

TITLE PAGE

Increased intrinsic membrane excitability is associated with hypertrophic olivary degeneration in spinocerebellar ataxia type 1

Abbreviated title: Olivary hyperexcitability and HOD in SCA1

Logan M. Morrison^{1,2,3}, Haoran Huang^{4,5}, Hillary P. Handler⁶, Min Fu^{2,3}, David D. Bushart⁵,
Samuel S. Pappas^{2,3}, Harry T. Orr^{7,8}, Vikram G. Shakkottai^{2,3,*}

Neuroscience Graduate Program¹, University of Michigan, Ann Arbor, MI 48109, USA

Peter O'Donnell Jr. Brain Institute², University of Texas Southwestern Medical Center,
Dallas, TX 75390, USA

Department of Neurology³, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Medical Scientist Training Program⁴, The Ohio State University, Columbus, OH 43210 USA

College of Medicine⁵, The Ohio State University, Columbus, OH 43210 USA

Molecular Diagnostics Laboratory⁶, University of Minnesota Fairview Medical Center, Minneapolis, MN
55455, USA

Institute for Translational Neuroscience⁷ and Department of Laboratory Medicine and Pathology⁸,
University of Minnesota, Minneapolis, MN 55455, USA

*Indicates corresponding author

Corresponding author:

Vikram G. Shakkottai, MD, PhD

Peter O'Donnell Jr. Brain Institute

Department of Neurology and Neurotherapeutics

University of Texas Southwestern Medical Center

NL9.138A, 5323 Harry Hines Blvd,

Dallas, TX 75390

vikram.shakkottai@utsouthwestern.edu

Section outline and figure count

Number of figures: 8

Number of tables or multimedia: 0

Number of extended figures/tables: 1

Abstract word count: 250

Significance statement word count: 119

Introduction word count: 648

Discussion word count: 1499

Conflicts of Interests

The authors declare no competing financial interests.

Acknowledgments

This work was supported by funding from the US National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) (R01 NS085054) and a National Ataxia Foundation Research Seed Money Grant Award to VGS, as well as funding from the NIH/NINDS (R37 NS022920), a National Ataxia Foundation Pioneer Award, and a Wallin Neuroscience Discovery Award to HTO.

1 **Abstract**

2 One of the characteristic areas of brainstem degeneration across multiple spinocerebellar ataxias
3 (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. In
4 addition to its vulnerability in SCAs, the IO is also susceptible to a distinct pathology known as
5 hypertrophic olivary degeneration (HOD). Clinically, HOD has been exclusively observed after
6 lesions in the brainstem disrupt inhibitory afferents to the IO. Here, for the first time, we describe
7 HOD in another context: spinocerebellar ataxia type 1 (SCA1). Using the genetically-precise
8 SCA1 knock-in mouse model (SCA1-KI; both sexes used), we assessed SCA1-associated changes
9 in IO neuron structure and function. Concurrent with degeneration, we found that SCA1-KI IO
10 neurons are hypertrophic, exhibiting early dendrite lengthening and later somatic expansion.
11 Unlike in previous descriptions of HOD, we observed no clear loss of IO inhibitory innervation;
12 nevertheless, patch-clamp recordings from brainstem slices reveal that SCA1-KI IO neurons are
13 hyperexcitable. Rather than synaptic disinhibition, we identify increases in *intrinsic* membrane
14 excitability as the more likely mechanism underlying this novel SCA1 phenotype. Specifically,
15 transcriptome analysis indicates that SCA1-KI IO hyperexcitability is associated with a reduced
16 medullary expression of ion channels responsible for spike afterhyperpolarization (AHP) in IO
17 neurons – a result that has a functional consequence, as SCA1-KI IO neuron spikes exhibit a
18 diminished AHP. These results reveal membrane excitability as a potential link between disparate
19 causes of IO degeneration, suggesting that HOD can result from any cause, intrinsic or extrinsic,
20 that increases excitability of the IO neuron membrane.

21

22

23

24 **Significance statement**

25 Little is known about the factors that make inferior olive (IO) neurons susceptible to degeneration
26 in the spinocerebellar ataxias (SCAs), a group of inherited neurodegenerative movement disorders.
27 Another well-described form of IO degeneration, known as hypertrophic olivary degeneration
28 (HOD), results from inhibitory denervation of the IO after brainstem injury. Here, we describe a
29 novel finding of HOD in SCA1 without inhibitory denervation, in association with increased
30 intrinsic membrane excitability and reduced potassium channel transcripts. This suggests that
31 increased membrane excitability may be the underlying primary mechanism of HOD. Identifying
32 hyperexcitability as the mechanistic driver of HOD would imply that reducing intrinsic IO
33 excitability could be an effective strategy for treating diverse causes of both inherited and sporadic
34 olivary degeneration.

35

36 **Introduction**

37 The inferior olive (IO) is a nucleus in the medullary brainstem that plays an important role in
38 cerebellar motor learning (Lang et al., 2017). IO neurons send powerful excitatory projections
39 known as climbing fibers into the cerebellum, where they synapse onto Purkinje cell dendrites to
40 generate cerebellar complex spikes (De Zeeuw et al., 1998; Ausim Azizi, 2007; Ito, 2013; Llinas,
41 2013). The IO is susceptible to degeneration in a number of conditions, including sporadic
42 olivopontocerebellar atrophy (OPCA) (Konigsmark and Weiner, 1970; Duvoisin, 1984) and the
43 spinocerebellar ataxias (Seidel et al., 2012). In addition, IO neurons are vulnerable to a pathology
44 known as hypertrophic olivary degeneration (HOD). Clinically, HOD occurs secondary to lesions
45 in the brainstem (pontine hemorrhage, most commonly (Smets et al., 2017)) that disrupt inhibitory
46 fibers that travel from the contralateral dentate nucleus of the cerebellum and through the brainstem

47 to synapse onto the IO (a white matter tract known as the Guillain-Mollaret triangle (Ogut et al.,
48 2023)). An acute lesion to these fibers results in an initial increase in IO neuron soma size,
49 generally observed as an increase in gross IO volume (Jellinger, 1973; Ruigrok et al., 1990; Wang
50 et al., 2019). This is ultimately followed by cell loss, gliosis, and atrophy of the IO, a process that
51 sometimes extends for years after the initial insult (Goto and Kaneko, 1981; Pandey et al., 2013).
52 Although HOD ultimately results in IO degeneration, its pathology is considered distinct from the
53 IO atrophy observed in OPCA and the spinocerebellar ataxias due to the lack of any clinically-
54 evident hypertrophy in these disorders (Koeppen, 2018).

55

56 The spinocerebellar ataxias (SCAs) are a group of inherited neurodegenerative diseases that cause
57 a progressive loss of motor function (Paulson, 2009; Seidel et al., 2012). Progressive brainstem
58 degeneration (including in the IO) is known to occur in SCA1, SCA2, SCA3, and SCA7, which
59 together account for the majority of SCA cases (Rub et al., 2013). This pathology manifests late
60 in disease progression, corresponding closely to the onset of breathing and swallowing deficits
61 (symptoms that can eventually cause premature death, especially in SCA1) (Durr, 2010). Among
62 these common SCAs, the fastest-progressing is SCA1 (Scott et al., 2020), a subtype that exhibits
63 IO degeneration as a characteristic pathology (Koeppen et al., 2013). The mechanisms that
64 underlie this degeneration, as well as brainstem pathology in the SCAs broadly, remain poorly
65 understood.

66

67 In this study, we examined IO morphology and physiology in the genetically-precise SCA1 knock-
68 in (SCA1-KI) mouse model. For the first time, we have identified changes consistent with early
69 HOD in a model not of brainstem injury, but of neurodegenerative disease. In neurons of the

70 principal olivary nucleus (IOPr) of SCA1-KI mice, we observed early dendritic hypertrophy
71 followed by late somatic hypertrophy. We found that these morphological changes are concurrent
72 with a loss of immunoreactivity for the calcium-binding protein calbindin. Calbindin loss is
73 characteristic of SCA1 pathology in both IO neurons (Koeppen et al., 2013; Yu et al., 2014) and
74 Purkinje cells (Vig et al., 1998; Koeppen, 2005) and has been used as a surrogate for
75 neurodegeneration in various mouse models of the disease, including SCA1-KI mice (Burright et
76 al., 1995; Watase et al., 2002). Interestingly, structural and functional analyses of IO innervation
77 demonstrate no loss of inhibitory input, suggesting an intrinsic mechanism of HOD in SCA1 that
78 is distinct from the extrinsic mechanism produced by lesions of the brainstem. Using patch-clamp
79 electrophysiology and unbiased transcriptome analysis, we further found that SCA1-KI IO neurons
80 are hyperexcitable, likely due to a reduced expression of ion channel genes – specifically, genes
81 that encode certain calcium and potassium channels that are known to regulate IO neuron intrinsic
82 excitability by mediating spike afterhyperpolarization (AHP) (Llinas and Yarom, 1981b, a).
83 Together, these results reveal intrinsic membrane excitability as a potential link between disparate
84 causes of HOD, suggesting that hyperexcitability from any cause, extrinsic or intrinsic, converges
85 on the same mechanistic pathway of IO degeneration.

86

87 **Materials and Methods**

88 **Mouse studies**

89 All animal studies were reviewed and approved by the Institutional Animal Care and Use
90 Committee (IACUC) at the institution where they were performed (University of Michigan,
91 University of Texas Southwestern Medical Center, or University of Minnesota) and were
92 conducted in accordance with the United States Public Health Service's Policy on Humane Care

93 and Use of Laboratory Animals. SCA1 knock-in (SCA1-KI) mice (RRID:MGI:3774931), which
94 express an expanded CAG triplet repeat in the endogenous *Atxn1* locus (Watase et al., 2002), were
95 maintained on a C57BL/6 background. SCA1-KI mice were heterozygous for the expanded *Atxn1*
96 allele (*Atxn1*^{154Q/2Q}), with wild-type littermates (*Atxn1*^{2Q/2Q}) used as controls. SCA1 transgenic
97 (SCA1-Tg) mice (RRID:MGI:5518618) overexpress the human *ATXN1* gene with an expanded
98 CAG triplet repeat under the Purkinje cell-specific murine *Pcp2* (*L7*) promoter (Burright et al.,
99 1995) and were maintained on an FVB background (Jackson Labs, RRID:IMSR_JAX:001800).
100 SCA1-Tg mice were homozygous for the transgene (*ATXN1/82Q*)^{tg/tg}, with age/sex-matched
101 wild-type FVB mice used as controls. For both mouse models, studies were performed at either
102 13-15 weeks of age (defined as the “14 week” timepoint) or 29-32 weeks of age (defined as the
103 “30 week” timepoint). Sexes were balanced for all animal studies.

104

105 **Patch-clamp electrophysiology**

106 *Solutions*

107 Artificial cerebrospinal fluid (aCSF) used in these experiments contained: 125 mM NaCl, 3.8 mM
108 KCl, 26 mM NaHCO₃, 1.25 mM NaH₂PO₄, 2 mM CaCl₂, 1mM MgCl₂, and 10 mM glucose. For
109 all recordings, pipettes were filled with internal solution containing: 140 mM K-Gluconate, 4 mM
110 NaCl, 10⁻³ mM CaCl₂, 4mM Mg-ATP, 10⁻² mM EGTA, 10 mM HEPES, at pH 7.3 and osmolarity
111 ~285 mOsm, as described previously for IO recordings (Lefler et al., 2014).

112

113 *Preparation of brain slices for acute electrophysiological recordings*

114 Slices were prepared using the “hot cut” technique (Huang and Uusisaari, 2013). This process,
115 which involves tissue sectioning in standard aCSF at physiological temperatures rather than a

116 sucrose-rich aCSF at near-freezing temperatures, is a recent advancement that has allowed for
117 patch-clamp recordings in brain regions previously deemed inaccessible in adult mice due to their
118 hypersensitivity to slicing-induced damage. This technique has facilitated studies of nuclei never-
119 before investigated in the adult mouse brain, including the inferior olive (Lefler et al., 2014).
120 Briefly, mice were deeply anesthetized by isoflurane inhalation, decapitated, and brains were
121 rapidly removed and submerged in pre-warmed (33°C) aCSF. 300 μ m coronal slices were prepared
122 on a VT1200 vibratome (Leica Biosystems, Deer Park, IL) in aCSF held at 32.5°C-34.0°C during
123 sectioning. Slices were then incubated in carbogen-bubbled (95% O₂, 5% CO₂) aCSF at 33°C for
124 45 min. Slices were then stored in carbogen-bubbled aCSF at room temperature (RT) until use.
125 During recording, slices were placed in a recording chamber and continuously perfused with
126 carbogen-bubbled aCSF at 33°C at a flow rate of 2.5 mL/min.

127

128 *Patch-clamp recordings*

129 IO neurons were visually identified for patch-clamp recordings using a 40x water immersion
130 objective and a Nikon Eclipse FN1 upright microscope with infrared differential interference
131 contrast (IR-DIC) optics. Identified cells were visualized using NIS Elements image analysis
132 software (Nikon, Melville, NY). Patch pipettes were pulled to resistances of ~3 M Ω from thin-
133 walled glass capillaries (World Precision Instruments, Cat# 1B120F-4). Importantly, we found that
134 pipette shape had an outsized impact on the success of these difficult recordings; as such, special
135 care was taken to make pipettes with a short taper and a perfectly flat, ~1 μ m diameter tip. Data
136 were acquired using a CV-7B headstage amplifier, a Multiclamp 700B amplifier, a Digidata 1440A
137 interface (Axon Instruments, San Jose, CA), and pClamp-10 software (Molecular Devices, San

138 Jose, CA). All data were digitized at 100 kHz. All voltages were corrected for liquid gap junction
139 potential, previously calculated to be 10 mV (Dell'Orco et al., 2015).

140

141 **Purkinje cell *in-vivo* electrophysiology**

142 *Surgical preparation of craniotomy site*

143 *In-vivo* electrophysiological recordings were performed with custom equipment and techniques as
144 described previously (Heiney et al., 2014). Briefly: 14-week-old wild-type and SCA1-KI mice
145 were surgically prepared for recordings one day in advance. Isoflurane anesthesia (dosage 4% for
146 induction, 1.5% for maintenance) was used during all surgical procedures. After a scalp incision,
147 two 0.6 x 0.06" SL flat SS anchor screws (Antrin, Fallbrook, CA) were placed into the skull
148 slightly posterior to bregma. A custom titanium headplate was then affixed to both the skull and
149 the anchor screws with C&B-Metabond (Parkell, Edgewood, NY), and a recording chamber was
150 shaped around the skull above the cerebellum using dental cement (Lang Dental, Wheeling, IL).
151 Two 3 mm craniotomies (centered at -6.2 AP, \pm 2.1 ML from Bregma) were performed to expose
152 the anterior lobules of each cerebellar hemisphere. Craniotomy sites were protected with Kwik-Sil
153 (World Precision Instruments, Sarasota, FL) until recording.

154

155 *Recording procedure*

156 On the day of recording, animals were secured to the recording platform using the titanium
157 headplate described above. All recordings were performed in awake mice in a single session per
158 mouse, with the total duration of the session limited to 1 hr. After the headplate was attached to
159 the platform, the dental cement recording chamber was filled with sterile PBS and a 2.5-3.5 M Ω
160 tungsten electrode (Thomas Recording, Giessen, Germany) was inserted into one of the

161 craniotomy sites to acquire data. The recording electrode was slowly lowered into the cerebellar
162 cortex until Purkinje cells were identified by their characteristic physiology (20-80 Hz simple
163 spikes and the presence of complex spikes). From this point, the electrode was lowered in 10 μm
164 increments until maximum simple spike amplitude was reached. Though electrode placement
165 varied between animals, final electrode depth was typically 2-3 mm from the surface of the brain.
166 Purkinje cell activity was recorded using a DP-301 differential amplifier (Warner Instruments,
167 Holliston, MA), digitized at 100 kHz using a Digidata 1440A interface (Axon Instruments, San
168 Jose, CA), and analyzed using pClamp-10 software (Molecular Devices, San Jose, CA). A
169 minimum of 5 min of activity was recorded per craniotomy site. Recording position in the
170 cerebellar cortex was verified by assessing tissue damage from the recording electrode via Nissl
171 staining.

172

173 *Data analysis*

174 Complex spike frequency was analyzed in 10 Hz high-pass filtered traces, with the criterion for
175 identification that complex spikes must exhibit a voltage higher than the maximum simple spike
176 peak for the entire trace, as described previously (Warnaar et al., 2015). Displayed traces from *in-*
177 *vivo* electrophysiological recordings were first filtered to reduce minor 60 Hz electrical
178 interference, then high-pass filtered at 10 Hz.

179

180 **Cell filling and morphological analysis**

181 *Filling protocol and section preparation*

182 Before patch clamp recordings, Alexa Fluor 488 Succinimidyl Ester (Invitrogen, Cat# A20000)
183 powder was dissolved separately in internal solution at a concentration of 1 mg/mL. Pipette tips

184 were filled with a minuscule amount of standard internal solution so fluorescent dye would not be
185 washed over the tissue when attempting to patch. This was accomplished by placing pipettes
186 upside down (i.e., tip up) in a microcentrifuge tube containing ~20 μ L internal solution for ~5 min,
187 which filled the pipette tip by capillary action. From here, pipettes were backfilled with the
188 fluorescent internal solution, allowing cells to be filled with dye while recording. All cells were
189 filled for 15-20 min and confirmed as filled after pipette removal by the presence of intense somatic
190 fluorescence at 40X (as shown in **Fig. 5A, inset**). Only one cell per side was filled on each section
191 to avoid tracing errors from dendrite overlap. In addition, a scalpel was used to make a small notch
192 in the left spinal trigeminal tract of each section to mark its orientation. After filling was complete,
193 free-floating brainstem sections were immediately fixed in 1% PFA for 1 hr at RT, then washed
194 3x in PBS. To avoid crushing the sections during mounting (as patch-clamp slices are much thicker
195 than typical histological sections) a square was drawn on the slide using clear nail polish and
196 allowed to dry immediately before attempting to mount the tissue. Sections were mounted in this
197 square using ProLong Gold Antifade Mountant with DAPI (Cell Signaling Technology, Cat#
198 8961S), with specific attention being paid to the notch in the section to ensure that the surface of
199 the section with the filled cell was mounted against the coverslip, not the slide.

200

201 *Confocal imaging and of filled cells*

202 Sections were imaged using a Nikon C2+ microscope with a 63x oil immersion objective. Imaging
203 of each cell was accomplished by taking multiple z-stack images at the microscope's minimum of
204 0.207 μ m between each image of the stack.

205

206

207 *3D reconstruction of cells and morphological analysis*

208 After imaging, 3D reconstructions of cells were generated from z-stack images using the open-
209 source tracing software Vaa3D (Peng et al., 2010; Peng et al., 2014a; Peng et al., 2014b). For each
210 cell, a conservative initial trace was generated automatically by Vaa3D, then manually reviewed
211 and appended to include all visible projections of the neuron. All single-cell morphological
212 calculations were made automatically by Vaa3D, with dendritic tip and bifurcation counts
213 confirmed as accurate by manual review.

214

215 **Immunohistochemistry**

216 *Sample preparation and imaging*

217 Mice were anesthetized under isoflurane inhalation and brains were removed, fixed in 1%
218 paraformaldehyde (PFA) for 1 hour, after which they were placed in 30% sucrose in phosphate-
219 buffered saline (PBS) for 48 hours at 4°C. Brains were then cryo-embedded in a 1:1 mixture of
220 30% sucrose (in PBS) and OCT compound (Fisher Scientific, Cat# 23-730-571) at -80°C for at
221 least 24 hrs. Tissue blocks were sectioned to 20 µm thickness on a CM1850 cryostat (Leica
222 Biosystems, Deer Park, IL). Tissue was permeabilized with 0.4% triton in PBS, then non-specific
223 binding was minimized by blocking with 5% normal goat serum in 0.1% triton in PBS. Primary
224 antibodies (Abs) were incubated in PBS containing 0.1% triton and 2% normal goat serum at 4°C
225 overnight, while secondary Abs were applied for one hour at room temperature in PBS.

226

227 *Antibodies used*

228 To stain for neuronal nuclear protein (NeuN) for stereology (**Figs. 2 & 4**), Rabbit anti-NeuN
229 primary Ab (1:500, Cell Signaling, Cat# 12943, RRID:AB_2630395) and Goat anti-Rabbit IgG

230 (H+L) Alexa Fluor 488-conjugated secondary Ab (1:200; Invitrogen, Cat# A11034, RRID:AB_2576217) were used. To stain for Calbindin (Calb) for stereology (**Figs. 2 & 4**), Mouse anti-Calb primary Ab (1:1000; Sigma Aldrich, Cat# C9848, RRID:AB_476894) and Goat anti-Mouse IgG (H+L) Alexa Fluor 594-conjugated secondary Ab (1:200; Invitrogen, Cat# A11005, RRID:AB_2534073) were used. To stain for glutamate decarboxylase (GAD) for assessment of IO inhibitory innervation (**Figs. 3 & 4**), Rabbit anti-GAD primary Ab (1:500, Sigma-Aldrich, Cat# G5163, RRID:AB_477019) and Goat anti-Rabbit IgG (H+L) Alexa Fluor 594-conjugated secondary Ab (1:200, Invitrogen, Cat# A11012, RRID:AB_2534079) were used. To stain for Calbindin (Calb) for assessment of IO inhibitory terminals (**Figs. 3 & 4**), Mouse anti-Calb primary Ab (1:1000; Sigma Aldrich, Cat# C9848, RRID:AB_476894) and Goat anti-Mouse IgG (H+L) Alexa Fluor 488-conjugated secondary Ab (1:200; Invitrogen, Cat# A11001, RRID:AB_2534069) were used. To stain for small conductance calcium-activated potassium channel 2 (SK2) in IO ion channel studies (**Fig. 7**), Rat anti-SK2 primary Ab (1:200, NeuroMab clone K78/29, Cat# 75-403, RRID:AB_2877597) and Goat anti-Rat IgG (H+L) Alexa Fluor 488-conjugated secondary Ab (1:200, Invitrogen, Cat# A11006, RRID:AB_2534074) were used. To stain for Calbindin (Calb) for IO ion channel studies (**Fig. 7**), Mouse anti-Calb primary Ab (1:1000; Sigma Aldrich, Cat# C9848, RRID:AB_476894) and Goat anti-Mouse IgG (H+L) Alexa Fluor 594-conjugated secondary Ab (1:200; Invitrogen, Cat# A11005, RRID:AB_2534073) were used.

248

249 *Fluorescence intensity measurements*

250 To measure the intensity of GAD staining (**Figs. 3 & 4**), images acquired at 10x magnification
251 were used. Fluorescence intensity analysis was performed using ImageJ. A rectangular box was
252 placed in the IO, specifically in the area of the principal olfactory nucleus (IOPr). Mean pixel

253 intensity was measured for each rectangle, which was then used as the raw fluorescence intensity
254 value for each section. Box size was identical in all cases and placed in similar areas of the IOPr
255 between sections. Two sections were imaged per animal and the mean of their fluorescence values
256 were used as the fluorescence intensity for that animal. All tissue processing and imaging was
257 performed at the same session and microscope settings were identical for all acquired images.
258 During imaging and analysis, the experimenter was blind to genotype.

259

260 *Confocal microscopy*

261 Imaging was performed on a Nikon C2+ confocal microscope. Single-plane images were acquired
262 at 63x magnification using an oil-immersion lens, with microscope settings kept constant between
263 all samples under each set of antibodies. Samples were prepared and imaged with the experimenter
264 blind to genotype.

265

266 **Inferior olive stereology**

267 *Cell counts*

268 Estimates for the total number of neurons (NeuN⁺ cells) in the IO, total number of healthy neurons
269 (NeuN⁺,Calb⁺ cells) in the IO, and total IO volume were quantified with an unbiased stereological
270 approach using the optical fractionator probe in Stereoinvestigator (MBF Bioscience, Williston,
271 VT). 30 μ m serial coronal sections through the medulla were mounted on slides and co-stained for
272 NeuN and Calbindin as described above. Sections were observed under epifluorescence on a Zeiss
273 Axioimager M2 microscope, where regions of interest were first outlined using a 10x objective
274 lens. 10 sections per brain were analyzed, with a section evaluation interval of 4. Cells within the
275 outlined region were counted using a 63x oil immersion objective, with a ~20 μ m counting depth

276 and 1 μm guard zones. A 200 μm x 200 μm counting frame and 50 μm x 50 μm sampling grid
277 were used for all counts, determined effective in pilot studies such that the Gunderson coefficient
278 of error was less than 0.1 for all markers. The top of each stained cell body was the point of
279 reference. The pyramids (py), ventral gigantocellular reticular nucleus (GRN), lateral
280 paragigantocellular nucleus (PGRN), medial lemniscus (ml), and magnocellular reticular nucleus
281 (MARN) were used as anatomical boundaries for the IO.

282

283 *Cell size measurements*

284 IOPr neuron cell size was quantified by measuring the average soma area (μm^2) for 30-50 cells per
285 animal. Measurements were made concurrent with stereological analysis using the 63x oil
286 immersion objective and the 4-ray nucleator probe in Stereoinvestigator (MBF Bioscience,
287 Williston, VT). Cell size was measured while visualizing cells with NeuN. Analysis was
288 constrained to the principal nucleus of the inferior olive (IOPr), identified by its distinct laminar
289 structure. 200–400 neurons (from 5–8 brains) were measured for each genotype at each timepoint.

290

291 **Transcriptome analysis**

292 *Administration of antisense oligonucleotides (ASOs)*

293 ASO treatment was performed in SCA1-KI and wild-type mice at 5 weeks of age by intracerebro-
294 ventricular (ICV) injection. For these injections, mice were anesthetized with an intraperitoneal
295 (IP) ketamine/xylazine cocktail (100 mg/kg ketamine and 10 mg/kg xylazine). Using a stereotax,
296 the cranium was burr drilled and a Hamilton Neuros Syringe (65460-05) was positioned at the
297 following coordinates: AP, 0.3; ML, 1.0; DV, -2.7 mm from bregma. Injections of 10 μl ASO
298 618353 (50 $\mu\text{g}/\mu\text{l}$) dissolved in PBS without Ca/Mg (Gibco, 14190) or vehicle were delivered via

299 a micro-syringe pump at 25 nl/s. Immediate postoperative care included subcutaneous delivery of
300 250 μ l saline, carprofen (7 mg/kg) and Buprenorphine SR (Zoopharm Pharmacy) (2 mg/kg).

301

302 *RNA isolation and sequencing*

303 Total RNA was isolated from dissected medullae of 28-week-old wild-type vehicle-injected mice
304 (8 samples), 28-week-old SCA1-KI vehicle injected mice (8 samples), and 28-week-old SCA1-KI
305 ASO-injected mice (7 samples) using TRIzol Reagent (Life Technologies) following the
306 manufacturer's protocols. Tissue was homogenized using RNase-Free Disposable Pellet Pestles
307 (Fisher Scientific) in a motorized chuck. For RNA-seq, RNA was further purified to remove any
308 organic carryover using the RNeasy Mini Kit (Qiagen) following the manufacturer's RNA
309 Cleanup protocol. Purified RNA was sent to the University of Minnesota Genomics Center for
310 quality control, including quantification using fluorimetry (RiboGreen assay, Life Technologies),
311 and RNA integrity was assessed with capillary electrophoresis (Agilent BioAnalyzer 2100, Agilent
312 Technologies Inc.), generating an RNA integrity number (RIN). All submitted samples had greater
313 than 1 μ g total mass and RINs greater than or equal to 7.9. Library creation was completed using
314 oligo-dT purification of polyadenylated RNA, which was reverse transcribed to create cDNA.
315 cDNA was fragmented, blunt ended, and ligated to barcoded adaptors. Library was size-selected
316 to 320 bp \pm 5% to produce average inserts of approximately 200 bp, with size distribution validated
317 using capillary electrophoresis and quantified using fluorimetry (PicoGreen, Life Technologies)
318 and qPCR. Libraries were then normalized, pooled, and sequenced on an Illumina HiSeq 2000
319 using a 100-nt paired-end read strategy. Data were stored and maintained on University of
320 Minnesota Supercomputing Institute Servers. Reads were aligned to the mouse reference genome
321 (GRcm38) with hisat2 (Kim et al., 2015) using default parameters for stranded libraries, the hisat2

322 GRCm38 index for the genome plus SNPs, and transcripts and using Ensembl's release 87 of the
323 GRCm38 gene annotations. Read counts per gene were summed using featureCounts from the
324 subread package (Liao et al., 2014). Genes less than about 300 bp are too small to be accurately
325 captured in standard RNA-seq library preparations, so they were discarded from downstream
326 analyses. Differential expression analysis was carried out using the R package DESeq2 (Love et
327 al., 2014). Medulla samples were collected and sequenced in two batches, with batch effect
328 corrected for in the differential expression analysis model. Genes with a false discovery rate (FDR)
329 value ≤ 0.05 were considered significant. For both data sets, genes were ranked by $-\log_{10}(P \text{ value})$
330 using differential expression comparison between the wild-type vehicle-injected and SCA1-KI
331 ASO-injected groups, with the sign of the fold change assigned to the ranking metric; i.e., if the
332 fold change was negative, the ranking metric was $-1 \times (-\log_{10}[P \text{ value}])$. Statistically significant
333 differentially-expressed genes (DEGs) were identified as all genes with $P < 0.05$ (or $P_{adjusted} <$
334 0.05, where appropriate) and an expression value of either $\log_2\text{FoldChange} < -0.3$ or
335 $\log_2\text{FoldChange} > 0.3$.

336

337 **Experimental Design and Statistical Analysis**

338 Experimenters were kept blind to genotype for all experiments to avoid biasing results. To prevent
339 variability within experiments, every individual analysis was performed by the same experimenter
340 (e.g., all GAD staining analysis was performed by the same person) and using the same
341 conditions/settings (e.g., all staining for an experiment was done in a single session and analyzed
342 with the same microscope settings) for that experiment's full mouse cohort. Individual statistical
343 tests are described in the figure legends for all data. As this was an exploratory study, the null
344 hypotheses were not prespecified and calculations for statistical power were not performed prior

345 to study initiation. It follows from the exploratory nature of the experiments that calculated P
346 values cannot be interpreted as hypothesis testing but only as descriptive. Though formal power
347 analysis was not performed, we estimated sample size based on our (and others') previous work
348 in SCA1 mouse models. Number of individual datapoints and total number of animals for all
349 experiments are reported in figure legends. Statistical analysis was done using Microsoft Excel,
350 Prism 6.0 (GraphPad Software, Boston, MA), and SigmaPlot (Systat Software, Palo Alto, CA),
351 with statistical significance defined as $P < 0.05$. If statistical significance was achieved, we
352 performed post-hoc analysis corresponding to the experiment, as specified, to account for multiple
353 comparisons. All t -tests were two-tailed Student's t -tests, with the level of significance (alpha) set
354 at 0.05. Enrichment of ion channels was calculated using Fisher's exact test, with initial enrichment
355 calculated by comparing ion channel gene proportion amongst DEGs to ion channel gene
356 proportion amongst all genes analyzed (270 potential mouse ion channel transcripts of 30,973 total
357 transcripts assessed) in a 2 x 2 contingency table.

358

359 **Results**

360 **Neurons of the principal olfactory nucleus in SCA1 mice undergo degenerative hypertrophy**

361 To assess the morphological changes of neurons in the principal olfactory nucleus (IOPr) due to
362 SCA1, we filled individual IOPr neurons from coronal brainstem slices of 14-week-old SCA1
363 knock-in (SCA1-KI) mice. This mouse strain was used because it is the most genetically precise
364 model of SCA1, generated by the insertion of 154 CAG repeats into the endogenous *Atxn1* locus.
365 This causes slowly-progressing movement phenotypes that mirror human SCA1: SCA1-KI motor
366 incoordination begins at 5 weeks (Watase et al., 2002), becomes robust by 14 weeks (Bushart et
367 al., 2021), and is severe by 30 weeks (Cvetanovic et al., 2011). Importantly, these mice also model

368 brainstem phenotypes (unlike previous SCA1 mouse models), as they produce mutant ATXN1 in
369 all cell types in which *Atxn1* is endogenously expressed. We filled cells from both SCA1-KI and
370 wild-type littermate controls with a biologically inert fluorescent dye, then imaged them in three
371 dimensions using z-stack confocal microscopy. Using the open-source imaging software suite
372 Vaa3D (Peng et al., 2010; Peng et al., 2014a; Peng et al., 2014b), we generated 3D reconstructions
373 from these z-stacks to measure various parameters of each cell's shape and size.

374

375 Neurons of the IOPr are multipolar, generally described as having a “cloud” of dendrites
376 surrounding the soma in three dimensions (De Zeeuw et al., 1998; Vrieler et al., 2019). At 14
377 weeks, we found that these IOPr dendritic arbors are significantly larger and more complex in
378 SCA1-KI mice than in wild-type controls (**Fig. 1A**). SCA1-KI IOPr neurons have a greater number
379 of dendritic tips and bifurcations (**Fig. 1B-C**), a larger total length of dendrites (**Fig. 1D**), and a
380 significantly higher fractal dimensionality (a measure of the complexity of a three-dimensional
381 object) (**Fig. 1E**). Though this indicates significant hypertrophy of SCA1-IOPr neuron dendrites,
382 we did not observe a change in the total span of the dendritic arbor (**Fig. 1F-H**). Similarly, soma
383 surface area was largely unchanged between genotypes (**Fig. 1I**).

384

385 To investigate SCA1-related phenotypes in the IO as a whole, we quantified IO cell number in 14-
386 week-old (early symptomatic) and 30-week-old (late symptomatic) mice using unbiased
387 stereology. This was performed using brainstem sections co-stained for neuronal nuclear protein
388 (NeuN; a marker of all neurons) and calbindin (Calb). Calb is a well-conserved calcium-binding
389 protein that plays a critical role in calcium buffering in Purkinje cells (Schwaller et al., 2002).
390 Historically, loss of Calb-immunoreactive (Calb⁺) Purkinje cells has been widely used as a

391 surrogate for Purkinje cell degeneration in SCA mouse models, including models of SCA1
392 (Watase et al., 2002), SCA2 (Hansen et al., 2013), SCA3 (Switonski et al., 2015), and SCA17 (Cui
393 et al., 2017). Mouse IO neurons also exhibit high levels of Calb expression (Yu et al., 2014), and
394 loss of Calb⁺ cells in the IO has similarly been used as an indicator of degeneration in the IO of
395 both ataxic mice (Zanjani et al., 2004) and human SCA patients (Koeppen et al., 2013). Here, we
396 found that 14-week-old SCA1-KI mice exhibit a ~25% loss of Calb⁺ IO neurons (**Fig. 2E**) without
397 a discernible decrease in total cell number (**Fig. 2D**) or mean IO volume (**Fig. 2F**), suggesting the
398 presence of early IO neurodegeneration in these mice. 30-week-old animals also showed no
399 difference in total IO cell number (**Fig. 2K**) or mean IO volume (**Fig. 2M**), though loss of Calb⁺
400 neurons in the SCA1-KI IO was not significant ($P = 0.0658$) at this stage (**Fig. 2L**).

401

402 While performing stereological quantifications on these sections, we also conducted cell size
403 measurements. Focusing solely on the IOPr, we recorded the soma area of 200-400 cells per
404 genotype at each timepoint (**Fig. 2C,J**). At 14 weeks, we found no difference in the average soma
405 area of IOPr neurons between genotypes (**Fig. 2G**), a result that is consistent with soma area
406 measurements from filled cells at 14 weeks (**Fig. 1I**). However, at 30 weeks, IOPr soma areas were
407 ~25% larger on average in SCA1-KI mice compared to wild-types (**Fig. 2N**), indicating significant
408 somatic hypertrophy. These results, along with the morphological changes observed in single IOPr
409 neurons at 14 weeks (**Fig. 1**), suggest an SCA1-associated hypertrophy in IOPr neurons that
410 appears first in dendrites and later in the soma.

411

412 This concurrence of hypertrophy and degeneration is uncommon amongst neuronal disorders.
413 Interestingly, however, the IO is one of the few brain regions in which degenerative hypertrophy

414 has been previously described. This phenomenon, known as hypertrophic olfactory degeneration
415 (HOD), can occur if brainstem injury (usually pontine hemorrhage (Smets et al., 2017)) causes
416 substantive loss of inhibitory input to the IO (Wang et al., 2019). The degenerative hypertrophy
417 identified here appears strikingly similar to this well-described pathology, suggesting that SCA1-
418 associated IO dysfunction may constitute a novel cause of HOD.

419

420 **Degenerative hypertrophy in SCA1-KI IOPr neurons is cell-autonomous**

421 In order to rule out other potential causes of HOD, we analyzed inhibitory projections to the IOPr
422 in SCA1-KI and wild-type mice at 14 weeks and 30 weeks. Coronal brainstem sections were
423 stained for glutamate decarboxylase (GAD), a marker of GABAergic terminals (**Fig. 3A,C**). At
424 both 14 weeks and 30 weeks, there was no change in the intensity of GAD staining between groups
425 (**Fig. 3B,D**), indicating that inhibitory input to the IOPr remains structurally intact during IO
426 degeneration. To assess whether these inputs are functionally intact, we performed *in-vivo*
427 recordings of cerebellar Purkinje cells (PCs) in awake, head-fixed SCA1-KI and wild-type mice
428 at 14 weeks. The primary output of IO neurons is the complex spike (CS), a characteristic high-
429 amplitude depolarization of the PC membrane that occurs when climbing fibers are activated
430 (Davie et al., 2008; Streng et al., 2018). These CSs can be observed *in-vivo* as distinctly large
431 depolarizing membrane deflections, as shown in our recordings (**Fig. 3E**). During these recordings,
432 we observed significantly fewer CSs in SCA1-KI PCs compared to wild-type PCs (**Fig. 3F**). This
433 suggests that SCA1-KI IOPr neurons are indeed not experiencing a loss of inhibitory tone, as we
434 would expect disinhibition of the IO to cause an increase in final IO output onto PCs (as previously
435 described (Lang et al., 1996)).

436

437 Because SCA1-KI mice express mutant *Atxn1* via its endogenous promoter, ATXN1 function is
438 altered broadly across the SCA1-KI mouse brain. Thus, it is possible that the observed IO
439 degenerative hypertrophy is being influenced by other affected brain regions within the IO circuit.
440 To determine whether *Atxn1* dysfunction outside of the IO is contributing to this degenerative
441 hypertrophy, we assessed cell number, cell size, and the density of inhibitory inputs in SCA1
442 transgenic mice (SCA1-Tg). These mice overexpress the human *ATXN1* gene with an expanded
443 CAG triplet repeat under the murine *Pcp2* (*L7*) promoter (Burright et al., 1995). This drives
444 selective expression of polyglutamine-expanded ATXN1 (82 repeats) in cerebellar Purkinje cells,
445 which results in a more severe motor phenotype than observed in SCA1-KI mice. This includes an
446 earlier age-of-onset of motor symptoms, such that the 14 week timepoint is already late in the
447 symptomatic progression of SCA1-Tg mice (Clark et al., 1997). Unbiased stereological
448 quantification reveals that SCA1-Tg mice do not show signs of IO degeneration at 14 weeks,
449 demonstrated by no loss of Calb⁺ cells (Fig. 4E). Interestingly, though, mean IO volume (Fig. 4F)
450 and mean NeuN⁺ cell count (Fig. 4D) both exhibited a significant increase in SCA1-Tg mice
451 compared to wild-type littermate controls. IOPr soma size was unchanged between genotypes (Fig.
452 4C,G), as did IO GAD immunoreactivity (Fig. 4H,I), revealing that inhibitory terminals on the
453 SCA1-Tg IO are structurally intact. Based on these results, there does not appear to be a
454 degenerative hypertrophy phenotype in the SCA1-Tg IO.
455
456 HOD has been historically understood as a non-cell-autonomous phenomenon, arising after
457 inhibitory deafferentation of the IO (Duvoisin, 1984; Boesten and Voogd, 1985; de Zeeuw et al.,
458 1990; Ferrer et al., 1994). These results demonstrate that, in the context of SCA1, a similar cellular
459 phenotype can occur in the absence of any change in IO inhibitory tone. Indeed, a non-olivary

460 disruption in the IO circuit, modeled by SCA1-Tg mice, seemed to have no effect on IO neuron
461 size or viability. This reveals that the IO phenotype observed in SCA1-KI mice is likely cell-
462 autonomous, suggesting a novel cause of degenerative hypertrophy separate from any extrinsic
463 source (as in HOD).

464

465 **SCA1-KI IOPr neurons are hyperexcitable**

466 To explore potential intrinsic causes of degenerative hypertrophy in the SCA1 IO, we performed
467 patch-clamp electrophysiology on acute brainstem slices from 14-week-old SCA1-KI mice and
468 wild-type littermate controls (**Fig. 5A**). All recordings were done in the IOPr, which was
469 distinguished by its laminar structure and anatomical position lateral to the midline. The identity
470 of targeted cells was confirmed by the presence of spontaneous subthreshold oscillations (SSTOs),
471 a low-frequency fluctuation in membrane potential that has been well-established as a
472 characteristic feature of IOPr neurons (Llinas and Yarom, 1986; Llinas, 2009; Choi et al., 2010)
473 (**Fig. 5B**). Using a whole-cell current clamp configuration, we observed the spontaneous activity
474 of these neurons for ~100s. Due to the persistence of SSTOs throughout these recordings, resting
475 membrane potential could not be directly calculated; however, an estimate was made by taking the
476 average potential across 10 s of oscillations (**Fig. 5C**). This estimate of resting membrane potential,
477 as well as the average frequency of SSTOs (**Fig. 5D**), was not significantly different between
478 SCA1-KI IOPr neurons and wild-type IOPr neurons. SCA1-KI IOPr neurons did, however, exhibit
479 a decreased average SSTO amplitude (**Fig. 5E**) and spontaneous spike frequency (**Fig. 5F**).

480

481 After recording spontaneous activity in IOPr neurons, we assessed their evoked activity by
482 injecting increasing levels of current in a whole-cell voltage clamp configuration. Preliminary tests

483 revealed that holding cells at a slightly hyperpolarized potential (-80 mV) limited most active
484 conductances. This allowed for the injection of current from a stable baseline, free of SSTOs,
485 spontaneous spikes, and other potential confounding activity. From -80 mV, we injected 0-800 pA
486 depolarizing current in repeated 1 second steps, increasing the amount injected by +50 pA with
487 each successive sweep (**Fig. 6B**). This generated the characteristically wide spikes previously
488 described in IOPr neurons, with their distinctive large afterdepolarization (ADP) visible as a
489 protruding “hump” in the repolarizing phase of the spike (Llinas and Yarom, 1981b) (**Fig. 6C**).
490

491 Current injections in the IOPr revealed a novel hyperexcitability phenotype in the SCA1 IO (**Fig.**
492 **6A**). Unlike wild-type IOPr neurons, SCA1-KI IOPr neurons are able to fire repetitively (**Fig. 6D**)
493 in spike trains that increase in frequency with greater injections of current (**Fig. 6E**). Input
494 resistance was unchanged between the two genotypes (**Fig. 6G**), indicating that differences in
495 excitability could not be explained by changes in passive membrane properties. Rather, further
496 analysis of these spikes suggests that the observed SCA1-KI IOPr hyperexcitability may be related
497 to a disruption of currents post-spike. In SCA1-KI mice, the rate at which IOPr membrane potential
498 depolarizes back to baseline from its minimum is nearly two-fold the rate observed in wild-type
499 mice (**Fig. 6F**). This suggests that the membrane potential of SCA1-KI IOPr neurons can more
500 quickly recover from a previous spike and reach threshold again, which may explain how these
501 cells, unlike wild-type IOPr neurons, are able to generate spike trains.
502

503 **Ion channel transcripts are dysregulated in the SCA1-KI medulla**

504 In order to assess potential causes of hyperexcitability in the SCA1-KI IO, we analyzed previously-
505 obtained medullary transcriptome data from SCA1-KI mice treated with antisense oligo-

506 nucleotides (ASOs) to block *Atxn1* expression. After being administered ASOs at 5 weeks of age,
507 these mice demonstrated significant rescue in both motor behavior and brainstem phenotypes.
508 (Friedrich et al., 2018). At 28 weeks, medullary tissue was harvested from both treated and non-
509 treated mice, as well as untreated wild-type littermate controls, and analyzed by RNA-seq.
510 Comparing untreated wild-type and untreated SCA1-KI medullary transcripts revealed significant
511 dysregulation in 1374 genes. Interestingly, 31 ion channel transcripts were present among these
512 baseline differentially-expressed genes (DEGs), representing a 2.79-fold enrichment compared to
513 ion channel representation in the mouse genome. This enrichment is considered significant
514 (Fisher's exact test, $P = 1.41\text{E-}6$), suggesting that disrupted ion channel expression could play a
515 key role in the development of SCA1-KI brainstem phenotypes. Of these 31 candidate genes, 6
516 encode ion channels that influence excitability synaptically ($\text{IC}_{\text{synaptic}}$), while the remaining 25
517 encode ion channels that influence excitability intrinsically ($\text{IC}_{\text{intrinsic}}$) (Alexander et al., 2011). For
518 all but one of these channels, medullary transcripts were downregulated in SCA1-KI mice
519 compared to wild-type controls (**Fig. 7A**), a finding that comports with previous studies that report
520 a primarily downregulated DEG population in SCA1 mouse models (Lin et al., 2000;
521 Niewiadomska-Cimicka et al., 2020).

522
523 To further narrow down this list of potential candidates genes, we analyzed data amongst the ASO
524 treatment groups. Of the original 1374 medullary DEGs in SCA1-KI mice, 317 showed significant
525 rescue after ASO treatment. Included among these 317 ASO-rescued DEGs were 10 ion channel
526 genes, all of which encoded $\text{IC}_{\text{intrinsic}}$ channels (**Fig. 7B**). This constituted a significant 5.26-fold
527 enrichment of $\text{IC}_{\text{intrinsic}}$ genes compared to $\text{IC}_{\text{intrinsic}}$ representation in the mouse genome (Fisher's
528 exact test, $P = 3.43\text{E-}5$), suggesting that the loss of ion channels that regulate intrinsic excitability

529 may be an important contributing factor to brainstem dysfunction in SCA1-KI mice. Of the
530 IC_{intrinsic} candidate genes that underwent significant rescue by ASO treatment, the majority (8 of
531 the 10) achieved “complete” rescue; i.e., their expression level after ASO treatment was not
532 significantly different from baseline levels in wild-type mice (**Fig. 7C**). The full medullary
533 transcriptome dataset analyzed here is available in **Table 7-1**, which reports raw reads for all
534 30,973 transcripts assessed in each group, as well as the results of the statistical comparisons
535 between groups used to define DEGs.

536

537 To determine whether this decrease in medullary IC_{intrinsic} transcripts reflects a loss of protein levels
538 in the IO, we immunostained coronal brainstem slices from 30-week-old SCA1-KI and wild-type
539 mice for the channel encoded by *Kcnn2*: small conductance calcium-activated potassium channel
540 2 (SK2) (**Fig. 7D**). Quantification of SK2 staining intensity on IOPr neurons reveals a ~50%
541 reduction in protein levels (**Fig. 7E**). Taken together, these results suggest that downregulation of
542 IC_{intrinsic} genes in the medulla may play a critical role in SCA1 brainstem pathogenesis.

543

544 **Spikes from SCA1-KI IOPr neurons exhibit a diminished AHP**

545 In order to assess the functional consequence of IC_{intrinsic} channel loss in the medulla, we recorded
546 from IOPr neurons using patch-clamp electrophysiology in acute brainstem slices. Using the same
547 voltage clamp protocol described above (**Fig. 8A**), increasing levels of current were injected from
548 a holding potential of -80 mV in 1 s steps to generate spikes. AHP depth from each spike generated
549 from 0 to 800 pA current injected was normalized to that spike’s threshold and compiled (note:
550 two hyperpolarizing currents, -100 pA and -50 pA, were injected at the beginning of this protocol
551 to allow for input resistance calculations before interference by spike generation). This revealed a

552 significant loss of average AHP depth in SCA1-KI IOPr neurons (**Fig. 8B,C**). To determine
553 whether this phenomenon is also capable of occurring in IOPr neurons at rest, we conducted similar
554 spike analysis experiments, this time generating single spikes from -60 mV (a holding potential
555 close to the estimated resting membrane potential of these cells (**Fig. 5C**)). In the whole-cell
556 voltage clamp configuration, we injected 0-1000 pA depolarizing current in repeated 10 ms steps,
557 increasing the amount injected by +50 pA with each successive sweep (**Fig. 8D**). In this setting,
558 without the presence of spike trains, average AHP depth was again diminished in SCA1-KI IOPr
559 neurons compared to wild-type IOPr neurons (**Fig. 8F**). Previous studies have demonstrated that
560 potassium channels are the primary determinants of AHP size and shape in IOPr neurons. The
561 observed AHP deficit in SCA1-KI IOPr neurons, as well as the enrichment of $IC_{intrinsic}$ genes
562 among ASO-rescued DEGs in the SCA1-KI medulla (7 of which encode potassium channels (**Fig.**
563 **7C**)), connects ion channel loss in the SCA1 brainstem to a potential functional consequence in
564 IOPr hyperexcitability.

565

566 **Discussion**

567 Though the IO has long been identified as a characteristic area of SCA1 pathology (Seidel et al.,
568 2012), it is not known what mechanisms drive disease in this cell population. Here, we describe
569 degenerative hypertrophy in SCA1 IOPr neurons, a previously-unknown IO phenotype of the
570 SCA1-KI mouse model. This appears strikingly similar to hypertrophic olivary degeneration
571 (HOD), a pathology caused by the loss of inhibitory afferents to the IO (Ruijgrok et al., 1990; Wang
572 et al., 2019). Our results, however, demonstrate that inhibitory innervation to the IO in SCA1-KI
573 mice is both structurally and functionally intact. Though some limited occurrence of HOD in the
574 context of SCA has been previously reported (Yoshii et al., 2017), this study constitutes the first

575 description of a robust HOD-like phenotype in the proven absence of inhibitory deafferentation.
576 This suggests that there is some downstream consequence of synaptic disinhibition, rather than
577 synaptic disinhibition itself, that is both necessary and sufficient to cause HOD.

578

579 HOD, as historically described, is caused by a lesion in the central tegmental tract or superior
580 cerebellar peduncle, consistent with loss of IO innervation from the dentate nucleus of the
581 cerebellum (Sabat et al., 2016; Tilikete and Desestret, 2017). Though IO neurons receive
582 innervation from a variety of brain regions, previous studies have shown that the dentate nucleus
583 supplies the IO with its primary inhibitory input (Fredette and Mugnaini, 1991; Best and Regehr,
584 2009). Importantly, disruption of this dentato-olivary circuit is the sole condition in which HOD
585 has been observed, leading to the current conclusion that HOD is a consequence of IO neurons
586 losing inhibitory tone. Though we found inhibitory afferents to be intact in the SCA1 IO, these
587 neurons still exhibit hyperexcitability, indicating that increased membrane excitability may be
588 HOD's proximal cause; that is, HOD may occur as the result of *any* phenomenon that sufficiently
589 increases IO membrane excitability, be it extrinsic (as in HOD, historically) or intrinsic (as in
590 SCA1).

591

592 One potential explanation for this connection between excitability and cell size is the possibility
593 that, in the SCA1 IO, hypertrophy is acting in opposition to hyperexcitability as a compensatory
594 mechanism. A substantial lengthening of dendrites, as exhibited in SCA1-KI mice at 14 weeks
595 (**Fig. 1**), is likely to enhance dendritic shunting (Blomfield, 1974). If the multiple excitatory signals
596 that the IO receives were sufficiently diluted by shunting through this extra length of dendrite,
597 membrane excitability would, effectively, be decreased. This may explain the reduction in SCA1-

598 KI Purkinje cell complex spike frequency we observed *in-vivo*: i.e., even though synaptic input to
599 the SCA1-KI IO appears intact, shunting could be diminishing the number of excitatory signals
600 that end up reaching the soma and triggering IO output to the cerebellum – a result that would
601 likely cause deficits in motor learning (Lang et al., 2017). This raises the interesting possibility
602 that HOD may be a ‘rogue’ compensatory mechanism, such that IO hypertrophy helps the cell (by
603 alleviating hyperexcitability) but harms the circuit (by reducing final cellular output). Similarly,
604 previous studies provide evidence that changes in morphology may also be acting as a
605 compensatory mechanism against hyperexcitability in SCA1 Purkinje cells. Prior to atrophy,
606 Purkinje cells in SCA1-Tg mice exhibit a severe firing phenotype caused by increased membrane
607 excitability; however, after the onset of atrophy, there is a partial restoration of firing. This is likely
608 due to changes in channel density on SCA1 Purkinje cell somas. SCA1 Purkinje cells exhibit
609 reduced expression of multiple key ion channel genes, causing a significant decrease in somatic
610 channel density. However, as a result of a decrease in somatic surface area during atrophy, channel
611 density on the soma increases, which appears to partially alleviate the SCA1-Tg Purkinje cell firing
612 phenotype by reducing membrane excitability (Dell'Orco et al., 2015). Though it is unclear how
613 this compensatory effect of atrophy occurs, there is evidence that channel density on the Purkinje
614 cell soma is an important factor in the formation of functional ion channel clusters, especially those
615 that regulate membrane excitability via potassium conductances (Womack et al., 2004; Kaufmann
616 et al., 2009; Indriati et al., 2013). Taken together, these results suggest a close relationship between
617 morphology and excitability in neurons that are selectively vulnerable to SCA1-associated
618 degeneration. In addition, it raises the question of what causal link, if any, exists between the
619 structural and functional pathologies of these neurons.
620

621 Previous research has demonstrated that the mutation that causes SCA1 (an expansion in the
622 polyglutamine-encoding CAG repeat region of the *ATXN1* gene) produces Purkinje cell pathology
623 by disrupting the expression of a host of downstream genes (Lin et al., 2000; Crespo-Barreto et
624 al., 2010). Due to an abnormal interaction between the polyglutamine-expanded ATXN1 protein
625 and Capicua (CIC), a transcriptional repressor, the vast majority of these Purkinje cell genes
626 exhibit decreased expression in SCA1 (Lam et al., 2006; Rousseaux et al., 2018). Ion channel
627 genes, including many that are crucial for maintaining Purkinje cell excitability, are significantly
628 enriched among this group (Bushart et al., 2018; Chopra et al., 2020). Similarly, in this study, we
629 found a significant enrichment of ion channel genes among the medullary DEGs identified in 28-
630 week-old SCA1-KI mice, the majority of which also exhibit decreased expression. Interestingly,
631 cerebellar transcripts from these same 28-week-old SCA1-KI mice reveal that DEGs in the SCA1
632 cerebellum and the SCA1 medulla are indeed similar, but not identical (Friedrich et al., 2018).
633 Between these two tissues, 7 ion channel DEGs are shared: *Cacna1g*, *Gria1*, *Kcna6*, *Kcnc1*,
634 *Kcnk13*, *Kcnn2*, and *Trpc3*, all exhibiting decreased expression in both brain regions. Based on
635 these observations, it appears that the cerebellum and brainstem may share a common mechanism
636 of SCA1 pathology in reduced ion channel expression. This connection might be explained by the
637 shared presence of CIC, which is moderately expressed in both the mouse cerebellum and the
638 mouse IO (Lein et al., 2007). The discrepancies between 28 week SCA1-KI medullary and
639 cerebellar DEGs, as suggested by a recent study (Driessen et al., 2018), may be due to the
640 involvement of transcription factors other than CIC that are also affected by polyglutamine-
641 expanded ATXN1.

642

643 Within the SCA1 brainstem and cerebellum, there appears to be additional convergence that links
644 IO neuron and Purkinje cell pathology, specifically. Previous research has shown that loss of
645 channels in SCA1-KI Purkinje cells causes a firing dysfunction related to an increase in membrane
646 excitability (Dell'Orco et al., 2015; Chopra et al., 2018). This is driven primarily by abnormalities
647 in spike afterhyperpolarization (AHP), which is significantly shallower in SCA1-KI Purkinje cells
648 at 14 weeks (Bushart et al., 2021). SCA1-KI IO neurons, shown by their ability to generate spike
649 trains (**Fig. 6**), also exhibit an increase in membrane excitability that correlates with an observed
650 AHP deficit (**Fig. 8**). This suggests that hyperexcitability caused by a reduction in spike AHP is a
651 phenotype that is shared by both IO neurons and Purkinje cells in SCA1-KI mice.

652

653 Despite differences in their baseline firing properties, AHP dynamics in both Purkinje cells
654 (Edgerton and Reinhart, 2003; Walter et al., 2006) and IO neurons (Llinas and Yarom, 1981b;
655 Lang et al., 1997) appear to be largely governed by the interplay between calcium currents and
656 potassium currents – especially via the conductance of calcium-activated potassium (K_{Ca})
657 channels. Of the channels that are represented in the two groups of 28 week SCA1-KI DEGs, the
658 majority are either calcium or potassium channels. In addition, one of the 7 channel DEGs shared
659 by both the SCA1-KI cerebellar and medullary datasets is *Kcnn2*, which encodes one of only 5
660 K_{Ca} channels expressed in the brain (Alexander et al., 2017). Together, these findings suggest that
661 hyperexcitability due to altered calcium and/or potassium conductances may represent a shared
662 mechanism of dysfunction in SCA1 IO neurons and Purkinje cells.

663

664 Though the relationship between these physiological changes and cell size remains unclear, prior
665 research has demonstrated that firing abnormalities in SCA1-KI Purkinje cells precede

666 degeneration (Hourez et al., 2011). Previous work has shown that addressing this by increasing
667 specific potassium conductances with pharmacological agents can faithfully restore SCA1-KI
668 Purkinje cell firing *in-vitro*. Additionally, chronic treatment of SCA1-KI mice with these same
669 drugs not only improves motor function but, importantly, also slows the atrophy and subsequent
670 degeneration of Purkinje cells (Chopra et al., 2018; Bushart et al., 2021). As such, by
671 demonstrating that a reduction in SCA1-KI Purkinje cell hyperexcitability is sufficient to partially
672 rescue cell size phenotypes, these results suggest that SCA1-associated disruptions of membrane
673 excitability may be an important driver of morphological changes in Purkinje cells. Similarly,
674 though it is not known what specific effect it had on either SCA1-KI IO neuron hyperexcitability
675 or hypertrophy, ASO administration did partially alleviate brainstem phenotypes in these mice
676 (Friedrich et al., 2018). In addition, the enrichment of ion channel genes among the SCA1-KI
677 medullary DEGs rescued by ASOs (**Fig. 7**) suggests that membrane excitability might be one of
678 the cellular features whose restoration is important to this ASO-mediated rescue of brainstem
679 dysfunction. Together, these results indicate that altered membrane excitability may constitute a
680 key driver of SCA1 pathology in the brainstem – including HOD.

681

682

683

684

685

686

687

688

689

References

- 690 Alexander SP, Mathie A, Peters JA (2011) Guide to Receptors and Channels (GRAC), 5th edition.
691 *Br J Pharmacol* 164 Suppl 1:S1-324.
- 692 Alexander SP, Kelly E, Marrion NV, Peters JA, Faccenda E, Harding SD, Pawson AJ, Sharman
693 JL, Southan C, Buneman OP, Cidlowski JA, Christopoulos A, Davenport AP, Fabbro D,
694 Spedding M, Striessnig J, Davies JA, Collaborators C (2017) THE CONCISE GUIDE TO
695 PHARMACOLOGY 2017/18: Overview. *Br J Pharmacol* 174 Suppl 1:S1-S16. Ion channel
696 list available from www.guidetopharmacology.org.
- 697 Ausim Azizi S (2007). . . And the olive said to the cerebellum: organization and functional
698 significance of the olivo-cerebellar system. *Neuroscientist* 13:616-625.
- 699 Best AR, Regehr WG (2009) Inhibitory regulation of electrically coupled neurons in the inferior
700 olive is mediated by asynchronous release of GABA. *Neuron* 62:555-565.
- 701 Blomfield S (1974) Arithmetical operations performed by nerve cells. *Brain Res* 69:115-124.
- 702 Boesten AJ, Voogd J (1985) Hypertrophy of neurons in the inferior olive after cerebellar ablations
703 in the cat. *Neurosci Lett* 61:49-54.
- 704 Burright EN, Clark HB, Servadio A, Matilla T, Feddersen RM, Yunis WS, Duvick LA, Zoghbi
705 HY, Orr HT (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an
706 expanded CAG trinucleotide repeat. *Cell* 82:937-948.
- 707 Bushart DD, Huang H, Man LJ, Morrison LM, Shakkottai VG (2021) A Chlorzoxazone-Baclofen
708 Combination Improves Cerebellar Impairment in Spinocerebellar Ataxia Type 1. *Mov*
709 *Disord* 36:622-631.
- 710 Bushart DD, Chopra R, Singh V, Murphy GG, Wulff H, Shakkottai VG (2018) Targeting
711 potassium channels to treat cerebellar ataxia. *Ann Clin Transl Neurol* 5:297-314.

- 712 Choi S, Yu E, Kim D, Urbano FJ, Makarenko V, Shin HS, Llinas RR (2010) Subthreshold
713 membrane potential oscillations in inferior olive neurons are dynamically regulated by
714 P/Q- and T-type calcium channels: a study in mutant mice. *J Physiol* 588:3031-3043.
- 715 Chopra R, Bushart DD, Shakkottai VG (2018) Dendritic potassium channel dysfunction may
716 contribute to dendrite degeneration in spinocerebellar ataxia type 1. *PLoS One*
717 13:e0198040.
- 718 Chopra R, Bushart DD, Cooper JP, Yellajoshyula D, Morrison LM, Huang H, Handler HP, Man
719 LJ, Dansithong W, Scoles DR, Pulst SM, Orr HT, Shakkottai VG (2020) Altered Capicua
720 expression drives regional Purkinje neuron vulnerability through ion channel gene
721 dysregulation in spinocerebellar ataxia type 1. *Hum Mol Genet* 29:3249-3265.
- 722 Clark HB, Burright EN, Yunis WS, Larson S, Wilcox C, Hartman B, Matilla A, Zoghbi HY, Orr
723 HT (1997) Purkinje cell expression of a mutant allele of SCA1 in transgenic mice leads to
724 disparate effects on motor behaviors, followed by a progressive cerebellar dysfunction and
725 histological alterations. *J Neurosci* 17:7385-7395.
- 726 Crespo-Barreto J, Fryer JD, Shaw CA, Orr HT, Zoghbi HY (2010) Partial loss of ataxin-1 function
727 contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis.
728 *PLoS Genet* 6:e1001021.
- 729 Cui Y, Yang S, Li XJ, Li S (2017) Genetically modified rodent models of SCA17. *J Neurosci Res*
730 95:1540-1547.
- 731 Cvetanovic M, Patel JM, Marti HH, Kini AR, Opal P (2011) Vascular endothelial growth factor
732 ameliorates the ataxic phenotype in a mouse model of spinocerebellar ataxia type 1. *Nat*
733 *Med* 17:1445-1447.

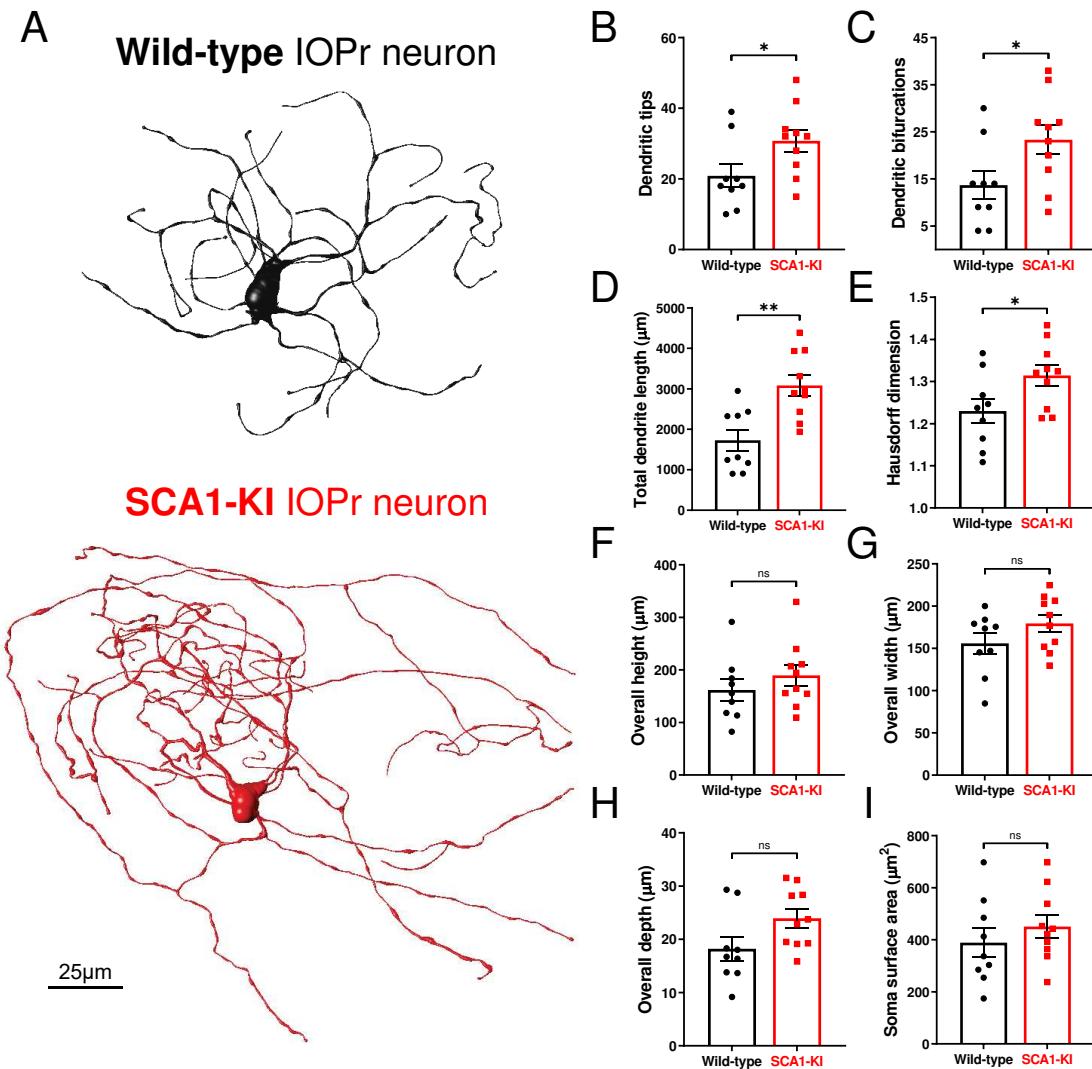
- 734 Davie JT, Clark BA, Häusser M (2008) The origin of the complex spike in cerebellar Purkinje
735 cells. *J Neurosci* 28:7599-7609.
- 736 de Zeeuw CI, Ruigrok TJ, Schalekamp MP, Boesten AJ, Voogd J (1990) Ultrastructural study of
737 the cat hypertrophic inferior olive following anterograde tracing, immunocytochemistry,
738 and intracellular labeling. *Eur J Morphol* 28:240-255.
- 739 De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998)
740 Microcircuitry and function of the inferior olive. *Trends Neurosci* 21:391-400.
- 741 Dell'Orco JM, Wasserman AH, Chopra R, Ingram MA, Hu YS, Singh V, Wulff H, Opal P, Orr
742 HT, Shakkottai VG (2015) Neuronal Atrophy Early in Degenerative Ataxia Is a
743 Compensatory Mechanism to Regulate Membrane Excitability. *J Neurosci* 35:11292-
744 11307.
- 745 Driessens TM, Lee PJ, Lim J (2018) Molecular pathway analysis towards understanding tissue
746 vulnerability in spinocerebellar ataxia type 1. *Elife* 7.
- 747 Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond.
748 *Lancet Neurol* 9:885-894.
- 749 Duvoisin RC (1984) An apology and an introduction to the olivopontocerebellar atrophies. *Adv
750 Neurol* 41:5-12.
- 751 Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca^{2+} -
752 activated K^+ channels to rat Purkinje neuron function. *J Physiol* 548:53-69.
- 753 Ferrer I, Genis D, Dávalos A, Bernado L, Sant F, Serrano T (1994) The Purkinje cell in
754 olivopontocerebellar atrophy. A Golgi and immunocytochemical study. *Neuropathol Appl
755 Neurobiol* 20:38-46.

- 756 Fredette BJ, Mugnaini E (1991) The GABAergic cerebello-olivary projection in the rat. *Anat*
757 *Embryol (Berl)* 184:225-243.
- 758 Friedrich J, Kordasiewicz HB, O'Callaghan B, Handler HP, Wagener C, Duvick L, Swayze EE,
759 Rainwater O, Hofstra B, Benneyworth M, Nichols-Meade T, Yang P, Chen Z, Ortiz JP,
760 Clark HB, Oz G, Larson S, Zoghbi HY, Henzler C, Orr HT (2018) Antisense
761 oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals
762 disease-associated transcriptome profiles. *JCI Insight* 3.
- 763 Goto N, Kaneko M (1981) Olivary enlargement: chronological and morphometric analyses. *Acta*
764 *Neuropathol* 54:275-282.
- 765 Hansen ST, Meera P, Otis TS, Pulst SM (2013) Changes in Purkinje cell firing and gene expression
766 precede behavioral pathology in a mouse model of SCA2. *Hum Mol Genet* 22:271-283.
- 767 Heiney SA, Kim J, Augustine GJ, Medina JF (2014) Precise control of movement kinematics by
768 optogenetic inhibition of Purkinje cell activity. *J Neurosci* 34:2321-2330.
- 769 Hourez R, Servais L, Orduz D, Gall D, Millard I, de Kerchove d'Exaerde A, Cheron G, Orr HT,
770 Pandolfo M, Schiffmann SN (2011) Aminopyridines correct early dysfunction and delay
771 neurodegeneration in a mouse model of spinocerebellar ataxia type 1. *J Neurosci* 31:11795-
772 11807.
- 773 Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality
774 of acute slice preparations. *Front Cell Neurosci* 7:48.
- 775 Indriati DW, Kamasawa N, Matsui K, Meredith AL, Watanabe M, Shigemoto R (2013)
776 Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in
777 Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-
778 activated potassium channels. *J Neurosci* 33:3668-3678.

- 779 Ito M (2013) Error detection and representation in the olivo-cerebellar system. *Front Neural*
780 *Circuits* 7:1.
- 781 Jellinger K (1973) Hypertrophy of the inferior olives. Report on 29 cases. *Z Neurol* 205:153-174.
- 782 Kaufmann WA, Ferraguti F, Fukazawa Y, Kasugai Y, Shigemoto R, Laake P, Sexton JA, Ruth P,
783 Wietzorek G, Knaus HG, Storm JF, Ottersen OP (2009) Large-conductance calcium-
784 activated potassium channels in purkinje cell plasma membranes are clustered at sites of
785 hypolemmal microdomains. *J Comp Neurol* 515:215-230.
- 786 Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory
787 requirements. *Nat Methods* 12:357-360.
- 788 Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. *Cerebellum* 4:62-73.
- 789 Koeppen AH (2018) The neuropathology of the adult cerebellum. *Handb Clin Neurol* 154:129-
790 149.
- 791 Koeppen AH, Ramirez RL, Bjork ST, Bauer P, Feustel PJ (2013) The reciprocal cerebellar
792 circuitry in human hereditary ataxia. *Cerebellum* 12:493-503.
- 793 Konigsmark BW, Weiner LP (1970) The olivopontocerebellar atrophies: a review. *Medicine*
794 (Baltimore) 49:227-241.
- 795 Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD, Hyun ED, Duvick LA, Orr
796 HT, Botas J, Zoghbi HY (2006) ATAXIN-1 interacts with the repressor Capicua in its
797 native complex to cause SCA1 neuropathology. *Cell* 127:1335-1347.
- 798 Lang EJ, Sugihara I, Llinas R (1996) GABAergic modulation of complex spike activity by the
799 cerebellar nucleoollivary pathway in rat. *J Neurophysiol* 76:255-275.

- 800 Lang EJ, Sugihara I, Llinas R (1997) Differential roles of apamin- and charybdotoxin-sensitive
801 K⁺ conductances in the generation of inferior olive rhythmicity in vivo. *J Neurosci*
802 17:2825-2838.
- 803 Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, Ebner TJ, Heck DH, Jaeger D,
804 Jorntell H, Kawato M, Otis TS, Ozyildirim O, Popa LS, Reeves AM, Schweighofer N,
805 Sugihara I, Xiao J (2017) The Roles of the Olivocerebellar Pathway in Motor Learning and
806 Motor Control. A Consensus Paper. *Cerebellum* 16:230-252.
- 807 Lefler Y, Yarom Y, Uusisaari MY (2014) Cerebellar inhibitory input to the inferior olive decreases
808 electrical coupling and blocks subthreshold oscillations. *Neuron* 81:1389-1400.
- 809 Lein ES et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. *Nature*
810 445:168-176. Available from <http://mouse.brain-map.org>.
- 811 Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for
812 assigning sequence reads to genomic features. *Bioinformatics* 30:923-930.
- 813 Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates
814 specific neuronal genes before pathologic changes in SCA1. *Nat Neurosci* 3:157-163.
- 815 Llinas R, Yarom Y (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro.
816 Different types of voltage-dependent ionic conductances. *J Physiol* 315:549-567.
- 817 Llinas R, Yarom Y (1981b) Properties and distribution of ionic conductances generating
818 electroresponsiveness of mammalian inferior olivary neurones in vitro. *J Physiol* 315:569-
819 584.
- 820 Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their
821 pharmacological modulation: an in vitro study. *J Physiol* 376:163-182.

- 822 Llinas RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset
823 as the basis for motor error correction. *Neuroscience* 162:797-804.
- 824 Llinas RR (2013) The olivo-cerebellar system: a key to understanding the functional significance
825 of intrinsic oscillatory brain properties. *Front Neural Circuits* 7:96.
- 826 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
827 RNA-seq data with DESeq2. *Genome Biol* 15:550.
- 828 Niewiadomska-Cimicka A, Hache A, Trottier Y (2020) Gene Deregulation and Underlying
829 Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. *Front Neurosci*
830 14:571.
- 831 Ogut E, Armagan K, Tufekci D (2023) The Guillain-Mollaret triangle: a key player in motor
832 coordination and control with implications for neurological disorders. *Neurosurg Rev*
833 46:181.
- 834 Pandey P, Westbroek EM, Gooderham PA, Steinberg GK (2013) Cavernous malformation of
835 brainstem, thalamus, and basal ganglia: a series of 176 patients. *Neurosurgery* 72:573-589;
836 discussion 588-579.
- 837 Paulson HL (2009) The spinocerebellar ataxias. *J Neuroophthalmol* 29:227-237.
- 838 Peng H, Ruan Z, Long F, Simpson JH, Myers EW (2010) V3D enables real-time 3D visualization
839 and quantitative analysis of large-scale biological image data sets. *Nat Biotechnol* 28:348-
840 353.
- 841 Peng H, Bria A, Zhou Z, Iannello G, Long F (2014a) Extensible visualization and analysis for
842 multidimensional images using Vaa3D. *Nat Protoc* 9:193-208.
- 843 Peng H, Tang J, Xiao H, Bria A, Zhou J, Butler V, Zhou Z, Gonzalez-Bellido PT, Oh SW, Chen
844 J, Mitra A, Tsien RW, Zeng H, Ascoli GA, Iannello G, Hawrylycz M, Myers E, Long F

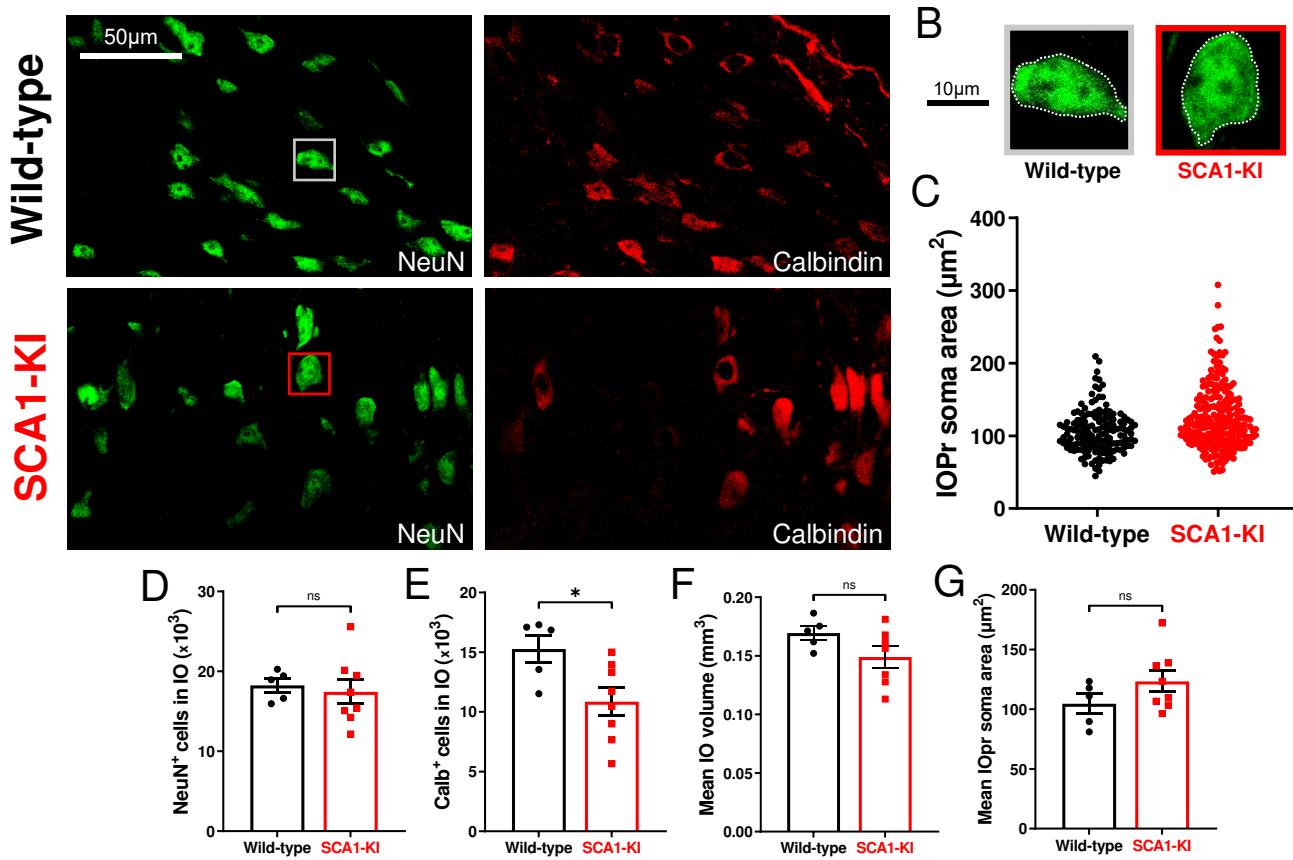

- 845 (2014b) Virtual finger boosts three-dimensional imaging and microsurgery as well as
846 terabyte volume image visualization and analysis. *Nat Commun* 5:4342.
- 847 Rousseaux MWC et al. (2018) ATXN1-CIC Complex Is the Primary Driver of Cerebellar
848 Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism.
849 *Neuron* 97:1235-1243 e1235.
- 850 Rub U, Schols L, Paulson H, Auburger G, Kermér P, Jen JC, Seidel K, Korf HW, Deller T (2013)
851 Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar
852 ataxias type 1, 2, 3, 6 and 7. *Prog Neurobiol* 104:38-66.
- 853 Ruigrok TJ, de Zeeuw CI, Voogd J (1990) Hypertrophy of inferior olivary neurons: a degenerative,
854 regenerative or plasticity phenomenon. *Eur J Morphol* 28:224-239.
- 855 Sabat S, Mannering N, Agarwal A (2016) Hypertrophic olivary degeneration: Case series and
856 review of literature. *J Neurol Sci* 370:180-186.
- 857 Schwaller B, Meyer M, Schiffmann S (2002) 'New' functions for 'old' proteins: the role of the
858 calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar
859 physiology. Studies with knockout mice. *Cerebellum* 1:241-258.
- 860 Scott SSO, Pedroso JL, Barsottini OGP, Franca-Junior MC, Braga-Neto P (2020) Natural history
861 and epidemiology of the spinocerebellar ataxias: Insights from the first description to
862 nowadays. *J Neurol Sci* 417:117082.
- 863 Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of
864 spinocerebellar ataxias. *Acta Neuropathol* 124:1-21.
- 865 Smets G, Lambert J, Tijssen M, Mai C, Decramer T, Vandenberghe W, Van Loon J, Demaerel P
866 (2017) The dentato-rubro-olivary pathway revisited: New MR imaging observations
867 regarding hypertrophic olivary degeneration. *Clin Anat* 30:543-549.

- 868 Streng ML, Popa LS, Ebner TJ (2018) Complex Spike Wars: a New Hope. *Cerebellum* 17:735-
869 746.
- 870 Switonski PM, Szlachcic WJ, Krzyzosiak WJ, Figiel M (2015) A new humanized ataxin-3 knock-
871 in mouse model combines the genetic features, pathogenesis of neurons and glia and late
872 disease onset of SCA3/MJD. *Neurobiol Dis* 73:174-188.
- 873 Tilikete C, Desestret V (2017) Hypertrophic Olivary Degeneration and Palatal or Oculopalatal
874 Tremor. *Front Neurol* 8:302.
- 875 Vig PJ, Subramony SH, Burright EN, Fratkin JD, McDaniel DO, Desaiah D, Qin Z (1998)
876 Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of
877 ataxia in spinocerebellar ataxia-1 transgenic mice. *Neurology* 50:106-113.
- 878 Vrieler N, Loyola S, Yarden-Rabinowitz Y, Hoogendorp J, Medvedev N, Hoogland TM, De
879 Zeeuw CI, De Schutter E, Yarom Y, Negrello M, Torben-Nielsen B, Uusisaari MY (2019)
880 Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D
881 characterization of an extensive morphological library. *Brain Struct Funct* 224:1677-1695.
- 882 Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of
883 Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. *Nat Neurosci* 9:389-397.
- 884 Wang H, Wang Y, Wang R, Li Y, Wang P, Li J, Du J (2019) Hypertrophic olivary degeneration:
885 A comprehensive review focusing on etiology. *Brain Res* 1718:53-63.
- 886 Warnaar P, Couto J, Negrello M, Junker M, Smilgin A, Ignashchenkova A, Giugliano M, Thier P,
887 De Schutter E (2015) Duration of Purkinje cell complex spikes increases with their firing
888 frequency. *Front Cell Neurosci* 9:122.
- 889 Watase K, Weeber EJ, Xu B, Antalffy B, Yuva-Paylor L, Hashimoto K, Kano M, Atkinson R, Sun
890 Y, Armstrong DL, Sweatt JD, Orr HT, Paylor R, Zoghbi HY (2002) A long CAG repeat in

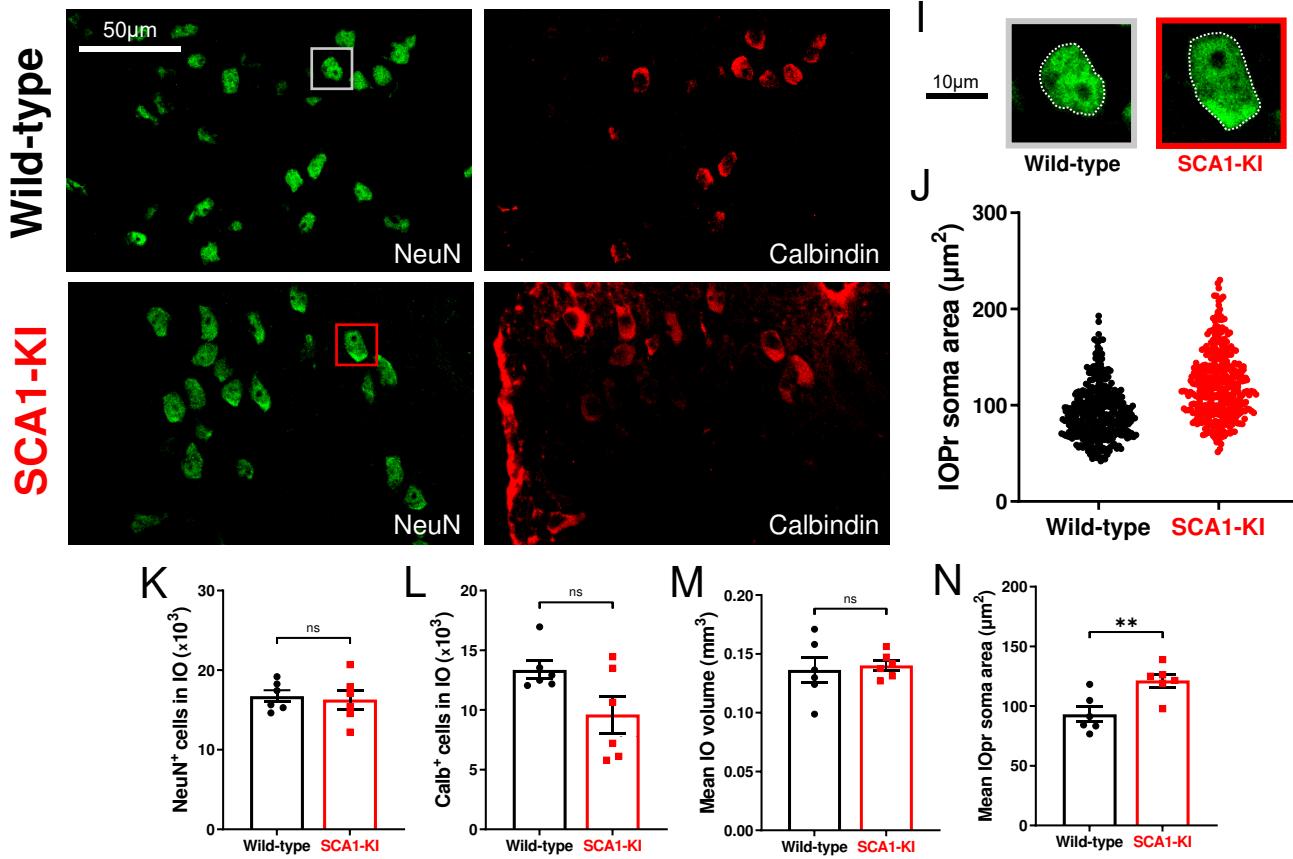
- 891 the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility
892 on selective neurodegeneration. *Neuron* 34:905-919.
- 893 Womack MD, Chevez C, Khodakhah K (2004) Calcium-activated potassium channels are
894 selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. *J
895 Neurosci* 24:8818-8822.
- 896 Yoshii F, Tomiyasu H, Watanabe R, Ryo M (2017) MRI Signal Abnormalities of the Inferior
897 Olivary Nuclei in Spinocerebellar Ataxia Type 2. *Case Rep Neurol* 9:267-271.
- 898 Yu Y, Fu Y, Watson C (2014) The inferior olive of the C57BL/6J mouse: a chemoarchitectonic
899 study. *Anat Rec (Hoboken)* 297:289-300.
- 900 Zanjani H, Herrup K, Mariani J (2004) Cell number in the inferior olive of nervous and leaner
901 mutant mice. *J Neurogenet* 18:327-339.
- 902
- 903
- 904

Figure 1

Morrison et al., submitted 2023


Figure 1. IOPr neuron dendritic arbors are hypertrophic in SCA1-KI mice

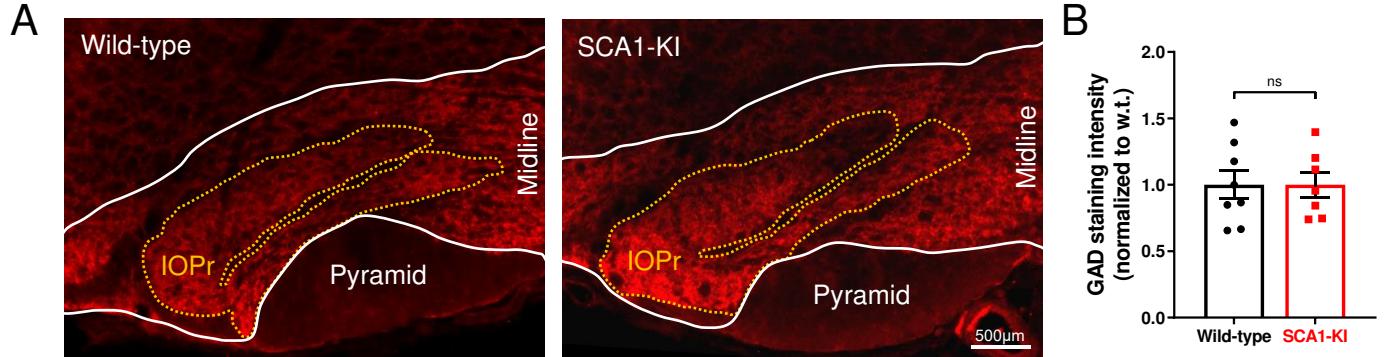
(A) Representative morphological reconstructions of dye-filled IO neurons in wild-type (top) and SCA1-KI (bottom) mice at 14 weeks of age (an early symptomatic timepoint). **(B-I)** The dendritic arbors of SCA1-KI IO neurons are larger and more complex than wild-type controls. SCA1-KI IO neurons exhibit a greater number of dendritic tips **(B)** and dendritic bifurcations **(C)**, as well as a marked increase in total dendritic length **(D)** and Hausdorff dimension **(E)** (a three-dimensional measure of object complexity). The overall span of IO neurons, shown as height **(F)**, width **(G)**, and depth **(H)**, is largely unchanged between the two genotypes. No change in IO soma size (measured by surface area) was detected between the two genotypes **(I)**. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, * = $P < 0.05$, ** = $P < 0.01$, ns = not significant. $N_{\text{wild-type}} = 9$ cells from 7 mice, $N_{\text{SCA1-KI}} = 10$ cells from 7 mice.


Figure 2

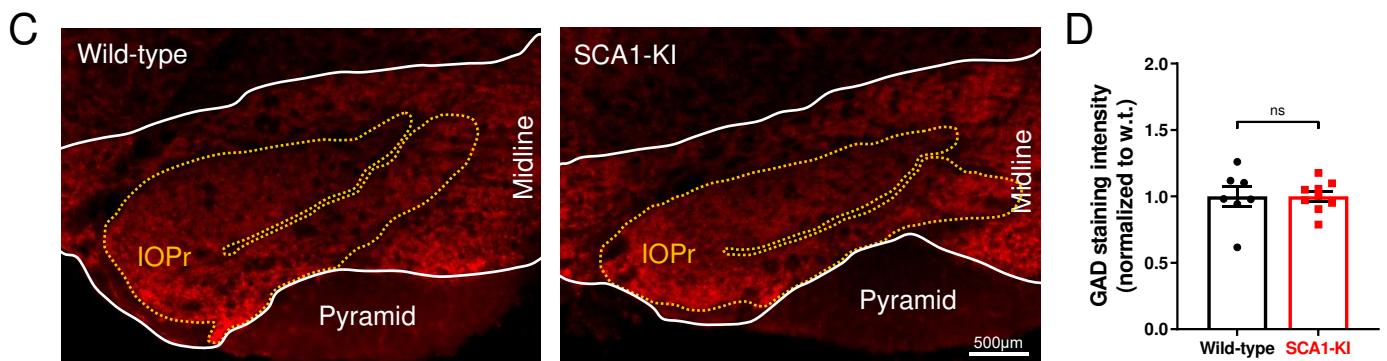
Morrison et al., submitted 2023

A EARLY SYMPTOMATIC TIMEPOINT (14 weeks)

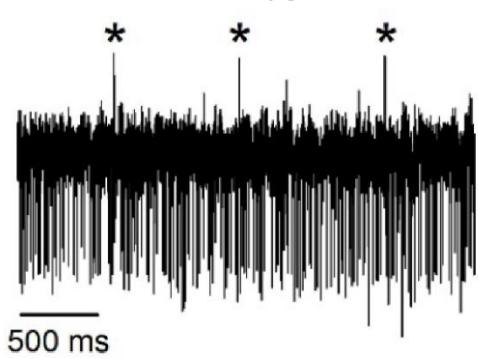
H LATE SYMPTOMATIC TIMEPOINT (30 weeks)

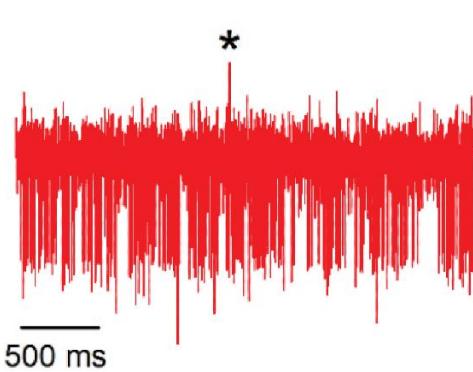

Figure 2. IO neurons in SCA1-KI mice exhibit somatic hypertrophy and degeneration

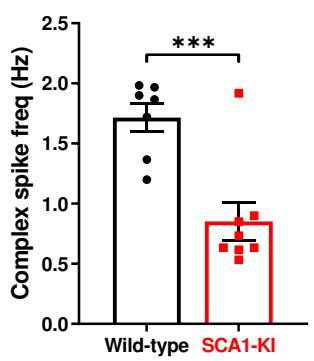
(A) Coronal histological sections showing IOPr neurons in wild-type (top) and SCA1-KI (bottom) mice at an early symptomatic timepoint of 14 weeks. Sections have been stained for NeuN (green) and Calbindin (red). **(B)** Inset showing representative IOPr cells of each genotype. **(C, G)** IOPr neuron soma size was estimated by measuring the area of the soma in ~200 cells per genotype. No change in IOPr soma size in SCA1-KI mice is evident at the 14 week timepoint. **(D-F)** Quantification of unbiased stereological analysis, providing an estimate of both total cell number and gross volume for the entire IO. At 14 weeks, degeneration is already apparent in the SCA1-KI IO, shown by loss of calbindin signal. **(H)** Coronal histological sections showing principal IO in wild-type (top) and SCA1-KI (bottom) mice at a late symptomatic timepoint of 30 weeks. Sections have been stained for NeuN (green) and Calbindin (red). **(I)** Inset showing representative IOPr cells of each genotype. **(J, N)** IOPr neuron soma size was estimated by measuring the area of the soma in ~400 cells per genotype. At the 30 week timepoint, SCA1-KI IOPr neurons exhibit a highly significant increase in soma size **(J)**, with a shift in the entire distribution of neurons towards a larger size **(N)**. **(K-M)** Quantification of unbiased stereological analysis reveals an even greater loss of calbindin signal at 30 weeks **(K-M)**, indicating a more severe degenerative state. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, * = $P < 0.05$, ** = $P < 0.01$, ns = not significant. 14 weeks: $N_{\text{wild-type}} = 5$ mice, $N_{\text{SCA1-KI}} = 8$ mice; 30 weeks: $N_{\text{wild-type}} = 6$ mice, $N_{\text{SCA1-KI}} = 6$ mice.


Figure 3

Morrison et al., submitted 2023


EARLY SYMPTOMATIC TIMEPOINT (14 weeks)


LATE SYMPTOMATIC TIMEPOINT (30 weeks)

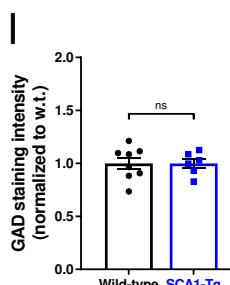
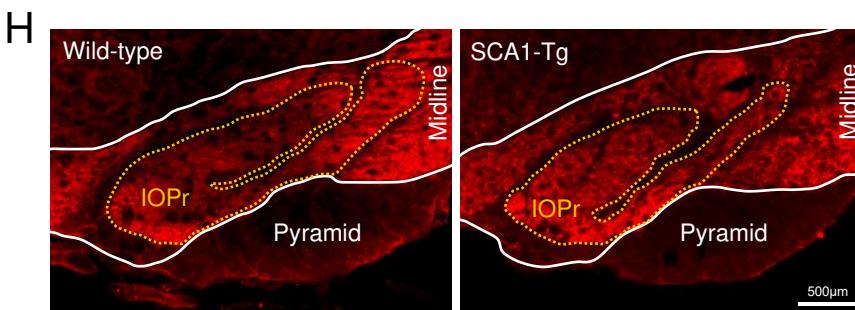
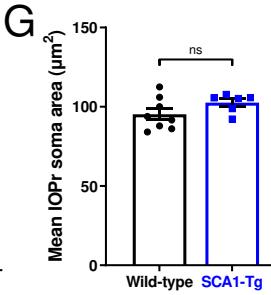
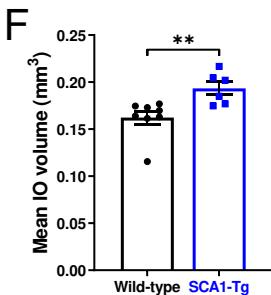
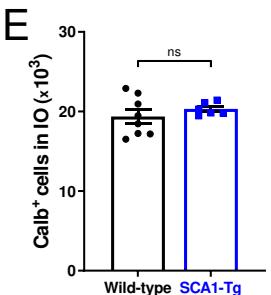
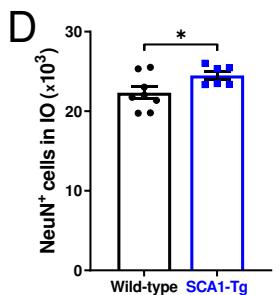
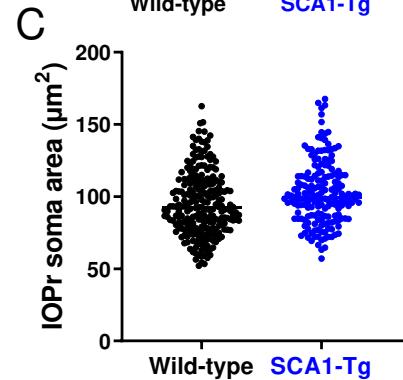
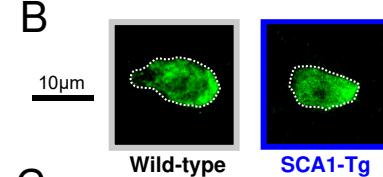
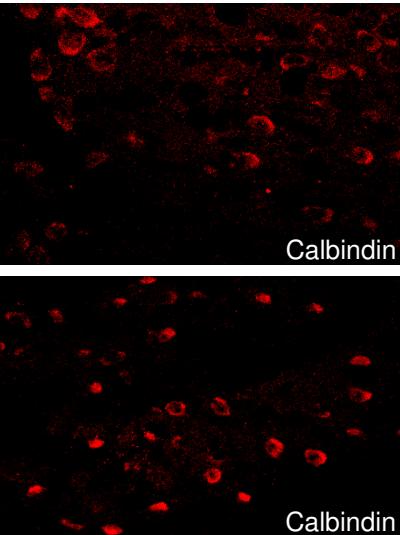
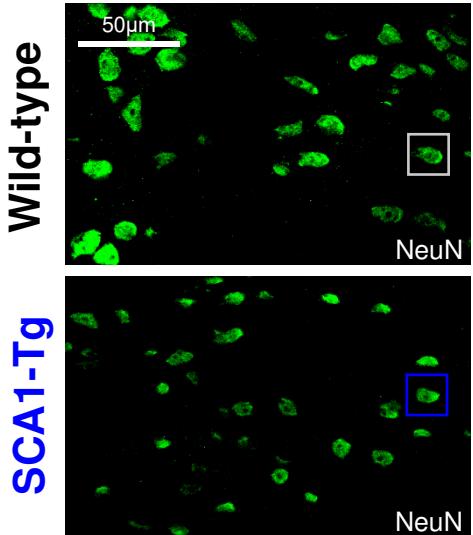

Wild-type

SCA1-KI

F

Figure 3. Inhibitory synaptic inputs to the IO remain intact in SCA1-KI mice

(A) Coronal histological sections showing the IOPr in wild-type (left) and SCA1-KI (right) mice at an early symptomatic timepoint of 14 weeks. Sections have been stained for glutamate decarboxylase (GAD), a marker of GABAergic terminals (red). **(B)** Quantification of staining reveals that GAD signal is retained in the SCA1-KI IO at 14 weeks. **(C)** Coronal histological sections showing GAD staining in the principal IO at a late symptomatic timepoint of 30 weeks. **(D)** Quantification of staining reveals that GAD signal is also retained in the SCA1-KI IO at 30 weeks. **(E)** Representative traces of *in-vivo* cerebellar spiking patterns in head-fixed, awake mice at 14 weeks. Complex spikes (generated by IO neurons) are indicated with asterisks (*). **(F)** Complex spike frequency is reduced in SCA1-KI cerebella, suggesting that IO neurons *in-vivo* are not disinhibited by loss of inhibitory synaptic input. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, *** = $P < 0.001$, ns = not significant.











(A-D) 14 weeks: $N_{\text{wild-type}} = 8$ mice, $N_{\text{SCA1-KI}} = 7$ mice; 30 weeks: $N_{\text{wild-type}} = 7$ mice, $N_{\text{SCA1-KI}} = 9$ mice.

(E,F) $N_{\text{wild-type}} = 7$ mice, $N_{\text{SCA1-KI}} = 8$ mice.

Figure 4

Morrison et al., submitted 2023

A LATE SYMPTOMATIC TIMEPOINT (14 weeks)

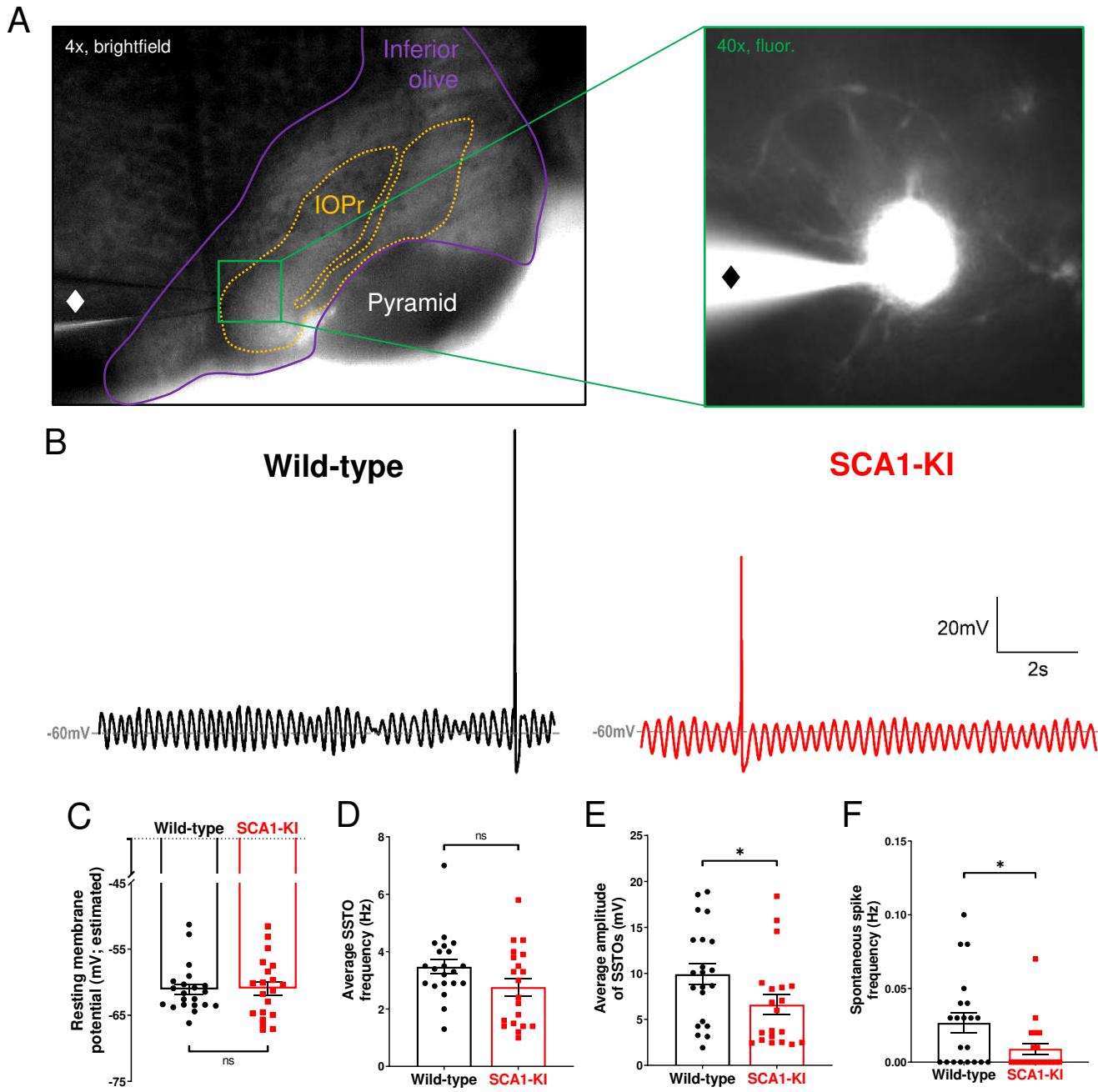
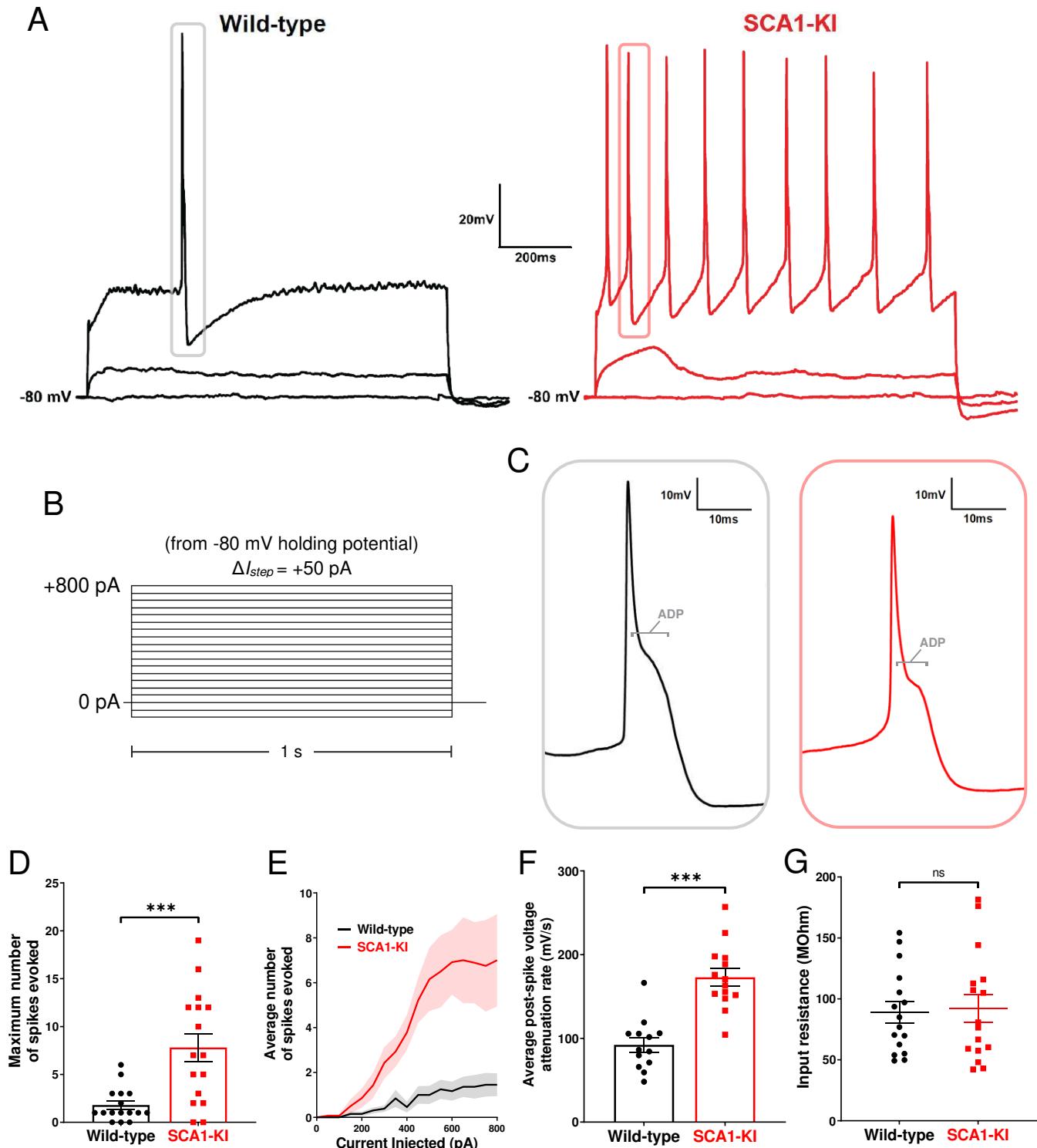


Figure 4. IO neuron size and viability is retained in a Purkinje cell-specific mouse model of SCA1

(A) Coronal histological sections showing IOPr neurons in wild-type (top) and SCA1-Tg (bottom) mice at 14 weeks. Unlike SCA1-KI mice, SCA1-Tg mice express mutant *ATXN1* solely in Purkinje cells of the cerebellum (i.e., not in the IO). These mice have a more severe phenotype, making 14 weeks of age a late symptomatic timepoint. Sections have been stained for NeuN (green) and Calbindin (red). **(B)** Inset showing representative IOPr cells of each genotype. **(C, G)** IOPr neuron soma size was estimated by measuring the area of the soma in ~200 cells per genotype. No change in IOPr soma size in SCA1-Tg mice is evident at this timepoint. **(D-F)** Quantification of unbiased stereological analysis, providing an estimate of both total cell number and gross volume for the entire IO. At 14 weeks, degeneration is not apparent in the SCA1-Tg IO. **(H)** Coronal histological sections showing principal IO in wild-type (left) and SCA1-Tg (right) mice at 14 weeks. Sections have been stained for glutamate decarboxylase (GAD), a marker of GABAergic terminals (red). **(I)** Quantification of staining reveals that GAD signal is retained in the SCA1-Tg IO at 14 weeks, indicating no loss of inhibitory synaptic input in these mice. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, * = $P < 0.05$, ns = not significant. **(A-G)** $N_{\text{wild-type}} = 8$ mice, $N_{\text{SCA1-Tg}} = 6$ mice **(H,I)** $N_{\text{wild-type}} = 8$ mice, $N_{\text{SCA1-Tg}} = 6$ mice.

Figure 5

Morrison et al., submitted 2023


Figure 5. Spontaneous activity in SCA1-KI IOPr neurons is largely unchanged

(A) Images demonstrating whole-cell patch-clamp electrophysiology on IO neurons in coronal brainstem slices at 4x magnification (left) and 40x magnification (right). Internal solution included a small amount of fluorescent dye that filled cells while recording, allowing for the single-cell morphological analysis shown in **Fig. 1**. A ♦ symbol marks the recording electrode. **(B)** Representative traces of spontaneous activity in IOPr neurons from wild-type (left) and SCA1-KI (right) mice at an early symptomatic timepoint of 14 weeks. The presence of spontaneous subthreshold oscillations (SSTOs) was used as confirmation of cell type when recording. **(C-F)** Quantification of various electrophysiological properties show few differences between SCA1-KI and wild-type IOPr neurons at rest. There was no apparent change in resting membrane potential⁺ **(C)** or SSTO frequency **(D)** between genotypes, though SCA1-KI IOPr neurons did exhibit diminished SSTO amplitude **(E)** and spontaneous spike generation **(F)**. Data are expressed as mean ± SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, * = $P < 0.05$, ns = not significant.

⁺Due to the persistence of SSTOs, the average membrane potential across 10 s of recording was used as an estimate of resting membrane potential. $N_{\text{wild-type}} = 21$ cells from 15 mice, $N_{\text{SCA1-KI}} = 20$ cells from 13 mice.

Figure 6

Morrison et al., submitted 2023

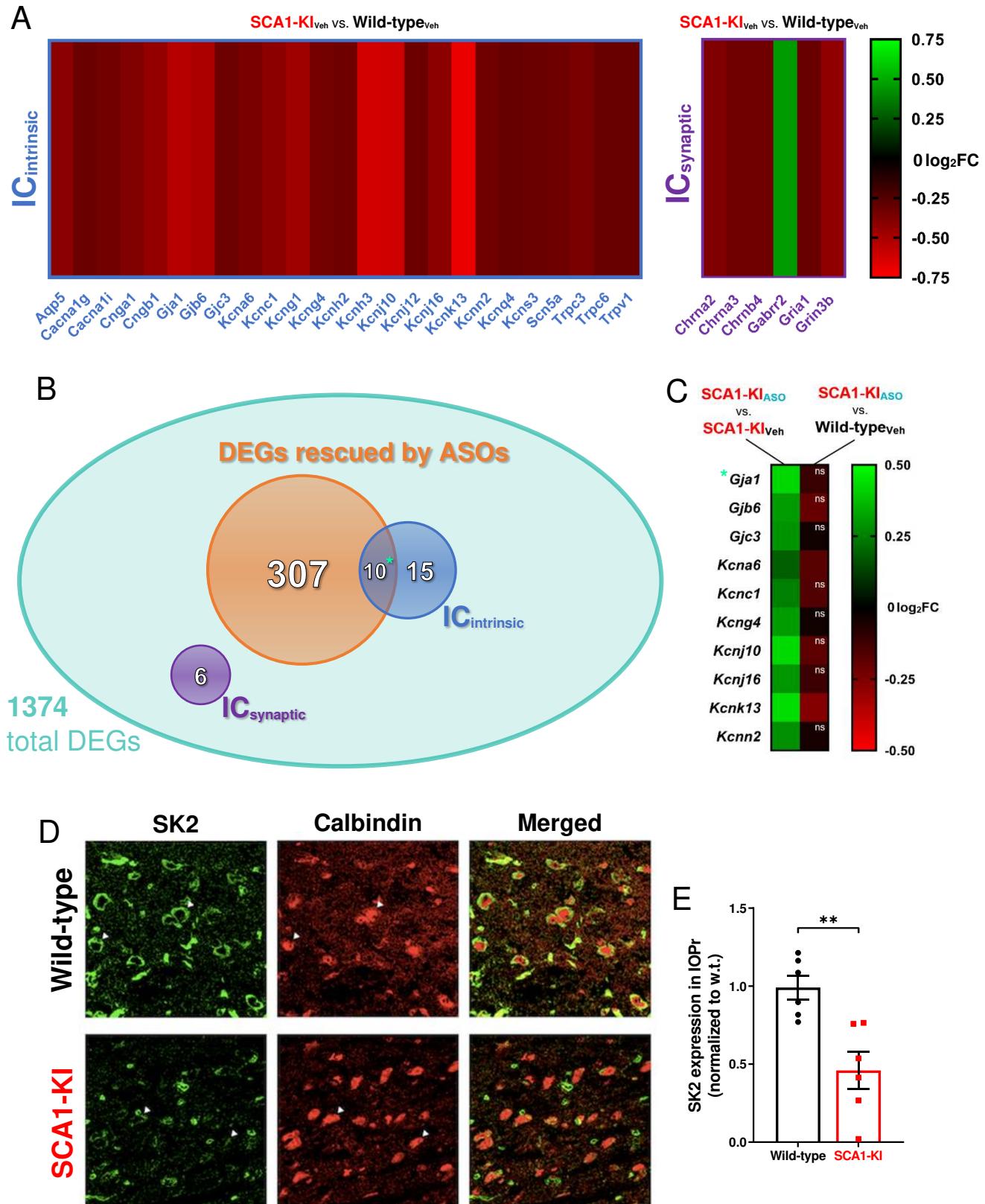
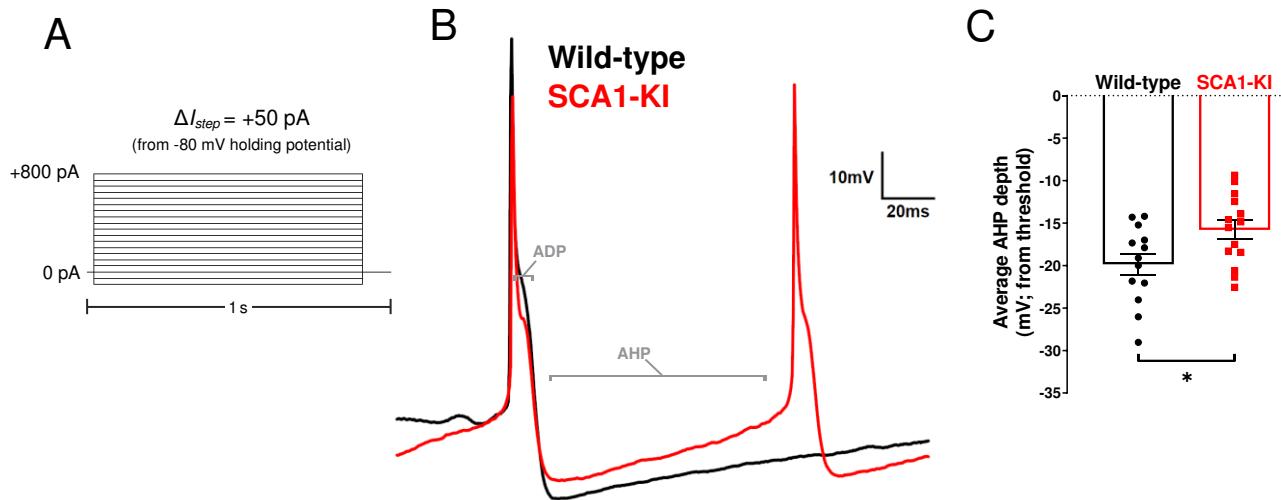


Figure 6. IOPr neurons in SCA1-KI mice are hyperexcitable

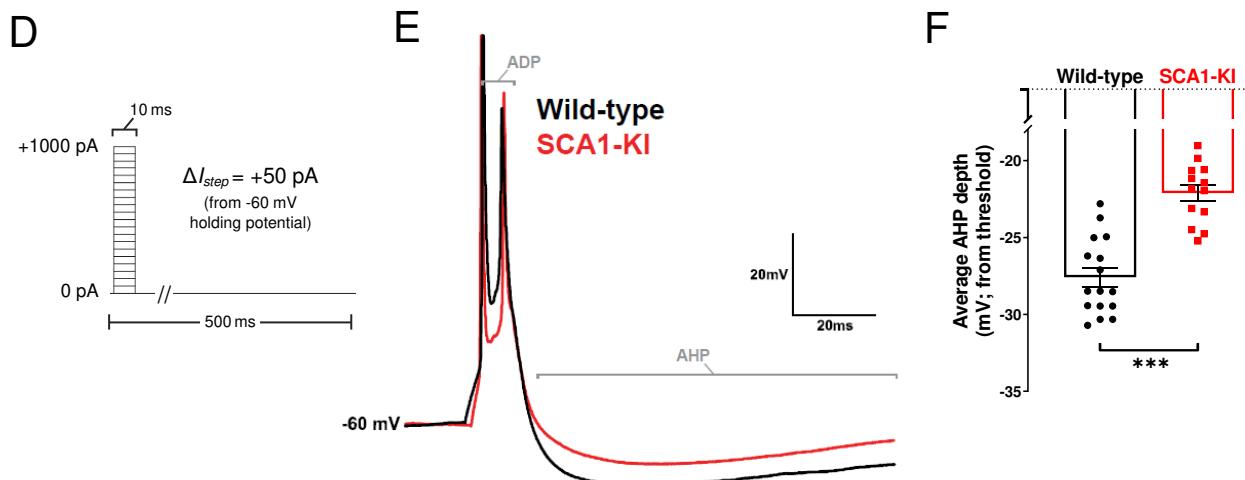
(A) Representative traces of evoked activity in IO neurons from wild-type (left) and SCA1-KI (right) mice at an early symptomatic timepoint (14wks). Traces shown for each group are 0 pA injected (bottom trace), +200 pA injected (middle trace), and +550 pA injected (top trace). **(B)** From a holding potential of -80 mV, a range of 0-800 pA depolarizing currents were injected in +50 pA, 1 second steps. Recordings were performed in current clamp mode. **(C)** Inset of representative evoked spikes at a higher timescale resolution reveal a long afterdepolarization (ADP) “hump,” a characteristic feature of IOPr neurons. **(D)** Unlike IO neurons in wild-type mice, IO neurons in SCA1-KI mice are able to sustain a spike train. **(E)** Input-output curve of average spikes produced in IO neurons of each genotype. Number of spikes rose steadily with current injection in SCA1-KI IO neurons, while wild-type IO neurons rarely exhibited spiking in the range depicted (+0-800 pA injected). **(F)** The rate at which membrane potential recovered back to baseline from its minimum value post-spike was significantly higher in SCA1-KI IOPr neurons, allowing these cells to fire repetitively. **(G)** Input resistance of IO neurons is unchanged in SCA1-KI mice, demonstrating that this hyperexcitability phenotype is not a product of any change in voltage generated per injected current step. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch’s correction, *** = $P < 0.001$, ns = not significant. **(D,E,G)** $N_{\text{wild-type}} = 16$ cells from 14 mice, $N_{\text{SCA1-KI}} = 16$ cells from 11 mice **(F)** Non-firing cells removed, so $N_{\text{wild-type}} = 13$ cells from 12 mice, $N_{\text{SCA1-KI}} = 14$ cells from 9 mice.

Figure 7

Morrison et al., submitted 2023


Figure 7. Ion channel expression is disrupted in the SCA1-KI medulla

(A) Transcriptomic analysis of whole medulla from SCA1-KI and wild-type mice at 28 weeks reveal that 31 ion channel genes are differentially expressed. Of these, 25 influence excitability intrinsically ($IC_{intrinsic}$), while 6 influence excitability synaptically ($IC_{synaptic}$). **(B)** Downregulation of *Atxn1* expression by antisense oligonucleotides (ASOs) ameliorates brainstem phenotypes in SCA1-KI mice. Of the 1374 differentially expressed genes (DEGs) in the SCA1-KI medulla, 317 DEGs were significantly rescued by ASO treatment (and, therefore, are more likely to be responsible for the observed phenotypic rescue). Within this cohort, $IC_{intrinsic}$ genes were significantly enriched. **(C)** Heatmap showing differential expression of the 10 $IC_{intrinsic}$ DEGs between treatment groups. These ion channel genes exhibited a significant increase in expression after ASO treatment (left), with the majority of them rising to wild-type levels (right). **(D)** In order to examine how decreases in medullary ion channel transcripts may result in a loss of channels in the IOPr, immunostaining for the small-conductance potassium channel SK2 was performed. Coronal histological sections of the IOPr in wild-type (top) and SCA1-KI (bottom) mice at 14 weeks (an early symptomatic timepoint) are shown. Sections have been stained for SK2 (green) and calbindin (red). **(E)** Quantification of immunostaining reveals a significant loss of SK2 channels on the membrane of SCA1-KI IOPr neurons. Data are expressed as mean \pm SEM. Statistical significance derived by Fischer's exact test (enrichment analyses) or unpaired *t*-test with Welch's correction (all other comparisons), ** = $P < 0.01$, ns = not significant. **(A-C)** $N_{wild-type, Vehicle} = 8$ mice, $N_{SCA1-KI, Vehicle} = 8$ mice, $N_{SCA1-KI, ASO} = 7$ mice. **(D, E)** $N_{wild-type} = 6$ mice, $N_{SCA1-KI} = 6$ mice.


Figure 8

Morrison et al., submitted 2023

IOPr neuron spike trains from -80 mV

IOPr neuron single spikes from -60 mV

Figure 8. Spike afterhyperpolarization is diminished in SCA1-KI IOPr neurons

(A) In order to assess the functional relevance of ion channel loss in SCA1-KI IOPr neurons, spike trains were generated by injecting increasing levels of current from -80 mV (a holding potential at which active conductances are minimal in the IO). **(B)** Representative traces of spikes generated by injecting +450 pA current in IOPr neurons of wild-type and SCA1-KI mice at 14 weeks. **(C)** Quantification of AHP depth (measured from each spike's threshold), demonstrating that SCA1-KI IOPr spikes during spike trains exhibit a shallower AHP compared to wild-type. **(D)** In order to determine if this AHP loss can also occur at rest, single spikes were generated by injecting increasing levels of current from -60 mV (a holding potential close to resting V_m). Because the amount of current needed to generate a single spike varied between cells, the first spike that exhibited an ADP was used for comparisons. **(E)** Representative traces of evoked activity in IOPr neurons in wild-type and SCA1-KI mice at 14 weeks are overlaid. **(F)** Quantification of AHP depth (measured from each spike's threshold), demonstrating that SCA1-KI IO neuron spikes from rest also exhibit a shallower AHP compared to wild-type. Data are expressed as mean \pm SEM. Statistical significance derived by unpaired *t*-test with Welch's correction, * = $P < 0.05$, *** = $P < 0.001$.

(A-C) $N_{\text{wild-type}} = 13$ cells from 12 mice, $N_{\text{SCA1-KI}} = 14$ cells from 9 mice. **(D-F)** $N_{\text{wild-type}} = 16$ cells from 14 mice, $N_{\text{SCA1-KI}} = 13$ cells from 9 mice.