

1 Socioecological drivers of injuries in female and male rhesus
2 macaques (*Macaca mulatta*)

3 Melissa A. Pavez-Fox^{1,2,*}, Delphine De Moor^{1,†}, Erin R. Siracusa¹, Samuel Ellis¹,
4 Clare M. Kimock^{3,4}, Nahiri Rivera-Barreto⁵, Josue E. Negron-Del Valle⁶, Daniel
5 Phillips⁶, Angelina Ruiz-Lambides^{5,7}, Noah Snyder-Mackler^{6,8,9}, James P. Higham³,
6 and Lauren J.N. Brent^{1,†}

7 ¹Centre for Research in Animal Behaviour, University of Exeter, Exeter, United
8 Kingdom EX4 4QG

9 ²Department of Psychology and Neuroscience, University of St Andrews, United
10 Kingdom KY16 9JP

11 ³Department of Anthropology, New York University, New York, NY 10003

12 ⁴Department of Psychology, Nottingham Trent University, Nottingham, United
13 Kingdom NG1 4FQ

14 ⁵Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto
15 Rico 00936-5067

16 ⁶Center for Evolution and Medicine, Arizona State University, Temple, AZ 85281,
17 United States

18 ⁷Department of Human Behavior, Ecology and Culture, Max Planck Institute for
19 Evolutionary Anthropology, Leipzig, Germany 04103

20 ⁸School of Life Sciences, Arizona State University, Temple, AZ 85281

21 ⁹School for Human Evolution and Social Change, Arizona State University, Temple,
22 AZ 85281

23 [†]Equal contribution

24 ^{*}Corresponding author. Email: melissa.pavez.fox@gmail.com

25

Abstract

26 Competition over access to resources, such as food and mates, is believed to be one
27 of the major costs associated with group living. Two socioecological factors suggested
28 to predict the intensity of competition are group size and the relative abundance of
29 sexually active individuals. However, empirical evidence linking these factors to costs
30 of competition, such as injury risk, is scarce. Here, we leveraged 10 years of data
31 from free-ranging rhesus macaques where injuries are associated with a high mortality
32 risk. We tested if intra-specific variation in group size and adult sex ratio predicted
33 injury risk and physical aggression. We found that males were less likely to be injured

34 when living in larger groups potentially due to advantages in intergroup encounters.
35 Females, instead, had higher injury risk when living in larger groups but this was not
36 explained by within-group competition among females. Further, male-biased sex ratios
37 were positively related to male-female aggression, indicating that male coercion during
38 mating competition may be a cause of injuries in females. Overall, our results provide
39 insights into sex differences in the fitness-related costs of competition and empirical
40 evidence for long-standing predictions on the evolution of group living.

41 **Introduction**

42 Competition over access to resources is believed to be an important selective pressure for
43 the evolution of group living. By forming groups, animals can gain advantages such as
44 higher success at locating food, more and easily accessible mating opportunities, decreased
45 predation risk and cooperative defence of resources (Jarvis et al., 1998; Ratcliffe and Ter
46 Hofstede, 2005; Silk, 2007; Van Schaik and Van Hooff, 1983). However, life in groups can
47 also be associated with major health costs for individuals as a result of competition with
48 conspecifics when valuable resources- such as food and mates- are limited(Terborgh and
49 Janson, 1986; Van Schaik and Van Hooff, 1983; Janson and Goldsmith, 1995). Intense
50 competition in the form of escalated aggression can be costly for individuals because their
51 risk of injury increases (Vogel et al., 2007; Feder et al., 2019; Archie et al., 2014). Injuries
52 may indirectly impact reproductive success as animals may need to divert energetic resources
53 they could otherwise invest in reproduction to healing (Archie et al., 2014), and can directly
54 impact survival in the case of fatal aggression (Pavez-Fox et al., 2022; Chilvers et al., 2005).
55 Given the fitness costs associated with competition, animals are expected to refrain from
56 engaging in escalated aggression unless necessary when resources are limited or very valuable
57 (Hammerstein, 1981). Group size and the operational sex ratio are two aspects of group
58 living that have been hypothesized to drive the intensity and costs of competition within
59 and between groups.

60 Group size might determine the intensity of competition over food and territories. The
61 number of individuals that a group can sustain is constrained by the abundance of food as
62 more individuals translate into faster depletion of food resources (Wrangham et al., 1993;
63 Chapman and Chapman, 2000). As a result, animals in larger groups usually suffer from
64 higher levels of within-group competition over food access compared to individuals in smaller
65 groups (Heesen et al., 2014; Balasubramaniam et al., 2014; Gillespie and Chapman, 2001;
66 Blumstein et al., 1999; Marino, 2010). However, when feeding areas can be monopolised and
67 are extensive enough to sustain entire groups, larger groups have a numerical advantage,
68 which can be beneficial for the collective defence of such resources (Cheney and Seyfarth,
69 1987; McComb et al., 1994). For instance, studies in several species have shown that larger
70 groups are more likely to win intergroup encounters over territories or feeding areas than
71 smaller groups (Majolo et al., 2020; Balasubramaniam et al., 2014; Willems et al., 2013;
72 McComb et al., 1994; Thompson et al., 2017). Differences in life history between the sexes
73 mean that group size might affect the intensity of competition differently for males versus
74 females. For mammalian females, the high energetic costs of gestation and lactation are key

75 constraints, so females usually compete over access to food to sustain reproduction. Males,
76 conversely, derive fitness benefits from siring opportunities and therefore mostly compete
77 over access to fertile females (Trivers, 1972). Increased within-group feeding competition
78 has, therefore, been suggested to impact females more than males (Sterck et al., 1997;
79 Koenig, 2002). Males, on the other hand, tend to be more involved in between-group
80 competition (Smith et al., 2022), whereby resident males collectively defend females- or the
81 resources females feed upon against immigration attempts and during intergroup encounters
82 (Cowlishaw, 1995; Majolo et al., 2020; Scarry, 2013). Therefore, how group size affects the
83 chances of engaging in escalated aggression is likely to be sex-dependent.

84 Another factor suggested to drive competition is the relative availability of sexually
85 active males and females in a group (the operational sex-ratio). When the operational
86 sex ratio is skewed, theory predicts there will be higher competition amongst the more
87 abundant sex over access to the less abundant sex (Kvarnemo and Ahnesjö, 1996; Clutton-
88 Brock and Parker, 1992; Emlen and Oring, 1977). Empirical work on some mammals has
89 provided evidence for a relationship between the operational sex ratio and competition
90 over mates. For instance, in reindeer (*Rangifer tarandus*), female-female competition for
91 males was higher in a group with a female-skewed operational sex ratio than in a group
92 where the sex ratio was balanced (Driscoll et al., 2022). Similarly, in vervet monkeys
93 (*Chlorocebus pygerythrus*), male-male fights were more frequent in groups with male-skewed
94 operational sex ratios (Hemelrijk et al., 2020). However, when the operational sex ratio is
95 too skewed and the costs associated with escalated aggression are too high, a reduction in
96 intra-sexual competition in the abundant sex might be favoured and other strategies could
97 arise (Weir et al., 2011; Rankin et al., 2011). Given that in mammals, females' damaging
98 potential is usually lower than males - particularly in species with sexual dimorphism (*i.e.*,
99 larger body/canine size in males) - one strategy often adopted by males that might reduce
100 costs associated with retaliation is redirecting the aggression towards females (Clutton-
101 Brock and Parker, 1995; Reale et al., 1996; Smit et al., 2022; Davidian et al., 2022). As
102 a consequence, the operational sex ratio might not only determine intra-sexual but also
103 inter-sexual escalated aggression.

104 While the drivers of competition in group-living animals have been well established
105 (Van Schaik and Van Hooff, 1983; Wrangham et al., 1993; Chapman and Chapman, 2000;
106 Koenig, 2002), there is still scarce empirical evidence for how these factors influence the
107 occurrence of escalated aggression, with consequences for injuries and fitness. Quantifying
108 the consequences of competition and its fitness outcomes has proven difficult in most wild
109 systems where injuries or body damage can be caused by predators and not be the direct
110 result of within- or inter-group competition. Obtaining behavioural information from large
111 wild groups and estimating the operational sex ratio when there are roaming or dispersing
112 males can also be challenging (Kappeler, 2017). Further, given the differences in life history
113 between the sexes, often the costs and drivers of competition are considered separately for
114 males and females, even though there is mounting evidence that mating competition can
115 also result in sexual conflict (Davidian et al., 2022; Smit et al., 2022; Baniel et al., 2017).

116 Here, we explore the costs of competition by examining the socioecological drivers of in-

117 juries in free-ranging female and male rhesus macaques living in the Cayo Santiago island,
118 Puerto Rico. Rhesus macaques live in multi-female multi-male societies where females
119 are philopatric and males disperse at sexual maturation (Thierry et al., 2004). Females
120 form strict despotic dominance hierarchies where rank is maternally inherited (Chikazawa
121 et al., 1979). Males, instead, acquire rank via a queuing system where group tenure de-
122 termines their social status (Manson, 1995; Kimock et al., 2022). Rhesus macaques have
123 a polygynandrous mating system with high synchrony in females' fertile phases, reducing
124 the monopolisation potential of males (Dubuc et al., 2011). As a consequence, male rhesus
125 often rely more on indirect forms of competition, such as sperm competition, endurance
126 rivalry, sneaky copulations and female coercion (Higham and Maestripieri, 2014; Manson,
127 1994), rather than direct male-male conflict (Kimock et al., 2022). There are no predators
128 on the island, therefore, injuries are known to be caused by conspecifics. Injuries have
129 been shown to decrease the survival probability in this population for both sexes by 3-
130 fold (Pavez-Fox et al., 2022), providing the opportunity to test the fitness-related costs of
131 competition. Demographic information with monthly updates on male dispersals, allows
132 us to have accurate information on group membership and a good estimate for a group
133 sex-ratio. Social groups are naturally formed and can vary in size from 26 to nearly 300
134 adults. Long-term behavioural observations have been collected in several of these groups
135 allowing us to pair the injury data with the occurrence of aggressive events to explore sex
136 differences in the identity of the victims/aggressors. Although the population is food pro-
137 visioned, competition over monopolizable food and water stations frequently occurs, where
138 high-ranking macaques spend on average more time feeding and drinking than low-ranking
139 animals (Balasubramaniam et al., 2014).

140 To determine the cost of competition in this population, we used long-term demographic
141 and injury records paired with behavioural data on aggression. We tested for sex-specific
142 effects of group size and adult sex ratio (sex ratio henceforth), a proxy of operational sex
143 ratio, on injury risk and the occurrence of physical aggression. For group size, we predicted
144 sex differences in the risk of injuries with females experiencing higher injury risk and males
145 having lower injury risk in larger groups compared to smaller groups. We expected that
146 females would experience higher injury risk in larger groups as a result of higher within-
147 group female-female (FF) competition (Wrangham et al., 1993; Chapman and Chapman,
148 2000), thus we further tested if FF aggression was higher in larger groups. For males, we
149 expected that those living in larger groups would have reduced injury risk because having
150 a numerical advantage translates into better chances of winning inter-group encounters
151 (Koenig et al., 2013; Janson and Goldsmith, 1995). Given that our behavioural data only
152 included within-group interactions, we could not test the mechanism we expected to be
153 driving injury risk in males, but we could rule out within-group male-male (MM) feeding
154 competition as a driver of injuries by testing if MM aggression was influenced by group
155 size. For sex ratio, we predicted that the local availability of mating partners would not
156 determine injury risk in males but when females are more scarce (male-biased sex ratio),
157 females would have higher injury risk. We expected that males would not engage in direct
158 MM competition over females as male rhesus often rely on indirect forms of competition

Table 1: Predictions for the socioecological drivers of injuries in rhesus macaques.

Sex	Group size	Sex ratio
Females	↑ injury risk in larger groups	↑ injury risk when male-biased
	↑ FF aggression in larger groups	↑ MF aggression when male-biased, No effect on FF aggression
Males	↓ injury risk in larger groups	No effect on injury risk
	No effect on MM aggression within groups	No effect on MM aggression within groups

sex ratio: number of adult females per male during the mating season, aggression: physical aggression, 'FF': female-female, 'MM': male-male, 'MF': male-female.

159 (Higham and Maestripieri, 2014; Kimock et al., 2022), thus we rule out this possibility by
160 testing if MM aggression was influenced by sex ratio. Given that the incentive to compete
161 aggressively over reproductive access to males is typically low in female mammals (?),
162 particularly in philopatric societies like rhesus macaques where competition is mostly against
163 kin, we expected that female rhesus would not compete aggressively over reproductive
164 access to males. We rule out this by testing whether FF aggression was influenced by sex
165 ratio. Finally, rhesus macaques are sexually dimorphic and male coercion has been reported
166 (Manson, 1994), therefore we expect that male-female (MF) aggression would be higher in
167 groups with a male-biased sex ratio. All predictions are laid out in Table 1.

168 Methods

169 *Study subjects*

170 Our study subjects were free-ranging male and female rhesus macaques living on Cayo
171 Santiago island, Puerto Rico. The island is home to a population of ~ 1800 individuals
172 living in 6 to 12 mixed-sex naturally formed social groups. The field station is managed
173 by the Caribbean Primate Research Center (CPRC), which monitors the population daily
174 and maintains the long-term (>75 years) demographic database including data on births,
175 deaths and social group membership for all animals (Kessler and Rawlins, 2016). Macaques
176 are individually identified based on tattoos located on their chest and legs. Animals have
177 *ad-libitum* access to food and water, the island is predator-free and there is no regular
178 medical intervention for sick or wounded individuals. Here we included data on sexually
179 mature male and female macaques (age range: 4 - 28 years) that were alive between 2010
180 and 2020. We restricted our sample to animals belonging to social groups for which we had
181 data on injury occurrence and agonistic behavioural observations ($n = 6$ social groups).
182 The groups analysed varied in size from 26 to 288 animals and sex ratios (n females/ n
183 males) ranged from 0.5 to 4.5 (Fig. S1).

184 ***Observation of Injuries***

185 Since 2010, the CPRC staff have been collecting opportunistic observations on the incidence
186 and recovery from injuries during the daily monitoring of social groups for demographic
187 purposes. Data collection is carried out mainly by the veterinary technician complemented
188 by information from other experienced staff. If an individual was observed to be wounded
189 or displaying signs of injury (*e.g.*, limping) the staff member recorded the individual ID
190 and if the injury was visible, the type of injury (*e.g.*, puncture, scratch), the area of the
191 body affected, whether the injury was recent or old based on the presence of scars, and if
192 possible, an estimate of the wound size. Records for each individual were updated every
193 time the observers encountered the wounded individuals during the daily census. Here we
194 included all records for visible injuries, including bites, scratches, abrasions and cuts along
195 with other more severe injuries such as exposed organs and fractures. We excluded injury
196 records from two full years (2015 and 2016), a period for which the veterinary technician
197 was not regularly at the field site, which may have led to biases in the few groups sampled
198 during those years. Our sample consisted of 908 injuries collected from September 2010 to
199 April 2020 on 521 unique individuals (n females = 267, n males = 254).

200 ***Collection of aggression data***

201 We collected behavioural data using focal samples based on a previously established ethogram
202 (Brent et al., 2014). During focal sampling, dyadic agonistic encounters where the focal an-
203 imal was involved were recorded, along with the identity of the aggressor and victim. We
204 recorded all agonistic interactions, including submissions, threats, non-contact aggression
205 (*e.g.*, charge, chase), and contact (physical) aggression (*e.g.*, bite, hit). Given that the
206 purpose of our study was to match aggression data with the occurrence of injury, we only
207 considered data on physical aggression, which is more likely to lead to an injury. Be-
208 havioural data was collected from twenty different group years (group F 2010-2017, group
209 HH 2014 and 2016, group KK 2015 and 2017, group R 2015 and 2016, group S 2011 and
210 2019, group V 2015-2019), from which seventeen were sampled using 10-min focal sample
211 and three using 5-min focal sample. Across the 10 years of study, two external events in
212 2018 and 2020 - Hurricane Maria and the COVID-19 pandemic, respectively - precluded the
213 collection of focal data, therefore these years were excluded from the aggression analyses.
214 From January 2010 to October 2019, we recorded 18880 aggression events including 522
215 physical aggression events (n unique individuals = 748).

216 ***Quantifying injury risk and aggression rates***

217 Our injury dataset included the 521 animals that were recorded injured in addition to
218 1001 uninjured animals (n uninjured females = 525, n uninjured males = 476). Uninjured
219 individuals consisted of all sexually mature individuals that were alive during the period
220 of study, *i.e.*, between 2010 and 2020 excluding 2015 and 2016 to match data on injured
221 animals. Given that the average time elapsed between consecutive records of injury or

222 recovery in the same individual was 41.17 days, the dataset was formatted in a way that
223 each row represented a two-month interval period (*i.e.*, bimonthly interval), therefore injury
224 records occurring in different rows are likely to be independent. An individual's injury status
225 during each interval period they were alive during the study was coded as a binary variable
226 where 1 = injured and 0 = uninjured.

227 Our aggression dataset included the 748 male and female macaques for which focal
228 data were collected. Given that our questions were sex-specific, we split this dataset by
229 sex resulting in 438 physical aggression events in a total of 422 females and 84 physical
230 aggression events in a total of 326 males. We focused specifically on contact (physical) ag-
231 gression received by the focal animal. Each row represented a bimonthly interval to match
232 the format of the injury data. Given that an individual rarely received physical aggression
233 more than once in a given bimonthly interval (Fig. S2), we coded an individual's aggression
234 status as binary, where 1 = physically aggressed and 0 = non-physically aggressed. Depend-
235 ing on the question, we split this dataset based on the sex of the victim and of the aggressor.

236

237 *Statistical analyses*

238 **Group size and sex as drivers of injuries**

239 *Effect of group size on injury risk.* To test whether group size predicted the probability of an
240 individual being injured we built a model where the dependent variable was an individual's
241 injury status (1/0) and the independent variables included group size, the individual's sex
242 and the reproductive season (1 = mating, 0 = non-mating) in a given bimonthly interval.
243 We also included random intercepts for individual ID to account for repeated measures
244 and the specific bimonthly interval within the study period. Because our predictions were
245 sex-specific, we included an interaction term between group size and sex. Group size was
246 computed as all the individuals aged 4 years and more that were alive in a subject's group
247 in a given bimonthly interval. We determined the reproductive season following (Hoffman
248 et al., 2008). Briefly, we first determined the birth season by computing the mean birth
249 date ± 2 SD for each year, where the start of the birth season was defined as the first birth
250 date and the end, as the last birth date. The mating season was determined by subtracting
251 the gestation period of rhesus macaques (165 days) from the start and the end of the birth
252 season. All the bimonthly intervals falling outside the mating season were considered part
253 of the non-mating period.

254

255 *Effect of group size on female-female aggression.* To confirm that FF feeding competition
256 was a driver of injuries in females living in larger groups we focused only on aggression be-
257 tween females. Group size was strongly correlated with the number of females in the group
258 (Fig. S3A, Pearson's $R = 0.94$, $p < 0.01$). We tested if the number of females in a group,
259 which might better reflect FF competition, predicted the probability of a female receiving
260 physical aggression from another female. The dependent variable was female aggression
261 status and as independent variables, we included the number of females in the group, the

262 reproductive season and an offset term for sampling effort (*i.e.*, hours an individual was
263 subject to focal observations). Random effects for a female's ID and the bimonthly interval
264 were included.

265

266 *Effect of group size on male-male aggression.* To confirm that within-group MM feeding
267 competition was not a driver of injuries in males we focused on male physical aggression
268 data. We tested if the number of males in a group, which was positively correlated to group
269 size (Fig. S3B, Pearson's $R = 0.97$, $p < 0.01$), predicted a male's risk of physical aggression
270 from other males in his group. The dependent variable was a male's aggression status and
271 the independent variables were the number of males in a group, the reproductive season
272 and an offset term for sampling effort. To further investigate if having more males in a
273 group may be advantageous for reducing the chances of injury in intergroup encounters,
274 we tested if the number of males in a group, which was positively correlated to group size
275 predicted reduced risk of injury. The dependent variable was a male's injury status and
276 the independent variables were the number of males in the group and the reproductive sea-
277 son. For both models, we included a male's ID and the bimonthly interval as random effects.

278

279 **Sex ratio and sex as drivers of injuries**

280

281 *Effect of sex ratio on injury risk.* To test whether the sex ratio predicted the probability of
282 an individual being injured we built a model where the dependent variable was an individ-
283 ual's injury status (0/1) and included as independent variables the sex ratio and sex. Given
284 that our predictions were sex-specific, we included an interaction term between the sex ratio
285 and sex. As random effects, we included the individual ID and the bimonthly interval. We
286 computed the sex ratio as the number of females (4 years and above) per male in the sub-
287 ject's group on a given bimonthly interval, therefore smaller sex ratios would indicate male
288 biases while larger sex ratios would indicate female biases. For these analyses, we focused
289 only on the mating season, to have a better estimate of sexually active individuals and to
290 make sure that the socioecological driver was competition for mates.

291

292 *Effect of sex ratio on male-female aggression.* To test if MF coercion was a driver of injuries
293 in females we focused on aggression data where the victims were females and the aggressors
294 were males. As a dependent variable, we included a female's aggression status and as
295 independent variables, the sex ratio and an offset term for sampling effort. As above, we
296 only focused on the mating season for this analysis to make sure that mating competition
297 was the driver of aggression. Random effects for animal ID and bimonthly intervals were
298 also included.

299 *Effect of sex ratio on female-female aggression.* To rule out FF mating competition as a
300 driver of injuries in females we focused on data where the aggressor and the victims were
301 females. As above, we restricted this analysis to the mating season. The dependent variable
302 was a female's aggression status and independent variables included sex ratio and an offset
303 term for sampling effort with random effects for animal ID and bimonthly interval.

304

305 *Effect of sex ratio on male-male aggression.* To rule out that MM mating competition was
306 a driver of injuries we focused on male aggression data during the mating season. The
307 dependent variable was a male's aggression status and predictors included the adult sex
308 ratio and an offset term for sampling effort. As random effects, we included a male's ID
309 and the bimonthly interval. To rule out the possibility that young and old females might
310 not be attractive partners for males to compete over (as we consider all females over 4
311 years of age), we also tested the effect of the adult sex ratio considering only the number
312 of prime-age females (6-17 years; (Lee et al., 2021)) per male in the group.

313 **Bayesian model's specifications**

314 We ran all the models in a Bayesian framework using the brms R Package (Bürkner,
315 2021), therefore evidence of an effect was determined based on the degree of overlap be-
316 tween the credible interval (CI) and zero (*i.e.*, 89% non-overlapping reflecting strong evi-
317 dence of an effect). Given that all the dependent variables were coded as binary, models
318 were fit using a Bernoulli distribution. All continuous predictors were z-scored. We as-
319 sumed normal distributions for priors (mean = 0, SD = 1) and ran 10000 iterations in
320 all the models. Model assumptions and posterior predictive checks were done using the
321 'ppcheck' in-built function from the brms package. Marginal effects were calculated us-
322 ing the emmeans R package (Lenth et al., 2018). We reported means as point estimates,
323 standard error (SE) and 89% credible intervals of the posterior distribution. For marginal
324 effects, we reported the median and the 89% highest posterior density interval (HPD).

325

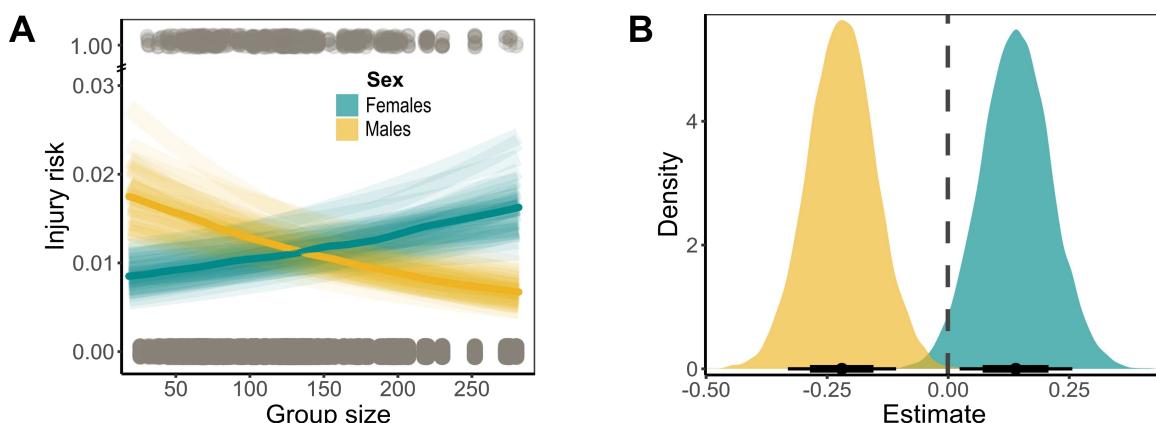


Figure 1: **Sex-dependent effect of group size on injury risk.** **A)** Predicted values of injury risk for females (cyan) and males (yellow) as a function of group size. The darker line indicates the median and the lighter lines show the 89% CI. Raw data are depicted with grey points (top: injured, bottom: uninjured). **B)** Posterior distributions for marginal effects of group size on male and female injury risk. Whiskers indicate the median, 89% CI (thinner line) and 66% CI (thicker line).

326 Results

327 Group size and sex as drivers of injuries

328 *Effect of group size on injury risk.* In support of our predictions, we found a sex-dependent
329 effect of group size on injury risk (Fig. 1A; Log-Odds group_size*sexM = -0.36, SE =
330 0.08, 89% CI = -0.49, -0.23; Table S1). Females were 53% more likely to be injured for
331 every one SD (~ 59 individuals) of increase in group size (marginal effect: Log-Odds fe-
332 males = 0.14, 89% HPD = 0.025, 0.26). In the case of males, an increase in one SD
333 in group size was associated with a reduction of 44% in the probability of being in-
334 jured (marginal effect: Log-Odds males = -0.22, 89% HPD = -0.33, -0.11) (Fig. 1B).

335

336 *Effect of group size on female-female aggression.* We did not find evidence of FF competition
337 driving injury risk. Contrary to our prediction, females living in groups with more females
338 (*i.e.*, larger groups) were not more likely to be physically aggressed by other females in the
339 group (Fig. 2A top panel; Log-Odds fem_count = -0.09, SE = 0.08, 89% CI = -0.22, 0.03;
340 Table S2).

341 *Effect of group size on male-male aggression.* As predicted, we did not find evidence of MM
342 aggression within groups. The number of males in a group did not predict the likelihood of
343 a male being physically aggressed by other resident males (Fig. 2A middle panel; Log-Odds
344 male_count = -0.06, SE = 0.13, 89% CI = -0.27, 0.15, Table S3). We also found that males
345 living in groups with more males (*i.e.*, larger groups) had lower injury risk than males living
346 in smaller groups (Fig. 2A bottom panel, Fig. 2B; Log-Odds male_count = -0.24, SE =
347 0.08, 89% CI = -0.37, -0.12, Table S4). Similar to our results for group size and injury risk,
348 for every one SD increase in the number of males in a group (~ 36 males) a male had a
349 44% reduction in the probability of being injured.

350

351 Sex ratio and sex as drivers of injuries

352 *Effect of sex ratio on injury risk.* We found a sex-dependent effect of sex ratio on an in-
353 dividual's injury risk (Fig. 3A; Log-Odds sex_ratio*sexM = 0.17, SE = 0.08, 89% CI =
354 0.04, 0.3; Table S5). Contrary to our predictions, males who lived in groups where fe-
355 males outnumbered males were more likely to be injured. For every increase in one SD
356 of sex ratio (~ 0.5 increase in females relative to males), males experienced a 53% in-
357 crease in their likelihood of being injured (marginal effect: Log-Odds males = 0.12, 89%
358 HPD = 0.01, 0.21). Females were more likely to be injured when living in groups with a
359 male-biased sex ratio, but this relationship was weak as the credible interval overlapped
360 with zero (marginal effect: Log-Odds females = -0.05, 89% HPD = -0.16, 0.06) (Fig. 3B).

361

362 *Effect of sex-ratio on male-male aggression.* We did not find evidence for males being more
363 likely to be physically aggressed by resident males when living in groups with a male-biased
364 operational sex ratio (Fig. 4A top panel; Log-Odds sex_ratio = 0.1, SE = 0.17, 89% CI =

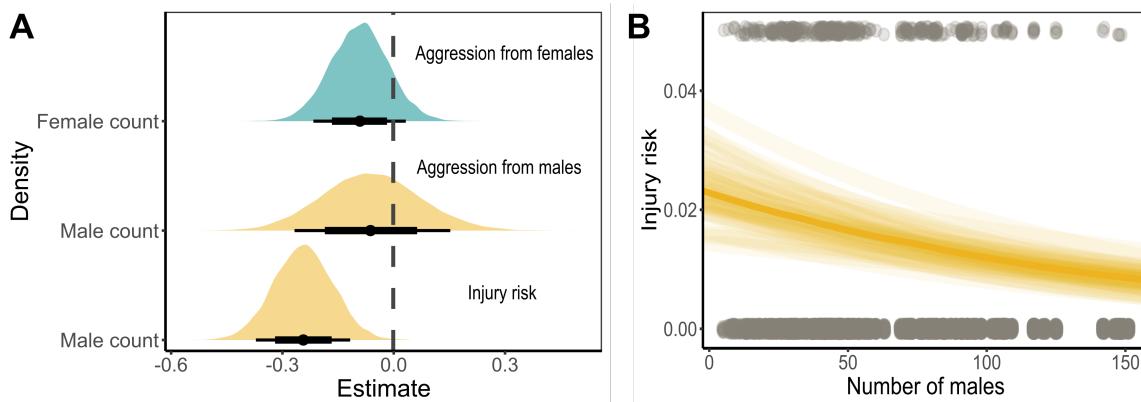


Figure 2: **Sex-specific drivers of injuries with group size.** **A)** Posterior distributions of estimates from models testing the effect of the number of females in a group on FF physical aggression (top panel), the number of males in a group on MM physical aggression (middle panel), and the number of males in a group on injury risk (bottom panel). Whisker indicates the median, 89% CI (thinner line) and 66% CI (thicker line). **B)** Predicted values for injury risk as a function of the number of males in a group. The darker line indicates the median and the lighter lines show the 89% CI. Raw data are depicted with grey points (top: physically aggressed, bottom: non-physically aggressed).

365 -0.19, 0.37, Table S6). This result holds even when only prime-aged females were considered
 366 in the computation of sex ratio (Log-Odds sex_ratio = 0.04, SE = 0.19, 89% CI = -0.27, 0.34,
 367 Table S7).

368
 369 *Effect of sex ratio on male-female aggression.* Male-to-female aggression was negatively
 370 associated with the relative availability of females in a group. For every one SD decrease
 371 in sex ratio (~ 0.5 decrease in the number of females relative to males), females were 40%
 372 more likely to be physically aggressed by males (Fig. 4A middle panel, Fig. 4B; Log-Odds
 373 sex_ratio = -0.4, SE = 0.13, 89% CI = -0.62, -0.19, Table S8).

374
 375 *Effect of sex ratio on female-female aggression.* We found no effect of sex ratio on FF
 376 aggression. As predicted, during the mating season females were not more likely to be
 377 physically aggressed by other females in groups when the relative availability of males was
 378 low (*i.e.*, female-biased sex ratio) (Fig. 4A bottom panel; Log-Odds sex ratio = 0.02, SE
 379 = 0.15, 89% CI = -0.22, 0.27, Table S9).

380 Discussion

381 In this study, we tested predictions derived from socioecological theory on the sex-specific
 382 drivers of competition. As predicted, we found that larger groups may confer a competitive
 383 advantage to males but not to females. Males living in larger groups were less likely to be

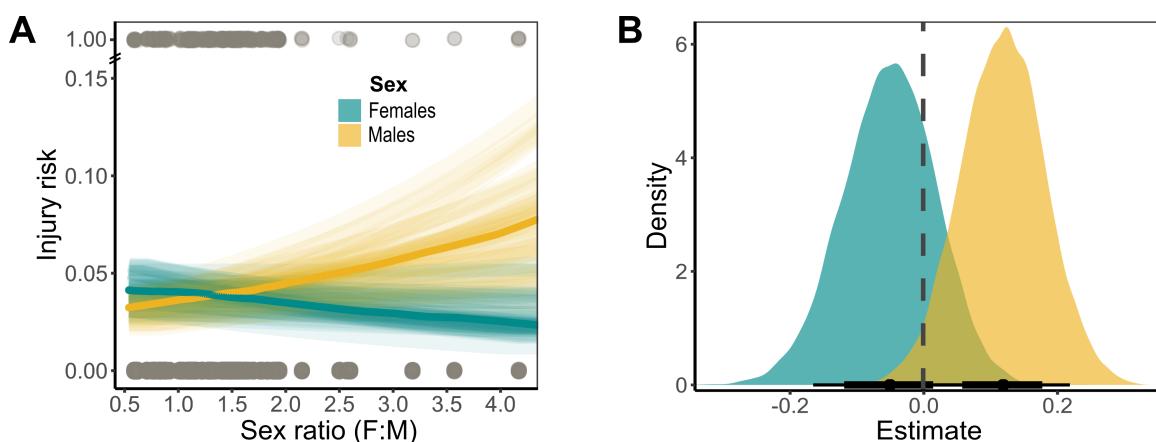


Figure 3: **Sex-dependent effect of adult sex ratio on injury risk.** **A)** Predicted values of injury risk for females (cyan) and males (yellow) as a function of adult sex ratio (*i.e.*, number of females per male during the mating season). The darker line indicates the median and the lighter lines show the 89% CI. Raw data are depicted with grey points (top: injured, bottom: uninjured). **B)** Posterior distributions for the estimates of adult sex ratio on male and female injury risk. Whiskers indicate the median, 89% CI (thinner line) and 66% CI (thicker line).

384 injured compared to males in smaller groups, whereas females had a higher risk of injury
 385 in larger groups. Our results suggest that female-female competition for food was not a
 386 driver of female injury in this population but instead pointed to the role of male coercion
 387 during mating competition. In males, we found no evidence of injuries being driven by
 388 within-group mating or feeding competition, suggesting that injuries were likely caused
 389 during inter-group encounters. Taken together our results provide empirical evidence for
 390 fundamental factors driving social organisation.

391 How does group size impact injury risk?

392 As predicted by socioecological models and life-history traits (Koenig, 2002; Scarry, 2013;
 393 Trivers, 1972), we found clear sex differences in how group size predicts injury risk. We
 394 discuss these results and the possible socioecological drivers in a sex-specific manner below.

395 Females living in larger groups had a higher risk of injury than females in smaller
 396 groups. However, contrary to our prediction, we found no evidence that this was driven
 397 by within-group female feeding competition, as females in larger groups did not receive
 398 more aggression from other female group members. Larger groups are believed to impose
 399 major energetic constraints, particularly for females, which require high food intake to fulfil
 400 the costs of pregnancy and lactation (Markham and Gesquiere, 2017; Trivers, 1972). As
 401 a consequence, females are expected to compete more intensely for food when living in
 402 larger groups (Sterck et al., 1997; Koenig, 2002). Yet, our results suggest that this might
 403 not be the case in female rhesus macaques at the Cayo Santiago field station. This could
 404 be because animals in this population are food-provisioned, thus feeding resources might

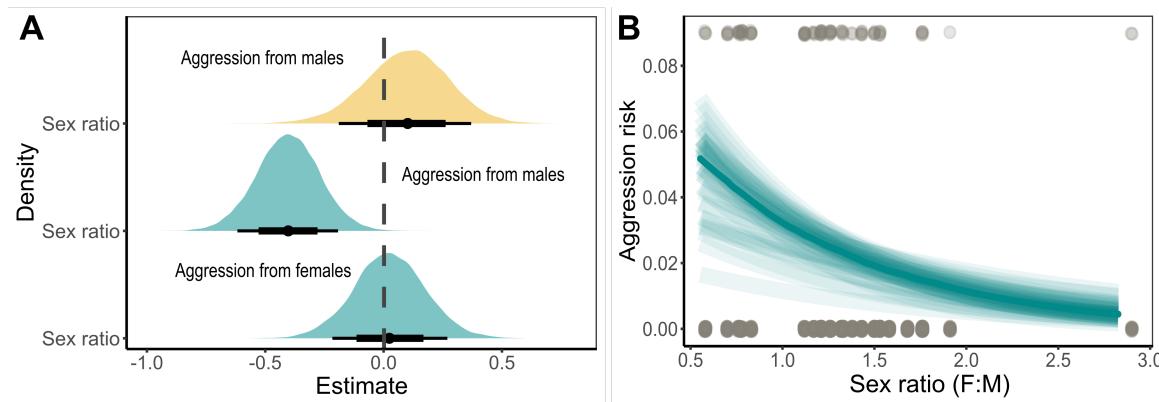


Figure 4: **Sex-specific drivers of injuries with sex ratio.** **A)** Posterior distributions of estimates from models testing the effect of sex ratio (number of females to males) on MM physical aggression (top panel), sex ratio on MF physical aggression (middle panel), and sex ratio on FF physical aggression (bottom panel). Whisker indicates the median, 89% CI (thinner line) and 66% CI (thicker line). **B)** Predicted values for the risk of physical aggression from males to females as a function of the adult sex ratio. The darker line indicates the median and the lighter lines show the 89% CI. Raw data are depicted with grey points (top: physically aggressed, bottom: non-physically aggressed).

not be as limited or restricted as in wild populations, reducing the incentive for high-cost escalated aggression. However, given that females do engage in conflict over food in this population (Balasubramaniam et al., 2014), a complementary or possibly even alternative explanation is the despotic dominance hierarchy that characterises females of this species, where access to resources is highly determined by an individual's dominance rank (Thierry et al., 2004). Such a strict hierarchy might indeed have evolved to reduce costs associated with competition by relying on submissive cues and threats, instead of physical aggression (Holekamp and Strauss, 2016). In support of this, we found - in a supplementary analysis - that females living in larger groups were more likely to be non-physically aggressed by other females compared to females in smaller groups (Fig. S4, details in SI).

But if not female-female aggression, what is the source of injuries for females living in larger groups? One possible explanation is male-female competition for food. However, in a supplementary analysis, we did not find evidence for inter-sexual aggression being related to group size. That is, females living in larger groups did not have a higher risk of physical aggression from resident males when compared to females in smaller groups (Fig. S5, details in SI). Together these results show that group size does not predict within-group aggression towards females, either from males or other females, which suggests that higher injury risk in females living in larger groups might be the result of intergroup aggression. The context when such aggression occurs, however, is not clear. It may be possible that females in larger groups are more likely to engage in intergroup conflict to instigate resident males, knowing their numerical advantage (Koch et al., 2016), but at the risk of being injured by extra-group members while doing so.

Males had a lower injury risk when living in larger groups. Given that the number of

428 males in a group did not predict the risk of physical aggression between resident males,
429 but it was associated with reduced injury risk, it is likely that the source of injuries comes
430 from intergroup encounters. These inferences support our predictions and results from
431 previous meta-analyses in mammals where the number of males was associated with the
432 resource-holding potential of a group (Smith et al., 2022; Majolo et al., 2020). Males from
433 many mammal species have been shown to engage more often than females in intergroup
434 encounters, possibly as a strategy to keep other males away from female group members
435 (Jordan et al., 2007; Cooksey et al., 2020), or to defend the feeding resources (Fashing, 2001;
436 Furrer et al., 2011; Scarry, 2013). In rhesus macaques where females are the core of the
437 society, it is also likely that males engage in intergroup encounters due to female instigation,
438 so that females can gain access to feeding areas and/or extra-group copulations (Johnstone
439 et al., 2020; Arseneau-Robar et al., 2016). Whether the cost of living in smaller groups
440 comes from injuries during collective encounters between groups or during male immigration
441 attempts, where more males might be better able to deter immigration without escalated
442 aggression, requires further investigation.

443 **How does sex ratio impact injury risk?**

444 Contrary to classic predictions of theoretical models where skewed sex ratios might lead to
445 fierce mating competition (Kvarnemo and Ahnesjö, 1996), and also to our rhesus-specific
446 predictions (listed in the Introduction), we found that males had higher injury risk when
447 the relative availability of females was higher (*i.e.*, female-biased sex ratio) and no effect
448 of sex ratio on female injury risk. As above, we discuss these results and the possible
449 socioecological drivers in a sex-specific manner.

450 We found that in groups where males outnumber females, males did not experience
451 higher injury risk or heightened intra-sexual physical aggression. These results support
452 our predictions and previous research suggesting that despite moderate levels of sexual
453 dimorphism, contest competition for mates between resident male rhesus macaques is not
454 common (Higham and Maestripieri, 2014; Kimock et al., 2022). Instead, rhesus macaque
455 males are believed to rely on strategies of indirect competition, such as sperm competition,
456 endurance rivalry (Higham et al., 2011), group tenure (Manson, 1995), sneak copulations
457 (Higham and Maestripieri, 2014), and to a lesser extent, female coercion and mate-guarding
458 (Manson, 1994). However, contrary to our predictions, we found that males were more likely
459 to be injured in groups with a female-biased sex ratio, but this was not driven by heightened
460 aggression from males in the group. It is possible that males in these groups are more likely
461 to suffer injuries if the higher relative abundance of females makes the group more attractive
462 to immigrant and outsider males, especially if there are fewer males to resist immigration
463 attempts (Alberts and Altmann, 1995). Indeed, males in this population usually disperse
464 during the reproductive season (Hoffman et al., 2008) and may incur higher costs of injuries
465 when doing so (Kimock et al. *in prep.*).

466 We found no evidence that females engage in conflict over mates. We found that sex
467 ratio did not predict intra-sexual physical aggression among females, consistent with our
468 predictions. As highlighted by Davidian et al. (2022), there might be strong selective pres-

469 sures for reduced intra-sexual mating competition in most female mammals. The incentive
470 to physically compete over males may be low as sharing mating opportunities with other
471 females is not as costly as it is for males (although there might be some cases where female-
472 female mating competition does occur; Baniel et al. (2018)). Female philopatry may favour
473 the use of less costly means of competition to reduce escalated aggression against kin (Young
474 and Bennett, 2013). Further, physical aggression and its consequences may be too costly for
475 females given their higher energetic demand for reproduction (Trivers, 1972). More specif-
476 ically for rhesus macaques, female extra-group copulation (Manson, 1992) and low risk of
477 infanticide (Camperio Ciani, 1984), might further reduce the need to compete fiercely over
478 mating opportunities with resident males Baniel et al. (2018).

479 We found some support for male coercion as a possible cause of injuries in females.
480 Females living in groups with a male-biased sex ratio were more likely to be physically
481 aggressed by males (although we did not find evidence for a similar effect on female in-
482 jury risk). These results together provide partial support for our predictions and previous
483 evidence suggesting that males of this species and others, may rely on coercive strategies
484 when competition for females is intense (Bercovitch, 1997; Bercovitch et al., 1987; Smit
485 et al., 2022; Baniel et al., 2017). One likely explanation for resident rhesus males relying on
486 coercive strategies is to deter female mate choice, as female rhesus macaques prefer to mate
487 with outsider males, potentially due to benefits derived from increasing genetic variability
488 or quality (Manson, 1992). The lack of evidence for an effect of sex ratio on female injury
489 risk might also be attributed to reduced sample size, as unlike the analyses exploring injury
490 risk with group size, we only considered injuries that occurred within the mating season.
491 Although we can not confidently conclude that male physical aggression results in females
492 being injured, our results suggest that aggression from resident males could be the source
493 of injuries in female rhesus macaques.

494 Conclusion

495 In this study, we provide rare empirical evidence for long-standing predictions on the costs of
496 competition in group-living mammals. We showed a sex-dependent effect of group size and
497 sex ratio on the occurrence of injuries, which have been shown to have detrimental survival
498 consequences. Males experienced fewer injuries when living in larger groups. Instead of
499 these being mediated by within-group competition, our results suggest that injuries were
500 mostly the consequence of inter-group encounters. We also found that in groups with fewer
501 reproductive females per male (*i.e.*, male-biased sex ratio), females received more physical
502 aggression from resident males, suggesting that male coercion could be a cause of female
503 mortality in this population. While the Cayo Santiago population is food-provisioned and
504 predator-free, which might reduce the need for contest competition over food and mates,
505 the episodes of escalated aggression and injuries we detected here suggest that the fitness
506 costs of competition in wild populations might be even higher. Overall, our study provides
507 one of the first direct tests of classic predictions of socioecological models.

508 References

509 Alberts, S. C. and Altmann, J. (1995). Balancing Costs and Opportunities: Dispersal in
510 Male Baboons. *The American Naturalist*, 145(2):279–306.

511 Archie, E. A., Altmann, J., and Alberts, S. C. (2014). Costs of reproduction in a long-lived
512 female primate: Injury risk and wound healing. *Behavioral Ecology and Sociobiology*,
513 68(7):1183–1193.

514 Arseneau-Robar, T. J. M., Taucher, A. L., Müller, E., Van Schaik, C., Bshary, R., and
515 Willems, E. P. (2016). Female monkeys use both the carrot and the stick to promote
516 male participation in intergroup fights. *Proceedings of the Royal Society B: Biological
517 Sciences*, 283(1843).

518 Balasubramaniam, K. N., Dunayer, E. S., Gilhooly, L. J., Rosenfield, K. A., and Berman,
519 C. M. (2014). Group size, contest competition, and social structure in Cayo Santiago
520 rhesus macaques. *Behaviour*, 151(12-13):1759–1798.

521 Baniel, A., Cowlishaw, G., and Huchard, E. (2017). Male Violence and Sexual Intimidation
522 in a Wild Primate Society. *Current Biology*, 27:2163–2168.e3.

523 Baniel, A., Cowlishaw, G., and Huchard, E. (2018). Context dependence of female repro-
524 ductive competition in wild chacma baboons. *Animal Behaviour*, 139:37–49.

525 Bercovitch, F. B. (1997). Reproductive strategies of rhesus macaques. *Primates*, 38:247–263.

526 Bercovitch, F. B., Sladky, K. K., Roy, M. M., and Goy, R. W. (1987). Intersexual aggression
527 and male sexual activity in captive rhesus macaques. *Aggressive Behavior*, 13:347–358.

528 Blumstein, D. T., Evans, C. S., and Daniel, J. C. (1999). An experimental study of be-
529 havioural group size effects in tammar wallabies, *Macropus eugenii*. *Animal Behaviour*,
530 58:351–360.

531 Brent, L. J. N., Semple, S., MacLarnon, A., Ruiz-Lambides, A., Gonzalez-Martinez, J., and
532 Platt, M. L. (2014). Personality Traits in Rhesus Macaques (*Macaca mulatta*) Are Her-
533 itable but Do Not Predict Reproductive Output. *International Journal of Primatology*,
534 35(1):188–209.

535 Bürkner, P.-C. (2021). Bayesian item response modeling in R with brms and Stan. *Journal
536 of Statistical Software*, 100(5):1–54.

537 Camperio Ciani, A. (1984). A case of infanticide in a free-ranging group of rhesus monkeys
538 (*Macaca mulatta*) in the Jackoo. *Primates*, 25:372–377.

539 Chapman, C. A. and Chapman, L. J. (2000). Constraints on group size in red colobus
540 and red-tailed guenons: Examining the generality of the ecological constraints model.
541 *International Journal of Primatology*, 21(4):565–585.

542 Cheney, D. L. and Seyfarth, R. M. (1987). The influence of intergroup competition on the
543 survival and reproduction of female vervet monkeys. *Behavioral Ecology and Sociobiology*,
544 21:375–386.

545 Chikazawa, D., Gordon, T. P., Bean, C. A., and Bernstein, I. S. (1979). Mother-daughter
546 dominance reversals in rhesus monkeys (*Macaca mulatta*). *Primates*, 20(2):301–305.

547 Chilvers, B. L., Robertson, B. C., Wilkinson, I. S., Duignan, P. J., and Gemmell, N. J.
548 (2005). Male harassment of female New Zealand sea lions, *Phocarctos hookeri* : mortality,
549 injury, and harassment avoidance. *Canadian Journal of Zoology*, 83:642–648.

550 Clutton-Brock, T. and Parker, G. (1995). Sexual coercion in animal societies. *Animal
551 Behaviour*, 49(5):1345–1365.

552 Clutton-Brock, T. H. and Parker, G. A. (1992). Potential reproductive rates and the
553 operation of sexual selection. *Quarterly Review of Biology*, 67:437–456.

554 Cooksey, K., Sanz, C., Ebombi, T. F., Massamba, J. M., Teberd, P., Magema, E., Abea,
555 G., Peralejo, J. S. O., Kienast, I., Stephens, C., and Morgan, D. (2020). Socioecological
556 Factors Influencing Intergroup Encounters in Western Lowland Gorillas (*Gorilla gorilla
557 gorilla*). *International Journal of Primatology*, 41:181–202.

558 Cowlishaw, G. (1995). Behavioural Patterns in Baboon Group Encounters: the Role of
559 Resource Competition and Male Reproductive Strategies. *Behaviour*, 132.

560 Davidian, E., Surbeck, M., Lukas, D., Kappeler, P. M., and Huchard, E. (2022). The
561 eco-evolutionary landscape of power relationships between males and females. *Trends in
562 Ecology and Evolution*, 37:706–718.

563 Driscoll, J. G., Alo, F. M., Paoli, A., Weladji, R. B., Holand, Ø., Kumpula, J., and Soveri,
564 T. (2022). Influence of operational sex ratio and male age on mating competition intensity
565 in reindeer (*Rangifer tarandus*). *Ethology Ecology and Evolution*, 00:1–16.

566 Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A., and Widdig, A. (2011). Testing
567 the priority-of-access model in a seasonally breeding primate species. *Behavioral Ecology
568 and Sociobiology*, 65(8):1615–1627.

569 Emlen, S. T. and Oring, L. W. (1977). Ecology, sexual selection, and the evolution of
570 mating systems. *Science*, 197:215–223.

571 Fashing, P. J. (2001). Male and female strategies during intergroup encounters in guerezas
572 (*Colobus guereza*): Evidence for resource defense mediated through males and a compar-
573 ison with other primates. *Behavioral Ecology and Sociobiology*, 50:219–230.

574 Feder, J. A., Lu, A., Koenig, A., and Borries, C. (2019). The costs of competition: injury
575 patterns in 2 Asian colobine monkeys. *Behavioral Ecology*, 30(5):1242–1253.

576 Furrer, R. D., Kyabulima, S., Willems, E. P., Cant, M. A., and Manser, M. B. (2011).
577 Location and group size influence decisions in simulated intergroup encounters in banded
578 mongooses. *Behavioral Ecology*, 22:493–500.

579 Gillespie, T. R. and Chapman, C. A. (2001). Determinants of group size in the red colobus
580 monkey (*Procolobus badius*): An evaluation of the generality of the ecological-constraints
581 model. *Behavioral Ecology and Sociobiology*, 50(4):329–338.

582 Hammerstein, P. (1981). The role of asymmetries in animal contests. *Animal Behaviour*,
583 29(1):193–205.

584 Heesen, M., Rogahn, S., Macdonald, S., Ostner, J., and Schülke, O. (2014). Predictors of
585 food-related aggression in wild Assamese macaques and the role of conflict avoidance.
586 *Behavioral Ecology and Sociobiology*, 68:1829–1841.

587 Hemelrijk, C. K., Wubs, M., Gort, G., Botting, J., and van de Waal, E. (2020). Dynamics
588 of Intersexual Dominance and Adult Sex- Ratio in Wild Vervet Monkeys. *Frontiers in
589 Psychology*, 11:1–11.

590 Higham, J. P., Heistermann, M., and Maestripieri, D. (2011). The energetics of male-male
591 endurance rivalry in free-ranging rhesus macaques, *Macaca mulatta*. *Animal Behaviour*,
592 81:1001–1007.

593 Higham, J. P. and Maestripieri, D. (2014). The Costs of Reproductive Success in Male Rhesus
594 Macaques (*Macaca mulatta*) on Cayo Santiago. *International Journal of Primatology*,
595 35(3-4):661–676.

596 Hoffman, C. L., Ruiz-Lambides, A. V., Davila, E., Maldonado, E., Gerald, M. S., and
597 Maestripieri, D. (2008). Sex differences in survival costs of reproduction in a promiscuous
598 primate. *Behavioral Ecology and Sociobiology*, 62(11):1711–1718.

599 Holekamp, K. E. and Strauss, E. D. (2016). Aggression and dominance: an interdisciplinary
600 overview. *Current Opinion in Behavioral Sciences*, 12:44–51.

601 Janson, C. H. and Goldsmith, M. L. (1995). Predicting group size in primates: Foraging
602 costs and predation risks. *Behavioral Ecology*, 6(3):326–336.

603 Jarvis, J. U., Bennett, N. C., and Spinks, A. C. (1998). Food availability and foraging by wild
604 colonies of Damaraland mole-rats (*Cryptomys damarensis*): Implications for sociality.
605 *Oecologia*, 113:290–298.

606 Johnstone, R. A., Cant, M. A., Cram, D., and Thompson, F. J. (2020). Exploitative leaders
607 incite intergroup warfare in a social mammal. *Proceedings of the National Academy of
608 Sciences of the United States of America*, 117:29759–29766.

609 Jordan, N. R., Cherry, M. I., and Manser, M. B. (2007). Latrine distribution and patterns
610 of use by wild meerkats: implications for territory and mate defence. *Animal Behaviour*,
611 73:613–622.

612 Kappeler, P. M. (2017). Sex roles and adult sex ratios: Insights from mammalian biology
613 and consequences for primate behaviour. *Philosophical Transactions of the Royal Society*
614 *B: Biological Sciences*, 372(1729).

615 Kessler, M. J. and Rawlins, R. G. (2016). A 75-year pictorial history of the Cayo Santiago
616 rhesus monkey colony. *American Journal of Primatology*, 78(1):6–43.

617 Kimock, C. M., Brent, L. J., Dubuc, C., and Higham, J. P. (2022). Body size and canine
618 size do not confer a competitive advantage in male rhesus macaques. *Animal Behaviour*,
619 187:281–290.

620 Koch, F., Signer, J., Kappeler, P. M., and Fichtel, C. (2016). Intergroup encounters in
621 Verreaux's sifakas (*Propithecus verreauxi*): who fights and why? *Behavioral Ecology and*
622 *Sociobiology*, 70:797–808.

623 Koenig, A. (2002). Competition for resources and its behavioral consequences among female
624 primates. *International Journal of Primatology*, 23:759–783.

625 Koenig, A., Scarry, C. J., Wheeler, B. C., and Borries, C. (2013). Variation in grouping
626 patterns, mating systems and social structure: What socio-ecological models attempt to
627 explain. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368(1618).

628 Kvarnemo, C. and Ahnesjö, I. (1996). The dynamics of operational sex ratios and compe-
629 tition for mates. *Trends in Ecology and Evolution*, 11(10):404–408.

630 Lee, D. S., Kang, Y. H. R., Ruiz-Lambides, A. V., and Higham, J. P. (2021). The observed
631 pattern and hidden process of female reproductive trajectories across the life span in a
632 non-human primate. *Journal of Animal Ecology*, 90:2901–2914.

633 Lenth, R. V., Buerkner, P., Herve, M., Jung, M., Love, J., Miguez, F., Riebl, H., and
634 Singmann, H. (2018). *Estimated Marginal Means, aka Least-Squares Means*. R package
635 version 1.8.

636 Majolo, B., deBortoli Vizioli, A., Martínez-Íñigo, L., and Lehmann, J. (2020). Effect of
637 Group Size and Individual Characteristics on Intergroup Encounters in Primates. *Inter-
638 national Journal of Primatology*, 41:325–341.

639 Manson, J. H. (1992). Measuring female mate choice in Cayo Santiago rhesus macaques.
640 *Animal Behaviour*, 44:405–416.

641 Manson, J. H. (1994). Male aggression: a cost of female choice in rhesus macaque.

642 Manson, J. H. (1995). Do female rhesus macaques choose novel males? *American Journal*
643 *of Primatology*, 37(4):285–296.

644 Marino, A. (2010). Costs and Benefits of Sociality Differ Between Female Guanacos Living
645 in Contrasting Ecological Conditions. *Ethology*, 116:999–1010.

646 Markham, A. C. and Gesquiere, L. R. (2017). Costs and benefits of group living in primates:
647 an energetic perspective. *Philosophical Transactions of the Royal Society B: Biological
648 Sciences*, 372(1727):20160239.

649 McComb, K., Packer, C., and Pusey, A. (1994). Roaring and numerical assessment in
650 contests between groups of female lions, *Panthera leo*. *Animal Behaviour*, 47(2):379–387.

651 Pavez-Fox, M. A., Kimock, C. M., Rivera-Barreto, N., Negron-Del Valle, J. E., Phillips, D.,
652 Ruiz-Lambides, A., Snyder-Mackler, N., Higham, J. P., Siracusa, E. R., and Brent, L. J.
653 (2022). Reduced injury risk links sociality to survival in a group-living primate. *iScience*,
654 25(11):105454.

655 Rankin, D. J., Dieckmann, U., and Kokko, H. (2011). Sexual conflict and the tragedy of
656 the commons. *American Naturalist*, 177(6):780–791.

657 Ratcliffe, J. M. and Ter Hofstede, H. M. (2005). Roosts as information centres: Social
658 learning of food preferences in bats. *Biology Letters*, 1:72–74.

659 Reale, D., Bousses, P., and Chapuis, J. L. (1996). Female-biased mortality induced by male
660 sexual harassment in a feral sheep population. *Canadian Journal of Zoology*, 74:1812–
661 1818.

662 Scarry, C. J. (2013). Between-group contest competition among tufted capuchin monkeys,
663 *Sapajus nigritus*, and the role of male resource defence. *Animal Behaviour*, 85(5):931–939.

664 Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. *Philosophical
665 Transactions of the Royal Society B: Biological Sciences*, 362(1480):539–559.

666 Smit, N., Baniel, A., Roura-Torres, B., Amblard-Rambert, P., Charpentier, M. J. E., and
667 Huchard, E. (2022). Sexual coercion in a natural mandrill population. *Peer Community
668 Journal*, 2(0):0–3.

669 Smith, J. E., Fichtel, C., Holmes, R. K., Kappeler, P. M., Vugt, M. V., and Jaeggi, A. V.
670 (2022). Sex bias in intergroup conflict and collective movements among social mammals:
671 Male warriors and female guides. *Philosophical Transactions of the Royal Society B:
672 Biological Sciences*, 377.

673 Sterck, E. H., Watts, D. P., and Van Schaik, C. P. (1997). The evolution of female social
674 relationships in nonhuman primates. *Behavioral Ecology and Sociobiology*, 41(5):291–309.

675 Terborgh, J. and Janson, C. H. (1986). The socioecology of Primate groups. *Annual Review
676 of Ecology and Systematics*, 17(1):111–136.

677 Thierry, B., Singh, M., and Kaumanns, W. (2004). *Macaque societies: A model for the
678 study of social organization*. Cambridge University Press, New York.

679 Thompson, F. J., Marshall, H. H., Vitikainen, E. I., and Cant, M. A. (2017). Causes and
680 consequences of intergroup conflict in cooperative banded mongooses. *Animal Behaviour*,
681 126.

682 Trivers, R. L. (1972). Parental Investment and Sexual Selection. pages 136–175. Aldine,
683 Chicago.

684 Van Schaik, C. and Van Hooff, J. (1983). On the Ultimate Causes of Primate Social Systems.
685 *Behaviour*, 85(1-2):91–117.

686 Vogel, E. R., Munch, S. B., and Janson, C. H. (2007). Understanding escalated aggression
687 over food resources in white-faced capuchin monkeys. *Animal Behaviour*, 74(1):71–80.

688 Weir, L. K., Grant, J. W. A., and Hutchings, J. A. (2011). The Influence of Operational
689 Sex Ratio on the Intensity of Competition for Mates. *The American Naturalist*, 177.

690 Willems, E. P., Hellriegel, B., and van Schaik, C. P. (2013). The collective action problem
691 in primate territory economics. *Proceedings of the Royal Society B: Biological Sciences*,
692 280(1759).

693 Wrangham, R. W., Gittleman, J. L., and Chapman, C. A. (1993). Constraints on group size
694 in primates and carnivores: population density and day-range as assays of exploitation
695 competition. *Behavioral Ecology and Sociobiology*, 32:199–209.

696 Young, A. J. and Bennett, N. C. (2013). Intra-sexual selection in cooperative mammals and
697 birds: Why are females not bigger and better armed. *Philosophical Transactions of the
698 Royal Society B: Biological Sciences*, 368:25–30.