

1 Dissemination of influenza B virus to the lower respiratory tract of mice is

2 restricted by the interferon response

4 Lara S.U. Schwab^a, Thi H. T. Do^a, Marios Koutsakos^{a#}

6 Affiliations

7 ^aDepartment of Microbiology and Immunology, University of Melbourne at The Peter Doherty
8 Institute for Infection and Immunity, Parkville, Victoria, Australia.

[#]Address correspondence to: marios.koutsakos@unimelb.edu.au

12

15 **Abstract (250 words)**

16 The global burden of disease caused by Influenza B virus (IBV) is substantial, however
17 IBVs remain overlooked. Understanding host-pathogen interactions as well as establishing
18 physiologically relevant models of infection are important for the development and assessment
19 of therapeutics and vaccines against IBV. Here, we assessed an upper respiratory tract (URT)-
20 restricted model of mouse IBV infection, comparing it to the conventional administration of
21 virus to the total respiratory tract (TRT). We found that URT infections with different strains
22 of IBV resulted in limited dissemination of IBV to the lungs. Infection of the URT did not
23 result in weight loss or systemic inflammation even at high inoculum doses and despite robust
24 viral replication in the nose. Dissemination of IBV to the lung was enhanced in mice lacking
25 functional type I IFN receptor (IFNAR2) but not IFN γ . Conversely, in mice expressing the
26 IFN-inducible gene Mx1 we found reduced IBV replication in the lung and reduced
27 dissemination of IBV from the URT to the lung. Both URT and TRT inoculation with IBV
28 resulted in seroconversion against IBV. However, priming at the TRT conferred superior
29 protection from a heterologous lethal IBV challenge compared to URT priming, as determined
30 by improved survival rates and reduced viral replication throughout the respiratory tract.
31 Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role
32 of IFNs in limiting dissemination of IBV to the lungs but also demonstrates that the lack of
33 viral replication in the lung may impact protection from subsequent infections.

34

35 **Importance (150 words)**

36 Our study investigated how IBV spreads from the nose to the lung of mice, the impact
37 this has on disease and protection from re-infection. We found that when applied to the nose
38 only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon
39 response. Priming immunity at the nose only was less protective from re-infection than priming
40 immunity at both the nose and lung. These insights can guide the development of potential
41 therapies targeting the interferon response as well as of intranasal vaccines against IBV.

42 **Introduction**

43

44 Influenza A and B viruses (IAV and IBV) cause significant morbidity and mortality every year
45 during annual epidemics. IBV on average accounts for ~25% of influenza cases, but this can
46 be significantly higher in certain seasons and/or geographic locations(1). IBV disease is
47 typically more severe in school-aged children and adolescents, and can be associated with a
48 variety of systemic complications (2-4). In addition to preventative vaccination, therapeutic
49 interventions exist, namely neuraminidase inhibitors and polymerase inhibitors, to treat
50 influenza infections including IBV. However, these typically need to be administered early
51 after infection for maximum efficacy and could lose effectiveness when resistant virus variants
52 emerge. Additional therapeutics interventions are thus needed to mitigate the clinical disease
53 caused by influenza viruses, especially those that could be administered prophylactically to
54 high-risk groups. The development of such therapeutics requires a thorough understanding of
55 virus-host interactions and the processes that cause severe disease. However, our understanding
56 of these processes in the context of IBV are limited.

57 The use of animal models can be instrumental, not only in assessing the effectiveness
58 of novel therapeutics but also in determining mechanisms and pathways that underpin their
59 actions. While ferrets are a gold standard for influenza infection, mice offer considerable
60 advantages including lower cost, easier accessibility and easy of genetic manipulation for
61 dissecting mechanisms. However, most studies utilising mice employ direct deposition of a
62 large volume and a high viral dose to the lung, which results in robust infection including
63 considerable weight loss. Although infection of the lower respiratory tract is associated with
64 more severe disease, such methods of inoculation are not necessarily reflective of human
65 infection or disease, whereby infection can be established by a low amount of virus and can
66 often be confined in or start at the upper respiratory tract (URT) prior to disseminating to the
67 lower respiratory tract (LRT). In addition, it is becoming increasingly evident that there are
68 considerable immunological differences between the URT and LRT(5, 6). As such, it is
69 pertinent to understand the virus-host interactions that affect the dissemination of influenza
70 viruses, including IBV, from the URT to the LRT.

71 The development of URT-restricted infection models for IAV has yielded novel
72 insights into the viral and host factors that affect dissemination of IAV across the respiratory
73 tract, such as the contribution of type I and type III interferon (IFN) in restricting IAV
74 replication(6), as well as into the pre-clinical assessment of novel host-directed therapeutics(7).
75 As these have been exclusively focused on IAV, and whether they apply to IBV is unknown,

76 we used a mouse model to assess the potential of IBV to disseminate from the URT and TRT
77 and factors that underpin restriction of IBV to the URT. Finally, we assessed the potential
78 impact of URT-restricted IBV infection to subsequent immunity in the LRT and protection
79 from challenge. Our data provide novel insights about IBV infection in mice that may inform
80 the development and assessment of more effective therapeutics against IBV.

81 **Materials & Methods**

82

83 **Viruses**

84 Influenza A (A/Puerto Rico/8/34 – PR8, A/Udorn/1972) and B (B/Lee/40, B/Victoria/2/1987,
85 B/Yamagata/6/1988, B/Florida/04/2006) viruses were grown in embryonated chicken eggs at
86 35°C for 3 days. Influenza B (B/Malaysia/2506/04, B/Phuket/3073/2013) were grown in
87 MDCK cells at 33°C for 3 days. Viral titres of all stocks were determined by plaque assay on
88 MDCK cells (ATCC).

89

90 **Mice and infections**

91 Female or male C57BL/6L mice aged 6–12 weeks were obtained from the Animal Resources
92 Centre (Perth, Western Australia) or the Biological Research Facility in the Department of
93 Microbiology and Immunology at the University of Melbourne (Melbourne, Victoria).
94 IFNaR2^{-/-}, IFN γ ^{-/-}, and B6.A2G-MX1 mice were bred and maintained at the Biological
95 Research Facility in the Department of Microbiology and Immunology at the University of
96 Melbourne (Melbourne, Victoria). All animal work was conducted in accordance with
97 guidelines set by the University of Melbourne Animal Ethics Committee (ethics approval
98 number 21799). For total respiratory tract (TRT) infection, mice were infected intranasally with
99 50 μ l of influenza A or B virus at the indicated doses diluted in PBS under isoflurane
100 anaesthesia. For upper respiratory tract (URT) infection, virus was deposited in 10 μ l on the
101 nares of mice at the indicated doses diluted in PBS without isoflurane anaesthesia. Blood was
102 collected via the submandibular or cardiac route (terminal).

103

104 **Viral titre determination**

105 Lungs and nasal turbinates of mice were homogenized and clarified supernatants were obtained
106 by centrifugation. Lung and nasal tissue samples were stored at -80°C and viral titres were
107 determined by plaque assay in duplicate as previously described (8).

108

109 **Cytokine analysis in serum**

110 Cytokines were measured in serum using the Mouse Inflammation Panel LEGENDplex
111 cytometric bead array kit (Biolegend). Data were analysed in FlowJo and analyte
112 concentrations were determined using a sigmoidal 4PL standard curve in Prism (GraphPad).

113

114 **Analysis of HA-specific antibodies by ELISA.**

115 Antibody binding to influenza B HA proteins was tested by ELISA. The expression of
116 recombinant B/Lee/40 and B/Florida/04/2006 HA proteins has been described previously(9).
117 For ELISA, 96-well Maxisorp plates (Thermo Fisher) were coated overnight at 4°C with 2
118 µg/ml recombinant HA proteins. After blocking with 1% FCS in phosphate-buffered saline
119 (PBS), duplicate wells of serially diluted plasma were added and incubated for 2 h at room
120 temperature. Plates were washed in PBS-T (0.05% Tween-20 in PBS) and PBS before
121 incubation with 1:10,000 dilution of HRP-conjugated anti-mouse IgG (Sigma) for 1 h at room
122 temperature. Plates were washed and developed using TMB substrate (Sigma), stopped using
123 sulphuric acid and read at 450 nm. Endpoint titers were calculated as the reciprocal serum
124 dilution giving signal 2× background using a fitted curve (4 parameter log regression).

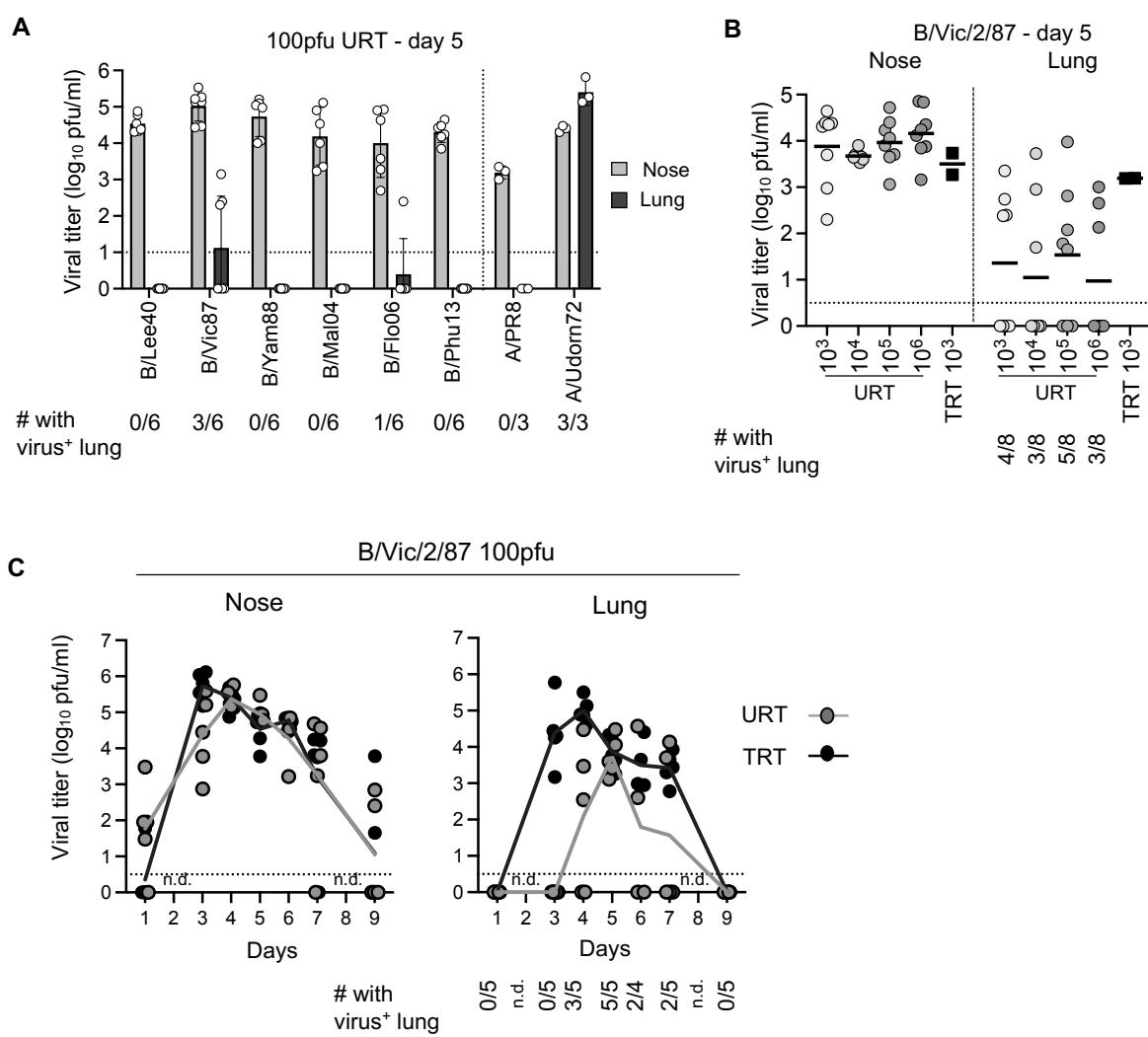
125

126 **Statistical analysis**

127 Comparison of unpaired data from 2 groups was performed by an unpaired t test. Comparison
128 of unpaired data from 2 groups was performed by a one-way ANOVA with Tukey's correction
129 for multiple comparisons or a two-way ANOVA with Sidak's correction for multiple
130 comparisons. Survival analysis was performed using a Log-rank (Mantel-Cox) test.

131 **Results**

132


133 **Limited dissemination of IBV from the upper to the lower respiratory tract in mice.**

134 Previous studies have demonstrated variability in the potential of IAV isolates to
135 disseminate from the upper to the lower respiratory tract of mice(6, 10), but such information
136 is lacking for IBV. To address this question, we compared 6 different IBV strains belonging to
137 the Ancestral (B/Lee/40), B/Yamagata (B/Yamagata/16/88; B/Florida/04/2006;
138 B/Phuket/3703/2013) or B/Victoria (B/Victoria/2/87; B/Malaysia/2506/2004) lineages. The
139 IAV PR8 (not disseminating to lung) and A/Udorn/72 (disseminating to lung) were included
140 as positive controls(10). We used an inoculum volume of 10 μ L, which has been previously
141 shown to restrict delivery to the upper respiratory tract(6, 7, 10), to deliver a low dose of IBV
142 (100 PFU) to the nose of mice and subsequently assessed viral load in the nose and lungs on
143 day 5 post inoculation. Across all isolates tested, we detected high virus titres in the nasal
144 tissue, but virus was either completely absent or only present at low titres in the lungs of
145 infected animals (3 of 6 animals for B/Victoria/2/87 or 1 of 6 animals for B/Florida/04/2006,
146 respectively) (Figure 1A). Increasing the inoculation dose of B/Victoria/2/87 (10^3 to up to 10^6
147 PFU/10 μ L) did not increase dissemination to the LRT (4/8, 3/8, 5/8 or 3/8, respectively)
148 (Figure 1B), with total respiratory tract (TRT) infection (50 μ L under light anaesthesia) acting
149 as a positive control. To dissect the kinetics of B/Victoria/2/87 dissemination to the LRT, we
150 applied 100 PFU to the URT or TRT and assessed viral titres up to 9 days after infection both
151 in nasal tissue and lung. Both URT and TRT infections resulted in robust and comparable viral
152 replication in the nasal tissue between day 3-9 post-infection. In contrast, viral titres could only
153 be detected in the lung in a subset of URT-inoculated mice between day 4-7 post infection,
154 while all TRT-inoculated mice showed high viral load between day 3-7 (Fig 1C). We note that
155 throughout these experiments (Figure 1A-C), URT inoculation variably resulted in LRT
156 dissemination in only a subset of mice (average 54.5%, range 37.5-100%). Overall, when IBV
157 is applied to the URT its dissemination to the LRT is limited.

158

159 **IBV upper respiratory tract infection does not cause severe disease in mice.**

160 To further characterize URT infection with IBV, we next determined whether URT
161 inoculation could lead to severe disease. We infected mice with a high dose (10^5 PFU/animal)
162 of B/Lee/40 or B/Florida/04/2006 at either the URT or TRT and assessed weight loss over the
163 first 7 days. As expected TRT infections led to significant weight loss (Fig 2A), with all mice
164 reaching humane endpoint by day 6 post inoculation (Fig 2B). In contrast, URT infection with

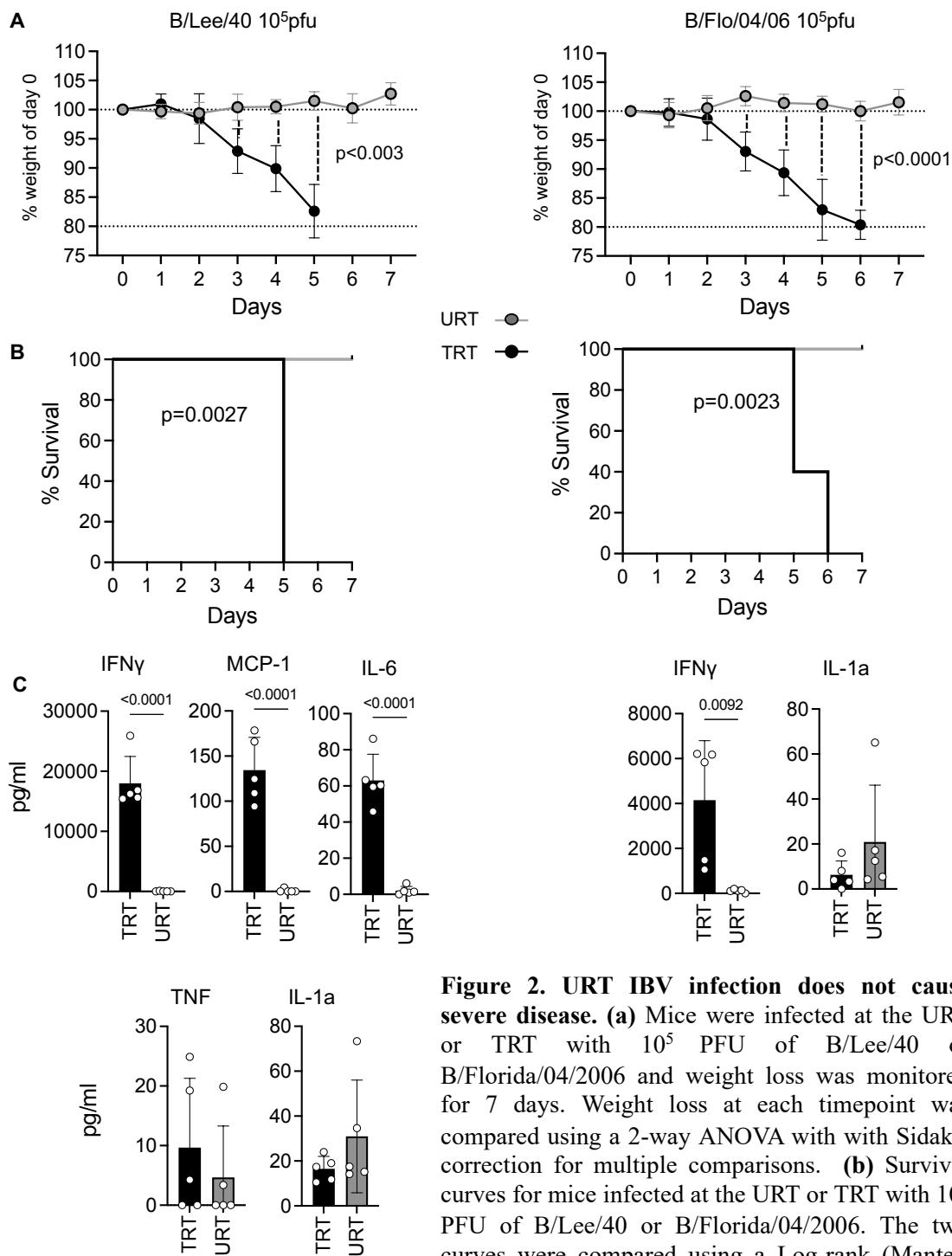


Figure 1. Limited dissemination of IBV from the URT to TRT of mice. (a) Mice were infected at the URT with 100PFU of different viruses in 10 μ l without anesthesia. Viral load was determined in the nose and lung by plaque assay on day 5 post infection. The number of animals in which virus was detected in the lung is shown at the bottom. For IBV n=6 from two independent experiments. A/PR8 and A/Udorn/72 were used as controls (n=3 from one experiment). (b) Mice were infected at the URT with B/Vic/87 at different doses in 10 μ l without anesthesia. Viral load was determined in the nose and lung by plaque assay on day 5 post infection. The number of animals in which virus was detected in the lung is shown at the bottom. Mice infected at the TRT with 10³ PFU in 50 μ l under isoflurane anesthesia were used as positive controls. For URT groups n=8 from two independent experiments, for the TRT group n=2 from one experiment. (c) Mice were infected at the URT or TRT (as above) with 100 PFU of B/Vic/87 and viral load was determined in the nose and lung by plaque assay at different timepoints (n=4-5 mice per timepoint).

165

166 the same dose did not result in any weight loss or mortality. Consistently, in TRT but not URT-
167 inoculated mice, we could detect inflammatory cytokines like IFN γ , MCP-1 and IL-6 in serum
168 on day 5 post infection, although these varied between the 2 IBV strains studied. This is

169 suggestive of systemic inflammation consistent with the severe disease observed in these mice,
 170 but not URT-inoculated mice. These results indicate that although the URT can support high
 171 levels of viral replication (Figure 1C), such infections only cause mild disease.

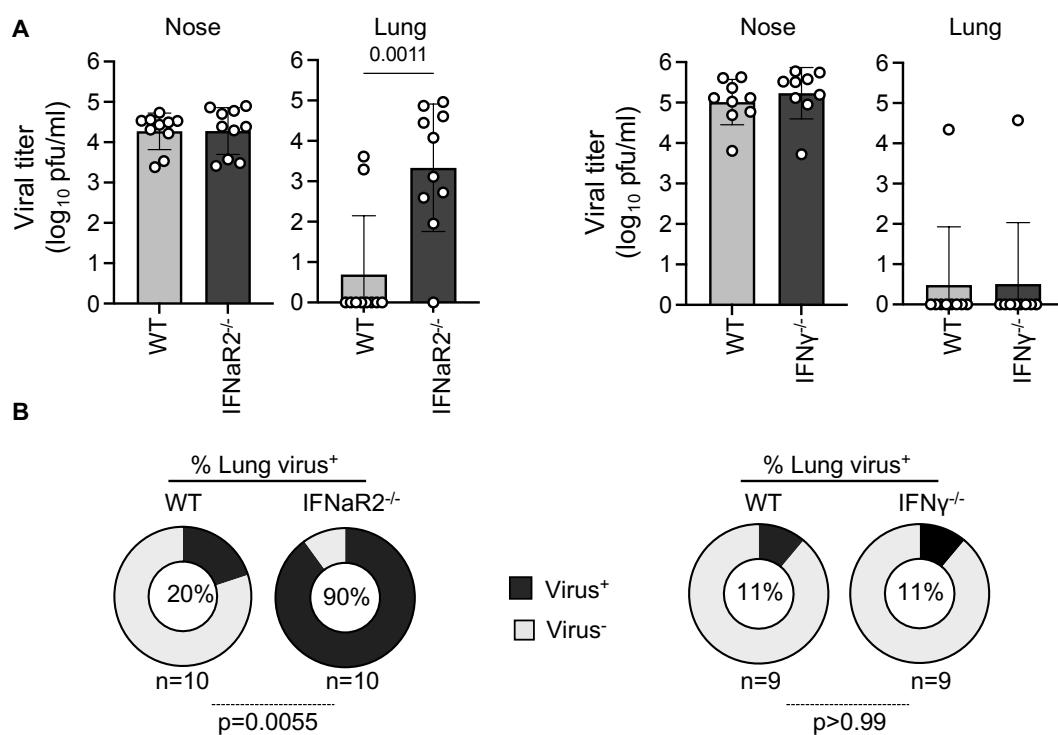
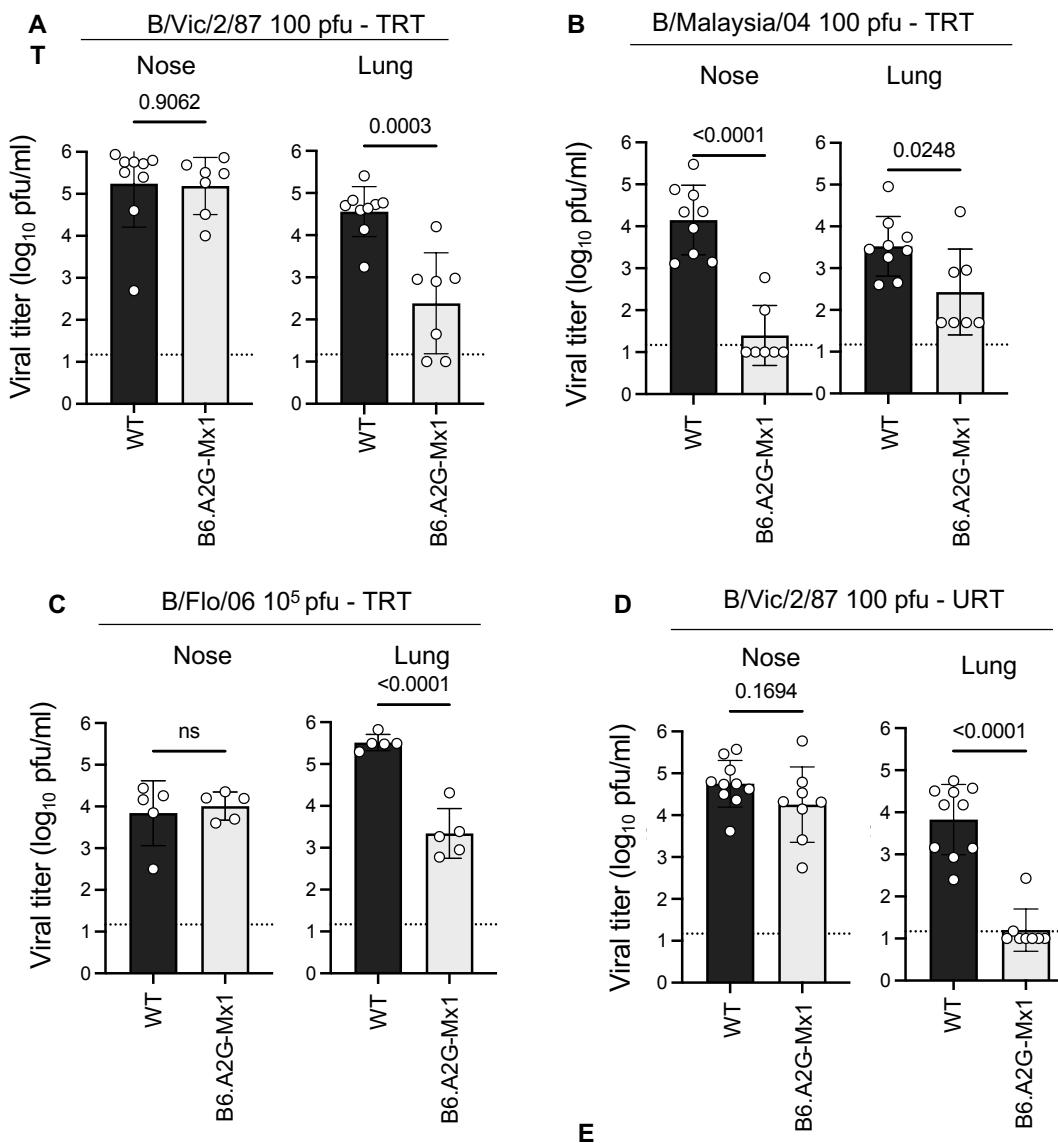


Figure 2. URT IBV infection does not cause severe disease. (a) Mice were infected at the URT or TRT with 10⁵ PFU of B/Lee/40 or B/Florida/04/2006 and weight loss was monitored for 7 days. Weight loss at each timepoint was compared using a 2-way ANOVA with Sidak's correction for multiple comparisons. (b) Survival curves for mice infected at the URT or TRT with 10⁵ PFU of B/Lee/40 or B/Florida/04/2006. The two curves were compared using a Log-rank (Mantel-Cox) test. (c) Cytokines were measured in serum on day 5 after URT or TRT infection with 10⁵ PFU of B/Lee/40 or B/Florida/04/2006. The two groups were compared using an unpaired t test. Throughout the figure n=5 mice/group. The two virus strains were tested in independent experiments.

172 **Type I IFNs but not type II IFNs prevent IBV dissemination from the upper to the**
 173 **respiratory tract.**

174 IFNs have an important role in restricting IAV dissemination to the lung(6). To assess
 175 their contribution in the context of IBV dissemination, we performed URT inoculations of WT
 176 C57BL/6 mice (with functional IFN signalling) and mice which lack type I IFN receptors
 177 (IFNAR2^{-/-}) or type II IFNs (IFN γ ^{-/-}) and assessed virus dissemination to the LRT. We chose
 178 the B/Florida/04/2006 strain as it exhibited limited LRT dissemination in our initial screen
 179 (Figure 1A). Inoculation of the URT with 100 PFU resulted in robust replication in the nasal
 180 tissue which was not impacted by the lack of type I IFN signalling nor type II IFNs (Figure
 181 3A). However, we found a significantly greater frequency of IBV dissemination to the LRT of
 182 IFNAR2^{-/-} mice compared to WT animals (90 % compared to 20 %) (Figure 3B) and
 183 significantly enhanced viral load in the LRT (Figure 3A). In contrast, IBV dissemination to the
 184 LRT was not impacted by type II IFNs. Overall, these data demonstrate that type I IFNs restrict
 185 dissemination of IBV to the LRT.

186


187 **Figure 3. Type I, but not type II IFNs, limit IBV dissemination to the lower respiratory tract.** (a) WT and sex and age-matched IFNAR1^{-/-} or IFN γ ^{-/-} mice were infected at the URT with 100 PFU of B/Florida/04/2006. Viral load was determined in the nose and lung by plaque assay on day 5 post infection, n=9-10 mice/group from two independent experiments. (b) The frequency of mice with detectable virus in the lung on day 5 post-infection is shown for each group. The two groups were compared using a Fisher's exact test.

188 **Murine Mx1 restricts IBV dissemination to the lower respiratory tract.**

189 To further demonstrate this protective role of IFNs, we assessed whether IFN-
190 stimulated genes (ISGs) could restrict dissemination of IBV to the LRT. Mx1 is a well-
191 described IFN-induced restriction factor for IAV, but little is known about the antiviral activity
192 of Mx1 against IBV. As most laboratory mouse strains, including C57BL/6 mice, lack a
193 functional Mx1 protein(11), we utilised B6.A2G-Mx1 mice, a congenic strain on the C57BL/6
194 genetic background that expresses a functional Mx1 protein derived from the A2G mouse
195 strain(12). To determine if Mx1 has any antiviral activity against IBV *in vivo*, we firstly
196 performed TRT inoculations of WT C57BL/6 (Mx1-deficient) and B6.A2G-Mx1 mice (with
197 functional Mx1) and determined viral loads in the nasal tissue and the lung on day 5 post
198 inoculation. Following low dose TRT inoculation with 100 PFU of B/Victoria/2/87, we found
199 significantly lower viral titres in the lung of B6.A2G-Mx1 mice ($2.385 \pm 1.199 \log_{10} \text{PFU/ml}$)
200 compared to WT mice ($4.560 \pm 0.592 \log_{10} \text{PFU/ml}$) but not in the nasal tissue (Figure 4A).

201 As the antiviral effects of Mx1 proteins against IAV are highly virus strain-dependent
202 (13, 14), we tested additional IBV isolates from the B/Victoria lineage (B/Malaysia/2506/2004)
203 or B/Yamagata (B/Florida/04/2006) for their susceptibility to restriction by Mx1. Following
204 low dose TRT inoculation with 100 PFU of B/Malaysia/2506/2004, we found significantly
205 lower viral titres in the lung of B6.A2G-Mx1 mice ($2.429 \pm 1.027 \log_{10} \text{PFU/ml}$) compared to
206 WT mice ($3.523 \pm 0.716 \log_{10} \text{PFU/ml}$), as well as in the nasal tissue (B6.A2G-Mx1: $1.397 \pm$
207 $0.714 \log_{10} \text{PFU/ml}$, WT: $4.149 \pm 0.828 \log_{10} \text{PFU/ml}$) (Figure 4B). Mx1-mediated restriction
208 of viral replication in the lung, but not the nose, was also observed after TRT inoculation with
209 a high dose (10^5 PFU) of B/Florida/04/2006 (B6.A2G-Mx1: $3.340 \pm 0.595 \log_{10} \text{PFU/ml}$; WT:
210 $5.515 \pm 0.192 \log_{10} \text{PFU/ml}$) (Figure 4C). As we have only assessed viral load on day 5 post
211 infection, it is unclear to what extent an effect of Mx1 on nasal viral load might be evident at
212 other timepoints. Nonetheless, overall, these data demonstrate the potential of Mx1 to restrict
213 IBV replication *in vivo*.

214 Having established the *in vivo* antiviral effects of Mx1 against IBV, we next tested
215 whether Mx1 could restrict dissemination of IBV to the LRT. We inoculated WT (Mx1-
216 deficient) and B6.A2G-Mx1 mice (with functional Mx1) with 100 PFU of B/Victoria/2/87 at
217 the URT since it was the only isolate capable to disseminating to the LRT in WT mice (Figure
218 1A). Despite similar viral load in the nasal tissues of WT and B6.A2G-Mx1 mice (Figure 4D),
219 viral dissemination to the lung was only detected in 2/10 B6.A2G-Mx1 mice but in 10/10 of
220 WT mice (Figure 4D and E). These data demonstrate that Mx1 can restrict IBV dissemination
221 to the lower respiratory tract, further supporting a role for IFNs in this protective phenotype.

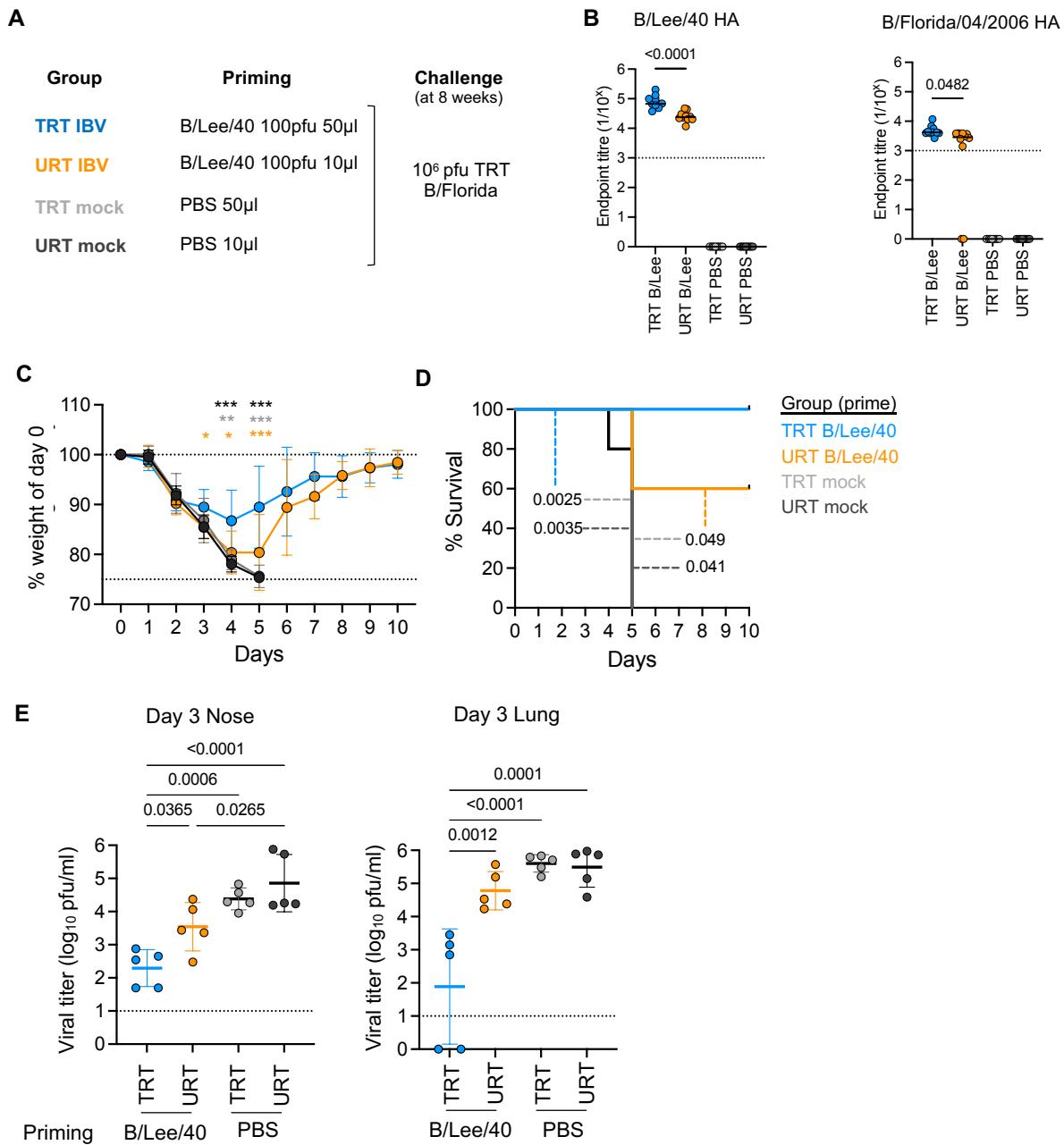


Figure 4. Murine Mx1 limits IBV dissemination to the lower respiratory tract. (a-c) C57BL/6 and sex and age-matched A2G-Mx1 mice were infected at the TRT with (a) 100 PFU of *B/Victoria/2/87*, or 100 PFU of *B/Malaysia/2506/2004* (b) or 10⁵ PFU of *B/Florida/04/2006* (c). Viral load was determined in the nose and lung by plaque assay on day 5 post infection, n=5-10 mice/group from one (c) or two independent experiments (a, b). **(d)** C57BL/6 and sex and age-matched A2G-Mx1 mice were infected at the URT with 100 PFU of *B/Victoria/2/87*. Viral load was determined in the nose and lung by plaque assay on day 5 post infection, n=8-10 mice/group, from two independent experiments. **(e)** Frequency of mice with detectable virus in the lung on day 5 post-infection from (d). For (a-d) p-values were determined by an unpaired Student's t-test. For (e) p-values were determined by a Fisher's exact test.

223 **Priming of the TRT provides superior protection from severe heterologous challenge.**

224 Although the restricted dissemination of IBV to the LRT may limit disease severity,
225 lack of viral replication in the LRT could impact the generation of protective immunity at that
226 site. To test this hypothesis, we primed C57BL/6 mice with 10^2 PFU of B/Lee/40 at the URT
227 or TRT. At 8 weeks after infection, we collected serum and then challenged the mice with a
228 lethal dose of B/Florida/04/2006 (10^6 PFU administered to the TRT) and assessed weight loss,
229 survival and virus replication at the upper and lower respiratory tract at 3 days post infection.

230 At 8 weeks after priming and prior to challenge, IgG antibody titres to homologous and
231 heterologous antigens were measured by ELISA (Fig 5B). Animals primed at the TRT showed
232 significantly higher titres of B/Lee/40 HA antibodies than animals primed at the URT.
233 Interestingly, B/Lee/40 infection resulted in generation of cross-reactive serum antibodies
234 against B/Florida/04/2006 which was significantly higher after TRT infection than after URT
235 infection. Next, animals were challenged with heterologous B/Florida/04/2004. Animals
236 primed with B/Lee/40 showed significantly less weight loss when compared to PBS-treated
237 controls (Fig 5C) and this was reflected in significantly improved survival rates (Fig 5D).
238 Interestingly, priming with B/Lee/40 at the TRT completely protected animals from
239 succumbing to infection whereas URT-primed animals showed 40 % mortality. We then
240 assessed infectious viral titres in upper and lower airways at day 3 post B/Florida/04/2006
241 infection. We detected virus in the upper respiratory tract of all animals, indicating that no
242 sterilizing immunity was achieved, however both TRT and URT B/Lee/40 priming
243 significantly reduced viral burden in the nose compared to PBS-treated animals (Fig 5E).
244 Importantly, animals primed at the TRT showed reduced levels of virus than URT-primed
245 animals, with 2/5 animals showing complete absence of virus in the lung (Fig 5E). B/Lee/40
246 priming at the URT did not significantly improve viral burden in the lung compared to PBS-
247 treated animals (Fig 5E). Overall, TRT priming provided superior protection from severe
248 heterologous challenge of the lower respiratory tract.

Figure 5. TRT and URT priming provide differential protection from severe heterologous TRT challenge. (a) Experimental design. **(b)** At 8 weeks after priming and prior to challenge, mice were bled and serum IgG antibody titres to homologous and heterologous antigens were measured by ELISA. The different groups were compared using a one-way ANOVA with Tukey's correction for multiple comparisons (n=10 mice/group). **(c)** Weight loss at each timepoint after heterologous TRT challenge. The different groups were compared using a 2-way ANOVA with Sidak's correction for multiple comparisons. Statistical significance is shown for URT and PBS groups compared to the TRT group (n=10 mice/group). **(d)** Survival curves after heterologous TRT challenge with B/Florida/04/2006. The two curves were compared using a Log-rank (Mantel-Cox) test. Pairwise-comparisons are color-coded. **(e)** Viral load was determined in the nose and lung by plaque assay on day 3 after heterologous TRT challenge with B/Florida/04/2006. The different groups were compared using a one-way ANOVA with Tukey's correction for multiple comparisons (n=5 mice/group). .

250 **Discussion**

251

252 Infections of mice with influenza viruses are usually performed by instilling a large volume
253 with a high infectious dose of IAV or IBV across the TRT of the mouse. While this may ensure
254 robustness of the infection process as well as clinical disease evident by weight loss, these
255 conditions could be considered supraphysiological and not representative of natural infection
256 as the lung environment is overloaded with virus antigen. Alternative models in which virus
257 administration is restricted at the URT have been developed and have provided novel insights
258 into *in vivo* host-pathogen interactions(6, 7, 10, 15, 16). However, these have been limited to
259 IAV and the factors that influence dissemination of IBV to the lower respiratory tract have not
260 been determined. Here, we show that natural IBV dissemination to the lung is limited by the
261 type I IFN response.

262 Our study shows that IBV does not efficiently disseminate to the lower respiratory tract of
263 mice, with only B/Victoria/2/87 (1/6 isolates tested from the three lineages) showing detectable
264 virus in the lung after URT administration. This observation is consistent with limited
265 dissemination of IBV seen in the ferret model(17). Even for B/Victoria/2/87, dissemination to
266 the lungs was highly variable between experiments and could not be improved by increasing
267 the amount of virus administered to the URT. It will be interesting to determine the virological
268 factors that determine the increased propensity of B/Victoria/2/87 to disseminate to the lower
269 respiratory tract compared to other isolates. We note that the strains tested in our study are
270 human isolates and not mouse-adapted IBV strains which may behave differently. For IAV,
271 dissemination to the lung has been associated with the ability of the NA to overcome inhibitors
272 present in mouse saliva (15). While differences in the IBV NA may similarly impact
273 dissemination to the lung, differences in BNS1 may also contribute given the prominent role
274 of type I IFNs we observed in restricting IBV dissemination. Furthermore, in our experiments,
275 administration of 10^5 PFU to the URT, which is lethal when administered to the TRT, did
276 induce weight loss or systemic inflammation. Thus, IBV infection of URT of mice may be a
277 useful animal model to understand subclinical disease and the factors that regulate disease
278 tolerance in URT.

279 The robust dissemination of IBV to the lungs of mice lacking IFNAR2 suggests a strong
280 contribution of type I IFNs in restricting IBV to the URT. Interestingly, we did not observe
281 increased viral replication in IFNAR2^{-/-} mice suggesting type I IFNs may have a lesser role in
282 the URT, although additional experiments are needed to elucidate this question. Indeed, in the
283 context of IAV, replication in the URT is most strongly impacted by type III than type I IFNs

284 (6, 18). Similarly, type III IFNs can also restrict IAV dissemination to the lung(6), which we
285 could not assess in our study as type III IFN deficient mice were not available. Further
286 dissecting the relative contributions of type I and III IFNs can inform the development of host-
287 directed antiviral strategies against respiratory viruses including IBV. Indeed, our data strongly
288 support the notion that antiviral therapeutics that leverage the IFN-response could contribute
289 to protection by limiting dissemination of virus to the LRT.

290 While previous studies have established the effects of human MxA(19) or mouse Mx1(20)
291 proteins against human and avian IAVs, our study demonstrates an *in vivo* role for murine Mx1
292 in restricting IBV replication. This is consistent with previous reports of reduced IBV
293 polymerase activity in the presence of Mx1 in an *in vitro* minireplicon system(21). Our
294 experiments further show that Mx-mediated suppression may contribute to restriction of IBV
295 to the URT. It remains pertinent to confirm the role of human MxA protein against IBV as well
296 as to the understand the molecular details of how Mx proteins act against IBV, whether these
297 differ from IAV, and the basis of potentially differential susceptibility of IBV strains to Mx-
298 restriction. Further understanding the role of Mx proteins in restricting IBV replication could
299 inform determinants of susceptibility as well as the development of antiviral therapeutics that
300 leverage the host response.

301 Although restriction of viral replication in the URT may result in subclinical disease, the
302 lack of viral replication in the lung may impact the generation of local adaptive immunity and
303 subsequent protection. Indeed, we found that URT priming was less protective than TRT
304 priming against a heterologous lethal challenge. Further experiments are needed to determine
305 if differential protection (in the form of reduced viral replication) will be afforded in the context
306 of lower infectious dose or dissemination from the URT to the LRT. Indeed, we found that as
307 few as 100 PFU of IBV are sufficient to establish robust viral replication (Fig 1C, Fig4), even
308 in the absence of weight loss, and it will be interesting to assess protection by URT and TRT
309 priming against such a low dose challenge. It will also be interesting to assess how adaptive
310 immunity in the URT may impact dissemination of IBV to the lung as has been shown for
311 IAV(16). With regards to protection, we hypothesize that URT infection results in lower levels
312 of immunity overall or does not result in the generation of lung tissue-resident B and T cells,
313 thus conferring less effective protection. Consistently, the generation of such mucosal
314 immunological memory after IAV infection of mice is dependent on local inflammatory signals
315 as well as the presence of antigen(22, 23). Further understanding how URT versus TRT
316 priming impact the generation of immunity systemically and in the lung as well as subsequent

317 protection will be critical for the development of effective mucosal vaccines, whose
318 administration is currently often limited to the URT.

319 Overall, we demonstrate how IBV dissemination to the lower respiratory tract is limited
320 the type I IFN response in mice, which may have implications for understanding IBV
321 pathogenesis. Furthermore, we demonstrate differential protection afforded by URT or TRT
322 priming. These findings may aid the development and assessment of therapeutic or
323 prophylactic interventions against IBV or other respiratory viruses to limit their clinical burden.

324

325 **Acknowledgements**

326 The work has been generously supported by the Morningside Foundation and by the Australian
327 National Health and Medical Research Council Investigator grants.

328

329 **Author contributions**

330 M.K. designed and supervised the study. L.S.U.S, T.H.T.D. and MK performed experiments
331 and analysed data. L.S.U.S and M.K. drafted the manuscript. All authors revised the
332 manuscript.

333

334 **Competing interests**

335 M.K. has acted as a consultant for Sanofi group of companies. The other authors declare no
336 competing interests.

337 **References**

338

339 1. Caini S, Kusznierz G, Garate VV, Wangchuk S, Thapa B, de Paula Junior FJ, Ferreira
340 de Almeida WA, Njouom R, Fasce RA, Bustos P, Feng L, Peng Z, Araya JL, Bruno A,
341 de Mora D, Barahona de Gamez MJ, Pebody R, Zambon M, Higueros R, Rivera R,
342 Kosasih H, Castrucci MR, Bella A, Kadjo HA, Daouda C, Makusheva A, Bessonova
343 O, Chaves SS, Emukule GO, Heraud JM, Razanajatovo NH, Barakat A, El Falaki F,
344 Meijer A, Donker GA, Huang QS, Wood T, Balmaseda A, Palekar R, Arevalo BM,
345 Rodrigues AP, Guiomar R, Lee VJM, Ang LW, Cohen C, Treurnicht F, Mironenko A,
346 Holubka O, Bresee J, Brammer L, et al. 2019. The epidemiological signature of
347 influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS
348 One 14:e0222381.

349 2. Zaraket H, Hurt AC, Clinch B, Barr I, Lee N. 2021. Burden of influenza B virus
350 infection and considerations for clinical management. Antiviral Res 185:104970.

351 3. Hensen L, Kedzierska K, Koutsakos M. 2020. Innate and adaptive immunity toward
352 influenza B viruses. Future Microbiol 15:1045-1058.

353 4. Koutsakos M, Nguyen TH, Barclay WS, Kedzierska K. 2016. Knowns and unknowns
354 of influenza B viruses. Future Microbiol 11:119-35.

355 5. Hewitt RJ, Lloyd CM. 2021. Regulation of immune responses by the airway epithelial
356 cell landscape. Nat Rev Immunol 21:347-362.

357 6. Klinkhammer J, Schnepf D, Ye L, Schwaderlapp M, Gad HH, Hartmann R, Garcin D,
358 Mahlakoiv T, Staeheli P. 2018. IFN-lambda prevents influenza virus spread from the
359 upper airways to the lungs and limits virus transmission. Elife 7.

360 7. Deliyannis G, Wong CY, McQuilten HA, Bachem A, Clarke M, Jia X, Horrocks K,
361 Zeng W, Girkin J, Scott NE, Londrigan SL, Reading PC, Bartlett NW, Kedzierska K,
362 Brown LE, Mercuri F, Demaison C, Jackson DC, Chua BY. 2021. TLR2-mediated
363 activation of innate responses in the upper airways confers antiviral protection of the
364 lungs. JCI Insight 6.

365 8. Koutsakos M, Illing PT, Nguyen THO, Mifsud NA, Crawford JC, Rizzetto S, Eltahla
366 AA, Clemens EB, Sant S, Chua BY, Wong CY, Allen EK, Teng D, Dash P, Boyd DF,
367 Grzelak L, Zeng W, Hurt AC, Barr I, Rockman S, Jackson DC, Kotsimbos TC, Cheng
368 AC, Richards M, Westall GP, Loudovaris T, Mannerling SI, Elliott M, Tangye SG,
369 Wakim LM, Rossjohn J, Vijaykrishna D, Luciani F, Thomas PG, Gras S, Purcell AW,

370 Kedzierska K. 2019. Human CD8(+) T cell cross-reactivity across influenza A, B and
371 C viruses. *Nat Immunol* 20:613-625.

372 9. Liu Y, Tan HX, Koutsakos M, Jegaskanda S, Esterbauer R, Tilmanis D, Aban M,
373 Kedzierska K, Hurt AC, Kent SJ, Wheatley AK. 2019. Cross-lineage protection by
374 human antibodies binding the influenza B hemagglutinin. *Nat Commun* 10:324.

375 10. Ivinson K, Deliyannis G, McNabb L, Grollo L, Gilbertson B, Jackson D, Brown LE.
376 2017. Salivary Blockade Protects the Lower Respiratory Tract of Mice from Lethal
377 Influenza Virus Infection. *J Virol* 91.

378 11. Haller O, Staeheli P, Schwemmle M, Kochs G. 2015. Mx GTPases: dynamin-like
379 antiviral machines of innate immunity. *Trends Microbiol* 23:154-63.

380 12. Lindenmann J. 1962. Resistance of mice to mouse-adapted influenza A virus. *Virology*
381 16:203-4.

382 13. Zimmermann P, Manz B, Haller O, Schwemmle M, Kochs G. 2011. The viral
383 nucleoprotein determines Mx sensitivity of influenza A viruses. *J Virol* 85:8133-40.

384 14. Manz B, Dornfeld D, Gotz V, Zell R, Zimmermann P, Haller O, Kochs G, Schwemmle
385 M. 2013. Pandemic influenza A viruses escape from restriction by human MxA through
386 adaptive mutations in the nucleoprotein. *PLoS Pathog* 9:e1003279.

387 15. Gilbertson B, Ng WC, Crawford S, McKimm-Breschkin JL, Brown LE. 2017. Mouse
388 Saliva Inhibits Transit of Influenza Virus to the Lower Respiratory Tract by Efficiently
389 Blocking Influenza Virus Neuraminidase Activity. *J Virol* 91.

390 16. Pizzolla A, Nguyen THO, Smith JM, Brooks AG, Kedzieska K, Heath WR, Reading
391 PC, Wakim LM. 2017. Resident memory CD8(+) T cells in the upper respiratory tract
392 prevent pulmonary influenza virus infection. *Sci Immunol* 2.

393 17. Huang SSH, Banner D, Paquette SG, Leon AJ, Kelvin AA, Kelvin DJ. 2014.
394 Pathogenic influenza B virus in the ferret model establishes lower respiratory tract
395 infection. *J Gen Virol* 95:2127-2139.

396 18. Galani IE, Triantafyllia V, Eleminiadou EE, Koltsida O, Stavropoulos A, Manioudaki
397 M, Thanos D, Doyle SE, Kotenko SV, Thanopoulou K, Andreakos E. 2017. Interferon-
398 lambda Mediates Non-redundant Front-Line Antiviral Protection against Influenza
399 Virus Infection without Compromising Host Fitness. *Immunity* 46:875-890 e6.

400 19. Deeg CM, Hassan E, Mutz P, Rheinemann L, Gotz V, Magar L, Schilling M, Kallfass
401 C, Nurnberger C, Soubies S, Kochs G, Haller O, Schwemmle M, Staeheli P. 2017. In
402 vivo evasion of MxA by avian influenza viruses requires human signature in the viral
403 nucleoprotein. *J Exp Med* 214:1239-1248.

404 20. Haller O, Kochs G. 2020. Mx genes: host determinants controlling influenza virus
405 infection and trans-species transmission. *Hum Genet* 139:695-705.

406 21. Frensing T, Seitz C, Heynisch B, Patzina C, Kochs G, Reichl U. 2011. Efficient
407 influenza B virus propagation due to deficient interferon-induced antiviral activity in
408 MDCK cells. *Vaccine* 29:7125-9.

409 22. Zheng MZM, Wakim LM. 2022. Tissue resident memory T cells in the respiratory tract.
410 *Mucosal Immunol* 15:379-388.

411 23. Allie SR, Bradley JE, Mudunuru U, Schultz MD, Graf BA, Lund FE, Randall TD. 2019.
412 The establishment of resident memory B cells in the lung requires local antigen
413 encounter. *Nat Immunol* 20:97-108.

414