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Abstract

Extensive whole-body models (WBMs) accounting for organ-specific dynamics have been de-

veloped to simulate adult metabolism. However, there is currently a lack of models representing

infant metabolism taking into consideration its special requirements in energy balance, nutri-

tion, and growth. Here, we present a resource of organ-resolved, sex-specific, anatomically

accurate models of newborn and infant metabolism, referred to as infant-whole-body models

(infant-WBMs), spanning the first 180 days of life. These infant-WBMs were parameterised to

represent the distinct metabolic characteristics of newborns and infants accurately. In particu-

lar, we adjusted the changes in organ weights, the energy requirements of brain development,

heart function, and thermoregulation, as well as dietary requirements and energy requirements

for physical activity. Subsequently, we validated the accuracy of the infant-WBMs by show-

ing that the predicted neonatal and infant growth was consistent with the recommended growth

by the World Health Organisation. We assessed the infant-WBMs’ reliability and capabilities

for personalisation by simulating 10,000 newborn models, personalised with blood concentra-

tion measurements from newborn screening and birth weight. Moreover, we demonstrate that

the models can accurately predict changes over time in known blood biomarkers in inherited

metabolic diseases. By this, the infant-WBM resource can provide valuable insights into infant

metabolism on an organ-resolved level and enable a holistic view of the metabolic processes

occurring in infants, considering the unique energy and dietary requirements as well as growth

patterns specific to this population. As such, the infant-WBM resource holds promise for per-

sonalised medicine, as the infant-WBMs could be a first step to digital metabolic twins for

newborn and infant metabolism for personalised systematic simulations and treatment plan-

ning.

Introduction

Infancy is a complex phase in human life, where numerous factors within an infant’s metabolism

play together to enable rapid growth and healthy development of the body. Understanding the

metabolism during infancy on an individual and population scale can be very beneficial, as the

development in this early stage of life can have long-term consequences on human health.1

To comprehensively consider and understand the different factors influencing infant metabolism

can pose challenges due to the complexity and scale of the system. Mathematical models pro-

vide a systematic approach to studying biological systems in detail, enabling hypothesis testing,

variable adjustments, and efficient analysis of model outcomes. Various computational models

have been developed to gain insights into infant development and disease processes. For in-

stance, artificial neural network-based models have been developed to, e.g., predict neonatal

metabolic bone disease,2 while mechanistic models have investigated the ratio of resting energy

expenditure to body mass in childhood.3 These models can be adapted by integrating phys-

iologic data and can be used to simulate complex metabolic processes, such as the dynamic

coordination of macronutrient balance during infant growth,4 and to investigate infant skin per-

meability to topically applied substances.5 Additionally, physiology-based pharmacokinetic

(PBPK) models have been developed to evaluate drug metabolism in silico for infants,6 which

are aimed to complement the dose-extrapolation often performed for the determination of ap-

propriate infant drug dosage.7
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Given the complexity of whole-body metabolism in health and disease, genome-scale metabolic

models (GEMs) also increasingly play a role in understanding human metabolism.8–10 GEMs

are powerful tools to analyse complex metabolic networks as they enable the exploration of

organism-level metabolic interactions.11 These models are assembled based on genomic, bio-

chemical, and physiological data to generate a detailed description of molecular-level processes

within a metabolic system.12, 13 They allow for an integration of various data sources, such as

metabolomics,14 transcriptomic,15 proteomic,16 and metagenomic data.17 Importantly, using

the constraint-based reconstruction and analysis (COBRA) approach, they can predict emer-

gent metabolic properties. Numerous successive generic reconstructions of human metabolism

have been published.18–22 These generic cell-level GEMs enable the investigation of human

metabolism to further analyse metabolic functions and to elucidate the metabolic system and its

relationship with diseases.14, 23 Recently, whole-body models (WBMs) of human metabolism

have been introduced, which are sex-specific and organ-resolved.8 These WBMs have been

developed starting from a generic, cell-level reconstruction,21 organ-specific information, and

omics data to capture the metabolism of up to 26 organs and six blood cell types in an adult

body.8 Each WBM contains over 80,000 biochemical reactions in an anatomically and physio-

logically consistent manner and can be parameterised with physiological, dietary, and metabolomic

data. Importantly, these WBMs can also be personalised using clinical and omics data, e.g.,

metabolomic and metagenomic data,8 and thus represent a first step towards a virtual metabolic

human, or digital metabolic twin. A first such digital metabolic twin has been recently generated

and analysed for a Crohn’s disease patient over a time span of 16 months.9

The WBMs represent male and female adults at a resting stage, and therefore, are not suit-

able to investigate in silico infants, whose metabolism is optimised to support biomass accretion

and growth. So far, infant metabolism has been modelled using generic cell-level metabolic

models.21, 24 For instance, Nilsson et al24 developed the simulation toolbox for infant growth

(STIG-met), which simulates the growth of an infant fed with breast milk and adjusted to the

infant energy requirements based on body composition for maintenance and energy expendi-

ture of major organs as well as muscular activity. This model has been used to predict the

infant’s growth rate over the first six months of life in accordance with the recommendation

by the World Health Organisation (WHO).25 However, this infant model does not allow for

an organ-level analysis of the predicted fluxes, does not include energy demands due to, e.g.,

thermoregulation, cannot be personalised based on physiological and metabolomics data. Fur-

thermore, the prediction of known biomarkers of inherited metabolic diseases (IMDs) with

flux balance analysis (FBA)26 has been a recurring evaluation for cell-based models20, 21, 27 and

organ-specific models28 as well as whole-body models8 based on the steady-state assumption

but also in a time-dependent manner by applying dynamic parsimonious FBA.29

In this study, we present a resource of sex-specific, organ-resolved whole-body models of

infant metabolism, infant-WBMs, spanning the first 180 days of life. We used detailed knowl-

edge of infants’ physiology and metabolic processes as well as newborn screening data to de-

velop personalised infant-WBMs. We accounted for organ-specific parameters and included in

detail the energy demand for brain development, heart function, muscular activity, and ther-

moregulation over a period of six months. The resulting infant-WBMs could predict infant

growth between zero and six months, based on their sex, body weight, measured metabolite

concentrations, and further physiological parameters, and the predictions were in agreement

with the growth recommendations by the WHO. Furthermore, the models could correctly pre-

dict changes in known blood biomarkers in IMDs on a day-to-day basis. As such, this resource

represents an important step towards a better understanding of newborn and infant metabolism

and will open novel avenues to investigate in silico infant metabolism in health and disease.
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Results

Overview of the reconstruction process resulting in sex-specific, organ-resolved

whole-body models of newborn and infant metabolism

This study introduces the sex-specific, organ-resolved whole-body models of newborn and in-

fant metabolism (infant-WBMs), specifically designed for modelling newborns and infants up

to the age of six months. The models were created using the adult sex-specific, organ-resolved

WBMs8 as a starting point (Figure 1 (A)). Through an extensive literature review, we iden-

tified important metabolic, physiological, energetic, and nutritional differences between adult

and infantile metabolism (Table S1, S2), and included them in the infant-WBMs as appropri-

ate (Method section for details). For instance, an important difference is that infant organs

grow, while most adult cell types, and thus organs, do not replicate. Hence, the infant-WBMs

account for biomass growth reactions, summarising the required metabolites for cellular repli-

cation,13, 30 for all organs. Consequently, 259 and 236 reactions were added to the female and

male infant-WBMs, respectively (Table S15). The difference in reaction numbers was due to

the difference in sex-specific organs. Additionally, the infant-WBMs present organ weights

and blood flow supply rates corresponding to the different ages of the infants based on in vivo

data.6 Other infant-specific physiological parameters include the heart rate, stroke volume, car-

diac output, hematocrit value, creatinine concentration in urine, and glomerular filtration rate

(Table S2). Moreover, the excretion of water and other metabolites were adapted such that the

urine flow rate and perspiration (skin) as well as excretion of water through the air, faeces,

and urine resembled infant metabolism (Method section 1.5). Organ-specific energy require-

ments are quite different between infants and adults31 and had to be adapted to represent the

requirements for healthy infant development. For instance, for the proper development of the

brain, we implemented these energy requirements by adjusting the lower bound on the brain

ATP reaction (VMH ID: Brain DM atp c ), which monotonously increases in accordance with

the age of the infant-WBM (Method section 1.7). Similarly, the heart energy requirement is

infant-specific, depending on the infant’s heart weight (Method section 1.9). With increasing

age, activity-based energy requirements also increase, which we accounted for by adding con-

straints on the muscle ATP demand reaction (VMH ID: Muscle DM atp c ) in accordance with

a published activity model24 (Method section 1.10). Another important infant-specific energy

demand is thermoregulation, which maintains the infant’s body temperature, as infants cannot

shiver before the age of six months.32, 33 We implemented the energy requirement for the non-

shivering thermogenesis process in the adipose tissue (Method section 1.8). We also applied

infant-specific nutritional constraints to represent breastfed infants with a daily increasing diet

corresponding to the infant’s growth.24 Note that we assumed the infants to be exclusively

breastfed until the age of six months, as recommended by the WHO.34 The diet composition

was based on the human milk decomposition at the Virtual Metabolic Human database35 (VMH,

https://www.vmh.life/) and adapted where necessary (Method section 1.6). In general, we

assumed that the composition of breast milk remains constant during the initial six months.

However, breast milk composition is very dynamic and varies over time according to the needs

of a growing child,36 which might be the reason that we had to adjust some metabolic com-

ponents within the diet throughout the six-month evaluation (see Method section). Finally, we

used measured blood metabolite concentrations from newborn screening of 10,000 newborns to

adjust the metabolite concentration ranges for 17 amino acids and 12 acylcarnitines (Table S3)

(Method section 2).

Overall, the female infant-WBM accounts for 1,724 unique genes (2,071 transcripts), 85,662

4

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563364
http://creativecommons.org/licenses/by-nd/4.0/


reactions, and 60,436 metabolites, whereas the male infant-WBM accounts for 1,724 unique

genes (2,071 transcripts), 83,149 reactions, and 57,980 metabolites. Taken together, the sex-

specific infant-WBMs represent comprehensively metabolic, physiological, energetic, and nu-

tritional features of infants aged between zero and six months.

Figure 1: Overview of the reconstruction process and sample applications of the infant-

WBMs. (A) The infant-WBMs were derived from the adult WBMs, figure taken from Thiele

et al.8 (B) Main adaptions made to the adult to generate the infant WBMs, including the or-

gan weights, physiological parameters, diet intake, thermoregulation, energy balance, and water

balance. (C) Validation of the infant-WBMs with growth evaluation and flux predictions. (D)

Application of the infant-WBMs for newborn screening personalisation and biomarker predic-

tion of inherited metabolic diseases (IMDs).

INFANT-WBM

1. Newborn screening personalisation

Water balance

Energy balance

ThermoregulationOrgan weights

Physiological
parameters

Diet

A) ADULT WBM B) ADAPTATIONS

D) APPLICATIONS

1. Growth evaluation

C) VALIDATION

2. Flux predictions 2. IMD biomarker prediction

Validation - Prediction of growth rate over time

A critical step in modelling biological systems is the validation process and comparison with the

actual organism, in our case, the human infant. An important difference between the metabolic

models of adults and infants lies in the capacity of infants to undergo growth, leading to in-

creases in total body weight and individual organ weights. Hence, to validate the infant-WBMs,

we computed the growth curves for each sex and compared them with the recommendations of

the WHO25 (Figure 2 (A), (B), Methods). Therefore, we used FBA26 to maximise the flux

through the whole-body biomass reaction, which accounts for the contribution of each organ’s

biomass growth reaction weighted based on the relative organ weight. On each successive day,

the body weight was adjusted based on the previous day’s growth rate, followed by updates to
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the organ weights according to the adjusted body weight. The initial newborn weights (day 0)

were set to be 3,300 g and 3,200 g for the male and female infant-WBMs, respectively, and

reaching a weight of 7,900 g and 6,090 g at day 180 (Figure 2 (A), (B), Table S4). This weight

gain corresponded to a daily average of 0.49% and 0.43% of gain in body weight for male and

female infant-WBMs. Overall, the calculated infant weights for each day of life during the first

180 days were in very good agreement with the WHO recommendations, as they were within

the WHO quartiles (Figure 2 (A), (B), Table S4), and they were also consistent with previ-

ous growth predictions performed with the generic genome-scale models of human metabolism

.21, 24 We conclude that the iterative adaptation of body weight determined by the growth rate

and the dynamical adjustment of the ATP demands for the brain, heart, thermoregulation, mus-

cular activity, and milk intake according to the age of the infant resulted in an accurate growth

trajectory. In the following sections, we demonstrate two further validation steps and two ap-

plications of the infant-WBMs.

Figure 2: Validation of infant-WBMs over the first six months of in silico life. (A) Male and

(B) female infant-WBM growth predictions in comparison with WHO quartiles25 and predic-

tions by the STIG-Met model.24 A flux value of 1.01 through the whole-body biomass reaction

corresponds to a 1% gain in biomass, i.e., an increase in the body weight of the infant by 1%.

For the validation, the male infant models start on day zero with a body weight of 3,300 g (A)

and the female infant-WBMs with a body weight of 3,200 g (B). (C) Water intake and excretion

fluxes in male infants computed over the first six months. (D) Flux through the ATP synthase

reactions in the brain, muscle, adipose tissue, liver, and heart in male infants over the first six

months.

C    Water balance in male infants D    ATP synthase in different organs in male infants

Adipose tissue

Water intake

Urine

Air

Sweat
Faeces

Liver

Brain

Heart

Muscle

B    Growth curves of female infantsA    Growth curves of male infants
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Validation - Prediction of metabolic fluxes within the infant body

The infant-WBMs enable a comprehensive assessment of metabolic fluxes at the organ, sub-

system, and reaction level in infants. Here, we discuss the validation results of the male infant-

WBM. The data and results for the female infant-WBM can be found in the supplementary

material (Table S7 (A)-(B), Supplementary Figure S1).

Water balance flux predictions

The water balance describes the equilibrium between water intake and water loss within the

human body. For both adults and infants, it is crucial to maintain proper hydration and to en-

sure the normal functioning of various physiological processes.37 Correspondingly, the dietary

intake of water determines most of the excretions through urine, faeces, skin, and respiration.

In addition, metabolic water is produced inside a living organism as an end product of the

oxidation of energy-containing substances in their food.38 Here, we determined whether the

infant-WBMs could correctly predict water loss. Therefore, we computed the flux distribution

through each infant-WBM (Method section ). As expected, and consistent with the applied

constraints (Table S12 (B)), most of the water was excreted via the urine (Figure 2 (C)). We

predicted urine excretion to be between 66 ml per day on day 1 and increasing to 462 ml per

day on day 180 (Table S6(A)). These predicted values were, in general, comparable with mea-

surements in infants, where urine excretion of infants up to one year has been approximated

as 2· weight(kg) ·24 (ml/day),39 thus ranging from 158 - 379 ml per day between ages 0 - 6

months, assuming a body weight of 3.3 to 7.9 kg. Water loss through air and sweat represented

the next highest values, and the predictions of 71 - 495 ml per day (Figure 2 (C), Table S6

(A)) were consistent with estimations on water evaporation through skin and air being 148.5

- 355.5 ml per day for 0 - 6 months.40 The predicted faecal water loss ranged between 4.8

ml/day and 33 ml/day, which is comparable to the reported 5 ml/kg per day (i.e., 16.5 ml/day

and 39.5 ml/day for 0 - 6 months) as water loss via defaecation for newborns.40 Overall, the

predicted water excretion ranged from 141 ml per day on day 1 to 990 ml/day on day 180, with

an average of 783 ml per day across all predicted time points (Table S6 (A)). This predicted

average value compared well with the reported mean water excretion of 900 ml/day from 78

male babies aged between 8 and 180 days (mean=36 days).38 Notably, the predicted water

excretion on day 30 was 810 ml/day. It is important to note that these predicted output values

also accounted for the metabolic production of water, which was between 56 ml/day and 169

ml/day (Table S6 (A)), highlighting that overall the infant-WBMs realistically captured water

production and consumption. While our predictions did not perfectly match the reported values,

and we had applied constraints on the excretion reactions, this example demonstrates that the

infants-WBMs can capture the known water balance. This capability is an emergent feature of

the infant-WBMs as they have not been trained to recapitulate the water balance.

Prediction of ATP synthase in different organs

The energy balance of the infant-WBM describes the intake and use of energy within the infant’s

body. Unlike generic genome-scale models of human metabolism, such as Recon3D21 and

Human1,22 the infant-WBM allows the allocation of distinct energy demands to specific organs

for their respective functions. Consequently, we can predict different aspects of an infant’s

energy balance, taking into consideration the energy intake from the breast milk diet and the

demands of different organs required for brain development, thermoregulation, heart function,

and physical activity. To represent the organ-specific energetic requirements, the infant-WBMs

7

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563364
http://creativecommons.org/licenses/by-nd/4.0/


contain ATP demand reactions, which represent the ATP hydrolysis for non-growth-associated

metabolic processes (e.g., muscle or brain activity). As the applied constraints through these

reactions increase, the flux through the ATP synthase reaction, which is part of the oxidative

phosphorylation in these organs, was expected to increase accordingly. Consistently, the brain

ATP synthase had the highest predicted flux value being 3,360 mmol/day/infant on day 1 and

6,388 mmol/day/infant on day 180, followed by the liver ATP synthase (Figure 2 (D), Table S6

(B)).

Next, we examined the temporal changes in ATP synthase flux values in the brain, muscle,

liver, adipose tissue, and heart, to shed light on the dynamic energy metabolism during early

infancy (Figure 2 (D)). The highest increase in ATP synthase flux was predicted for the muscle,

which was five times higher on day 180 compared to day 1. This increase was a direct reflection

of the increase in the lower bound on the muscle ATP demand (Figure 5), which represents the

increase in physical activity of the growing infant. In contrast, the adipocyte ATP synthase

flux increased only by 33.5%. Interestingly, the predicted liver ATP synthase flux increased

from 1,629 mmol/day/infant on day 1 to 4,591 mmol/day/infant on day 180, representing an

increase of 2.8 times. No constraints were placed on the liver ATP demand reaction and thus,

this predicted increase was an emergent feature of the infant-WBMs representing the increase

in overall metabolic activity during infant growth.

When correcting for the infant’s weight, the ATP synthase flux from the brain and adi-

pose tissue decreased from day 1 to day 180 (from 1,018 mmol/kg/day to 809 mmol/kg/day,

and from 355 mmol/kg/day to 198 mmol/kg/day, respectively). The heart ATP synthase flux

was predicted to be nearly unchanged during the infant’s growth (190 mmol/kg/day on day 1

vs 193 mmol/kg/day on day 180). In contrast, liver ATP synthase flux increased by 18% (494

mmol/kg/day to 581 mmol/kg/day) and the muscle ATP synthase flux doubled (178 mmol/kg/day

to 378 mmol/kg/day). For the muscle, we also investigated the ATP produced from glycol-

ysis, which remained nearly unchanged, when corrected for weight, from day 1 to day 180

(149 mmol/kg/day vs 150 mmol/kg/day). This result shows that, in silico, the additional en-

ergy requirement for physical activity was covered by an increase in oxidative phosphorylation.

Consistently, the Cori cycle was active in the infant-WBMs with the highest gluconeogene-

sis flux, determined as the flux through the liver glucose-6-phosphate phosphatase (VMH ID:

Liver G6PPer), being highest on day 60 (i.e., 105 mmol/kg/day) when corrected for weight

(Table S6). This result was consistent with reports that in rats, the highest glucose-6-phosphate

phosphatase was found at age 7 days41 corresponding to 60.2 human days, assuming that during

the weaning phase, a rat day corresponds to 8.6 human days.42 Taken together, this example

demonstrates that the infant-WBMs recapitulate known ATP requirements and metabolism.
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Application - infant-WBMs enable integrative analysis of metabolome data

from 10,000 healthy newborns

Figure 3: Evaluation results of 10,000 male infant-WBMs. (A) Birth weight and (B) growth

rate distribution of infants with predicted weight loss (WeightLoss) and infants with predicted

weight gain (WeightGain). (C) Comparison of measured arginine concentration in infants.

C    Arginine distribution

A    Birth weight distribution B    Growth rate distribution

WeightGain infants

ø arginine: 14.3 μmol/l

WeightLoss infants

ø arginine: 6.8 μmol/l

Newborn screening programs worldwide aim at early, ideally, presymptomatic identification

of treatable rare diseases, such as IMDs, to reduce morbidity and mortality.43 For this aim,

metabolic, enzymatic, and genetic parameters are analysed with dried blood samples taken in

the first days of life (i.e., in Germany at 36-72 h of life). Most metabolic parameters are analysed

by tandem mass spectrometry to quantify their concentration. This process generates extensive

individualised metabolomic data. However, the specific conditions examined and the number of

metabolites measured in each newborn screening program vary between countries.43, 44 Here,

we generated personalised infant-WBMs using anonymised data obtained from the newborn

screening laboratory at Heidelberg University Hospital (UKHD), Germany. The full newborn

screening data set comprised information from over 2 million individuals and encompassed 29

amino acids and acylcarnitines, which could be mapped to the metabolites present in the blood

compartment of the infant-WBMs (Table S3). The metabolomic data obtained from newborns
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provides a snapshot of metabolite concentrations in the blood at a specific time point. These

metabolite concentrations can be incorporated into the infant-WBMs by updating the bounds

on the uptake fluxes from the blood compartment into individual organs (Method section 2).

Additionally, the birth weight and sex of the newborns were used to adjust all weight and sex-

specific parameters within the infant-WBMs. This adaptation ensured that the personalised

infant-WBMs accurately reflected the individual characteristics of each newborn. From the full

newborn screening data set, we evaluated a uniformly random sampled subset of 10,000 male

newborn models with gestational age greater or equal to 38 weeks (further details in Method

section 2). The mean measured birth weight in the subset was 3,508 g, ranging from 1,770 g to

5,590 g (Figure 3 (A)). We then computed the in silico growth rates using FBA. From all 10,000

personalised infant-WBMs, 8,736 (87.36%) models had a growth rate between 1.0089 - 1.0092

(mean = 1.0091±0.00008), corresponding to a weight gain of 0.89 - 0.92% per day (Figure 3

(B), Table S8). Interestingly, from the remaining models 1,108 models (11.08%) had a daily

growth rate between 0.22 and 0.996 (mean = 0.74±0.23) implying that the infants would lose

weight (Figure 3 (B), Table S8). Loss of birth weight up to 10% in the first few days of life

is normal,45 and presumingly, due to fluid loss through urination.46 It is to be noted that we

did not change any water-related constraints in the personalised infant-WBMs. Unfortunately,

no further information on the infants’ follow-up weight (e.g., on day 3), general health status

(besides the tested IMDs), potential feeding problems, delivery mode, or the age of the mother

where available, to validate the predicted loss in weight. However, all these factors have been

associated with excessive weight loss in newborns.47

To further shed light on the predicted weight loss, we investigated potential metabolic rea-

sons. We did not observe any correlation between the birth weight and the predicted growth

rate, as the birth weight was similarly distributed between the weight gainers and weight losers

(Figure 3 (A)). We also could not find any correlation with gestational age (Supplementary Fig-

ure S2). When we compared the distributions of all the personalisation variables, we found

that the measured blood concentration of arginine was very low in weight losers (mean =

6.8 ± 4.1µmol/l) compared to the weight gainers (mean = 14.3 ± 7.4µmol/l; Figure 3 (C)).

The distribution of the arginine concentrations of the weight gainer and weight loser infants

was significantly different (Wilcoxon rank sum test, p = 1.8e−227). Increasing the blood argi-

nine concentration in silico to 14 µmol/l enabled 762 (69%) of the weight loser infant-WBMs to

grow at rates of at least 1.005, confirming blood arginine concentrations as one of the growth-

limiting variables in these infant-WBMs. For the remaining 346 (31%) of the weight loser

infant-WBMs, we could not find any single measured blood metabolite that could explain the

predicted weight loss. We then tested whether dietary supplementation could also achieve

higher in silico growth rates in the weight losers using a dedicated algorithm, the nutrition

algorithm48 (Figure 3), but we could not find any alternative. Note that in the way the diet algo-

rithm is designed, it does not change the blood concentrations in the infant-WBMs, but rather

asks whether there is any metabolite that could substitute for the arginine limitation or any other

limitation. Arginine is known to be an essential amino acid in newborns and infants,49 while not

being an essential dietary amino acid in healthy adults,50 and our in silico modelling confirmed

this. Decreased plasma l-arginine levels in organic acidurias have been suggested as a potential

cause of growth retardation in children and adolescent patients with methylmalonic acidemia

and propionic acidemia.51 Moreover, a study of Danish schoolchildren reported an association

between dietary arginine intake and growth rate.52 For the reason of low blood arginine levels

in our infants, we can also only speculate. Diet is a potential source of variation. However,

breast milk has been reported to be a poor source of arginine, while its metabolic precursors are

highly abundant.53 Mutations in the genes associated with arginine synthesis could be another
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source, thereby limiting the production of arginine from metabolic precursors in the small in-

testine.49 Finally, differences in gut microbial composition may also contribute to variations in

the blood concentration of arginine and its precursors. Accordingly, we found that gut micro-

biomes from healthy infants were enriched in reactions associated with ”Arginine and proline

metabolism” compared with healthy adults (average 13.5%±2.9% vs 10.7%±1.2%)54 (Table

S13). Taken together, this application demonstrates how the infant-WBMs can be personalised

based on newborn screening metabolomic data to investigate emerging metabolic properties.

Application - infant-WBMs accurately predict known biomarkers of inher-

ited metabolic diseases

Table 1: IMD groups/classes with their associated number of diseases and coverage in the

infant-WBM model. *The classification was based on.55

IMD groups/classes* Diseases

per

class

Infant-WBM

associated

diseases per

class

Fraction

1 - Disorders of amino acid metabolism 113 91 0.805

2 - Disorders of peptide and amine metabolism 20 14 0.700

3 - Disorders of carbohydrate metabolism 67 51 0.761

4 - Disorders of fatty acid and ketone body metabolism 28 26 0.929

5 - Disorders of energy substrate metabolism 28 26 0.929

6 - mtDNA-related disorders 40 11 0.275

7 - Nuclear-encoded disorders of oxidative phosphorylation 88 47 0.534

8 - Disorders of mitochondrial cofactor biosynthesis 28 3 0.107

9 - Disorders of mitochondrial DNA maintenance and replica-

tion

17 5 0.294

10 - Disorders of mitochondrial gene expression 65 1 0.015

11 - Other disorders of mitochondrial function 53 14 0.264

12 - Other disorders of intermediary metabolism 9 6 0.667

13 - Disorders of lipid metabolism 145 94 0.648

14 - Disorders of lipoprotein metabolism 30 7 0.233

15 - Disorders of nucleobase, nucleotide and nucleic acid

metabolism

151 38 0.252

16 - Disorders of tetrapyrrole metabolism 19 17 0.895

17 - Congenital disorders of glycosylation 137 61 0.445

18 - Disorders of organelle biogenesis, dynamics and interac-

tions

111 3 0.027

19 - Disorders of complex molecule degradation 73 36 0.493

20 - Disorders of vitamin and cofactor metabolism 71 40 0.563

21 - Disorders of trace elements and metals 34 8 0.235

22 - Neurotransmitter disorders 67 13 0.209

23 - Endocrine metabolic disorders 50 23 0.460

Total 1,444 636 0.44

Single gene defects in biochemical pathways can result in IMDs.56 While IMDs are individ-

ually rare (from 1:1,000,000 to 1:10,000 newborns), the cumulative incidence of the over 1,880
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recorded IMD,56 associated with over 1,367 unique genes,55, 57 is high (ranging from 1:2,500 to

1:800 newborns).58 The infant-WBMs cover 595 of the 1,364 IMD genes (43%) and are asso-

ciated with 636 IMDs, providing ample opportunity to investigate known and novel biomarkers

(Table S16). These 595 IMD-associated genes are distributed over all 23 disorder classes of

IMDs as defined by Ferreira et al55 (Table 1).

The highest coverage of disorder classes was for ”Disorders of fatty acid and ketone body

metabolism” and ”Disorders of energy substrate metabolism”, where the infant-WBMs cover

26/28 IMDs in the respective classes. Also, a high number of IMDs of ”Disorders of lipid

metabolism” (94/145 IMDs) and ”Disorders of amino acid metabolism” (91/113 IMDs) are

accounted for. The lowest coverage was achieved for ”Disorders of mitochondrial gene expres-

sion” (1/65 IMDs) and ”Disorders of organelle biogenesis, dynamics and interactions” (3/111).

This low coverage was not surprising as the associated pathways are traditionally not covered in

metabolic reconstructions. Furthermore, the 596 genes correspond to 14,187/85,662 reactions

(16.6%) in the female infant-WBMs and 13,633/83.149 reactions (16.4%) in the male infant-

WBMs. This mapping provides a prime opportunity to expand the infant-WBMs in future

efforts and a starting point for investigating IMDs and emergent phenotypes in silico.

Figure 4: Relative change of flux through blood demand reactions of metabolites measured

in newborn screening for a female (A) and male (B) infant-WBM comparing the wild type

with a PKU knock-out model. Abbreviations in VMH IDs: ala - alanine, arg - arginine, argsuc

- argininosuccinate, asp - aspartate, c5dc - glutarylcarnitine, citr - citrulline, glu - glutamic acid,

gly - glycine, his - histidine, hmcr - homocitrulline, ivcrn - isovalerylcarnitine, met - methionine,

phe - phenylalanine, pro - proline, tyr - tyrosine.

B    PKU male model - relative �ux increase to WTA    PKU female model - relative �ux increase to WT

Since the publication of the first human metabolic reconstruction,18 the prediction of known

biomarkers of IMDs27 has been a recurring evaluation for cell-based20, 21 and whole-body

models8 as well as models of organ-specific metabolism.28, 29 Hence, to further demonstrate

the predictive capacity of the infant-WBM models, we first analysed the biomarker predic-

tion for phenylketonuria (PKU) (OMIM: #261600), which is an inborn error of phenylalanine

metabolism (synthesis of tyrosine from phenylalanine by the phenylalaninhydroxylase) and is,

if untreated, associated with global developmental delay and severe intellectual impairment of

patients.59 Using an established method to predict biomarkers for IMDs in silico8 (Method sec-

tion 3.5), we predicted for the male and female infant-WBMs the known PKU biomarkers as

well as 27 further metabolites routinely measured in the dried blood spots for newborn screen-

ing at the UKHD (Figure 4, Table S3). We compared the prediction of the wild-type (healthy)

model with the knock-out (PKU) model after deleting the corresponding reactions for tetrahy-

drobiopterin: oxygen oxidoreductase (VMHID: r0399, PHETHPTOX2) in all organs having the

known defective gene phenylalanine hydroxylase (VMHID: 5053.1) and calculating the relative
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flux change f (section 3.5). In both female and male infant-WBMs, the phenylalanine flux was

predicted to increase more than 300% and the tyrosine flux was predicted to decrease by 91%

in female and 97% in male models. Thus, the known biomarkers phenylalanine and tyrosine

showed by far the highest relative change in flux prediction, whereas the flux through all other

newborn screening metabolite reactions showed no or small relative flux changes below 3%

(Figure 4). Interestingly, 12 of the 29 metabolite fluxes (alanine, arginine, argininosuccinate,

aspartate, citrulline, glutamic acid, glycine, homocitrulline, methionine, phenylalanine, proline,

tyrosine) were predicted to change in both female and male models as well as two metabolite

fluxes (histidine, isovalerylcarnitine) that were only predicted to change in the female model

and one metabolite flux (glutarylcarnitine) that was only predicted to change in the male model

(Figure 4).

Table 2: Qualitative flux change through biomarker reactions in blood on day 1, 90,

and 180 for female infant-WBM and for female adult WBM,8 when maximising the re-

spective biomarker reactions in the knockout (disease) and the wild type (healthy) model. A

predicted flux increase is highlighted with an up-arrow ⇑ and a decrease with a down-arrow

ó. PKU - phenylketonuria (OMIM: #261600), IVA - isovaleric aciduria (OMIM: #243500),

GA1 - glutaric aciduria (OMIM: #230800), GD: Gaucher disease (OMIM: #230800), KD -

Kynureninase deficiency (OMIM: #236800). Phe - phenylalanine, tyr - tyrosine, 4hphac - p-

hydroxyphenylacetic acid, phpyr - phenylpyruvic acid, ivcrn - isovaleryl carnitine, c5dc - glu-

taryl carnitine, gluside - D-glucosyl-N-acylsphingosine, C02470 - xanthurenic acid, kynate -

kynurenic acid. All metabolite abbreviations are given as VMH IDs.

Diseases Metabolites Day 1 Day 90 Day 180 Adult

PKU phe ⇑ ⇑ ⇑ ⇑
tyr ó ó ó ó
4hphac ó ó ó ⇑
phpyr ⇑ ⇑ ⇑ ⇑

IVA ivcrn ⇑ ⇑ ⇑ ⇑

GA1 c5dc ⇑ ⇑ ⇑ ⇑

GD gluside ⇑ ⇑ ⇑ ⇑

KD C02470 ⇑ ⇑ ⇑ ⇑
kynate ⇑ ⇑ ⇑ ⇑

To further demonstrate the predictive capacity of the infant-WBM models, we chose three

IMDs, which are part of the German national newborn screening, including PKU, isovaleric

aciduria (IVA) (OMIM: #243500), and glutaric aciduria (GA1) (OMIM: #230800),60 since

in newborn screening dried blood samples are analysed regarding significant increases or de-

creases of concentrations of the IMD specific biomarkers. Additionally, we also investigated

Gaucher disease (GD) (OMIM: #230800) and kynureninase deficiency (KD) (OMIM: #236800)

(Table 2, Table S11 (A)). For each IMD, we predicted and evaluated the flux through their

known biomarkers over the time course of the first six months of a female infant’s life (Table

S11 (B)). The data and results for the biomarker prediction of the male infant-WBM can be

found in the supplementary material (Figure S2, Table S11 (C)). We evaluated the predicted

fluxes qualitatively by comparing the flux through the known biomarker reactions in the wild

type (healthy) and IMD (disease) model and noted whether an elevation or reduction of the flux
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was predicted (Table 2). For all IEMs and all the biomarker, the predictions were consistent

over all three time points and consistent with the change in biomarkers reported in IEMBase.56

Overall, this analysis demonstrates that the infant-WBMs have the ability to predict known

biomarkers related to a specific IMD over a time frame of six months evaluated on three time

points, day 1, day 90, and day 180. Moreover, all biomarker changes were also consistent with

changes predicted by the adult WBMs, except for the prediction of p-hydroxyphenylacetic acid

for PKU (Table 2). For the adult WBMs, it has been already shown that they have a good

predictive capacity for IMDs,8 where in a simulation of predicting biomarkers in blood, urine,

or cerebrospinal fluid (CSF), 85.3% of biofluids have been qualitatively predicted correctly by

the female adult WBM and 84.9% by the male adult WBM.8 Taken together, we showed that the

infant-WBMs could correctly predict biomarkers for a range of metabolites and IMDs over the

first six months of life, which may be of value for newborn screening but also for biochemical

tests performed on patients with suspected IMDs.

Discussion

Here, we presented a resource of infant-WBMs, i.e., genome-scale metabolic sex-specific whole-

body models for newborns and infants, which incorporate detailed knowledge of infants’ phys-

iology and metabolic processes as well as newborn screening data for personalisation over the

first six months of life. By including organ-specific parameters and detailed information on the

energy demand for brain development, heart function, muscular activity, and thermoregulation,

we could successfully model the newborn and infant metabolism over a period of six months.

We showed that when maximising the whole-body biomass reaction, we could accurately pre-

dict the infant’s growth during this time span, in accordance with growth recommendation from

the WHO,25 for both male and female infants (Figure 2 (A), (B)). Moreover, we validated the

model by analysing the flux prediction of whole-body metabolism. For instance, we confirmed

that the amount of daily water excretion and interorgan energy metabolism within the infant-

WBMs (Figure 2 (C), (D)) agreed with in vivo measurements of infants within a reasonable

range throughout the six-month time frame. Furthermore, we used the models in two applica-

tions related to newborn screening. First, we evaluated the robustness of the models by creating

10,000 personalised infant-WBMs utilising the sex, birth weight, and 29 metabolite concentra-

tions measured during newborn screening (Figure 3). Second, we showed that the infant-WBMs

are able to correctly predict known metabolic biomarkers for five IMDs at three different time

points (Table 2). This analysis could be a new way of investigating IMDs as the harmful ac-

cumulation of metabolites, such as the mitochondrial accumulation of isovaleryl-CoA in IVA

patients, is a key problem.61 For many diseases, such as Gaucher disease, investigations of

metabolic flux are important as the alteration of flux is central to the management of the dis-

ease.62 In particular, in newborn screening, the development of the newborn’s metabolism is

essential, as it allows early, ideally, presymptomatic identification of treatable IMDs, enabling

beneficial treatment of the affected newborns.

Limitations of the infant-WBMs

A mathematical model of a complex biological system, such as infant metabolism, will never

perfectly resemble the underlying biological system, which is due to necessary assumptions

and simplifications. Hence, the infant-WBMs also have limitations based on decisions taken

during the development process. The infant-WBMs were derived from the female and male
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adult WBMs, and the contained reactions were only extended for the biomass growth reac-

tions in every organ, which is an important difference between adult and infant metabolism.

Additionally, infant-specific constraints were placed on the organ’s energy demands, diet, and

physiological parameters. However, no further changes were made to the reaction content or

applied constraints, although the metabolic profile varies at different stages of human life.63

For instance, the analysis of urine samples showed that the activity of the pathways associated

with amino acid metabolism is significantly different between infants aged six months and one

year.63 Hence, adding further constraints to the involved reactions depending on age could

further improve the accuracy of the models’ predictive capacity of infant metabolism.

Furthermore, the infant diet is a very important and sensitive part of the model. Here, we

assumed that the infants are exclusively breastfed, which is recommended by the WHO.34 How-

ever, a study on breastfeeding among U.S. children showed that, in 2019, 35.3% of all children

were supplemented with infant formula before six months of age.64 Hence, in a future study,

different diets for infants, e.g., including formula, could be considered. By this, also the dietary

effects on the infant metabolism could be analysed and using the nutrition algorithm48 missing

diet components could be predicted in a personalised manner. We further assumed that, except

for some metabolites, the milk composition over the first six months does not change, although

the breast milk composition can be very dynamic and varies over time according to the needs

of a growing child.36 However, to integrate these dynamic changes within the model, detailed

measurements of the diet composition at several time points per day would be necessary over the

six-month time frame. Still, this would only represent a personalised diet for a specific infant as

the diet composition can vary depending on environmental pollution,65 exogenous chemicals,

such as drugs and synthetic compounds,66 and the mother.67 The mother influences the milk

composition by her nutrition, which has been reported to impact concentrations of fatty acids

and fat- and water-soluble vitamins in the milk68 as well as by her milk production quantities,

which impacts the concentration of fat, protein, and lactose in the milk.67 The assumed con-

stant milk composition over time may be a reason for the adjustments that had to be performed

to some metabolic components within the diet throughout the six-month evaluation to ensure

the model’s feasibility. In particular, the dietary intake of L-lysine had to be decreased and

L-cysteine had to be increased for the model to be able to predict a reasonable growth rate.

Overall, we found some of the predictions sensitive to the diet input, thus highlighting the need

for proper constraints. It should also be noted that we did not include the gut microbiome,

which is known to provide essential macro- and micronutrients to the host metabolism,69 and

thus can complement the dietary inputs. Moreover, the infant-WBMs do not account for protein

turnover, which is age-dependent and important for growth. However, in order to represent the

protein turnover correctly, we would have to include the synthesis and degradation of the major

proteins, which has been done for microbes (e.g.,70, 71), but was out of scope for this study.

Future and implications

The integration of microbiome data into infant-WBMs represents a natural progression, as it

has already been part of the adult WBMs.8 This integration would also enable the consideration

of the mode of birth, as studies have shown that the gut microbiota composition of C-section

delivery newborns shows a microbiome that closely resembles that found in the environment

and the mother’s skin, whereas vaginally delivered newborns have a microbiome more similar

to the vaginal microbiome.72

Furthermore, by incorporating different diets for infants, the modelled age range of the chil-

dren could be expanded. This extension would also require additional changes in physiological
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information within the models, such as changes in the organ weights at different stages. Ulti-

mately, it would be possible to develop WBMs that encompass all early stages of human life,

starting from newborns and progressing to the existing adult models. This comprehensive cov-

erage of different life stages would provide valuable insights into the dynamic nature of human

metabolism throughout the lifespan.

The personalisation of the infant-WBMs, which we showed on a subset of 10,000 newborns,

allowed for incorporating personalised parameters and contextualising the models within the

infant population. This approach provides valuable insights into the individualised metabolic

characteristics of infants, paving the way for personalised interventions and an improved under-

standing of early-life metabolism. The infant-WBMs enable newborn screening centres world-

wide to use their own measured metabolite concentrations to create personalised metabolic

models of their patients. These personalised models could be eventually used to test therapies

and treatments in silico, as, due to the extreme variability of IMDs, their management and ther-

apy have to be personalised for each patient, based on the patient’s diagnosis and phenotype.62

In the era of precision medicine, the ability to accurately predict an infant’s metabolic response

to various dietary interventions holds immense potential for personalised nutritional strategies,

clinical decision-making, and improving the management of IMDs in infants by analysing how

a phenotype emerges given a primary mutation on the background of their whole personal

genome.73

Personalised WBMs could also be used to analyse the metabolic impact of exogenous chem-

icals, such as drugs and synthetic compounds, that may be transferred from human milk to

infants.66 For instance, the personalised infant-WBMs could support newborn screening for

IVA, which is suffering from an increasing number of false-positive screening results, due to

antibiotics given to pregnant women to treat urinary tract infections74 and pivalate-containing

creams.75 Moreover, drug dosage determination for children is very important as their immature

drug metabolism is often associated with drug toxicity76 and the pharmacokinetics and phar-

macodynamics of drugs are often different in children and adults.77, 78 However, almost 50% of

prescription drugs lack age-appropriate dosing guidelines76 and the paediatric drug clearance

data is less attainable, which is probably due to the difficulties associated with conducting pae-

diatric clinical trials.79, 80 There exist model-based approaches for paediatric dose projection,

such as weight-based dose prediction,78 Salisbury rule,81 paediatric dose prediction based on

predicted clearance,78 and PBPK models82 as well as for predicting the total and renal clearance

of renally secreted drugs in neonates.83 In future, these existing modelling techniques could be

combined with the infant-WBMs allowing a detailed analysis of drug metabolism within the

whole infant body potentially enabling a more accurate drug dosage determination and drug

clearance prediction.84 To that end, PBPK models have already been developed to evaluate drug

metabolism in silico for infants,6 which are aimed to complement the dose-extrapolation often

performed for the determination of appropriate infant drug dosage.7 Genome-scale modelling,

and WBMs, have already been connected with PBPK modelling, demonstrating the feasibility

and value of such hybrid modelling approaches.85–88

Conclusion

In summary, the presented resource of 360 infant-WBMs provides valuable insights into infant

metabolism at an organ-resolved level and captures a holistic view of the metabolic processes

occurring in infants, by considering the unique energy and dietary requirements as well as

growth patterns specific to this population. They hold the promise for personalised medicine,

as they could be a first step to a digital metabolic twin for newborn and infant metabolism for
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personalised systematic simulations and treatment planning.

Methods

1 Generation of the infant-WBMs

The female and male infant-WBMs were developed using the female and male adult WBMs,8

respectively, as starting points. The adult WBMs are metabolic network reconstructions that

have been assembled using organ-specific information from literature as well as omics data.

These sex-specific reconstructions represent whole-body organ-resolved metabolism with over

80,000 biochemical reactions and capture the metabolism of 28 organs for the male and 30

organs for the female models. The adult WBMs have been parameterised using physiological,

dietary, and metabolomic data.8 In the following, we delineate the changes that were made to

the adult WBMs to derive the male and female infant-WBMs.

1.1 Organ-specific biomass growth reactions

We assumed that all infant organs grow. Hence, organ-specific biomass growth reactions were

formulated and added for each organ. A biomass growth reaction accounts for all known com-

ponents required to replicate the cells of an organ.13, 30 These biomass growth reactions were

modelled based on the biomass maintenance reactions that were already present in the adult

WBMs, but now also included the molecular and energetic requirements for replication. Note

that no changes were done for organs that contained already a biomass growth reaction (e.g.,

the skin). The addition of the organ-specific biomass growth reactions required the addition

of further reactions to the WBMs to allow the biomass constituents to be transported into the

correct compartment (Table S15). For instance, transport reactions for dNTPs from the cytosol

to the nucleus needed to be added to allow for DNA replication requirements. A total of 236

and 259 reactions were added to the male and female infant-WBMs, respectively, resulting in

83,149 reactions in the male infant-WBMs and 85,662 in the female WBMs.

1.2 Whole-body biomass reaction and organ weights

The whole-body biomass reaction represents the material and energy (ATP) required to main-

tain the non-metabolic cellular functions of the body and has been constructed based on the

fractional weight contribution for each organ for a reference man or woman.8 Accordingly,

the whole-body biomass reaction in the infant-WBMs was reformulated based on the age-

dependent fractional organ weight distributions (Table S1), which were obtained from the lit-

erature.6 In the absence of infant-specific information, the relative weight of the female and

male adult WBM8 was applied and scaled based on the infant’s body weight (Table S1). Note

that for the female infant-WBMs, the organ weight of the uterus was further reduced, instead of

using the relative value derived from the female adult model, for a more accurate representation

(Table S1 (A)).

1.3 Blood flow rates

Additionally, the organ blood flow rates were updated for newborns and infants (Table S1 (B),

(C)) based on the infant blood flow rates6 and scaled by the infant’s organ weights (Table S1
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(A)).6 These organ-specific blood flow rates and plasma metabolite concentration ranges, de-

rived from metabolite concentrations obtained from the Human Metabolome Database (HMDB),8, 89

were used to define the lower bounds on the metabolite transport reactions from the blood com-

partment into the different organs for each reaction (see also equation 1, 2). For the kidney, we

assumed that it filters 20% of blood plasma. We set the lower bound and upper bound for kid-

ney filtration for each metabolite by multiplying the healthy plasma metabolite concentration

ranges89 with the glomerular filtration rate8 (see also 2).

1.4 Physiological parameters

We used phenomenological models specific for infants as a function of weight and age (Ta-

ble S2) to obtain the following physiological parameters: the heart rate, stroke volume, cardiac

output, hematocrit value, creatinine in urine, urine flow rate and glomerular filtration rate (Ta-

ble S2). The cerebrospinal fluid (CSF) flow rate was approximated as

CSFrate =
2.78+0.97 · log( a

365
)+2.26 · log(w)

60

given in ml/min per day, where a is the age in days and w is the body weight in kg.90 In

the original phenomenological model, a factor of 2.23 was subtracted for girls. However, for

simplicity, we used this phenomenological model for both sex-specific infant-WBMs.

1.5 Water balance

The urine excretion in infants has been approximated as

2 ·weight (in kg) ·24 (ml/day)

for their second day of life,39 which corresponds to an excretion of 158 ml in the urine of a

3.3 kg infant. This value corresponds to ≈10 % of the urine excretion of the male adult WBM,

which has been estimated to be 1,400 ml per day.8 Hence, we approximated the water loss

through faeces, sweat, and air to be 10% of the adult WBMs on the second day of life. Based

on this assumption, the amount of excreted water was increased daily depending on the daily

water intake from the breast milk diet (Table S12 (A)). Additionally, we wanted to allow for a

± 10% margin on each day. Consequently, the upper bounds ubi and lower bounds lbi of the

corresponding water exchange reactions i were based on the bound bi obtained from the adult

WBMs8 and set as

lbi = bi ·10% ·90% · p

ubi = bi ·10% ·110% · p,

where p is the milk intake percentage (Table S12 (A)).

1.6 Breast-milk based in silico diet composition during the first six months

of life

We assumed the infant to be exclusively breastfed for the first six months of its life, which is in

agreement with the recommendation by the WHO.34 The amount of daily milk intake was based

on the milk model from the STIG-met publication24 and agrees with mean values of Swedish

babies at 1, 2, 3, and 6 months of age.91, 92 We only increased the milk intake on the second
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day from 100 g to 225 g per day since on their second day of life newborns consume 22-27 ml

milk per feed at 8-10 feeds per day;93 otherwise, the daily milk intake was not altered from the

published milk model.24

The breast milk composition was derived from the human milk decomposition available

at the Virtual Metabolic Human database (Table S9, https://www.vmh.life/).35 The ob-

tained diet formulation consisted of approximately 87.5% water, which agrees with studies

analysing the components of human breast milk.94 However, the original formulation did not

contain lactose, which has been shown to account for approximately 7% of the breast milk.95

Hence, we added 7% lactose to the breast milk diet (Table S9). The original breast milk diet

formulation was further modified to ensure the feasibility of the linear problem in FBA26 as

well as adequate flux through the whole-body biomass reaction (see Table S9 and section ).

Moreover, to enable the growth of the infant-WBMs, the uptake bounds of dietary fluxes in

the model of 12 metabolites had to be increased. These metabolites included six essential

amino acids (L-methionine, L-isoleucine, L-valine, L-phenylalanine, L-threonine, L-leucine)

and six other metabolites (choline, phosphatidylethanolamine, homocitrulline, D-glucose, thi-

amin monophosphate, guanidinoacetic acid) (Table S9). Furthermore, a low phosphate concen-

tration in the diet had a growth-stunting influence on the model. We decreased the L-lysine

concentration every month starting from two months, as it is an increasing factor for growth in

the models (Table S5). This change is in agreement with L-lysine concentrations decreasing

in breast milk after two weeks of lactation.96 Furthermore, for the female infant-WBMs, the

dietary intake of L-cysteine was adapted as it presented another growth-limiting factor in the

models (Table S5).

1.7 Brain development

The brain development and its corresponding glucose demand are essential for the infant’s de-

velopment and hence, for the infant-WBMs. The additional time and energy required for learn-

ing and brain development have been proposed to explain the slow and prolonged pre-adult life

stage in humans compared to other species, even in comparison to other primate and great ape

standards.97, 98 The brain glucose uptake per infant per day has been predicted to be 19.7 grams

(converted to 100 mmol of glucose using the molecular weight of glucose 180,156 g/mol) by

summing cerebral, cerebellar, and brainstem glucose uptake.97 Eukaryotes can produce 30-

32 mol ATP from 1 mol of glucose depending on how the energy equivalents (in the form

of NADH) from the cytosol get into the mitochondrium. We assumed that the glycerine-3-

phosphate shuttle is used to produce 30 mol ATP from 1 g glucose.99 We integrated the energy

requirement for the infant brain development into the infant-WBM by adapting the lower bound

of the brain ATP demand reaction (VMH ID: Brain DM atp c ). Specifically, the lower bound

was set to be 100 mmol ·30 = 3,000 mmol for the infant-WBMs at day one. This lower bound

was increased every day, first steeply for two months and followed by a slower increase in

accordance with the body growth of an infant (Figure 5 (blue line), Table S14).

1.8 Thermoregulation

Thermoregulation of the human body refers to the ability to balance heat production and loss,

ensuring the maintenance of the body temperature within a normal range. It holds particular

significance for infants due to several factors: 1. infants possess less insulating fat compared

to adults, 2. they have a relatively high surface-area-to-mass ratio, 3. a high head-to-body size

ratio, and 4. an underdeveloped metabolic mechanism to respond effectively to thermal stress
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(e.g., no shivering).100, 101 Usually heat production by shivering is not functional in infants

younger than six months since muscles are relatively immature to produce heat.102 Therefore,

the mechanism of non-shivering thermogenesis was used as the primary mechanism for ther-

moregulation, which allows the generation of heat without relying on muscle contractions.32, 33

Non-shivering thermogenesis involves heat production that is not associated with muscular ac-

tivity but is generated mainly by the brown adipose tissue and also to a smaller extent in skeletal

muscle, brain, liver, and white adipose tissue.103 The brown adipose tissue contains an abun-

dance of mitochondria and thermoregulation is enabled by an uncoupling protein, i.e., thermo-

genin or uncoupling protein (UCP-1).32, 33

The majority of the fat content in infants is comprised of brown fat.104 For infants, it has

been estimated that between 44%105 and 55%100 of the total heat production comes from brain

metabolism and heat production. It has also been reported that in the brain, approximately 1/3 of

the glucose consumed by the brain is released as heat, while the remaining portion is utilised to

generate ATP.106, 107 As we required the brain to have a non-metabolic energy demand of 3,000

mmol ATP per infant per day at age one day, we assumed that a minimum of a 1/3 of this value

would correspond to the reported 1/3 of consumed glucose, even though the real value is likely

higher as the overall metabolic and non-metabolic brain energy production exceeds 3,000 mmol

ATP per infant per day in the models. Consequently, we set the lower bound of the adipose tissue

energy demand reaction (VMH ID: Adipocytes DM atp c ) to 3,000 ·1/3 = 1,000 mmol ATP

per infant per day at age one day, and increased proportionally with the brain’s energy demand

every day (Figure 5 (orange line), Table S14), to represent the near equal contribution of brain

and brown fat to the infant’s heat production.

1.9 Heart

In the adult WBMs, the heart ATP demand has been estimated to be 6,000 mmol ATP per day

per adult with a heart weight of 330 g.8 In the absence of more specific data, we estimated the

heart energy demand in the infant-WBMs based on the relative heart weight of the infant. As at

birth, the heart weight is ≈20 grams,6 which corresponds to 6% of the adult heart weight, the

lower bound on the heart ATP demand (VMH ID: Heart DM atp c ) was set to 6,000 ·6%= 360

mmol ATP on day one and increased daily in accordance with the growth of the heart weight

(Figure 5 (red line), Table S14).
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Figure 5: Energy balance: Lower bounds (lb) on ATP demand reactions in brain, heart, muscle

and adipose tissue in mmol/day/person during the first six months of a male infant’s life.

Lower bound constraint of ATP demand reactions
Brain

Adipose tissue

Heart

Muscle

1.10 Muscular activity

Another essential, energy-demanding mechanism in the infant’s body is the energy expenditure

for physical activity. For this, we used a published activity model24 to estimate the physical

activity. This activity model accounts for the difference between sleeping energy expenditure

and total energy expenditure. The energy expenditure varies with age and has been determined

to be 4.2 kcal/kg in surgically newborns,108 10 kcal/kg in 3-month-old infants,109 and 14.4
kcal/kg in 4-6 month-old infants.110 To reflect this variation in the activity model the value

of 14.4 kcal/kg is multiplied with a factor α ∈ [0,1], which is based on estimated changes in

physical activity from literature interpolated by a polynomial function of degree 2.24, 111 The

energy expenditure was then converted to 28.12 mmol ATP hydrolysed per kcal, which has been

estimated by simulating the production of ATP from glucose with the known energy content of 4

kcal/g.24 Consequently, the resulting value was multiplied by the infant’s body weight, leading

to the calculated energy expenditure for physical activity of 328 - 3,515 mmol/day/infant ATP in

the female models and 338 - 4,033 mmol/day/infant ATP in the male models, depending on age

(Table S14). In the infant-WBMs, this calculated activity expenditure in ATP was used to set

the lower bound of the muscle ATP demand reaction (VMH ID: Muscle DM atp c , Figure 5

(green line), Table S14).

2 Infant-WBMs for newborn screening

2.1 Newborn screening data

The newborn screening data used in this study was obtained from the newborn screening labo-

ratory at UKHD, Germany, which screens about 20% of the newborns in Germany (i.e., about

140,000 newborns per year).60 The UKHD data protection officer ensured that the newborn
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screening data were anonymised and that data extraction and evaluation were in accordance

with the European general data protection regulation (GDPR).

The newborn screening data set comprised >2 million unremarkable newborn screening

profiles from male (51%) and female (49%) newborns born between 2002 and 2021. Infor-

mation for 48 metabolite concentrations and five additional variables, i.e., sex, birth weight,

age at dried blood spot sample, age at sample arrival, and gestational age, were available for

each newborn. To ensure high data quality, we removed missing values and uninterpretable

entries from the data set. Furthermore, the following ranges were defined to exclude newborn

screening profiles with implausible values and preterm newborns: Birth weight: 1000−6000 g;

gestational age: 38−42 weeks, age at dried blood spot sampling: 36−72 hours, age at sample

arrival: 0−20 days and metabolite concentrations: 0−50,000µ mol/l. From the cleaned data

set, consisting of 798,221 male newborns, we obtained a uniformly random sampled subset of

10,000 newborn screening profiles of male newborns to personalise the male infant-WBM util-

ising the concentration of 29 metabolites (Table S3), sex, and birth weight from each newborn.

Note that only 29/48 metabolite concentrations were used as the remaining metabolites did not

map onto the infant-WBMs. A Wilcoxon rank sum test confirmed that the birth weights of

the subset (10,000 newborns) and the birth weights of the cleaned data set of male newborns

(798,221 newborns) stem from the same distribution (p=0.27). This test was performed using

the Python library scipy.112

2.2 Integration of newborn screening data

Personalised infant-WBMs were generated using the concentration values of the 29 metabolites

(17 amino acids and 12 acylcarnitines (Table S3)), sex, and birth weight of each newborn in

the sampled subset. To set the bounds on the fluxes depending on the metabolite concentrations

mconc,m ∈ Rg0 for each metabolite m, the metabolite concentration boundaries were calculated

based on the concentration and a coefficient of variation cm ∈ Rg0 determined by the UKHD

newborn screening laboratory, reflecting day-to-day variability within the tandem mass spec-

trometry.113, 114 The range of the fluxes was constrained with the coefficient xm = min(cm,0.1).
Hence, the minimum mmin,m and maximum mmax,m were calculated for every metabolite con-

centrations as:

mmin,m = mconc,m · (1− xm),

mmax,m = mconc,m · (1+ xm).

With mmin,m and mmax,m given in µmol/l blood. The lower bound lbm,kidney and upper bound

ubm,kidney on the kidney metabolite uptake reaction fluxes were calculated using the glomerular

filtration rate (GFR):

ubm,kidney = (−1) ·
mmin,m

1000
·GFR ·

60 ·24

1000

lbm,kidney = (−1) ·
mmax,m

1000
·GFR ·

60 ·24

1000
,

and are given in mmol/day/person. For all other organs, only the uptake of metabolites from

the blood was constrained, and therefore the lower bounds on the uptake fluxes lbm,organ from

the blood circulation into the individual organs was updated utilising the organ-specific plasma

flow rate PFRorgan,

lbm,organ = (−1) ·
mmax,m

1000
·PFRorgan ·

60 ·24

1000
, (1)
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given in mmol/day/person. The organ-specific plasma flow rate was calculated as:

PFRorgan = borgan ·CO · (1−h), (2)

where borgan is the organ-, sex-, and age-specific blood flow percentage (Table S1 (C)), CO is

the cardiac output and h is the hematocrit value. If no literature data was available for the blood

flow percentage, it was set to the default value of 1%. The equations and flux relationships were

established in Thiele et al.8

3 Simulation description

3.1 Flux balance analysis

For the mathematical analysis and simulation of fluxes within a metabolic reconstruction, the

reconstruction network is transformed into a stoichiometric matrix S ∈ Z
m×n, where the rows

correspond to the m metabolites and the columns to the n reactions. The matrix entries si j are

assigned a stoichiometric coefficient if metabolite i takes part in reaction j and zero otherwise.

The change of a metabolite concentration xk over time t is then represented by the kth row, while

the computed flux value vi corresponds to ith entry in the flux vector v = (v1, ...,vn)
T . Resulting

in the mass-balance equation for all metabolites as

dx

dt
= S · v (3)

For the simulations, we use the COBRA approach,12 which assumes the simulated system to be

at a steady state and, hence,
dx

dt
= S · v ≡ 0 (4)

This assumption is then used as a constraint in FBA,26 which is a mathematical approach to

minimise or maximise an objective function, e.g., biomass yield, through the metabolic network.

The corresponding linear program (LP) is solved

max
v

cT · v (5)

s.t. S · v = 0

lb f v f ub,

where lb and ub are the lower and upper bounds, respectively, on the flux vector v and they are

based on specific data, such as physiochemical constraints, nutrient uptake rates, and enzyme

reaction rates. The vector c is a vector of weights indicating which and how much each reaction

i contributes to the objective function.26 By definition, the lower bound on an irreversible

reaction was set to lb = 0 mmol/day/person and ub > 0 mmol/day/person.8, 26 For reversible

reactions, negative flux through the reactions was allowed, lb < 0 mmol/day/person and the

upper bound was set to ub > 0 mmol/day/person. The lb and ub of unconstrained reactions

were set to the arbitrary values -1,000,000 mmol/day/person and 1,000,000 mmol/day/person,

respectively. We defined uptake reactions, such as dietary intake, to have a negative flux value

and excretion reactions, such as urine, faecal, air, and sweat excretion, to have a positive flux

value.8
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3.2 Growth predictions

For the growth prediction, we iteratively applied FBA (optimizeWBMmodel.m) from the CO-

BRA toolbox v3.0.115 Starting from day one, we maximised the flux through the whole-body

biomass reaction (VMH ID: Whole body objective rxn) and used the computed flux solution

to update the weight of the infant. For example, a computed flux value of 1.01 through the

whole-body biomass reaction corresponds to a 1% gain in biomass, thus, increasing the body

weight of the infant by 1%. Then, we used the new weight to create a model for the next day by

updating all related constraints, and performed another FBA on this updated model, continuing

like this until the age of six months.

As the matrix S has more rows than columns, the problem is under-determined, which leads

to a polyhedral convex steady-state solution space containing all feasible steady-state solutions.

However, to compare the fluxes through different reactions over time, we were interested in a

unique flux solution to the problem. Therefore, we applied a second quadratic program (QP),

where the Euclidean norm of the flux vector was minimised under the constraint that the optimal

solution for the whole-body biomass reaction vwhole body biomass was achieved:

min
v

∥ v ∥

s.t. S · v = 0

lb f v f ub

vwhole body biomass = max(cT · v)

3.3 Metabolic flux predictions within the infant body

We determined the aforementioned QP flux vector for each month (days 1, 30, 60, 90, 120,

150, and 180) in the infant’s life using the corresponding infant-WBMs. Then, we evaluated the

flux predictions on these days for specific reaction fluxes of interest. For the water excretion,

the flux values were retrieved and analysed for the diet, skin, urine, faeces, and air (VMH IDs:

Diet EX h2o[d], Skin EX h2o[sw], EX h2o[u], EX h2o[fe], EX h2o[a]). For interpretability,

we converted the flux through these reactions from mmol/person/day to ml/person/day by divid-

ing the flux by 1000 and multiplying it with the molecular weight of water 18.02 g/mol since 1 g

water = 1 ml water. For the evaluation of the ATP synthase, the flux values through the ATP syn-

thase reaction of the brain (VMH ID: Brain ATPS4m), liver (VMH ID: Liver ATPS4m), mus-

cle (VMH ID: Muscle ATPS4m), adipose tissue (VMH ID: Adipocytes ATPS4m), and heart

(VMH ID: Heart ATPS4m) were compared for each month.

3.4 Diet composition optimisation

The nutritional composition of the human milk diet varies over time and between mothers.36, 67

However, for comparability of our simulation results, and in the absence of personalised dietary

data, we assumed the breast milk composition to be unchanged over time (except for the adap-

tations listed in the Method section 1.6). Some personalised infant-WBMs, which were person-

alised based on sex, birth weight, and newborn screening metabolomic data, were infeasible,

i.e., no flux solution could be found that satisfied eq. 5. Similarly, some of the infant-WBMs

evaluated at different points within the six-month time frame were also infeasible. For those in-

feasible models, we used a nutrition algorithm,48 implemented in the COBRA toolbox v3.0,115
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to identify missing diet components that when added could render the LP problem feasible.

In brief, the nutrition algorithm takes a given model and adds artificial reactions to the infant-

WBMs, which mimic adding or removing dietary resources from the nutrition. These reactions

produce artificial metabolites, called “Points”, which are also consumed by the biomass reac-

tion, which is maximised. By doing so, the algorithm creates a connection between the biomass

reaction and the diet components that will be either added or removed to/from the breast milk

diet. Subsequently, the adapted infant-WBM is used in an FBA, which minimises the flux of

points out of the model and a solution is determined such that dietary changes are minimised

and the biomass reaction flux is maximised.48 Subsequently, the adapted infant-WBM is used in

an FBA, which minimises the flux of points out of the model and a solution is determined such

that dietary changes are minimised and the biomass reaction flux is maximised.48 We then eval-

uated the suggested dietary component additions against the literature and added compounds as

needed (Table S5, Method section 1.6).

3.5 Analysis of Inherited Metabolic Diseases

For further evaluation of the infant-WBMs, we predicted known biomarkers of five IMDs for

three time points in the infant’s life and compared this to the prediction of the adult WBM.8 Usu-

ally, biomarkers are clinically measured either in the blood, urine, or CSF. Here, we predicted

the flux through the biomarker in the blood compartment. We used the method established in

Thiele et al8 encoded with the function performIEMAnalysis.m in the COBRA Toolbox v3.0.115

Briefly, for the simulation of any IMD, the reactions k = (k1, ...,kn)
T associated with the defect

gene in any organ are identified. A dummy reaction vdummy is added to the infant-WBM, sum-

ming the equal contribution of each reaction ki. The flux through vdummy is then maximised.

The maximal possible value z for vdummy is used to set the lower bound on vdummy to 75% of

this value. Subsequently, for each biomarker metabolite in the blood compartment the demand

reaction vdemand is added and maximised. The corresponding LP problem is:

max
vdemand

vdemand

s.t. S · v = 0

lb f v f ub,

0.75 · z f vdummy f ubdummy,

where S and v correspond to the stoichiometric matrix and flux vector, respectively, where

the reactions vdummy and vdemand are added to the original model. For the knock-out (disease)

infant-WBM, the lower and upper bound of vdummy is set to 0, and the maximisation through

each biomarker metabolite demand reaction vdemand is determined.

Finally, the obtained fluxes within the biomarker reaction of the wild-type model vWT and

the diseased model vD are compared. The relative flux increase is calculated as

f =
vD − vWT

vWT

.

Using this equation, we could compare the relative predicted flux increase for any biomarker of

interest for a specific IMD (Table S10 (B), (C)).

All simulations were carried out using Matlab 2020b (Mathworks, Inc.) as a program-

ming environment, Ilog cplex as a linear and quadratic programming solver (IBM, Inc), and

the COBRA Toolbox v3.0.115 All code will be part of the COBRA Toolbox v3.0 (https:

//github.com/opencobra/cobratoolbox/) and https://github.com/ThieleLab.
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Marquardt, Peter Freisinger, Johannes Krämer, Andrea Dieckmann, Natalie Weinhold,

Mareike Keller, Magdalena Walter, Katharina A. Schiergens, Esther M. Maier, Georg F.

Hoffmann, Sven F. Garbade, and Stefan Kölker. Newborn screening and disease vari-

ants predict neurological outcome in isovaleric aciduria. Journal of Inherited Metabolic

Disease, 44(4):857–870, 2021.

[62] Brendan Lanpher, Nicola Brunetti-Pierri, and Brendan Lee. Inborn errors of metabolism:

the flux from mendelian to complex diseases. Nature Reviews Genetics, 7(6):449–459,

2006.

[63] Chih-Yung Chiu, Kuo-Wei Yeh, Gigin Lin, Meng Han Chiang, Shu-Chen Yang, Wei-

Ju Chao, Tsung-Chieh Yao, Ming-Han Tsai, Man-Chin Hua, Sui-Ling Liao, Shen-Hao

Lai, Mei-Ling Cheng, and Jing-Long Huang. Metabolomics reveals dynamic metabolic

changes associated with age in early childhood. PloS one, 11:e0149823, 02 2016.

[64] Center for Disease Control and Prevention. https://www.cdc.gov/breastfeeding/

data/nis_data/results.html, 2023. Accessed: 2023-06-29.

[65] Martyna Pajewska-Szmyt, Elena Sinkiewicz-Darol, and Renata Gadzała-Kopciuch. The

impact of environmental pollution on the quality of mother’s milk. Environmental Sci-

ence and Pollution Research, 26:1–23, 03 2019.

[66] Sydney Thomas, Julia Gauglitz, Anupriya Tripathi, Fernando Vargas, Kerri Bertrand,

Jae Kim, Christina Chambers, Pieter Dorrestein, and Shirley Tsunoda. An untargeted

metabolomics analysis of exogenous chemicals in human milk and transfer to the infant.

Clinical and Translational Science, 15, 09 2022.

[67] Olivia Ballard and Ardythe L. Morrow. Human milk composition: nutrients and bioactive

factors. Pediatric clinics of North America, 60 1:49–74, 2013.

[68] Sheila M. Innis. Impact of maternal diet on human milk composition and neurological

development of infants. The American journal of clinical nutrition, 99(3):734S–741S,

2014.

[69] Kaitlyn Oliphant and Emma Allen-Vercoe. Macronutrient metabolism by the human gut

microbiome: Major fermentation by-products and their impact on host health. Micro-

biome, 7, 06 2019.

[70] Ines Thiele, Neema Jamshidi, Ronan M.T. Fleming, and Bernhard O. Palsson. Genome-

scale reconstruction of escherichia coli’s transcriptional and translational machinery: A

knowledge base, its mathematical formulation, and its functional characterization. PLOS

Computational Biology, 5(3):1–13, 03 2009.

[71] Ines Thiele, Ronan M.T. Fleming, Richard Que, Aarash Bordbar, Dinh Diep, and Bern-

hard O. Palsson. Multiscale modeling of metabolism and macromolecular synthesis in e.

coli and its application to the evolution of codon usage. PLOS ONE, 7(9):1–18, 09 2012.

32

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.10.20.563364doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.20.563364
http://creativecommons.org/licenses/by-nd/4.0/


[72] David Rios-Covián, Philippe Langella, and Rebeca Martin. From short- to long-term

effects of c-section delivery on microbiome establishment and host health. Microorgan-

isms, 9:2122, 10 2021.

[73] Carmen A. Argmann, Sander M. Houten, Jun Zhu, and Eric E. Schadt. A next generation

multiscale view of inborn errors of metabolism. Cell Metabolism, 23(1):13–26, 2016.

[74] Simona Murko, Asra Dadkhah Aseman, Friederike Reinhardt, Gwendolyn Gramer,

Jürgen Günther Okun, Ulrike Mütze, and René Santer. Neonatal screening for isovaleric
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