, 53 freshwater, and 43 marine ecoregions. The LW 

is the 10% area with the lowest human pressure within each of the Earth’s 60 biogeographic realms 

with human pressure measured with an aggregate index, human footprint index, of human density, 

land transformation, access, and infrastructure (111). Each conservation priority framework 

represented one kind of the irreplaceability/vulnerability framework of systematic conservation 

planning, i.e., BH prioritizes low vulnerability (purely reactive: prioritizing areas of low threat but 

high irreplaceability), LW prioritizes high vulnerability (proactive: prioritizing areas of high threat 

and high irreplaceability), and G200 prioritizes high irreplaceability. The BH data layer was 

downloaded from (113); the upgraded LW data layer was obtained from (114), and the G200 

terrestrial ecoregions layer was from the World Wildlife Fund 

(https://www.worldwildlife.org/publications/global-200). We aggregated all the three spatial layers 

to 110 × 110 km grid spatial resolution. 

Human pressure data 

We used the recently proposed Human Modification map (44) as a proxy of human pressure. 

Compared to the commonly-used human footprint map (111, 115), human modification map was 

modelled with the incorporation of 13 most recent global-scale anthropogenic layers (with a median 
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year of 2016) to account for the spatial extent, intensity, and co-occurrence of human activities, 

many of which showing high directly or indirectly impact on biodiversity (30). Human modification 

index values were extracted at a resolution of 1 km2. Based on the definition of (44), we categorized 

the human modification index into three groups representing different intensity levels of human 

pressure:  low (values ≤0.1; e.g., Southwest Amazon moist forests); moderate (0.1 – 0.4; e.g., 

Everglades flooded grasslands); and high to very high (>0.4; e.g., Central Indochina dry forests). 

We plotted this human pressure layer with the top 17% and 50% priority areas to visualize them 

spatially. 

Prioritization Analyses 

We used the Zonation systematic conservation prioritization software (v.4, (41, 116)) to identify 

global priority areas for tree diversity in each of the three dimensions. Zonation is based on the 

principle of complementarity, i.e., balancing a set of biodiversity features to jointly achieve the 

most complete representation in a given region, and evaluating the spatial priority areas through the 

priority ranking (41). We used the Core-Area Zonation (CAZ) algorithm as cell removal rule. The 

CAZ ranking algorithm emphasizes species (or any biodiversity feature) rarity to ensure high-

quality locations for all features, even if these features occur in species-poor or expensive areas (40, 

42).  

We ran the Zonation spatial conservation prioritization procedure on species, phylogenetic groups, 

and traits separately to compare the mismatch or congruence between the resulting priority areas. 

We focused on each of the obtained priority rankings on both the top 17% (CBD 2020) and 50% 

(CBD 2050) of the highest conservation value areas (i.e., the cells with ranking values greater than 

or equal to 0.83 or 0.50).  
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However, combining the top priority areas of the three diversity dimensions lead to total greater 

areas to be protected than the 17% and 50% targets, namely 26.3% and 61.5%, respectively (Fig. 1). 

Thus, to obtain prioritizations made jointly across the three diversity dimensions, but consistent 

with the two area targets, we ran a joint analysis using the three diversity component (species, 

phylogenetic groups, traits) layers as input of the Zonation, and selected the top 17% and top 50% 

priority areas for further analyses. In addition, as a sensitivity analysis we also compared the 

resulting priority areas to those from simply combining the priority areas from the prioritizations on 

the separate diversity dimensions. We found the two analyses generally generated similar results, 

i.e., similar percentages of overlap with existing PAs, and conservation priority frameworks (Fig. 2 

vs. Fig. S9), and similar human pressure of the priority areas inside and outside existing PAs (Fig. 4 

vs. Fig. S10). Thus, we only report the joint results in the main text, i.e., given that only these 

adhere to the 17% and 50% protected area goals. 

Analysis of spatial data 

We evaluated the degree of congruence of the top 17% and 50% priority areas generated from the 

three dimensions using the Venn diagram. Then we ran global gap analyses for the top priority 

areas, PAs and each of the global biodiversity conservation priority frameworks, by overlaying the 

three layers (i.e., the top priority areas, PAs, and each conservation priority framework) to calculate 

the level of protection in PAs, potential protection in the priority framework, and shared protection 

of the two global high priority areas (both 17% and 50%).  

We divided the priority areas based on the ranking scores into three categories: areas with priority 

scores higher than 0.83 (top 17%), between 0.50 and 0.83 (top 17 -50%), and less than 0.50 

(<50%). For areas within each category, we further separated them into two parts based on whether 

or not they are located inside or outside PAs. We then calculated the human modification index for 
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each of the six regions to test how different the human pressure was. In addition, we computed the 

mean and median values of the human modification index for regions inside and outside PAs 

globally. One-way ANOVA was used to statistically test the differences between groups of human 

modification index values.  

Despite the unprecedented coverage and quality of our tree species dataset, we are aware of certain 

limitations of the data such as missing data in many parts of India and functional traits. Although 

phylogenetic and functional diversity are usually highly related (27, 86), and the imputation of 

functional traits using the phylogenetic eigenvectors could increase the intensity of the relation, we 

found distinct priority areas from each dimension. Nonetheless, more data on the three aspects are 

needed to improve the data completeness. 
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Figures 

 

 

Fig. 1 The top 17% (CBD 2020 target, upper panel) and 50% (CBD 2050 target, lower panel) 

priority cells (a, c) using species, phylogenetic and functional diversity facet according to zonation 

prioritization; (b, d) Venn diagrams showing the proportion of the land surface with overlap 

between species, phylogenetic and functional dimensions of diversity for the top 17% and top 50% 

priority areas. Colors indicate the overlaps between combinations of two of the two facets of the 

three facets, between all three facets, or no overlap.  
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Fig. 2 Percentages of the top 17% (CBD 2020 target) and top 50% (CBD 2050 target) priority areas 

for tree diversity (jointly considering taxonomic, phylogenetic, and functional diversity) covered by 

the existing protected areas (WDPA) or by each global biodiversity conservation priority 

framework (G200, BH, and LW). Colors indicate the overlaps between combinations, Unprotected: 

areas not overlapping with either WDPA or the conservation priority framework; Conservation 

priority only: areas overlapping with conservation priority framework only; Shared: areas 

overlapping with both WDPA and conservation priority framework; WDPA only: areas overlapping 

with WPDA only. G200: Global 200 Ecoregions; BH: Biodiversity Hotspots; LW: Last of the Wild. 

The tree conservation priority areas were obtained by using the three diversity dimensions 

simultaneously in Zonation. 
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Fig. 3 Congruence between current protected areas (PAs, following the World Database on 

Protected Areas (WDPA) database), top priority areas for tree diversity conservation (jointly 

considering taxonomic, phylogenetic, and functional diversity), and moderate to highly human-

modified land cover. The categories of the human modification index (HMI) represent low (≤0.1), 

moderately (0.1 - 0.4) and highly to very highly (>0.4) modified land cover, respectively (Kennedy 

et al., 2019). The WDPA layer is the polygons of the current PAs. The human modification index 

layer is shown in a resolution of 1- km2.  

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052464doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052464
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

  

Fig. 4 Boxplot of the human modification index across tree diversity conservation categories (top 

17%, and top 17 - 50% of the priority scores from the Zonation prioritization jointly considering 

taxonomic, phylogenetic, and functional diversity). Each category is divided into two groups: areas 

inside (blue) and outside (orange) protected areas (PAs, following the World Database on Protected 

Areas (WDPA) database. Medians and means each are indicated by solid lines and dashed lines in 

the boxplots. The horizontal solid lines and dashed lines indicate the global median and mean 

human modification values for the areas inside and outside PAs, respectively. All values were 

obtained from 1- km2 resolution input layers (see Methods for more information). 
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