
 

 

 

 

Logic-based mechanistic machine learning on 1 

high-content images reveals how drugs 2 

differentially regulate cardiac fibroblasts 3 

 4 

Anders R. Nelson
1
, Steven L. Christiansen

1,2
, Kristen M. Naegle

1
, Jeffrey 5 

J. Saucerman
1* 

6 

1) University of Virginia School of Medicine, Charlottesvil le, VA 22903 7 

2) Brigham Young University Department of Biochemistry, Provo, UT 84602  8 

*University of Virginia School of Medicine, Charlottesville, VA 2290 9 

(e-mail: jsaucerman@virginia.edu) 10 

PO Box 800759, Charlottesville, VA 22908, 434-924-5095 11 

 12 

Classification: Biological Sciences; Systems Biology 13 

 14 

Keywords: Fibrosis, Fibroblast, Machine learning, Cell Biology, 15 

Differentiation, Drugs 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.01.530599doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.01.530599doi: bioRxiv preprint 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.01.530599doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530599
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.03.01.530599
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2023.03.01.530599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Abstract 29 

Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury. 30 

These cells exhibit highly plastic responses in phenotype during fibrosis in response to 31 

environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs 32 

differentially regulate measures of cardiac fibroblast phenotype, which may help identify 33 

treatments for cardiac fibrosis. We conducted a high content microscopy screen of human 34 

cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFβ and/or IL-1β, 35 

measuring phenotype across 137 single-cell features. We used the phenotypic data from our 36 

high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for 37 

fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce 38 

actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the 39 

LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found 40 

that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen I production in 41 

human cardiac fibroblasts. In this study, we establish a modeling approach combining the 42 

strengths of logic-based network models and regularized regression models, apply this 43 

approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts, 44 

revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis. 45 

Significance  46 

Cardiac fibrosis is a dysregulation of the normal wound healing response, resulting in excessive 47 

scarring and cardiac dysfunction. As cardiac fibroblasts primarily regulate this process, we 48 

explored how candidate anti-fibrotic drugs alter the fibroblast phenotype. We identify a set of 49 

137 phenotypic features that change in response to drug treatments. Using a new 50 

computational modeling approach termed logic-based mechanistic machine learning, we 51 

predict how pirfenidone and Src inhibition affect the regulation of the phenotypic features actin 52 

filament assembly and actin-myosin stress fiber formation. We also show that inhibition of PI3K 53 

reduces actin-myosin stress  fiber formation and procollagen I production in human cardiac 54 

fibroblasts, supporting a role for PI3K as a mechanism by which Src inhibition may suppress 55 

fibrosis.  56 

Introduction 57 

Cardiac fibroblasts are the primary regulators of remodeling following cardiac injury1. 58 

Extracellular matrix (ECM) deposition by activated myofibroblasts is essential to this response, 59 

but excessive deposition can lead to ventricular stiffness, diastolic dysfunction, and heart 60 

failure1. While fibroblasts are critical to the wound healing response, current standard-of-care 61 

therapeutics for cardiac injury, such as myocardial infarction (MI), affect downstream 62 

symptoms but do not specifically target fibroblast signaling2. Recent drug discovery and 63 

development has focused on identifying drugs such as Entresto (sacubitril/valsartan) that 64 

reduce fibrosis in part by modulating fibroblast signaling3,4.  65 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.01.530599doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Collagen secretion, αSMA expression, and actin filaments (F-actin) are traditional markers for a 66 

profibrotic fibroblast phenotype5,6. While high expression of these markers provides an initial 67 

indication of myofibroblast activation, traditional marker expression is inconsistent and does 68 

not fully capture the fibrotic response7. Recent studies of fibroblast phenotype have shown that 69 

fibroblasts exhibit high phenotypic heterogeneity across many facets in response to injury, and 70 

that phenotypic changes are also sensitive to drug perturbations8–11. Identifying drugs that 71 

regulate fibroblast signaling may provide targeted control of fibrosis. 72 

Previously, we developed a logic-based mechanistic network model of fibroblast signaling and 73 

applied it to perform virtual screens for anti-fibrotic drugs12,13. That study predicted and 74 

experimentally validated an antifibrotic role for the TGFβ receptor inhibitor galunisertib13. 75 

While the fibroblast network model predicts a number of drugs that modulate fibroblast 76 

activation, substantial experimental characterization is needed to capture phenotypic 77 

responses to drugs that were not captured by prior modeling.  78 

In this study, we combined high content microscopy, network modeling, and machine learning 79 

to identify drugs that differentially regulate fibroblast phenotypic metrics and predict their 80 

underlying network mechanisms. We used image-based feature extraction to more deeply 81 

characterize drug response and fibroblast phenotype, capturing drug-induced changes across a 82 

set of single-cell metrics relevant to fibrosis. Using a novel logic-based mechanistic machine 83 

learning approach, LogiMML, we predicted signaling pathways that determine how drugs 84 

regulate fibroblast phenotype. Finally, we experimentally validated the main pathway 85 

mechanism predicted by the LogiMML model that mediates how Src inhibition suppresses 86 

fibrotic responses.  87 

 88 

Results 89 

An in vitro screen for candidate fibrosis drugs  90 

Previously, we applied our published cardiac fibroblast network model12 to identify candidate 91 

therapies predicted to reduce cardiac fibrosis13. This logic-based differential equation network 92 

model was developed from a wide range of fibroblast signaling relationships from in vitro 93 

studies in the literature. The model predicts changes in fibrotic outputs including collagen I and 94 

III, αSMA, EDA fibronectin, matrix metalloproteases, and F-actin in response to changes in 95 

extracellular signaling contexts and drug treatment12. This model was previously integrated with 96 

the drug-target database DrugBank to make predict the response of fibroblasts to 121 FDA-97 

approved or investigational drugs that have targets in this network13.  98 

To expand upon the in silico modeling work done in this previous study13, we aimed to develop 99 

a list of drug candidates to test experimentally for their ability to reduce fibrosis in cardiac 100 

fibroblasts in vitro. As the model predicted many drugs to reduce fibrosis to similar quantitative 101 

degrees13, we included drug selection criteria outside of our modeling results alone to further 102 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.01.530599doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

narrow-down a list of candidate drugs. First, we prioritized pathway diversity of the drug 103 

targets to ensure that we would perturb fibrotic signaling comprehensively and avoid testing 104 

redundant drugs in our experiments. As drug repurposing has become an increasingly effective 105 

and efficient strategy for treating cardiovascular disease, we next looked to prioritize drugs that 106 

had previous clinical indications for other disease areas14,15. Using these selection criteria, we 107 

developed the following list of thirteen drugs to evaluate experimentally: anakinra, valsartan, 108 

defactinib, HW-4-023, glutathione, CW-HM12, salbutamol, marimistat, fasudil, SB203580, 109 

pirfenidone, brain natriuretic peptide (BNP), and a combination of valsartan and BNP (Table S1). 110 

Among the list of candidate drug targets are regulators for inflammatory signaling, mechanical 111 

stretch response, non-canonical TGFβ signaling, and modification of secreted proteins.   112 

We next aimed to test these candidate drugs for their ability to quantitatively reduce fibrosis as 113 

characterized by image-based single-cell profiling of procollagen I, α-smooth muscle actin 114 

(αSMA), and F-actin. In injury signaling conditions, such as following myocardial infarction (MI), 115 

myocardial cells are exposed to elevated proinflammatory16–18. To represent these signaling 116 

contexts in an in vitro system, we included IL1β and TGFβ, shown to be elevated following 117 

cardiac injury, in our treatment conditions to represent proinflammatory and profibrotic 118 

contexts respectively19–21. We tested our candidate drugs under four total cytokine contexts 119 

(baseline context with no added cytokine, fibrotic context represent by TGFβ, inflammatory 120 

context represented by IL1β, and combined context represent by both TGFβ and IL1β)19–21. In 121 

total, we used 108 treatment conditions consisting of one of the thirteen drugs at a low, 122 

medium, or high dose combined with one of the four cytokine contexts. We also included 123 

treatments of each cytokine context with no drug to establish a control baseline for cell 124 

responses to cytokines. We imaged and quantified single-cell protein expression of three 125 

fibrotic markers, procollagen I, α-smooth muscle actin (αSMA), and F-actin using high-content 126 

microscopy and a custom CellProfiler software pipeline22.  127 

Interestingly, the antifibrotic drugs in our screen induced differential effects on fibrosis. Of the 128 

13 candidate drugs, WH-4-023, fasudil, and defactinib caused the strongest reduction of 129 

procollagen I, F-actin, and αSMA expression in a TGFβ signaling context, even at the lowest 130 

dose (Figure 1A). Conversely, a second set of drugs including anakinra and glutathione 131 

increased fibrotic marker expression in both TGFβ and combined TGFβ/IL1β contexts when 132 

applied directly to fibroblasts. In a previous clinical study, anakinra, an IL1 receptor inhibitor, 133 

was shown to improve cardiac function and prevented heart failure following acute MI23. While 134 

anakinra has been shown to reduce infarct scar area in a mouse MI model, it also exhibits other 135 

beneficial cardiac effects post-MI including inhibition of post-MI myocyte apoptosis and 136 

reduction in systemic inflammat24,25. Based on these previous studies, it is likely that anakinra 137 

has a net antifibrotic effect on fibroblasts in the presence of other myocardial cell types even 138 

though anakinra treatment increased fibrotic marker expression in this experiment. A third set 139 

of drugs showed more selective antifibrotic effects. For example, while fasudil significantly 140 

reduced expression of all three fibrosis markers in a TGFβ signaling context, pirfenidone only 141 

significantly reduced F-actin (Figure 1 B-E). This third set of drugs is of particular interest as it 142 
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contains drugs that differentially regulate markers for fibrosis. Given the recent clinical 143 

effectiveness of pirfenidone for lung fibrosis, and success in diseases models for cardiac 144 

fibrosis26,27, we further investigated the mechanisms by which it regulates F-actin in cardiac 145 

fibroblasts. 146 

LogiMML: logic-based mechanistic machine learning model predicts how drugs 147 

regulate fibroblast phenotype 148 

Assembled actin filaments play a key role in contractility as fibroblasts transition to become 149 

myofibroblasts28. Therefore, we asked whether the previous mechanistic computational model 150 

of the fibroblast signaling network12 could predict our experimentally measured inhibition of 151 

filament assembly by pirfenidone from Figure 1D. While the model had correctly predicted 152 

responses to a number of drugs including galunisertib13, here, the original mechanistic model 153 

did not capture the ability of pirfenidone to suppress actin filament assembly in a TGFβ 154 

signaling context (Figure 2 A).  155 

Given the limitations of a model based only on prior knowledge, we asked whether drug 156 

predictions could be improved by combining the mechanistic model with a machine learning 157 

model that leverages data from the drug screen. Motivated by 8white-box9 machine learning 158 

strategies that combine mechanistic models with machine learning29,30, we designed a logic-159 

based mechanistic machine learning (LogiMML) model to predict key regulators that conduct 160 

signaling from network model inputs and simulated drugs to experimentally measured 161 

phenotypic outputs (Figure 2 B, Figure S 1). As the 108 treatments were insufficient to infer 162 

new links to phenotypic outputs from all 91 model nodes, we reduced the model9s 163 

dimensionality by clustering nodes into modules. Eleven signaling modules were computed 164 

based on a combined influence and sensitivity analysis, grouping nodes with similar predicted 165 

behavior across signaling contexts. The machine learning component was then trained by 166 

mapping the model-predicted activity of each network module for each of the 108 167 

drug+cytokine treatments to respective experimentally measured outputs. Regularized ridge 168 

regression was selected for the machine learning layer of the LogiMML model to reduce the 169 

likelihood of overfitting31. As measured experimentally, the LogiMML model correctly predicted 170 

the respective induction and suppression of F-actin by TGFβ and pirfenidone (Figure 2 C). Leave-171 

one-out cross validation (LOOCV) was performed on the LogiMML model to evaluate 172 

performance across variations in the experimental data set. The means and standard deviation 173 

of the LOOCV MSE values were 0.022 and 0.080 for the F-actin Integrated Intensity model. 174 

We next asked whether the LogiMML model could provide new mechanistic insights into how 175 

F-actin is regulated by pirfenidone. First, we used the LogiMML model9s ridge regression 176 

coefficients to predict the modules that most influence F-actin. We used the β coefficients from 177 

the LogiMML model to predict the influence of a given signaling module on the cell feature of 178 

interest.  8PI3K9 and 8Smad39 modules were predicted to be the top positive regulators of F-179 

actin, while the 8P38_Calcium9 module was predicted as the top negative regulator (Figure 2 D). 180 

These predictions for fibroblasts are consistent with previous studies with other cell types 181 
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showing that members of the 8Smad39 and 8P38_Calcium9 signaling modules regulate F-actin 182 

filament assembly in endothelial cells and that members of the 8PI3K9 signaling module promote 183 

actin filament remodeling during migration in embryonic fibroblasts 32–34. To identify which 184 

individual signaling nodes within these three modules most regulate F-actin, we performed a 185 

virtual knockdown screen of the mechanistic network model for regulators of F-actin in a 186 

8TGFβ+pirfenidone9 signaling context (Figure 2 E). In these analyses, the quantitative outputs of 187 

the model are normalized outputs that can be compared to determine predicted increases or 188 

decreases in a cell feature in response to a perturbation. Summarizing these analyses, the 189 

LogiMML model predicts that pirfenidone regulation of F-actin is positively regulated by p38, 190 

Akt, and CBP, while negatively regulated by ROS and NOX (Figure 2 F). 191 

 192 

Drugs and pathways controlling fibroblast morphology and texture  193 

Given the differential regulation of fibrosis marker protein expression, we asked whether other 194 

aspects of fibroblast phenotype may also be differentially regulated by drugs and cytokines. 195 

Qualitatively, we observed morphological changes in cell shape, actin-myosin stress fiber 196 

formation, intracellular protein distribution, and cell area (e.g. for pirfenidone treatment see 197 

Figure 1 E). To measure these characteristics of fibroblast phenotype, we developed a custom 198 

CellProfiler image analysis pipeline quantifying 137 total single-cell cell features22,35. Integrated 199 

intensities for the three fibrotic marker proteins, procollagen I, F-actin, and αSMA clustered 200 

relatively close to each other across the feature space (Figure 3 A). As expected, expression of 201 

these marker proteins and similar features were high under TGFβ and TGFβ-like treatments, 202 

and low under negative control and IL1β conditions. While the central rows of the heatmap 203 

contain many features with similar treatment responses, the features at the top and bottom 204 

regions of the heatmap show high heterogeneity in response to drugs. The significance of the 205 

overall correlation between actin, aSMA, and collagen expression is two-fold: that some drugs 206 

such as fasudil suppress a well-studied canonical myofibroblast activation program, and that the 207 

responses to other drugs revealed that the overall phenotype space of fibroblasts is much more 208 

diverse and can be specifically targeted with drugs like WH-4-023. Even within the 209 

actin/aSMA/collagen cluster, the hierarchical clustering shows some examples where only in the 210 

context of TGFβ treatment, some drugs up-regulated aSMA/collagen features while down-211 

regulating actin features. 212 

The extraction of fibrotic marker proteins and the large degree of information about those 213 

fibrotic features is a rich dataset with which we next wished to understand more directly how 214 

they relate to each other and to treatment. Given the risk that some of our features carry 215 

redundant information, we calculated the correlation between all features and clustered the 216 

correlation matrix. This identified 15 strong sets of feature clusters. We selected one 217 

representative feature of each cluster (Figure S2, Figure S3) based on choosing the cluster 218 

member that demonstrated high variance across samples and low correlation with features from 219 

other clusters. In addition to the 15 representative features, we retained the three integrated 220 

intensity features for procollagen I, F-actin, and αSMA, yielding a final set of 18 distinct features 221 
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of the original 137 features, which have the potential to represent the complexity of the larger 222 

dataset.  223 

In order to interpret the overall underlying relationships in the 18 selected features and how 224 

they relate to treatments, we performed Principal Component Analysis (PCA) (Figure 3B-C). 225 

Negative control treatments had a negative score on the first principal component (PC1), while 226 

cells treated with TGFβ showed a high positive score on PC1, indicating that the first principal 227 

component correlates with an axis of classical fibroblast activation (Figure 4 B, Figure S4 A). This 228 

was further supported by the PCA loading values for integrated procollagen I, F-actin, and 229 

αSMA (Figure 3 C, Figure S4 B). These three features are expected to be relatively high in 230 

activated myofibroblasts and indeed have strong positive loadings on PC1. On the PCA scores, 231 

many of the 8TGFβ + Drug9 groups deviated from the control-TGFβ axis defined on PC1, implying 232 

that drugs induce phenotypic changes distinct from a simple reversal of TGFβ9s effects. To 233 

further investigate drug-induced changes in phenotype, we analyzed the PCA scores and 234 

loadings to infer links between drugs and the features they regulate. Notably, the Src inhibitor 235 

WH-4-023 (WH) showed directionality on the scores plot similar to that of Actin Long Angular 236 

Second Moment (Actin Long ASM, a measure for actin uniformity) on the loadings plot. Actin-237 

myosin stress fibers, composed of multiple actin filaments along with other proteins, contribute 238 

to pathological fibrosis and myofibroblast differentiation36–38. This feature and treatment pair 239 

showed a negative value on PC1 and a positive value on PC2 relative to the TGFβ and control 240 

groups, respectively. The similar directionality of WH and Actin Long ASM suggests that Src 241 

inhibition may modulate actin uniformity.  242 

Based on the initial inference from the PCA, we revisited the images from the high-content 243 

microscopy experiment. Fibroblasts treated with TGFβ exhibited discrete actin-myosin stress 244 

fibers, and stress fibers were qualitatively reduced when WH-4-023 (WH) was added (Figure 4 245 

A). Quantitative analysis of actin uniformity (inversely correlated with stress fibers) using Actin 246 

Long Angular Second Moment (ASM) further supported that TGFβ increased and Src inhibitor 247 

WH reduced actin uniformity (Figure 4 B). The full dose response for Long Actin ASM to WH-4-248 

023 is shown in Figure S5. 249 

To predict the signaling pathways that specifically regulate actin-myosin stress fibers, we again 250 

applied the LogiMML coupled modeling approach, but this time training the ridge regression 251 

layer of the model on experimental measurements of Actin Long ASM. The means and standard 252 

deviation of the LOOCV MSE values were 0.083 and 0.142 for the Long Actin ASM model. The 253 

LogiMML model regression coefficients predicted that the 8Mechanical9 module was the top 254 

positive regulator of Actin Long ASM and that the 8PI3K9 module was the top negative regulator 255 

of Actin Long ASM (Figure 4 C). To identify which individual signaling nodes within these two 256 

modules most regulate Actin Long ASM, we performed a virtual knockdown screen of the 257 

mechanistic network model for regulators of Actin Long ASM in the context of 8TGFβ+WH-4-258 

0239 and predicted that Rho, MKK4, and Akt are proximal regulators of Actin Long ASM and 259 

actin-myosin stress fiber formation (Figure 4 D-E).  260 
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 261 

PI3K signaling stimulates actin-myosin stress fiber formation and collagen 262 

expression 263 

After deriving a putative signaling schematic for Actin Long ASM using the LogiMML model, we 264 

aimed to experimentally validate the prediction that inhibition of PI3K/Akt would suppress 265 

stress fiber formation and thereby increase Actin Long ASM (Figure 4 E). In previous studies 266 

using PI3K inhibitors, PI3K was shown to regulate fibroblast contractility, fibroblast-to-267 

myofibroblast transition, and TGFβ-induced αSMA and collagen production39,40. Given these 268 

previously implicated roles for PI3K in myofibroblast activation and fibrosis, we wanted to 269 

investigate if PI3K has a regulatory role for actin-myosin stress fiber formation in cardiac 270 

fibroblasts. We treated human cardiac fibroblasts with either a negative control condition or a 271 

20 µM dose of the PI3K inhibitor LY294002 (LY). Treatment with LY significantly increased Actin 272 

Long ASM, but notably, it had no significant effect on the total assembly of actin filaments in 273 

each cell, measured by integrated F-actin intensity (Figure 4 F-G). This selective effect of PI3K 274 

inhibition on stress fiber formation, while having no significant effect on total F-actin, suggests 275 

that actin filament assembly and stress fiber formation are differentially regulated processes. 276 

PI3K inhibition also significantly reduced integrated procollagen I intensity, demonstrating a 277 

role for PI3K signaling in cardiac fibroblast collagen production (Figure 4G).  278 

Discussion 279 

Cardiac fibroblasts are central regulators and promising therapeutic targets following cardiac 280 

injury. To identify how clinically relevant drugs regulate diverse aspects of fibroblast 281 

phenotype, we performed high-content screening of 13 drugs in 4 environmental contexts. We 282 

expanded our high-content microscopy feature set to 137 single-cell features, measuring 283 

fibrotic marker protein intensity, intracellular protein distribution, fiber texture, and cell 284 

morphology. After reducing the feature space and dimensionality of our experimental data, we 285 

found that many aspects of fibroblast phenotype are uniquely induced by drug and cytokine 286 

treatments. Notably, when administered with TGFβ, the drugs WH-4-023, defactinib, fasudil, 287 

and pirfenidone induced phenotypes that deviated from the PCA axis corresponding to classical 288 

TGFβ response. The differences between these phenotypes can be partially explained by 289 

differential drug regulation of features capturing Procollagen I and αSMA expression, and actin 290 

filament assembly and actin-myosin stress fiber formation. To predict how drugs regulate cell 291 

signaling and influence phenotype, we developed the logic-based mechanistic machine learning 292 

(LogiMML) approach which coupled the logic-based fibroblast network model with a ridge 293 

regression model trained on the high-content drug screen. Using this expanded LogiMML 294 

model, we predicted regulatory mechanisms for pirfenidone and Src inhibitor WH-4-023 on 295 

actin filaments. We predicted that pirfenidone regulates actin filament assembly via the 296 

8P38_Calcium9, 8Smad39, and 8PI3K9 signaling modules, with Akt, p38, and CBP predicted to be 297 

positive drivers of actin filament assembly within these modules. We also predicted that WH-4-298 

023 regulates actin-myosin stress fiber formation via the 8PI3k9 and 8Mechanical9 signaling 299 
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modules. As predicted by the LogiMML model, we experimentally validated that PI3K inhibition 300 

reduces actin-myosin stress fiber formation in human cardiac fibroblasts. These studies validate 301 

the ability of the LogiMML approach to predict signaling mechanisms from a phenotypic screen.  302 

Differential regulation of fibroblast phenotype by drugs and the development of 303 

targeted antifibrotic therapies 304 

Drugs that specifically target fibroblast signaling may provide directed control over the fibrotic 305 

response. A major challenge in therapeutic development for fibrosis is that many drugs capable 306 

of reducing fibrosis target non-specific regulatory pathways outside of the fibrotic response. For 307 

example, the ALK5 inhibitor galunisertib targets the TGFβ receptor and shows promising 308 

therapeutic reduction of fibrosis across organs41–43. While TGFβ receptor inhibition can reduce 309 

fibrosis, recent efforts in target discovery have successfully identified new approaches to 310 

mitigate fibrosis that are more fibroblast specific. For example, it was shown that activating 311 

fibroblast-specific TLR4 in mice can drive the development of skin and lung fibrosis and that 312 

TLR4 inhibition reduces αSMA expression and collagen production in fibroblasts 44. Another 313 

study showed that fibroblast-specific knockout of STAT3 ameliorates skin fibrosis, and that 314 

pharmacological inhibition of STAT3 successfully reduces myofibroblast activation, collagen 315 

accumulation, and dermal thickening in experimental fibrosis in mice45. Future work can 316 

advance our understanding of how candidate drugs regulate specific components of the fibrotic 317 

response in fibroblasts and provide targeted control of fibrosis. 318 

Features of cardiac fibroblast phenotype 319 

Traditional fibrotic markers are not always expressed in fibroblasts and exhibit significant 320 

heterogeneity and context dependence, in this study we aimed to explore multiple features of 321 

the fibrotic response
46

. Following the reduction of the original set of 137 single-cell features 322 

from our high content image analysis, we identified a set of 18 phenotypic features of 323 

fibroblasts that exhibit high heterogeneity in response to drug treatments (Figure S 3, Table S 324 

2). Notably, many of the features measuring fiber texture for αSMA and F-actin show different 325 

response patterns compared to features measuring overall expression level for those respective 326 

proteins (i.e. aSMA integrated intensity versus aSMA long correlation). This distribution of 327 

features indicates that the expression and organization of aSMA and actin filaments are 328 

independently regulated by candidate drugs. The processes of αSMA protein expression and 329 

fiber assembly have different degrees of contribution to pathological fibrosis. For example, a 330 

recent study showed that fibroblasts can compensate for the loss of Acta2 transcription and 331 

form stress fibers using similar proteins, implying that stress fiber formation is more important 332 

than αSMA production for the fibrotic response47. Incorporating an expanded set of 333 

measurements in future fibrosis studies may provide greater resolution of the fibrotic 334 

phenotype in response to therapies and help evaluate changes in pathologically relevant 335 

features beyond protein expression.  336 
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Contributions of the LogiMML mechanistic machine learning approach 337 

Mechanistic logic-based differential equation models have enabled systematic prediction of 338 

drug action, yet these models are limited by the availability of priori knowledge 13,48–50. An 339 

alternative is machine learning, although 8black-box9 ML approaches like artificial neural 340 

networks predict input-output relationships without mechanistic insight. In contrast, two recent 341 

studies combined mechanistic modeling with machine learning models like regression and 342 

visible neural networks to predict antibiotic stress on metabolism and drug synergies for 343 

cancer29,51. These 8white-box9 approaches provide greater transparency of the intermediate 344 

layers between input and output52.  345 

The prior approach most similar to the LogiMML framework is 8white-box9 machine learning 346 

proposed by Yang et. al
53

. In that study, a flux balance model of E. Coli metabolism with simple 347 

linear regression to predict metabolic reactions important to growth on particular carbon 348 

sources. In this study, we propose a method that combines regularized regression with a logic-349 

based model to predict signaling pathways in response to signaling perturbations 350 

representative of drug effects.  351 

Building on such advances for logic-based biological networks, our LogiMML mechanistic 352 

machine learning approach combines the flexible trainability of a machine learning model with 353 

the robust experimentally-determined internal network structure of a mechanistic model. In 354 

this study, we used the LogiMML model to predict signaling mechanisms that mediate how 355 

drugs regulate F-actin assembly and stress fiber formation in cardiac fibroblasts. However, this 356 

is just one of many possible applications for this modeling framework. The LogiMML approach 357 

is designed to work across multiple mechanistic modeling formalisms and types of experimental 358 

data, coupling the mechanistic model and data to predict mechanisms for the phenotype of 359 

interest. The flexible nature of LogiMML presents promising future applications to elucidate cell 360 

signaling across many disease areas.    361 

Src kinase as a therapeutic target for fibrosis 362 

Of the 13 drugs used in this study, the Src inhibitor WH-4-023 (WH) was one of three drugs that 363 

showed a strong reversal in TGFβ-induced actin filament assembly, αSMA, and procollagen I 364 

expression. WH was also effective at reversing the formation of actin-myosin stress fibers in 365 

response to TGFβ. Src inhibitors dasatinib, ponatinib, and saracatinib have all been used in 366 

clinical trials across different types of cancer54–58. In cancer, Src has been shown to promote 367 

proliferation and metastasis through many signaling targets including FAK, Akt, Ras, and PI3K59–
368 

63.  369 

Given that Src signaling affects many central regulatory pathways, recent studies have tested 370 

the potential for Src inhibition as a therapy for fibrotic disease. In a renal fibrosis study, blocking 371 

Src kinase using PP1 was shown to inhibit TGFβ-induced expression of collagen I, αSMA, and 372 

fibronectin64. In that study, Src inhibition was also shown the reduce the development of renal 373 

fibrosis in obstructed kidneys in vivo in mice, indicating Src inhibition as a potential renal 374 
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fibrosis and chronic kidney disease therapy. Another study focusing on lung fibrosis showed 375 

that TGFβ induces Src kinase activity in lung fibroblasts and that Src is required for 376 

myofibroblast contraction65. Further, inhibition of Src kinase in vivo with AZD0530 reduced scar 377 

area and αSMA expression in mice with bleomycin-induced lung fibrosis65.  378 

While PI3K signaling has established relevance in fibrotic pathologies, this signaling pathway 379 

has been heavily implicated in other disease models including cancer. Aberrant activation of 380 

PI3K signaling has been shown to contribute to tumor progression in multiple cancers including 381 

breast, lung, and ovarian cancers
66

. Changes in extracellular matrix remodeling have been 382 

shown to influence many classically defined hallmarks of cancer, with ECM adhesion-induced 383 

PI3K signaling shown to regulate self-sufficient cell growth via FAK signaling
67,68

 . Given the large 384 

overlap between regulators of cytoskeletal restructuring and tumor progression, therapeutic 385 

targets like PI3K could be efficient future drug targets that can modulate pathways governing 386 

multiple diseases. The interplay between cytoskeleton regulation and cancer progression 387 

should be further explored to identify other central regulators that may modulate both cancer 388 

and fibrotic disease progression. 389 

In this study, we applied the LogiMML network to investigate how Src contributes to actin-390 

myosin stress fiber formation induced by TGFβ. We predicted that PI3K signaling contributes to 391 

profibrotic Src signaling in cardiac fibrosis. This proposed mechanism is supported by previous 392 

studies, showing that PI3K regulates fibroblast contractility and myofibroblast activation in skin 393 

fibroblasts, and TGFβ-induced αSMA and collagen production in lung fibroblasts39,40. To validate 394 

this proposed profibrotic role for PI3K, we show that PI3K inhibition reduced procollagen I 395 

production and actin-myosin stress fiber organization in HCFs. While previous work has shown 396 

that mechanical stretch, Rho-kinase, and myosin light chain kinase (MLCK) positively regulate 397 

the organization of actin filaments into stress fibers, the role of PI3K9s regulation of actin-398 

myosin stress fiber formation has not been thoroughly explored69,70. Here, we show that 399 

treatment with PI3K inhibitor LY294002 (LY) significantly reduces stress fiber formation without 400 

affecting the total amount of assembled actin filaments, implying PI3K positively and 401 

specifically regulates actin-myosin stress fiber formation in cardiac fibroblasts. Future studies 402 

should explore if Src kinase inhibitors mitigate cardiac fibrosis in vivo, and to what degree PI3K 403 

kinase contributes to the regulation of cardiac fibrosis by Src. 404 

Limitations and future directions 405 

The main limitation of this study is that our modeling and experimental approaches address cell 406 

signaling in cardiac fibroblasts in vitro, but do not address how fibroblasts respond to drugs in 407 

an in vivo signaling environment. Our experimental data also captures some key fibrotic 408 

proteins, but does not measure other fibrotic outputs of interest, like EDA fibronectin, and does 409 

not capture a comprehensive signaling profile of the fibroblast. Despite these limitations, the 410 

LogiMML framework was sufficient to predict a validated role for PI3K in promoting stress fiber 411 

formation. Experimentally, future work could include proteomics or RNA-seq analysis of 412 

fibroblasts to measure how drugs differentially regulate intracellular molecular profiles. To 413 
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maximize reproducibility across the drug screen, we used 2D culture on multi-well plates 414 

treated with CellBind. More focused follow-on studies could perform secondary validations 415 

with various extracellular matrix, stiffness or mechanical stretch. Future modeling work could 416 

include simulated conditions for in vivo or in vitro co-culture conditions to incorporate the 417 

signaling influence of other cell types. Given the flexibility of the LogiMML modeling approach, 418 

these simulated data could be feasibly paired with respective experimental data to make 419 

predictions for fibroblast signaling under new conditions. 420 

Conclusions 421 

In this study, we showed that drugs exhibit differential effects on cardiac fibroblast phenotype 422 

and work via distinct mechanisms that can be predicted by logic-based mechanistic machine 423 

learning. By expanding the microscopy feature set in the high content imaging pipeline, we 424 

captured greater resolution of the fibroblast phenotype and measured how phenotypic 425 

features changed in response to drugs. Using our LogiMML modeling approach, we predicted 426 

signaling mechanisms for how pirfenidone and Src inhibitor WH-4-023 affect actin filament 427 

assembly and actin-myosin stress fiber formation, respectively. We predicted that PI3K 428 

regulates F-actin stress fiber formation, which we experimentally validated in human cardiac 429 

fibroblasts. This study presents new features of fibroblast phenotype to be further explored in 430 

fibrosis, identifies specific roles for PI3K in cardiac fibroblast signaling, and demonstrates an 431 

adaptable mechanistic machine learning approach to predict signaling outcomes for fibrosis 432 

that can be expanded to other diseases.    433 

 434 

Methods 435 

In vitro experiments in human cardiac fibroblasts 436 

Primary human ventricular cardiac fibroblasts were purchased from PromoCell (PromoCell C-12375; 437 

PromoCell GmbH, Germany). Cells were cultured in DMEM containing 10% FBS and 1% Pen/Strep, and 438 

were kept in an incubator maintained at 5% CO2. Cells were plated in a 96-well plate at 5,000 cells/well 439 

and then grown in 10% FBS for 24 hours, serum starved for 24 hours, and then treated with the 440 

following cytokine conditions for 96 hours: 0% FBS control media, 0% FBS media with 20ng/mL TGFβ1 441 

(Cell Signaling Technology, 8915LC), and 0% FBS media with 10 ng/mL human IL1β (Cell Signaling 442 

Technology, 8900SC), or TGFβ1 and IL1β combined. Cells were treated with these conditions either 443 

alone or with 1 of 13 compounds at 1 of 3 concentrations. We determined drug concentrations via a 444 

literature search, prioritizing concentrations that yielded significant effects in vitro in fibroblasts or 445 

similar cell types. The drugs with their respective concentrations are as follows: [0.25,1,2] µg/ml of 446 

anakinra (Kineret, SOBI Inc.), [1,5,10] µM valsartan (Sigma-Aldrich, SML0142-10MG), [0.2,1,2] µM BNP 447 

(Sigma-Aldrich, B5900-.5MG), [1,5,10]µM valsartan combos respectively with [0.2,1,2] µM BNP, 448 

[10,30,60]mM glutathione (Sigma-Aldrich, G4251-1G), [1,3,5] µM CW-HM12 (Cayman Chemical 449 

Company, 19480), [10,20,50] µM salbutamol (Sigma-Aldrich, S8260-25MG), [5,10,25] µM marimistat 450 

(Sigma-Aldrich, M2699-5Mg), [1,5,10] µM galunisertib (Selleck Chemicals, S2230), [12.5,25,50] µM 451 

fasudil (Sigma-Aldrich, CDS021620-10MG), [10,25,50  ]µM SB203580 (Sigma-Aldrich, S8307-1MG), 452 

[1,5,10] mg/mL pirfenidone (Sigma-Aldrich, P2116-10MG), [5,10,20] µM defactinib (MedChem Express, 453 
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HY-12289A), [5,10,20] µM WH-4-023 (Sigma-Aldrich, SML1334-5MG), and 20 µM LY294002 (Selleck 454 

Chemicals, S1105). Cells were grown in these conditions for 72 hours.  455 

Cells were then fixed in 4% PFA in PBS for 30 minutes, permeabilized and blocked for 1 hour in a solution 456 

containing 3% BSA and 0.2% Triton, and then stained overnight at 4°C with a 1:500 Anti-Collagen I 457 

antibody (Abcam, ab34710). After overnight incubation, cells were washed 3x in PBS and stained with 458 

1:5000 Dapi, 1:1000 Phalloidin CruzFluor 647 Conjugate (Santa Cruz Biotechnology, sc-363797), 1:250 α-459 

Smooth Muscle Actin antibody (Sigma-Aldrich, C6198), and 1:1000 Goat-anti-Rabbit (ThermoFisher 460 

Scientific, A-11034). 461 

Microscopy and single-cell quantification 462 

96-well plates we imaged using the Operetta CLS High-Content Analysis System (Perkin Elmer). All three 463 

replicate wells for each condition were imaged and quantified. To quantify αSMA expression, an 464 

automated image analysis pipeline was employed in CellProfiler (Broad Institute)
22

. Fibroblast nuclei 465 

were identified by the DAPI signal. Next, the collagen-positive region corresponding to each nucleus was 466 

segmented using the <propagate= algorithm, using the segmented nucleus as the seed. Next, Fibroblast 467 

boundaries were segmented using the <propagate= algorithm, musing the segmented collagen region as 468 

the seed. αSMA signal was integrated within each cell's boundary. Short, medium, and long texture 469 

feature information was derived using the MeasureTexture module in CellProflier using texture scales of 470 

2, 6, and 10 pixels respectively. Texture feature values were calculated by subtracting the smallest angle 471 

value of a given feature from the largest angle value of that same feature for each cell. F-actin and 472 

procollagen expressions were quantified similarly. 473 

Statistics 474 

Feature values for each well were determined by taking the median value of the feature across all cells 475 

in the center tile of each well. Well median values were used as replicates (n=3). Significance was 476 

determined using an ANOVA with Tukey’s posthoc in comparisons between more than two groups, and 477 

Student’s T-test in comparisons between two groups. Automated data analysis and statistical 478 

calculations were performed using Python 3.8.5 and the ‘statsmodels’ Python module version 0.13.2. 479 

Model Simulations  480 

Drug simulations in the fibroblast network model were performed as previously described using 481 

MATLAB version 2022a12,13,71. Predicted node activity is calculated using logic-based Hill 482 

differential equations. Agonist and antagonist drug relationships were represented by altering 483 

the activation function of the target node, representing either competitive or non-competitive 484 

drug interactions with the respective target. To better represent the cell-to-cell variability 485 

observed in in vitro cell responses to treatments, we employed a previously developed 486 

ensemble modeling approach combining multiple simulations with random normally distributed 487 

parameters71. Ensemble simulations were performed using the MATLAB 8normrnd9 function 488 

from the 8Statistics and Machine Learning9 toolbox to randomly sample parameters within a 489 

normal distribution and simulation n of 100. The randomly sampled parameters and means of 490 

the sampling ranges are as follows: baseline ligand inputs (0.25), mechanical input (0.85), drug 491 

dose (0.85), and raised ligand inputs (0.6). The sampling range for each parameter was 492 

calculated by ��������� � 	
� � ��������� where COV=0.0396. This COV value, used to 493 
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scale stochasticity in the model was determined by taking the average coefficient of variation in 494 

F-actin, procollagen I, and αSMA expression in human cardiac fibroblasts treated with TGFβ 495 

from our in vitro experiments. Code for all modeling, regression and data analysis is available at 496 

at https://github.com/andersnelson/Logic-based_MML. 497 

LogiMML Network-Regression Coupling 498 

The LogiMML mechanistic machine learning model is comprised of a network model layer and a 499 

Ridge regression layer. The independent 8X9 variables used to train the regression model are 500 

node activity values from the network model predicted under each simulated drug and 501 

environmental condition. To reduce model complexity, network nodes were clustered into 11 502 

signaling modules derived from k-means clustering on a combined sensitivity and influence 503 

analysis on the network model12. Sensitivity analysis was performed by systematically 504 

perturbing individual node values and measuring the change in all other nodes in response to 505 

the perturbed node. The influence matrix, the transposition of the sensitivity matrix, was 506 

combined with the sensitivity matrix and this combined matrix was used for the k-means 507 

clustering. The node activity values were averaged within each module, and these modules9 508 

mean activity values were fed into the regression layer. The dependent 8Y9 variables for this 509 

model were experimentally measured values from our high-content imaging experiments in 510 

human cardiac fibroblasts. Sensitivity knockout analysis was performed by simulating a given 511 

drug and cytokine context int network model i.e. 8TGFβ+pirfenidone9 and sequentially setting 512 

each node ymax value to 0, measuring reduction or increase in the dependent variable e.g. 8F-513 

actin Intensity9 upon knockdown.  514 
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Figure 1: High-content microscopy screen for drugs that module fibroblast activation. A) Expression of 686 

fibroblast activation markers procollagen I, F-actin, and αSMA in human cardiac fibroblasts upon 687 

treatment of 13 drugs at 3 doses, under environmental contexts of TGFβ, IL1β, or both. Fold change 688 

values show ‘drug vs. no drug’ Integrated Intensities for each protein. Panels B and C show 689 

quantification and representative images of the effects of 50 µM fasudil, a Rho-kinase inhibitor, which 690 

differentially regulates fibrotic protein expression. Panels D and E show quantification and 691 

representative images of the effects of 10mg/mL pirfenidone, a non-specific inhibitor of TGFβ 692 

expression, which consistently regulates fibrotic protein expression. *p≤0.05 ANOVA with Tukey’s post-693 

hoc. 694 

Figure 2: LogiMML logic-based mechanistic machine learning approach guides model revision and 695 

predicts network mechanisms underlying pirfenidone suppression of F-actin. A) Original fibroblast 696 

network model predicts no change in F-actin upon TGFβ or pirfenidone treatment. Experimental data 697 

shows pirfenidone significantly reverses the increase of F-actin by TGFβ (data previously shown in figure 698 

1 D). B) Schematic of the LogiMML approach for integrating logic-based network modeling with machine 699 

learning to predict network mechanisms for cell phenotypes. The average activity within each network 700 

module is mapped to predict fibroblast phenotypic features via a Ridge regression layer. C) The Coupled 701 

LogiMML model predicts TGFβ and pirfenidone effects on F-actin that qualitatively match experimental 702 

data shown in panel A. D) LogiMML ridge regression coefficients show predicted relative influence of 703 

network modules on F-actin. E) LogiMML node knockdown sensitivity analysis in the context of 704 

TGFβ+pirfenidone. Nodes from most influential modules are sequentially knocked down, predicting 705 

change in F-actin upon knockdown. F) Schematic of the network mechanisms predicted for the actions 706 

of pirfenidone on F-actin, derived from sensitivity analysis in panel E. 707 

Figure 3: Survey of single-cell fibroblast phenotypic features in response to 13 drugs at 3 doses and 4 708 

environmental contexts. A) 137 single-cell fibroblast features that quantify protein intensity, protein 709 

localization, cell morphology, and fiber texture. This heatmap was organized on treatment and feature 710 

axes by agglomerative hierarchical clustering. B) Principal component scores of experimental data 711 

reduced to a set of 18 representative fibroblast features. C) Principal component loadings the reduced 712 

of PCA scores and loadings define a primary axis of fibroblast activation with correlated protein 713 

expression of procollagen, αSMA, and F-actin that is modulated by many drugs. Off-axis, the Src inhibitor 714 

WH-4-023 modulated the cell texture feature Actin Long Angular Second Moment, which motivated 715 

further study. 716 

Figure 4: Logic-based mechanistic machine learning predicts the PI3K module to mediat how Src 717 

inhibitor suppresses stress fibers, validated by subsequent experiments. A) Images of human cardiac 718 

fibroblasts treated with baseline control stimulus, TGFβ, or TGFβ + 20 µM WH-4-023. B) Quantification 719 

of Actin Long Angular Second Moment (ASM), a measure of actin uniformity and reduced stress fibers 720 

based on images in panel A. C) Regression coefficients from the LogiMML mechanistic machine learning 721 

model that predicts network modules that regulate actin long ASM. D) Knockdown sensitivity analysis 722 

predicting individual proteins that regulate actin long ASM in the TGFβ+WH-4-023 signaling context. E) 723 

Signaling schematic for WH-4-023 effect on actin long ASM, derived from sensitivity analysis in panel D. 724 

F) Human cardiac fibroblasts treated with 20 µM PI3K inhibitor LY294002 or baseline control stimulus, 725 

measuring F-actin and procollagen expression. G) Quantification of long actin Angular Second Moment 726 

(measure of actin uniformity), F-actin integrated intensity, and Procollagen I integrated intensity. 727 

*p≤0.05 ANOVA with Tukey’s post-hoc in panel B, and *p≤0.05 Student’s T-test in panel G. 728 
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