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Simulation of adaptive immune receptors and repertoires with complex immune
information to guide the development and benchmarking of AIRR machine learning
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Abstract

Machine-learning methods (ML) have shown great potential in the adaptive immune receptor repertoire
(AIRR) field. However, there is a lack of large-scale ground-truth experimental AIRR data suitable for
AIRR-ML-based disease diagnostics and therapeutics discovery. Simulated ground-truth AIRR data are
required to complement the development and benchmarking of robust and interpretable AIRR-ML
approaches where experimental data is inaccessible or insufficient as of yet. The challenge for simulated
data to be useful is the ability to incorporate key features observed in experimental repertoires. These
features, such as complex antigen or disease-associated immune information, cause AIRR-ML problems
to be challenging. Here, we introduce LIgO, a modular software suite, which simulates AIRR data for the
development and benchmarking of AIRR-based machine learning. LIgO incorporates different types of
immune information both on the receptor and the repertoire level and preserves native-like generation
probability distribution. Additionally, LIgO assists users in determining the computational feasibility of
their simulations. We show two examples where LIgO simulation supports the development and
validation of AIRR-ML methods: (1) how individuals carrying out-of-distribution immune information
impacts receptor-level prediction performance and (2) how immune information co-occurring in the same
AlRs have an impact on the performance of conventional receptor-level encoding and repertoire-level
classification approaches. The LIgO software guides the advancement and assessment of interpretable
AIRR-ML methods.
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Introduction

B- and T-cell receptors (BCRs and TCRs, or AlRs — adaptive immune receptors) are the agents of the
adaptive immune system that recognize and neutralize antigens, such as bacteria, viruses, cancer cells, or
autoantigens. Immune memory of past and ongoing immune states, i.e. different disease or infection
states, is stored in AIR repertoires (AIRRs). In the manuscript text, we will interchangeably use the terms
AIRR and repertoire, as well as receptor and AIR. The immune memory is stored as immune information
or “immune signal”, which may be encoded in AIRR frequency, e.g., clonal expansion (7), receptor
sequence, e.g., antigen-specific binding motifs or disease-associated motifs where motifs may be entire
sequences (2 or subsequences (3-5 or as a combination thereof. The complexity of AIRR biology
contributes to the long-standing problem of how to extract and use these immune signals to understand
the mechanisms of adaptive immunity and utilize them for immunodiagnostics (2, 6, 7) and
immunotherapeutic design (8, 9).

The recognition of antigens can be defined at the receptor level and at the repertoire level. On the
receptor level, each immune receptor is specific to one or more antigens, and is potentially polyreactive
to several antigens or pathogens using several possible paratopes (70-72). This makes antigen
recognition difficult to quantitatively describe because each antigen can be bound by many receptors
with very little sequence overlap (77, 73-18). On the repertoire level, immune recognition is determined
by a set of antigen-specific AIRs and usually, it remains unknown which AIRs from the whole repertoire are
specific to the target and how the distribution (e.g., frequency, positional weight matrices) of
antigen-specific AIRs changes across immune states. Recognition on the repertoire level is also complex
to describe and quantify because each individual possesses a different set of AIRs with a genetic
sequence diversity of about 10°-10° different AIRs per individual and low sequence overlap (<1%) across
individuals (8, 79, 20). Altogether, repertoire-level research problems range from the identification of
repertoires of a given immune state containing immune-state-associated AIR biomarkers to the
identification of the specific receptors within a repertoire that confers an immune recognition property to
this repertoire. Furthermore, as few as one AIR per million to several thousands may be associated with a
disease in naive and non-naive repertoires (21, 22), indicating that the immune signal may be very
sparingly represented (23, 24).

Machine learning is a powerful tool for detecting complex signals in various types of biological data
(25-32). Previous studies have shown that even relatively simple ML approaches can be successfully
applied to classify immune repertoires based on the immune status (repertoire-based classification), with
their performance improving with dataset size (2, 4, 33). These few promising successes showcase the
potential of ML for detecting complex signals in AIRR data but many challenges remain for
repertoire-based diagnostics to reach a level of maturity sufficient for clinical application (). For example,
although the accuracy achieved for predicting CMV status from TCR repertoires was found to be relatively
high (2, CMV is known to leave a particularly strong mark on the adaptive system with a high percentage
of CD8+ T cells specific to CMV increasing with age (34). To achieve clinically acceptable accuracy levels
for predicting a variety of disease states, more sophisticated and sensitive ML approaches will be needed
(8, 24, 35-39). Similarly to repertoire classification, it remains challenging to predict antigen binding for
individual AlIRs (receptor-based classification) given, for instance, the current scarcity of the
antigen-labeled data, as well as challenges in quantification of generalization and negative data definition
(3,9, 15, 16, 40-44).
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Progress on both repertoire and receptor-based ML classification problems is hindered by a lack of
large-scale data with known ground-truth information, such as corresponding immune status and immune
signal (45, 46). Such large-scale ground truth data is required for the development and benchmarking of
novel AIRR-adapted ML approaches as well as the benchmarking of established approaches to test their
predictive performance and capability to recover immune signals (45, 47-50). Specifically, the lack of
ground truth data hinders the benchmarking under various conditions such as sample size and AIRR
architecture (45). Therefore, it is challenging to assess using only experimental data whether an AIRR-ML
method successfully learned disease-associated features or spurious factors that are associated with high
predictive performance (46). In contrast, simulation enables the generation of AIRR datasets of virtually
unconstrained size, with fine-grained control over introduced signals (ground truth) (45). While simulations
can bridge the gap between the lack of suitable experimental data to guide the development and
benchmarking of novel AIRR-ML methods relevant for real-world applications, not all simulation
approaches are created equal. A key challenge for simulations is to faithfully represent the characteristics
and statistical properties of experimental AIR(R)s with high fidelity.

There exist various tools for simulating a set of individual AIRs with or without set parameters (39, 57-60).
These tools accurately mimic the V(D)J-recombination process to varying degrees, but most do not
simulate the selection or implantation of putative immune signals (52). When introducing such immune
signals, it is crucial not to perturb existing and underlying statistical properties of AIRR data, such as
germline gene recombination statistics (57, 67) and the degree of sharing of public AIR sequences
between individuals (62), since perturbated properties could lead to ML methods achieving high accuracy
based on artificial features rather than meaningful signals.

Here, we implemented the simulation suite LIgO, which enables the generation of immune-signal-labeled
synthetic AIR(R) datasets for the development and benchmarking of AIRR-based machine learning
methods. Importantly, the LIgO suite allows simulating AIR(R) datasets at scales way beyond what is
currently experimentally feasible. Immune signals in AIRs can be simulated based on either rejection
sampling or signal implantation that preserves AIR generation probability distribution through importance
sampling. LIgO can be used with immuneML, an open-source ecosystem for AIRR-ML analysis (33). We
show the applicability of LIgO on two distinct machine learning use cases, investigating (1) how
individuals carrying out-of-distribution immune signals impact receptor-based prediction performance
and exploring (2) the limitations of conventional encoding schemes for AIRR binary classification when
immune signals co-occur within the same AIR.
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Results
Immune signal and immune event formalization in AIR(R) data

Adaptive immune receptors (AlIRs) can be labeled with their antigen recognition capacity (one or multiple
antigens) and adaptive immune receptor repertoires (AIRRs) with the individual's disease state(s). These
labels can be used to formulate a machine learning (ML) classification problem on AIRR data (Fig. 1B).
Both receptor-based (AlR-based) and repertoire-based (AIRR-based) classification may be considered as a
binary classification problem (the AIR binds or does not bind to the antigen), a multi-label classification
problem (the AIRR is associated with multiple disease states), or a multi-class classification problem (the
AIRR is associated with a specific stage of a disease, e.g., stages of cancer). As of yet, there is limited
understanding of how immune signals are encoded inside AIRRs (8). To simulate AIRR data for
benchmarking receptor and repertoire-based AIRR-ML methods, there is a need to account for different
types of putative immune signals that ML methods are expected to retrieve and the statistical properties
of synthetic immune signals vis-a-vis AIRR-ML tasks (Fig. 1A).

To support a broad variety of potentially interesting AIRR-ML problem formulations, we opted for a very
flexible, yet structured, specification of immune signals. We decided to separate between biological
immune events — e.g., disease, allergy, vaccination, or other situations that elicit an adaptive immune
response — and associated encoded signals in the receptors. The AlIRs produced during the immune
response and associated with a (biological) immune event are considered immune-event specific. Each
immune-event speciﬂc receptor contains one or more immune signals, which, for instance, reflects its
binding rules to the immune event antigen(s) (Fig. 1C). To prevent excessive complexity, we limit the
number of immune signals per receptor, ensuring that each receptor contains no more than two immune
signals.

We define that on the receptor level, an immune signal consists of a set of motifs, where each motif is a
distribution over amino acids or nucleotides of any length up to an entire AIR sequence (2). Furthermore,
additional AIR information is defined, such as V and J genes, and the distribution of the motif set
locations within the CDR3 (Fig. 1C), in line with previous studies (2-4, 63). In addition, AIR information
may include derived features such as CDR3 length (64, physicochemical properties (65), or binding
energy (66). In the case of paired chain data, the immune signal would include this information from both
chains (3, 15, 16, 67).

On the receptor level, we define an immune event as a receptor label associated with a set of immune
signals (Fig. 1C). For example, an HIV immune event may contain several immune signals corresponding
to different HIV epitopes. If an AIR is polyreactive, it is linked to multiple immune events. If an AIR is not
specific to any annotated antigen, then it has no label.

On the repertoire level, we define an immune event as a distribution of immune signals in conjunction
with a distribution of clone counts (Fig. 1C), which can represent, for example, clonal expansion (7). Our
definition of immune signals and events on the receptor and repertoire levels is designed to encompass a
wide range of data formats and biological signals in a comprehensive manner that have been previously
reported on experimental data (8). From here on, we will not separate the terms immune event and
immune signal on the repertoire and receptor level.
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Figure 1: Formalization of an AIRR simulator suitable for AIRR-ML benchmarking both on the receptor and the repertoire level

(A) An ultimate goal of AIRR-ML benchmarking is to establish guidelines for achieving effective repertoire and receptor
classification by taking into account the various complexities of immune signals. To achieve this goal, there is a need for ranking
AIRR-ML approaches based on their prediction accuracy and ability to recover interpretable immune signals. (B) The two main
classes of AIRR-ML classification problems are receptor-based and repertoire-based classification. The aim of the receptor-based
classification is to predict antigen binding for individual AlRs, and the aim of the repertoire-based classification is to classify
immune repertoires based on their immune status. (C) We define an immune signal as the union of a set of motifs and
AlR-specific information (the latter may be absent). A motif is a distribution over nucleotides or amino acids at multiple positions.
AlIR-specific information can be, e.g., V or J gene, position of motif in a CDR3, signal of the other chain for the paired data. We
illustrate signal definition with three different signals. Signal 1 consists of the two k-mers AAAA and CCC, and the V gene
IGHV1-69, which means that only receptors with IGHV1-69 and containing either AAAA or CCC are considered signal 1 specific.
Similarly to signal 1, signal 2 consists of a gapped 4-mer and signal 3 consists of a motif represented by a PWM on the 108-112
IMGT positions and restricted by IGHV3 and IGHJ1 genes. Formally, we define an immune event on the receptor and the
repertoire levels. On the receptor level, an immune event is a set of immune signals. On the repertoire level, an immune event is
defined as a distribution of immune signals along with clonal count distribution. Concrete examples of immune events on the
receptor level may include, for instance, “cytomegalovirus infection (CMV)” which consists of signal 2 and signal 3 described
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above. And an AIR is considered as CMV-specific if it contains signal 2 or signal 3. We may also define an AIRR carrying a
hypothetical T1D (type 1 diabetes) immune event if 1% of AIRs contain signal 1 and the clone counts of the signal-specific
receptors follow a zeta distribution. (D) Developing an AIRR simulator that implements immune signal and event concepts of
varying levels of complexity and is also suited for AIRR-ML benchmarking both on the repertoire and receptor level presents
several challenges. (i) For real-world relevance, simulated AIRR data with implanted signals should be as similar as possible to
experimental AIRR-seq data. Specifically, such similarity may be defined in terms of generation probability distribution (pgen),
where pgen is the probability of a given V(D)J recombination process to generate a given AIR. (ii) A simulation process might
introduce simulation artifacts into data, for example, break the conserved receptor regions. In this case, even if an AIRR-ML
approach perfectly detects the implanted signal, it will differ from biologically relevant signals. (iii) One receptor might contain
multiple signals corresponding to different immune events and thus immune signals and immune events can be overlapping
both on the receptor and repertoire levels which complicates their simulation.

Simulation approaches for generating biologically relevant AIR(R) data

To fit the AIRR-ML problem formulation, one needs to simulate signal-specific (positive) AlRs and
non-specific (negative) AIRs and control their frequencies in an AIRR dataset to encode an immune event.
In this study, we consider two approaches to simulate biologically relevant AIRs carrying immune signals
— rejection sampling and signal implantation (Fig. 2C). With rejection sampling, a pool of random
background AIRs is generated and only the AIRs containing a predefined signal(s) are considered
signal-specific. The main advantage of the rejection sampling approach is that it does not modify the
original AIRs, meaning that receptor-based statistics like generation probability for each individual AIR are
not artificially perturbed (Fig. 1D). However, rejection sampling is not computationally feasible for
immune signals with low population probability, since estimated time of finding an
immune-signal-specific receptor in background receptors is inversely proportional to its population
probability and large number of AlRs needs to be generated for each receptor that is kept after signal
filtering. An alternative way to generate signal-specific receptors is signal implantation, which replaces a
substring of a CDR3 region of a given background AIR with one of the immune signal (gapped) k-mer, or
motif in general. Unlike rejection sampling, computational efficiency of signal implantation does not
depend on the population probability of the immune signal. However, signal implantation may introduce
artifacts to simulated AIRs because it modifies the original sequence and may create unrealistic
sequences (Fig. 1D). Also, signal implantation does not work for every immune signal, since some signals
cannot be easily implanted when an AIR is already constructed - e.g., if the signal to be implanted is a
specific V gene, then substituting the original V gene with the new one might potentially conflict with the
CDR3 sequence of the original AIR. Both rejection sampling and signal implantation may be coupled with
an optional importance sampling step. Importance sampling minimizes potential perturbation of
simulated AIR pgen distribution, which, if left unchecked, may cause artificial increase of ML performance.
Depending on the defined signals, LIgO will allow testing whether rejection sampling or implantation
methods can be performed. Altogether, both the rejection sampling and the implantation approach allow
generation of datasets with a controlled number of signal-specific receptors in the synthetic data.
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Figure 2: LIgO workflow for configuring AIRR-ML benchmarking datasets

(A) For initialization, a user may define general simulation parameters, such as the type of AIR (BCR or TCR), receptor- or
repertoire-based simulation, paired- or single-chain receptors, type of sequence alphabet — nucleotide (nt) or amino acid (aa),
output format — full-length or CDR3 only. For the receptor-based simulation, a number of generated AlRs and a set of immune
signals with their frequencies in the final dataset are defined. For the repertoire-based simulation, a number of repertoires,
number of receptors in a repertoire, and a mixture of immune signals corresponding to each repertoire with their frequencies are
defined. In total, the sum of all immune signal frequencies including co-occurring signal frequencies for each AIRR should be less
or equal to 1. (B) The optional second step helps users to check simulation feasibility based on the parameters defined during
initialization. The first helper function estimates the frequency of each immune signal in a set of AIRs. It is not recommended to
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use rejection sampling for immune events whose estimated frequency falls below the recommended lower bound, by default
0.001%. In addition, the user can redefine the immune signal with low frequency in order to increase its frequency, e.g., simplify
the immune signal definition by removing certain V gene(s) or by simplifying the motif in the definition. It is also not
recommended to use immune signals with estimated frequency above the upper bound of 10% because they may impact the
biological nativeness of immune signals given the rarity of such high-frequency signals. The second helper function estimates the
co-occurrence of defined immune signals. In order to limit computational complexity, LIgO restricts the number of immune
signals per one AIR to at most two and all AIRs containing three or more immune signals will be removed during the simulation
process. If the user wants to limit the number of immune signals per AIR by one, then immune signals frequently co-occurring in
the background may decrease rejection sampling efficiency. It is recommended for the user to redefine immune signals in this
case. (C) In the main simulation step, LIgO requires a generative model to obtain background AIRs, which can either be
simulated from a V(D)J-recombination process (e.g., IGoR (57, 68) or immuneSIM (52), where a custom V(D)J model can be
inferred from real-world data) or taken from experimental data (e.g., iReceptor (69) or OAS (70). Subsets of immune-signal
specific receptors can be simulated using rejection sampling or implantation from a set of AIRs which may or may not have the
same V(D)J generation parameters as the background AlRs. Additionally, if the simulation is defined by a V(D)J model, the
immune-signal specific AIRs can be subsampled according to their generation probabilities during the importance sampling step.
Then, background and immune-signal-specific AIRs are combined in one dataset with respect to all immune signals, and AlRs
containing more than two immune signals are removed. For repertoire-based simulation, clonal counts are sampled from a zeta
distribution (7) with user-defined parameters for each immune event or constructed based on the normalized receptor generation
probabilities. If the simulation is performed on the repertoire level, then the main simulation step should be repeated n times,
where n is the number of desired AIRRs to be simulated. (D) LIgO reports all parameters used during the simulation steps. For
the receptor level simulation, a set of (paired) AlIRs (V and J genes, CDR3 region and optionally the full-length receptor) is
reported together with their specificity to each immune signal and immune event, generation probability (optional), and immune
signal position in each AIR. For the repertoire level simulation, receptors of each repertoire are annotated with the immune signal
specificity matrix, immune signal position in each AIR, generation probability of each AIR (optional), and clonal counts.
Repertoire-level metadata with immune signal and immune event annotations is also available in a metadata file accompanying
the dataset. LIgO outputs datasets in AIRR-compliant format both for receptor and repertoire-level simulations.

LIgO simulation workflow

Here we present the LIgO workflow that enables simulation of immune receptor (AIR) and repertoire
(AIRR) data for the development and benchmarking of AIRR-based machine learning. As the first step
(Fig. 2B), LIgO estimates the feasibility of a simulation described with a given set of user-defined
simulation parameters (Fig. 2A) by assessing two potential bottlenecks (Fig. 2B). First, LIgO determines if
the user-defined signals can be efficiently generated using rejection sampling. If this is not the case, LIgO
suggests using signal implantation optionally coupled with importance sampling or modifying the
signal(s) definition, because attempting to simulate rare immune events using rejection sampling can lead
to the first computational bottleneck. The second bottleneck may arise if many AlRs violate our
complexity restriction, which specifies that each AIR must contain no more than two immune signals. In
such cases, these AIRs will be eliminated from the simulation process which may also increase simulation
time. LIgO assesses if any two immune signals frequently co-occur in the same AIR and suggests the user
to redefine co-occurring immune signals. Both bottlenecks can notably increase the simulation time and
may render it quasi-infinite. Although the feasibility assessment step is optional, we recommend users to
check the simulation feasibility before running the main simulation step.

LIgO initiates the main simulation step by obtaining background receptors to be used as a basis for
simulation (Fig. 2C). It does so by either utilizing a generative model, which offers the flexibility of, for
instance, using a custom |IGoR V(D)J model (57, 67, 68) or an experimental AIRR-seq dataset. While the
V(D)J model can simulate an unlimited number of AIRs, it may contain simulation artifacts. Experimental
AIRR-seq data might be more realistic, but they are of a limited size and may contain unknown artifacts
(46), such as batch effects and AIRR imprinting of previous diseases, (45), thus potentially rendering them
insufficient for complex LIgO simulations.

Once the background receptor dataset has been obtained, LIgO achieves the desired amount of
immune-signal-specific AIRs using rejection sampling and signal implantation (Fig. 2C). To enhance the
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rejection sampling efficiency for immune signals involving specific V or J genes when using a generative
model to obtain the background receptors, LIgO constructs a skewed V(D)J model. This specialized
model generates AIRs containing only the required V or J genes, automatically meeting the gene criteria
for the given immune signal. If the simulation is defined by a V(D)J model, the user can evaluate the
generation probability (pgen) of each AIR during the simulation process. Although pgen evaluation is
time-consuming, the generation probability distribution can be used to further filter signal-specific AIRs
during the importance sampling step (Fig. 3E). Importance sampling controls the overall pgen distribution
and provides higher chances for signal-specific AIRs with more likely pgens of being included in the final
dataset. If the user wishes to add background receptors in the resulting AIR(R) dataset(s), LIgO provides
background receptors generated by the V(D)J model or experimental data. Additionally, they can be
further filtered so they are devoid of immune signals. If the filtration is not performed, immune signals in
the background receptors may impact the overall immune signal frequencies in the final simulated
dataset(s).

Upon completion of the simulation, LIgO constructs AIR(R) dataset(s) with the desired frequencies of
immune-signal-specific receptors for each immune event. In the scenario of repertoire-based simulation,
vectors of simulated clonal frequencies can be optionally added to each AIRR. By adjusting the
parameters of the clonal frequency distribution for each immune signal, users have the capability to
simulate processes resembling affinity maturation and the expansion of signal-specific clones. LIgO
outputs AIRR-compliant data, ensuring that each receptor is productive and contains no more than two
immune signals (Fig. 2E). Additionally, to facilitate further ML processing, the data is annotated with a
binary matrix showing for every immune signal its presence in every receptor and, if so, the positions in
the receptor sequence.

Comparison of simulation strategies implemented in the LIgO simulation workflow

As discussed earlier, LIgO simulation approaches have their advantages and disadvantages. Rejection
sampling maintains the AIR sequence unchanged but lacks computational efficiency compared to signal
implantation. We investigated how one can use signal implantation to attain results similar to those
obtained through rejection sampling (Fig. 3A). First, if an immune signal is defined as a k-mer or more
generally as a motif, then the user should take into account the natural signal occurrence distribution
across CDR3 positions and implant the motif according to the natural distribution. For a 3-mer amino acid
signal, only approximately half of the motifs were evenly distributed across the CDR3, while the other half
tended to occur on one CDR3 position (Fig. 3B, Supplementary Fig. 1). Second, if an immune signal is
implanted into any CDR3 position, then around 20% of all signal-specific AIRs will have zero pgen after
implantation, which means that these zero-pgen AIRs cannot be generated through the VDJ
recombination model. If we restrict the implantation position and do not implant in the first and the last
two CDR3 positions corresponding to conserved CDR3 regions, then the percentage of zero-pgen AlRs
drops to around 2% (Fig. 3C). In general, signal implantation decreases pgen of the original AIR by two to
four orders of magnitude on average (Fig. 3D). However, when signal implantation is coupled with
importance sampling, LIgO will no longer produce signal-specific AIRs with zero pgen values, and the
overall pgen difference after implantation is less pronounced than with pure signal implantation (Fig. 3C,
Fig. 3D). Finally, we demonstrated that by employing signal implantation coupled with importance
sampling to simulate signal-specific AIRs, we can achieve an overall similar pgen distribution as those
generated through rejection sampling, while not increasing the computational time (Fig. 3E).
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Figure 3: Comparison of biological properties of different simulation strategies

(A) We compared three simulation strategies — (i) rejection sampling, which keeps an AIR sequence but may be computationally
inefficient, (i) signal implantation, which changes an AIR sequence and thus may change its pgen, but is computationally
efficient, and (iii) signal implantation combined with importance sampling which preserves the pgen distribution of simulated
AlRs and is computationally efficient. (B) We illustrate that different immune signals may have distinct occurrence distribution
across CDR3 positions, where positions are IMGT-standardized. Here we show position distribution patterns of 3-mers occurring
in amino acid TRB sequences generated using the default IGoR model (57). Position frequencies were clustered into 10 clusters
using hierarchical clustering, and one line on the plot represents the mean frequency for each cluster. Some 3-mers have one
dominating position with occurrence probability above 0.4 while others 3-mers occurrence distribution is more uniform (cluster 1
shown in black). (C) Implantation at any CDR3 position and implantation in non-conserved CDR3 regions (shown as implantation)
yields AIRs with pgens=0, which therefore can not be generated by the VDJ recombination model. However, when implantation
is coupled with importance sampling, it prevents the generation of impossible AlRs, aligning with rejection sampling results. (D)
Both implantation and implantation coupled with importance sampling decrease on average the pgen of the simulated AIR
compared to the pgen of the original AIR before implanting. Each boxplot value corresponds to one AIR and represents log10
difference of its pgen before and after signal implantation. Implantation followed by importance sampling has lower median
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log10 pgen difference values compared to implantation alone, the median value for each k-mer size is shown in white. (E) The
pgen distribution of signal-specific AIRs generated using implantation (shown with dashed line) is shifted compared to the pgen
distribution of signal-specific AlRs generated through rejection sampling (shown in dotted line). However, this shift may be
corrected using the importance sampling strategy (shown in solid line). The turquoise solid line illustrates the pgen distribution of
the background AlIRs, which were used as the source of AIRs for all simulation strategies.

Use case 1: Out-of-distribution receptor-level simulation using LIgO

Train and test data composition may impact AIRR-ML models' quality and accuracy (77). For example, (i) if
the train and test set overlap or contain highly similar sequences, then the accuracy of the trained ML
model may be overly optimistic (a case of data leakage). (ii) If the training data is not comprehensive and
representative, it may lead to generalization problems and underperformance on unseen data (47, 42, 44,
66, 72-76). Since different individuals have largely non-overlapping AIRRs (77, 78) and, thus, potentially
different immune signals to the same targets, we investigated how immune signal variability may impact
ML accuracy and model generalization to other unseen (potentially out-of-distribution) individuals.

For this use case, we considered a scenario where an immune signal is defined as one motif, yet each
individual carries a slightly different modification of this motif. Specifically, we defined the immune signal
as a motif AA-A with four variations of the immune signal — AAAA, AANA, AACA, AAGA, reflecting AlRs
from four different individuals (Fig. 4B). We simulated 4 10* AIRs and replicated the experiment ten times,
which resulted in 4-10° of simulated AIRs in total. Simulation details can be found in the Methods section.
We illustrated this use case with a binary receptor-based classification task (Fig. 4A), categorizing AlRs
into signal—speciﬂc (i.e., an AIR contains one out of four signal 4-mers) or non—speciﬁc (i.e., an AIR does
not contain any signal 4-mers). We trained and evaluated a logistic regression (LR) model using two
train-test strategies — (i) random, which randomly splits all receptors from four individuals into train and
test set, and (ii) leave-one-individual out, which places all AIRs from one individual into a test set and AIRs
from all the other individuals into a training test (Fig. 4C).

The LR trained on the random train-test strategy achieved higher balanced accuracy than the LR trained
on the leave-one-individual-out train-test approach (Fig. 4D). Based on interpretability analysis, it can be
seen that the random train-test model obtained and learned information about all 4-mers while the
leave-one-individual out model did not learn the signal that was not present in the training set. This use
case illustrates the impact of train and test data on AIRR-ML quality. It demonstrates that while perfect
prediction accuracy may be observed with a random split approach, prediction accuracy may come across
as more limited based on a leave-one-individual-out split strategy. Leave-one-individual-out split strategy
is considered more real-world relevant since it is likely that a limited number of individuals does not
suffice to cover the entire antigen-specific AIR sequence diversity.
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Figure 4: Use case 1: Out-of-distribution receptor-level simulation using LIgO

(A) We illustrate an example of an out-of-distribution problem using logistic regression as a ML method for receptor-based binary
classification, i.e., classification of signal-specific vs non-specific AIRs. See Methods section for more details. (B) We defined the
immune signal by four 4-mers differing in the third position — AAGA, AANA, AACA, AANA. We simulated four sets of 10000
AlRs using signal implantation, where 5000 AIRs were signal-specific, and 5000 AIRs were non-specific, i.e., not containing any
signal 4-mers. We assumed that one set of AIRs corresponds to one individual, and each of the four sets of AIRs contained only
one out of four signal 4-mers. We replicated the simulation ten times. (C) We applied two train-test split strategies to train the
logistic regression model for receptor-level classification — (i) random split, where the signal-specific AIRs containing the four
signal 4-mers are present both in the train and in the test set, and (ii) leave-one-individual-out split for every individual, where
AlRs with only three 4-mers out of four were present in the train data and the AIRs with the fourth signal 4-mer was present in the
test data only. (D) Performance comparison and interpretability analysis. We trained a 4-mer logistic regression with two train-test
split strategies on all ten replicates resulting in ten ML models. The 4-mer logistic regressions trained on the random train-test
split achieved higher accuracy and its largest coefficients corresponded to the four signal 4-mers (AAAA, AAGA, AANA, AACA).
The 4-mer logistic regression trained on the leave-one individual out train-test split achieved lower performance with a median
balanced accuracy of 0.57. The LR achieving the best performance was trained on the split, where all AIRs containing the 4-mer
AAAA were placed in the test set. The largest coefficients of this LR contain three out of four signal-specific 4-mers (AAGA,
AANA, AACA). The boxplots display model performances for all four splits within 10 replicates and the median performance
value is shown in red. The bar plots display the top twenty logistic regression coefficients from the best model with the highest

absolute value, and the error bars indicate the standard deviation for ten replicates.
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Use case 2: Limitations of conventional encoding schemes for repertoire-level binary classification when
immune signals co-occur within the same AIR

Several previous studies have suggested that the information needed for repertoire-based classification is
sufficiently represented through conventional k-mer encoding of AIRs (3, 4, 65, 79-81). However, immune
signals may comprise multiple co-occurring motifs within the same receptor (3, 75, 76). In this case,
conventional k-mer encoding that treats each k-mer in isolation may not be sufficient to represent the
distinction between immune states. LIgO can simulate such complex immune signals that may pose
challenges to ML methods that do not consider the co-occurrence of motifs within the same receptor. To
demonstrate this, we simulated AIRR datasets for a repertoire classification problem, where the distinction
between contrasting immune states cannot be observed using conventional k-mer encoding (Fig. 5A).

Specifically, using LIgO, we simulated many TRB repertoire datasets, where each dataset contained 200
repertoires (100 each of positive and negative-labelled) with 10° productive CDR3 amino acid sequences
per repertoire. Simulation details are described in the Methods section. We assumed that the immune
signal that differentiates positive and negative-labelled repertoires is defined as the joint co-occurrence
of two amino acid 3-mers: GDT and SGL (Fig. 5B). The experiments were performed in two different
settings with varying frequencies at which the immune signal occurs: 0.01% and 0.1%. The simulation with
LIgO was carried out in such a way that the relative abundances of the chosen 3-mers, when considered
in isolation, is similar for both positive and negative-labelled repertoires (Fig. 5D). The distinction
between the labels will only be apparent when the receptor-level co-occurrence of GDT and SGL is
considered.

We assessed the performance of the logistic regression (LR) with the conventional k-mer encoding on the
LIgO-simulated data with co-occurring immune signals. In our previous study (Figure 3.a in (63)), we
showed that the LR approach exhibited close to perfect performance even at signal frequency of 0.01% if
a signal is defined as a set of motifs and each AIR contains no more than one signal motif. However, the
same method exhibited poor performance even at a very high signal frequency of 0.1% in the current
simulations where the signal is defined as two co-occurring 3-mers (Fig. 5E). As a proof of concept, we
implemented a custom multiple instance learning approach (MIL) which is based on the underlying
assumption that the immune signal is encoded in 3-mer pairs. The detailed description of the custom MIL
approach can be found in the Methods section (Fig. 5C). In contrast to the LR with the conventional k-mer
encoding, the custom MIL approach was able to perfectly classify the repertoires even at a signal
frequency of 0.01% (Fig. 5E) with median balanced accuracy of 1. Given that the simulation design did
not include any label or attribute noise, and that the immune signal frequency is quite distinct between
positive and negative labelled repertoires (~ 10 AlRs vs ~ 1 AIR harbouring signal), it was expected that
the ML model exhibited near-perfect performance. To summarize, benchmarking the standard k-mer ML
approach for repertoire classification with LIgO simulated data shows that they are unable to detect
co-occurring immune signals. This demonstrates how LIgO can be used to assess the capacity and limits
of specific approaches.
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Figure 5: Use case 2: Limitations of the conventional k-mer encoding scheme for repertoire-level binary classification when
immune signals co-occur within the same AIR

(A) We demonstrate the limitations of conventional k-mer encoding for a binary AIRR classification problem by utilizing LR and a
custom multiple instance learning (MIL) approach. The task involves classifying repertoires as positive or negative based on the
presence of an immune signal. Detailed methods can be found in the Methods section. (B) An example of a complex immune
signal that may pose challenges to ML methods that neglect the co-occurrence of immune signals within the same AIR. The
signal is composed of co-occurring GDT and SGL 3-mers within the same AIR and the frequency of such AlRs is higher in the
positive repertoires. Moreover, the frequency of each 3-mer GDT and SGL remains identical in both the positive and negative
repertoires, rendering it indistinguishable using the conventional k-mer encoding approach. We simulated two scenarios where
positive repertoires consist of 0.01% and 0.1% of signal-specific receptors containing both GDT and SGL. For each scenario, we
simulated 200 TRB repertoires (100 AIRRs in each class and 10° AIRs per repertoire) and replicated the simulation three times
(1200 AIRRs and 1.2-10® TRBs in total). (C) We tested two MIL approaches for binary repertoire classification — (i) LR with
conventional 3-mer encoding and a custom MIL approach. Briefly, the conventional LR approach (i) encodes every repertoire to a
vector of normalized 3-mer frequencies across all AlRs within the repertoire. After that, vectors of 3-mers are classified using LR.
The second custom MIL approach (ii) takes into account the 3-mer co-occurrence on the receptor level. First, every receptor is
classified into signal-specific and non-specific based on the Fisher's exact test. On the second step, a LR classifies repertoires
based on the number of signal-positive and negative receptors within the repertoire. (D) The relative frequency distribution (on
the y-axis) of two 3-mers, GDT and SGL, that constitute the immune signal is shown for positive and negative repertoires and two
different immune signal frequencies (0.01% and 0.1%). Note that the y-axis here represents normalized frequencies relative to the
frequencies of all k-mers and is different from the immune signal frequency percentages. The visualization shows that the
frequencies of the immune signal 3-mers is similar for positive and negative AIRRs when their joint co-occurrence is not
considered. (E) Performance estimates (on the y-axis) of two different ML methods in a binary repertoire classification shown with
balanced accuracy. As expected, the conventional LR with a 3-mer encoding performs poorly, achieving median balanced
accuracy of 0.5 and 0.53 in two signal frequency scenarios. In contrast, the custom MIL, which considers the 3-mer
co-occurrence, achieves a median balanced accuracy of 1 in both signal frequency scenarios.
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Discussion

Simulations, as previously emphasized by Sandve and Greiff (45), enable the benchmarking of
computational methods and are valuable in bioinformatics research, even in the presence of sufficient
experimental data with known ground truth. Here, we developed the LIgO software suite for flexible
simulation of AIRR data suitable for AIRR-ML benchmarking. While there exist other software suites for
AIRR data simulation (57, 52, 54, 68), these tools do not offer the possibility for configuring entire
AIRR-ML benchmarking datasets for both repertoire and receptor-based classification tasks with complex
and native-like immune signals (Supplementary Table 1). LIgO can be used together with the immuneML
framework (33), enabling reproducible integration of simulation and subsequent AIRR-ML experiments
(Supplementary Fig. 3).

To illustrate the usefulness of simulations for AIRR-ML research, we demonstrated LIgO on two use cases
— (i) how train and test data split may drop the observed predictive performance in the
out-of-distribution case, and (ii) how sequence encoding schemes can capture varying degrees of
immune signal complexity. Using the ground truth information about immune signals present in
LIgO-simulated AIRR data, we compared the immune information captured by the ML approaches to the
original immune signals present in the data. The first use case demonstrated that the difference in
underlying signal distribution between train and test sets may impact the ML method's observed
performance. The second use case shows how LIgO simulations can be set up to reveal how a custom
MIL method built based on a data assumption, like assuming that antigen specificity is determined by a
pair of signals, indeed outperforms a standard approach if applied to data following this assumption.
These use cases illustrate how LIgO can be used to investigate connections between the assumptions
used for building an AIRR-ML method and the assumptions made about the AIRR data. These use cases
are not yet feasible to reproduce on experimental data since ground truth information about immune
signals present in every AIR is usually not known (9, 66). The two demonstrated use cases are only
example usages of the LIgO package. In addition, LIgO can also be utilized for benchmarking other AIRR
methods, such as evaluating the performance of antigen-specific AIR clustering approaches (Valkiers et al.
2021; Rognes et al. 2022; Chang et al. 2023).

A main difficulty with AIRR simulations suitable for AIRR-ML benchmarking is the poorly described nature
of immune signals. Although it is widely agreed upon that immune signals exist on the frequency level
(clonal expansion) (7), sequence level (binding and structure-related sequence motifs) (3, 4), and structure
level (3), their antigen- or disease-specific shape remains largely uncharacterized. Therefore, simulation
frameworks that aim to enable real-world relevant ML benchmarking need to encompass a large array of
potential immune signal definitions and configurations to cover a broad area of the potential biological
immune signal space. To this end, LIgO immune signals may be defined through gapped k-mers or motifs
in general (4, 20), repertoire generation model (67), clonal expansion (7), or a combination thereof.
Additionally, LIgO offers the flexibility for immune signals to take any shape when defined through a
custom function that indicates the signal’s presence in an AIR. Such functionality was lacking in previous
simulation tools (Supplementary Table 1). Although LIgO offers limitless possibilities for defining immune
signals, it remains the user's responsibility to define an immune signal that comprehensively captures
biological complexity and reflects underlying assumptions of an AIRR-ML model to be validated.
Particular care is taken to ensure that immune signals do not break underlying AIR biology, such as AIR
germline-originating subsequences and the generation probability distribution. We demonstrated that
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signal implantation coupled with importance sampling may achieve a similar pgen distribution to
rejection sampling while keeping computational efficiency. The flexibility of the presented approach
allows users to define immune signals according to the state of understanding in the field at any point in
time. Furthermore, helper functions guide the user as to which signal definitions are possible within a
reasonable simulation time window.

In the future, large-scale antigen-specific AIRR data both on the receptor and repertoire level will be
necessary to understand immune signals better. More specifically, on the repertoire-level, the dynamics of
repertoire structure as a function of antigen exposure require further investigation (82). On the receptor
level, we need to better understand the long-range dependencies that govern paratope-epitope
interaction, using structural (3) and deep-mutational scanning screens (74). Although LIgO does neither
leverage HLA-background information for TCR repertoire simulation (83) nor the influence of IG/TRB
germline gene background on AIRR diversity (67, 84-87), such influence may be modeled similarly to
immune states with respect to the underlying causal model as recently shown by Pavlovi¢ and colleagues
(46).

While LIgO encompasses many necessary features for comprehensive and exhaustive AIRR-ML
simulation, possible improvements are: (i) integrate structure-based features enabling implicit and
nature-like inclusion of long-range dependency signals (66). (i) Combine LigO with sequencing read
simulators (88, 89) to incorporate PCR or sequencing errors. This type of error simulation is essential for
studying artificially induced diversity versus biological clonal expansion and batch effects (46, 90). (iii)
Moreover, realistic simulation of cross-reactivity (i.e., the simulation of multiple immune signals per
sequence) and chain pairing require further biological insights. (v) Finally, simulations on the repertoire
level may be refined to render the simulation of public clone occurrence more native-like (62), as well as
by (vi) allowing for the simulation of somatic hypermutation (?7-93) and (vi) associated phylogenetic
lineage trees (55, 94-97). There is a potential risk that an AIRR-ML model trained on simulated data may
only learn the artifacts of the simulation framework, thereby impacting the applicability of ML
model-related insights to real-world scenarios. This may be addressed in the future by analyzing how ML
results on synthetic data transfer to experimental data as recently demonstrated by Robert et al. (64).
Further work is needed on the biological understanding of immune signals for improved simulation (38,
63). Moreover, current speed bottleneck computations, such as those of generation probability, may be
alleviated by novel encoding algorithms (98)), thus improving overall simulation speed.

Future progress in AIRR-ML research is required in areas as diverse as evaluating the impact of sample
size on prediction accuracy (33, 63), negative dataset definition (44, 72, 73), and unbiased estimation of
prediction accuracy (74, 99. For all of these use cases, LIgO simulations may be employed for
benchmarking and developing interpretable AIRR-ML methods.
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Methods
Simulation of background AlRs

LIgO supports two sources for background AIRs — (i) simulation of synthetic AIRs using a V(D)J
recombination model, or (ii) processing experimental or any other set of AIRs provided by the user. The
chosen source of AlIRs will also be used during the simulation of immune-signal-specific AlRs.

To simulate naive synthetic AIRs, LIgO uses the OLGA tool (68) according to a predefined V(D)J
recombination model (OLGA model), but, in principle, any other V(D)J recombination simulator such as
IGoR (57) or immuneSIM (52) can be used. Briefly, OLGA describes a V(D)J recombination using a
stochastic process, whose parameters include the distribution of V genes (or alleles), a conditional
probability of J genes (or alleles) given a V gene (or allele), and others. OLGA produces AlIRs in the
format of a V gene (or allele) name, CDR3 sequence (nucleotide and amino acid), and a J gene (or allele)
name, for example, TRBV3*01 + CASSLGGVGYEQYF + TRBJ2-7*01. LIgO supports the usage of the
default OLGA models with parameters estimated using IGoR (57). This includes human AIRs (IGH, IGL,
IGK, TRA, TRB) and mice AIRs (TRA, TRB). Alternatively, the user may specify a custom OLGA model. For
example, a user can simulate mosaic deletion patterns if they assign (conditional) probabilities of zero to
several gene alleles (700).

The second option for the simulation of background AIRs is a user-provided set of annotated AIRs in the
following formats — AIRR Community standard format (707), MIXCR (702), 10x Genomics (703), Adaptive
Biotechnologies ImmunoSEQ (2, 704, or VDJdb formats (705). In this case, LIgO will iterate through
every AIR once until the set of AIRs is empty. If the user-provided set of AIRs is not large enough to
complete the simulation, LIgO will inform the user that a larger pool of background AIRs is needed to
complete the simulation.

Representation of motifs

LIgO allows for defining motifs in three different ways (Fig. 1C) — k-mers, gapped k-mers, and PWMs
(positional weight matrices). K-mers and gapped k-mers might be more convenient for initial
proof-of-concept simulations as they are more straightforward to define than PWMs.

1. A k-mer is defined as a nucleotide or amino acid subsequence of length k, for example, AAA.
Theoretically, a k-mer can be an entire CDR3 region. LIgO can also introduce several
mutations to a k-mer defined by a Hamming distance range, i.e., the number of allowed
mutations from the original k-mer to the mutated k-mer. For example, a k-mer AAAA with
additional hamming distance range from 1 to 2 corresponds to a set of 4-mers that contain
two or three As and the other positions may be any nucleotide or amino acid.

2. A gapped k-mer is defined as a nucleotide or amino acid subsequence that contains k
nucleotides or amino acids and gap(s). In LIgO, the gap is allowed only in one position and a
gapped k-mer is parameterized with a subsequence, gap position, and gap length range. For
example, a gapped 3-mer AA/A with a gap range from 1 to 3 encodes the subsequences
AA-A, AA--A, and AA---A, where a gap, denoted with “-”, corresponds to one arbitrary
nucleotide or amino acid. Similarly to k-mers, LIgO supports the definition of hamming
distance with a gapped k-mer.
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3. A PWM of length k is defined as a joint probability distribution of k independent discrete
distributions over nucleotides or amino acids. Every PWM column describes a distribution for a
given position of a motif. A k-mer is a special case of a PWM where the values in every column
are zero except for one nucleotide or amino acid that is 1. A gapped k-mer is a PWM whose
values in every column are either O or 1 in the positions where there is no gap, and uniformly
distributed among nucleotides or amino acids in the gap positions.

A critical concept for LIgO simulation is defining whether a given AIR contains a motif. If a motif is a k-mer
or a gapped k-mer, an AIR must include this (gapped) k-mer as a substring of the CDR3 region. A
(gapped) k-mer or a PWM search in an AIR is implemented using BioNumPy (706) enabling efficient
representation and operations with AlRs. Additionally, the search for (gapped) k-mers can accommodate
mismatches, allowing for hamming distance consideration. If a motif is a PWM, LIgO constructs a regular
expression based on the PWM and checks if an AIR matches the regular expression. For every
subsequence matching the regular expression, LIgO calculates a PWM score, which equals its
log-likelihood under the distribution described by PWM. Only those subsequences with a PWM score
above a user-defined threshold are considered a match.

PWMs and (gapped) k-mers can describe various motifs in a sequence. However, using only one PWM,
we cannot introduce dependencies between different positions in a subsequence because, by definition,
the discrete distributions corresponding to every motif position are independent. Therefore several
PWMs or (gapped) k-mers may have to be combined to describe an immune signal and capture the
biological complexity. For example, if one were to define a motif A(A/C)(A/C) where only one C is
allowed, one would have to combine two k-mers AAC and ACA.

Representation of immune signals

Immune signals (Fig. 1C) combine motifs with positional dependencies and immune-specific information.
LIgO implements two types of immune signals: (i) a set of motifs that are (optionally) restricted with the V
and J gene or allele names and the position(s) in the CDR3. For example, a set of motifs {AAA, CCC,
A--CC} restricted by IGHV1*01 and IGHJ4, which occur only on the IMGT positions 108 or 110 (707). In
this case, an AIR contains an immune signal if it contains any of the motifs on a particular CDR3 position
and the correct V and J gene, if the IMGT position(s) or V/J genes are defined. (ii)

The second way to define an immune signal is a custom function indicating the signal’s presence in an
AIR. The function takes the amino acid and the nucleotide AIR sequence, its V and J gene and returns
true if the AIR contains the desired signal and false otherwise. Such custom functions allow users to
define any immune signal. For example, for an antigen-specific ML classifier that takes a sequence as
input and produces the signal label as output (74, 72, 108), the user could write a custom function to call
the classifier and define an immune signal based on the classifier's output.

Representation of immune events

Immune events (Fig. 1C), such as diseases, vaccinations, or allergies, elicit immune responses which
change an individual's adaptive immune receptor repertoire. AIRRs with the same immune event might
share similar immune signals involved in the immune response. More formally, LigO defines an immune
event as a set of immune signals and their proportion in an AIRR. For example, we can define an AIRR
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with T1D (type 1 diabetes) experience as containing 1% of receptors with corresponding signals. To
reflect biological complexity, LIgO-simulated immune repertoires may contain multiple immune events.

For a receptor-level simulation, an AIR belongs to an immune event if it contains any of the signals for the
immune event. Implementation-wise, the immune event for a single AIR is the next level of abstraction
after the immune signal and is directly assigned to an AIR. It does not influence the AIR sequence in any
way, but logically, it should follow the immune signals that are considered to belong to a given immune
event. Since it does not influence the simulation, there might be as many immune event labels as desired.
For example, we can regard an immune event T1D as a set of two immune signals {signall = "AAA",
signal2 = "GGG"}. In this case, an AIR (TRBV13*01+ CASSAGGGAFYGYTF + TRBJ1-2*01) will be
signal2-specific because it contains "GGG". The user may then choose to explicitly assign the “T1D”
label to the receptor. From a practical standpoint, a user would define a group of receptors with a
particular set of simulation parameters and labels.

Generalization of the immune signal concept to paired-chain AIRR data

Both BCRs and TCRs are (generally) composed of two protein chains — heavy and light chains for BCRs
and alpha/beta or gamma/delta chains for TCRs. Until recently, most studies focused on the heavy chain
of BCRs and beta or delta chains of TCRs (709, 770). However, the pairing information is important for
studying AIR diversity (777) and antigen binding (772). Recently developed single-cell AIRR-seq
technologies enable accurate identification of paired AlRs (773, 774). Currently, it remains unclear
whether the pairing rules that combine two chains in one receptor follow a uniform distribution or not,
and until now, there are no studies that were able to infer the pairing rules (775-718). Furthermore, there
is little evidence of major structural constraints in chain pairing (779).

The LIgO simulation framework is based on the simplifying assumption that an AIR is independently
formed by two chains, which allows processing these two chains separately and defining an immune
signal of a paired AIR as immune signals of each two receptor sequences. We define that a paired chain is
part of an immune signal if and only if at least one chain contains the immune signal. A special case of a
paired immune signal is a pair of two signals where one or even two AIRs are predefined (i.e., a
corresponding motif is a whole receptor). In this case, all the paired receptors that are part of this paired
immune signal will share a similar or same light chain. A paired immune event is defined as a pair of a
specificity label and a set of paired immune signals.

Simulation of paired signals is performed similarly to the single-chain signal simulation described above.
Each chain is independently simulated using either rejection sampling or signal implantation. After that,
single chains are grouped into pairs per user specification.

Immune receptor annotation with immune signals

LIgO annotates an AIR as containing an immune signal or not, via checking if any of the immune signals
defined in the simulation occurs anywhere in the AIR where it's allowed (per IMGT positions if they are
specified). If one AIR contains two overlapping motifs from different signals, the AIR is labeled as specific
to both signals and removed if two signals per receptor are not specified for that simulation batch. If one
AIR contains two motifs from the same signal, they are not considered separately and the AIR is labeled
as specific to that signal.
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Simulation of immune-signal-specific receptors using rejection sampling

Rejection sampling enables simulation of event-specific AIRs without changing their sequence. The
rejection sampling procedure is performed iteratively. During each iteration, a batch of background AlRs
is selected either from the background V(D)J model or experimental data. By default, the batch size is 10*
AlRs. If an immune signal contains signals which are restricted with a specific V or J gene and the
simulation is defined by a V(D)J model, LIgO uses a skewed V(D)J model to simulate AIRs containing only
the predefined V and J genes to speed up the simulation process. After that, each AIR from the batch is
annotated with all immune signals. AIRs containing more than two immune signals are eliminated. AIRs
containing one immune signal or a combination of two immune signals (as per user specification) are
added to a pool of immune-signal-specific receptors. The process is repeated until the desired amount of
receptors is not simulated for all immune signal(s) or the number of iterations exceeds the upper limit,
which is 100 by default.

Simulation of immune-signal-specific receptors using signal implantation

Signal implantation is the fastest way to simulate immune-signal-specific receptors. However, this method
is limited to immune signals which are defined as either a (gapped) k-mer or PWM. This limitation arises
because implantation of other signal components such as a V gene or CDR3 length, may impact an AIR
sequence structure. Once the user defines the desired amount of AIRs for each immune signal, LIgO
obtains this specified amount of background receptors from either a recombination model or
user-defined experimental data. After that, the corresponding (gapped) k-mer or a substring generated
by a PWM is implanted to each AIR, respectively. Implantation can be performed at any position of the
CDR3 region in such a way that the implanted subsequence does not increase the length of a given AIR.
The implantation position can be uniformly distributed across the CDR3 or may be defined by the user
according to a distribution across IMGT positions. For instance, positions in the center of the CDR3 might
have a high probability of implantation, while positions in the conserved regions such as the beginning
and the end of the CDR3 might exhibit negligible probability.

Generation probability evaluation

When a LIgO simulation is defined by an OLGA V(D)J recombination model (57, 68), it enables the
computation of generation probability for all AIRs involved in the simulation process with respect to this
specific model. The generation probability (pgen) of an AIR estimates the probability of a given OLGA
model to generate a given AIR (68). Pgen is calculated as the cumulative probability across all potential
recombination scenarios capable of producing this AIR. While generation probability can provide valuable
insights into AIRR analysis (57, 67, 120, 121), it is worth noting that pgen computation might lead to an
increase in overall simulation time due to the slower nature of OLGA's pgen calculation.

LIgO does not support pgen evaluation if a simulation is defined via user-provided experimental data. In
this case, the corresponding recombination model is not specified since experimental data may be
merged from multiple individuals and thus align with distinct recombination models (67).

Importance sampling

If a LIgO simulation is defined by an OLGA V(D)J recombination model, LIgO supports an importance
sampling approach, which preserves the pgen distribution of a simulated AIRR close to the background
pgen distribution. First, LIgO estimates the pgen distribution of background AlRs through a histogram of
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logarithmically transformed pgens of a large set of background AlRs. To do so, LIgO generates a batch of
background AlIRs, and divides these AIRs into equal-width histogram bins (in log-scale), where the
number of bins must be provided by the user. Next, an acceptance probability is assigned to each bin of
the histogram. The acceptance probability is proportional to how often we observe background AlRs
falling into the pgen range corresponding to the histogram bin. If there are any pgen bins without
observed AlRs, they are set to a predefined minimum acceptance probability of 10°. All these acceptance
probabilities are then normalized to sum to 1.

During the simulation of event-specific AIRs, LIgO generates an AIR either with rejection sampling or
signal implantation and calculates the logarithm of its pgen. This log-pgen is then matched with the
corresponding bin in the histogram and the acceptance probability associated with this bin.
Subsequently, the AIR is accepted into the final dataset with a probability equal to the acceptance
probability. This process is continued until the desired amount of event-specific AIRs has been simulated.

Assessment of simulation feasibility

To evaluate the simulation feasibility for a given set of parameters, LIgO generates a batch of background
AIRs, with the default batch size being 10° AIRs. After that, each AIR is annotated with all immune signals
participating in the simulation process and AlRs containing more than 2 immune signals are filtered out.
The ratio of immune-signal specific receptors to the batch size estimates the immune signal frequency
among the background receptors. If the estimated frequency of an immune signal is excessively low (less
than 0.001%), then it is not recommended to use rejection sampling for simulating this immune signal.
This is due to the number of background receptors that must be generated during rejection sampling to
find at least one event-specific AIR is inversely proportional to the background frequency of this immune
signal. Conversely, if the estimated frequency is too high (more than 10%), then such an immune signal
may lack biological relevance and might cause an increased number of simulation iterations, if the user
wants to add background receptors without any immune signals to the final dataset.

LIgO also estimates an immune signal co-occurrence matrix, which represents the conditional probability
of observing one immune signal within an AIR given the presence of another immune signal. This
conditional probability of an AIR containing immune signal 2 given the presence of immune signal 1 is
calculated as a ratio of the number of AIRs within the original batch containing both immune signal 1 and
immune signal 2 and the number of AIRs containing only immune signal 1. For users considering rejection
sampling while ensuring each AIR holds no more than one signal, the co-occurrence matrix indicates
which immune signals have high chances of co-existing in one AIR. These immune signals are
recommended to be re-defined. Alternatively, users can use implantation instead of rejection sampling
since it can restrict the number of immune signals to one for each AIR.

Clonal count simulation

In a repertoire-based scenario, LIgO offers an optional simulation of clonal counts for each AIR. These
counts follow the Zeta distribution, which is a discrete analog of the power law distribution. The
realization of the Zeta distribution is performed using the Zipf function from the scipy.stats library (722),
which requires two parameters — a (shape parameter, where a=1) and /oc (shift parameter). For each
immune signal and the background AIRs, the user needs to define a and Joc parameters. By adjusting
these parameters across different immune signals, one can simulate clonal expansion of AIRs containing
these specific signals (7).
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Identification of amino acid 3-mer frequency distribution patterns in CDR3 regions of synthetic IGHs and
TRBs

To demonstrate the natural distribution of 3-mers within CDR3 regions, we used LIgO to simulate a
dataset of 10° amino acid background TRBs using the default IGoR generation model (57, é8), where
each CDR3 has a restricted length of 15 amino acids. After that, we calculated how often each 3-mer
appears on each CDR3 position among simulated TRBs using immuneML (33). We only considered
3-mers starting at the IMGT positions 105-115, because the positions 104 and 118 are conserved and
thus deliberately excluded from the analysis. We also eliminated from the analysis all 3-mers that were
present in less than 10 TRBs out of the total amount of 10°simulated TRBs. For each 3-mer we normalized
the frequencies of this 3-mer across positions 105-115, ensuring that the total sum equals one.
Normalized frequency vectors were then clustered using hierarchical clustering with complete linkage
method and Euclidean distance between vectors. The hierarchical clustering dendrogram was split into
10 clusters and for each cluster, we calculated the mean frequency and 95% confidence interval among all
3-mers belonging to this cluster for all IMGT positions 105-115. Nine clusters out of ten (clusters 2-10)
containing 48.69% of amino acid 3-mers in total have a peak of average frequency, i.e. average frequency
> 0.4, at one of the IMGT positions 105-108 or 111-115 (Fig. 3). One cluster (cluster 1) containing
59.92% 3-mers has no average peaks.

The same analysis was also performed on 10° amino acid IGHs, see Supplementary Fig. 2 for more
details. Three out of ten clusters (clusters 1, 3, 4, 79.98% of 3-mers) do not contain a frequency peak on
average at any IMGT position, seven out of ten clusters (clusters 2, 5-10, 19.85% of 3-mers) have an
average peak at one of the IMGT positions 105-108 or 111-115.

Signal implantation decreases the generation probability of a given receptor

We conducted a comparison of pgens before and after implantation across four different signals, where
one signal is defined as a set of ten random amino acid k-mers of the same length; see
Supplementary Table 2 for the list of used k-mers. We simulated four TRB datasets, each corresponding
to a different k-mer size, specifically k = 2, 3, 4, and 5. For each k-mer, we simulated 100 signal-specific
amino acid TRBs using implantation and the default IGoR model (57, 68), resulting in a total of 1000 TRBs
for each individual dataset. The implanting positions were constrained to ensure that each implanted
k-mer does not affect the first and the last two amino acids of the original CDR3 sequence. Using the
default IGoR model (57, 68), we computed a pgen difference for each TRB by subtracting the
log10-transformed pgen after implantation from the log10-transformed pgen before implantation.
Receptors with a post-implantation pgen value of zero were excluded from the analysis, resulting in
removing 0.8% of TRBs for 2-mers, 0.7% of TRBs for 3-mers, 2.4% of TRBs for 4-mers, and 3% of TRBs for
5-mers. The majority of TRBs exhibited a positive pgen difference, with percentages as follows: 95.1% for
2-mers, 96% for 3-mers, 97% for 4-mers, and 93.4% for 5-mers. The median pgen difference values were
2.46 for 2-mers, 3.04 for 3-mers, 4.14 for 4-mers, and 4.05 for 5-mers. This indicates that, on average, the
pgen of a receptor after implantation may experience a reduction of between two and four orders of
magnitude, depending on the length of the k-mer. Similarly, we calculated pgen difference when
immune-signal-specific AIRs are generated using signal implantation coupled with importance sampling,
where the background pgen distribution was estimated using 10* TRBs splitted into 30 histogram bins. In
this scenario, the average pgen difference decreased compared to signal implantation performed on its
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own. The median pgen difference values were 1.77 for 2-mers, 2.5 for 3-mers, 3.36 for 4-mers, and 3.46
for 5-mers.

Implantation coupled with importance sampling yields an overall similar pgen distribution to rejection
sampling for signal-specific AIRs

We compared the generation probability distribution of signal-specific AlRs generated using three
simulation approaches — rejection sampling (RS), implantation (I), and implantation coupled with
importance sampling (I + IS). The immune signal was defined as a set of ten random k-mers of the same
length, where k = 2, 3, 4, and 5; see the detailed description of the immune signals and the simulation of
signal-specific AIRs using rejection sampling and signal implantation in the previous section. To simulate
signal-specific AIRs using implantation coupled with importance sampling, we constructed a histogram of
logarithmically transformed pgens using 30 bins and 10* background TRBs simulated with the default
IGoR model (57, 68). Next, we evaluated acceptance probabilities for each bin and continued the
simulation until the number of accepted AIRs for each k-mer was 100. The pgen distribution of
signal-specific AIRs generated using implantation coupled with importance sampling is overall closer to
the rejection sampling pgen distribution, which is the ground-truth pgen distribution of signal-specific
AIRs in logarithmic scale. The median of the log-pgen distribution for each method are: 3.5-107" (l),
8.1-10" (RS), 1.2-10"2 (I+1S) for 2-mers; 1.9-10"° (1), 1.4- 10" (RS), 1.4- 10" (1+IS) for 3-mers; 1.4- 107 (1),
3.3-10™(RS), 1.8- 10" (I+IS) for 4-mers; and 2.7-107¢(l), 5.6- 10" (RS), 1.9- 10" (1+1S) for 5-mers.

Use case 1: Out-of-distribution receptor-level simulation using LIgO

To demonstrate how different train-test split strategies may impact the prediction accuracy and the
optimal model, we simulated a dataset of 4-10* IGH amino acid sequences in 10 replicates (4-10° IGHs in
total) using signal implantation and the default IGoR IGH V(D)J recombination model (57). Each dataset of
4-10" IGH sequences represented a set of AIRs obtained from four different individuals, where every
individual contributed 5-10° signal-specific AIRs and 5-10° non-specific AIRs to the dataset. The immune
signal was defined as a set of four similar 4-mers — AAAA, AAGA, AACA, and AANA, and we assumed
that every individual carries only one signal 4-mer out of four. Altogether, one dataset contained 10* IGH
sequences from person 1 (5-10° IGH sequences with AAGA, 5-10° IGH sequences without any of four
signal 4-mers), 10* IGH sequences from person 2 (5-10° IGH sequences with AACA, 5-10° IGHs without
without any of four signal 4-mers), 10* IGH sequences from person 3 (5-10% IGH sequences with AANA,
5-10° IGH sequences without without any of four signal 4-mers), and 10* IGH sequences from person 4
(5-10° IGH sequences with AAAA, 5-10°IGH sequences without without any of four signal 4-mers), where
non-specific IGHs did not contain any of the four signal 4-mers.

We used a logistic regression model to perform a binary receptor-based classification task, i.e., classify
AlRs into a signal-specific class or non-specific class. You can find more details about our usage of logistic
regression in the “Machine Learning” methods section. The logistic regression model was trained and
tested using the data described above and two train-test split approaches — (i) random train-test split
and (i) leave-one individual out train-test split. For the random train-test split strategy, 4-10* IGH
sequences were randomly split into 75% train and 25% test subsets four times for the model assessment
on the outer cross-validation loop, and every time within the inner cross-validation loop, threefold
cross-validation was used for the model (e.g., hyperparameter) selection. For the leave-one-individual out
procedure, we split 10* AIRs from one individual to the test set and the rest 3- 10* AIRs to the train set for
the model assessment (outer) cross-validation loop and this was repeated for every individual. In the
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model selection (inner) cross-validation loop we again split 10* AIRs from one individual to the test set,
and the rest 2- 10* AlRs to the train set and repeated this procedure for every individual.

We benchmarked the logistic regression model from the scikit-learn package (723) using immuneML (33).
We encoded the IGH sequences using 4-mers encoding, where each vector of 4-mer frequencies was
normalized by scaling its variance to 1, and mean to zero across different IGH sequences. We used two
train-test strategies and performed hyperparameter optimization for regularization parameters (L1 and
L2), and the regularization constant (0.01, 0.05, 0.1, 1), where the optimized performance metric during
model training was balanced accuracy. We repeated the logistic regression training 10 times for every
dataset replica.

For both train-test split strategies, the optimal balanced accuracy was achieved on the L1 regularization
and the regularization constant 0.1. However, the model trained using the random train-test split strategy,
achieved a mean balanced accuracy of 0.98, and the model trained using the leave-one-individual out
achieved a mean balanced 0.67. We examined the ability of both logistic regression models to recover
the ground-truth implanted 4-mers. We considered the largest absolute coefficients of the optimal
logistic regression models, and the random LR models recovered all four signal 4-mers, while the
leave-one-individual out models only recovered three signal 4-mers (AAGA, AANA, AACA) out of four.

Use case 2: Limitations of conventional encoding schemes for repertoire-level binary classification when
immune signals co-occur within the same AIR

We simulated 200 TRB repertoires (100 repertoires in each class and 10° amino acid AIRs in each
repertoire) in six replicates (three replicates for two signal frequencies 0.01% and 0.1%). We defined an
immune signal as a combination of two 3-mers GDT and SGL. Both GDT and SGL occur in the naive AlRs
simulated via the default IGoR TRB model (57) at approximately 0.01% frequency and co-occur in the
same AIR at approximately 0.00001% frequency. Using rejection sampling, we simulated positive class
AIRRs containing 0.01% or 0.1% of signal-specific receptors (containing both GDT and SGL), and the
negative class containing 0.001% and 0.01% signal-specific receptors, respectively. Additionally, AIRRs
from the positive and the negative classes had similar frequency of each GDT and SGL separately, which
made the classes indistinguishable for the classical k-mer encoding.

Using the simulated data described above, we compared two multiple instance learning (MIL) approaches
— logistic regression and a custom approach that takes into account signal co-occurrence. The first ML
method has been described extensively elsewhere (Kanduri et al. 2022). Briefly, an L1-regularized logistic
regression model trained on k-mer abundance-encoded data (k=3 here) was used, whose
hyperparameters are optimized through nested cross-validation. Note that this method treats each k-mer
in isolation and does not consider combinations. The second ML method (custom MIL) first classifies each
receptor (instance) as whether immune state-associated or not and then sums up the number of positive
instances per repertoire. The number of positive instances per repertoire is used as the single feature for
a logistic regression. The identification of positive instances relied on the presence of pairs of 3-mers
(combinations) that are together over-represented in positive class labeled receptors relative to the
negative class labeled receptors as assessed through a Fisher's exact test. For each 3-mer pair, the
contingency table for Fisher’s exact test is composed of (a) the number of receptors of positive AIRRs that
contain the 3-mer pair, (b) the number of receptors of positive AIRRs that do not contain the 3-mer pair,
(c) the number of receptors of negative AIRRs that contain the 3-mer pair, and (d) the number of receptors
of negative AIRRs that do not contain the 3-mer pair.
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Machine Learning

We utilized Logistic Regression for binary classification of signal-specific repertoires and receptors, which
was similar to our previous studies (33, 35). Briefly, we represented AIRs using k-mer encoding and with
further standardization by subtracting the mean and dividing by the standard deviation. After that, we
optimized LR hyperparameters, such as L1 and L2 regularization and regularization strength constant,
using nested cross-validation. We evaluated performance of ML models using three metrics — precision (

TP TP recision + recall . . .
TP 7P 7p ) and balanced accuracy (-p—2 ), where TP is true positive, FP is false

positive and FN is false negative. Model training, selection, and evaluation was performed using the
immuneML platform (33) (version 2.2.3). See the Use cases methods sections for a more comprehensive
description of classifiers used in every use case.

), recall (

Code availability

LIgO is freely available as a Python package from PyPI (https://pypi.org/project/ligo/), on GitHub
(h .//github.com/uio-bmi/ligo), and as a Docker image (https://hub.docker.com/r/milenapavlovic/ligo).
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Supplementary materials

Supplementary Table 1: Comparison of LIgO with other AIRR simulation tools — IGoR/OLGA, immuneSIM, and simAIRR.

LIgO IGoR/OLGA immuneSIM simAIRR
General software description
Reference This work (51, 68) (52 (62)
Purpose Simulation of AIRR Simulation of a set of Simulation a set of Simulation of
with complex AlRs based on a V(D)J AlRs based on a V(D)J | antigen-experienced
immune signals for recombination model recombination model; | -like AIRRs by
ML benchmarking simulating signals mimicking the
(both receptor and (gapped k-mer only) in | relation between
repertoire-based) individual AlRs pgen and public AIR
occurrence in
real-world datasets
Software Python package C++, Python package |R package Python package
Simulation
User assistance Yes No No Yes

Support of both
receptor and

Receptor and
repertoire level

Receptor level only

Receptor level only,
but supports clone

Repertoire level only

repertoire-level simulation counts
simulation
Simulation of Yes No Yes No
single-chain and
paired chain data
Immune signal Any signal No Set of k-mers Any user-defined
complexity complexity including signals supplied in
(gapped) k-mers, the form of
PWMs, and full-length AlRs;
user-defined signals strictly assumes that
signal sequences are
public
Simulation Rejection sampling No Signal implantation Implantation of
approach and signal full-length CDR3
implantation amino acid
sequences + V and J
genes of AlRs into
repertoire(s)
Simulates clonal Yes, somewhat (each | No Yes, somewhat (AIR No

expansion

signal and
background set of

clone count
distribution may be
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AIRs may have its
own clone count
distribution)

simulated)

Methods for preserving biological nativene

ss of simulated data

Simulation based Yes No, but a custom VDJ No, but a custom VDJ | Yes
on experimental model can be used model can be used
AIRR data
Preserves Yes, using Not applicable, the No No
generation importance tools do not support
probability sampling repertoire-level
distribution simulation
Realistic frequencies | No, but can be used [ Not applicable Not applicable Yes
of public AIRs in in combination with
repertoire-level data | simAIRR (see column
when needed 4 of this table)
Output
Reporting of Yes No Yes No
detailed information
about immune
signals and the
simulation
AIRR-compliant Yes Yes No, only OLGA

output format

Yes, using pygor

(https://qgithub.com/stat

biophys/pygor3)

format
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Supplementary Table 2 (relates to Fig. 3) List of random 2-mers, 3-mers, 4-mers, and 5-mers used for LIgO simulations.

2-mer 3-mer 4-mer 5-mer
FF KTC NDMH PVWGS
TQ VED VHWR LINHT
Ccw FFC HDPR RTNHL
LT FPY NSNE QHTSV
DQ CTR YLYW WGSDT
KT VMV CHPQ TKDKF
WE GHT CCYN FWMPR
PM KKY VFDP PYLCT
TC NAM CTQA TRYHY
FG MQP VIYM GRLGL
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Supplementary Figure 1 (relates to Fig. 3) Analysis of 3-mer occurrence frequency distribution clusters based on 10° synthetic
TRB CDR3 amino acid sequences of length 15aa. (A) Hierarchical clustering of 3-mer frequencies, where each row of the heatmap
corresponds to the frequency of one 3-mer, and each column corresponds to one IMGT position. Each row (3-mer) of the
heatmap is normalized such that the sum of frequencies of this 3-mer on all IMGT positions (105-115) equates to one. (B) Out of
8000 of all possible amino acid 3-mers, 48.81% of 3-mers (cluster 1) do not contain a frequency peak on average at any IMGT
position, 48.69% of 3-mers (clusters 2-10) contain average frequency peak, i.e. average frequency > 0.4 at one of the IMGT
positions 105-108 or 111-115, and 2.5% of 3-mers were eliminated from the analysis because they were found less than ten
times in 10° simulated TRB sequences.
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Supplementary Figure 2 (relates to Fig. 3) Analysis of 3-mer occurrence frequency distribution clusters based on 10° synthetic
IGH CDR3 amino acid sequences of length 15aa. (A) Hierarchical clustering of 3-mer frequencies, where each row of the heatmap
corresponds to the frequency of one 3-mer, and each column corresponds to one IMGT position. Each row (3-mer) of the
heatmap is normalized such that the sum of frequencies of this 3-mer on all IMGT positions (105-115) equates to one. (B) Out of
8000 of all possible amino acid 3-mers, 79.98% of 3-mers (clusters 1, 3, 4) do not contain a frequency peak on average at any
IMGT position, 19.85% of 3-mers (clusters 2, 5-10) contain an average frequency peak, i.e. average frequency > 0.4 at one of the
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IMGT positions 105-108 or 111-115, and 0.17% of 3-mers were eliminated from the analysis because they were found less than
ten times in 10° simulated TRB sequences. (C) We calculated the average frequency of all 3-mers at every IMGT position
(105-115) within each cluster. One line represents one cluster, the points correspond to mean values, and the error bars

correspond to the 95% confidence interval.
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LigoSimInstruction

LigoSimState

SimConfig

SimConfigltem

+ state: LigoSimState

- number_of processes: int
- sequence_batch_size: int
- max_iterations: int

- export_p_gens: bool

+ run{result_path): LigoSimState
- simulate_dataset()

- export_dataset()

+ signals: list

+ simulation: SimConfig

+ store_signal_in_receptors: bool
+ paths: dict

+ name: str

+ sim_items: List[SimConfigltem]
+ identifier: str

+ is_repertoire: bool

+ paired: Union[bool, List[List[str]]]

+ sequence_type: SequenceType

+ simulation_strategy: SimulationStrategy

+ p_gen_bin_count: int
+ keep_p_gen_dist: bool
+ remove_seqs_with_signals: bool

+ species: str

SimulationStrategy

+ process_sequences(sequences, seqs_per_signal_count; dict,
use_p_gens: bool, sequence_type: SequenceType, sim_ilem:
SimConfigitem, all_signals: List[Signal], remove_positives_first: bool)

Jay

A

RejectionSamplingStrategy | |

ImplantingStrategy

+ name: str
+ is_noise: bool

+ seed: int

+ number_of_examples: int

+ immune_events: dict

+ sequence_len_limits: dict

+ signal_proportions: Dict{Union[Signal, SignalPair], float]

+ generative_model: GenerativeModel
+ receptors_in_repertoire_count: int
+ false_positive_prob_in_receptors: float

+ false_negative_prob_in_receptors: float

+ default_clonal_frequency: dict

SignalPair

+ signal1: Signal

+ signal2: Signal

Signal

+id: str K >—

+ motifs: List{Union[Motif, List{Motif]]
+ sequence_position_weights: dict
+v_call: str

+j_call: str

+ clonal_frequency: dict

GenerativeModel

+ generate_sequences(count: int, seed: int, path: Path, sequence_type:

SequenceType, compute_p_gen: bool)

+ compute_p_gens(sequences, sequence_type: SequenceType)

+ can_compute_p_gens(): bool

+ can_generate_from_skewed_gene_models(): bool

+ generate_from_skewed_gene_models(v_genes: list, |_genes: list, seed: int,
path: Path, sequence_type: SequenceType, batch_size: int, compute_p_gen:

bool)

Motif

+ identifier; str

Extends

Extends

SeedMotif

LigoPWM

Exlends

Extends

oLGA

Experimentallmport

+ model_path: Path
+ default_model_name: str
+ chain: Chain

- olga_model: InternalOlgaModel

- dataset: SequenceDataset
- counter: int

- original_input_file: Path

+ seed: sir

+ min_gap: int

+ max_gap: int

+ hamming_distance_probabilities: dict
+ position_weights: dict

+ alphabet_weights: dict

+ all_possible_instances: list

+ file_path: Path
+ pwm_matrix: bionumpy.PWM

+ threshold: float

Supplementary Figure 3: Ligo UML class diagram. The attributes in blue are set automatically at runtime, the rest are provided by the user in the YAML specification

or read from default values during parsing. The LIgO data/simulation model closely follows the YAML specification.
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