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Abstract

Fibroblasts are essential regulators of extracellular matrix deposition following cardiac injury.
These cells exhibit highly plastic responses in phenotype during fibrosis in response to
environmental stimuli. Here, we test whether and how candidate anti-fibrotic drugs
differentially regulate measures of cardiac fibroblast phenotype, which may help identify
treatments for cardiac fibrosis. We conducted a high content microscopy screen of human
cardiac fibroblasts treated with 13 clinically relevant drugs in the context of TGFB and/or IL-1,
measuring phenotype across 137 single-cell features. We used the phenotypic data from our
high content imaging to train a logic-based mechanistic machine learning model (LogiMML) for
fibroblast signaling. The model predicted how pirfenidone and Src inhibitor WH-4-023 reduce
actin filament assembly and actin-myosin stress fiber formation, respectively. Validating the
LogiMML model prediction that PI3K partially mediates the effects of Src inhibition, we found
that PI3K inhibition reduces actin-myosin stress fiber formation and procollagen | production in
human cardiac fibroblasts. In this study, we establish a modeling approach combining the
strengths of logic-based network models and regularized regression models, apply this
approach to predict mechanisms that mediate the differential effects of drugs on fibroblasts,
revealing Src inhibition acting via PI3K as a potential therapy for cardiac fibrosis.

Significance

Cardiac fibrosis is a dysregulation of the normal wound healing response, resulting in excessive
scarring and cardiac dysfunction. As cardiac fibroblasts primarily regulate this process, we
explored how candidate anti-fibrotic drugs alter the fibroblast phenotype. We identify a set of
137 phenotypic features that change in response to drug treatments. Using a new
computational modeling approach termed logic-based mechanistic machine learning, we
predict how pirfenidone and Src inhibition affect the regulation of the phenotypic features actin
filament assembly and actin-myosin stress fiber formation. We also show that inhibition of PI3K
reduces actin-myosin stress fiber formation and procollagen I production in human cardiac
fibroblasts, supporting a role for PI3K as a mechanism by which Src inhibition may suppress
fibrosis.

Introduction

Cardiac fibroblasts are the primary regulators of remodeling following cardiac injury’.
Extracellular matrix (ECM) deposition by activated myofibroblasts is essential to this response,
but excessive deposition can lead to ventricular stiffness, diastolic dysfunction, and heart
failure'. While fibroblasts are critical to the wound healing response, current standard-of-care
therapeutics for cardiac injury, such as myocardial infarction (Ml), affect downstream
symptoms but do not specifically target fibroblast signaling”. Recent drug discovery and
development has focused on identifying drugs such as Entresto (sacubitril/valsartan) that
reduce fibrosis in part by modulating fibroblast signaling”.
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66  Collagen secretion, aSMA expression, and actin filaments (F-actin) are traditional markers for a
67  profibrotic fibroblast phenotype>®. While high expression of these markers provides an initial
68 indication of myofibroblast activation, traditional marker expression is inconsistent and does

69  not fully capture the fibrotic response’. Recent studies of fibroblast phenotype have shown that
70  fibroblasts exhibit high phenotypic heterogeneity across many facets in response to injury, and
71  that phenotypic changes are also sensitive to drug perturbations®*'. Identifying drugs that

72 regulate fibroblast signaling may provide targeted control of fibrosis.

73 Previously, we developed a logic-based mechanistic network model of fibroblast signaling and
74  applied it to perform virtual screens for anti-fibrotic drugs'>*’. That study predicted and

75  experimentally validated an antifibrotic role for the TGFB receptor inhibitor galunisertib®.

76  While the fibroblast network model predicts a number of drugs that modulate fibroblast

77  activation, substantial experimental characterization is needed to capture phenotypic

78  responses to drugs that were not captured by prior modeling.

79  In this study, we combined high content microscopy, network modeling, and machine learning
80 to identify drugs that differentially regulate fibroblast phenotypic metrics and predict their

81 underlying network mechanisms. We used image-based feature extraction to more deeply

82  characterize drug response and fibroblast phenotype, capturing drug-induced changes across a
83  set of single-cell metrics relevant to fibrosis. Using a novel logic-based mechanistic machine

84  learning approach, LogiMML, we predicted signaling pathways that determine how drugs

85 regulate fibroblast phenotype. Finally, we experimentally validated the main pathway

86  mechanism predicted by the LogiMML model that mediates how Src inhibition suppresses

87 fibrotic responses.

88

89 Results

90  Anin vitro screen for candidate fibrosis drugs

91  Previously, we applied our published cardiac fibroblast network model* to identify candidate
92  therapies predicted to reduce cardiac fibrosis*®. This logic-based differential equation network
93  model was developed from a wide range of fibroblast signaling relationships from in vitro

94  studies in the literature. The model predicts changes in fibrotic outputs including collagen | and
95 [1l, aSMA, EDA fibronectin, matrix metalloproteases, and F-actin in response to changes in

96 extracellular signaling contexts and drug treatment™. This model was previously integrated with
97 the drug-target database DrugBank to make predict the response of fibroblasts to 121 FDA-

98 approved or investigational drugs that have targets in this network®.

99  To expand upon the in silico modeling work done in this previous study™, we aimed to develop
100  alist of drug candidates to test experimentally for their ability to reduce fibrosis in cardiac
101  fibroblasts in vitro. As the model predicted many drugs to reduce fibrosis to similar quantitative
102 degrees®, we included drug selection criteria outside of our modeling results alone to further
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103  narrow-down a list of candidate drugs. First, we prioritized pathway diversity of the drug

104  targets to ensure that we would perturb fibrotic signaling comprehensively and avoid testing
105  redundant drugs in our experiments. As drug repurposing has become an increasingly effective
106  and efficient strategy for treating cardiovascular disease, we next looked to prioritize drugs that
107  had previous clinical indications for other disease areas'**>. Using these selection criteria, we
108  developed the following list of thirteen drugs to evaluate experimentally: anakinra, valsartan,
109  defactinib, HW-4-023, glutathione, CW-HM12, salbutamol, marimistat, fasudil, SB203580,

110  pirfenidone, brain natriuretic peptide (BNP), and a combination of valsartan and BNP (Table S1).
111 Among the list of candidate drug targets are regulators for inflammatory signaling, mechanical
112  stretch response, non-canonical TGF signaling, and modification of secreted proteins.

113 We next aimed to test these candidate drugs for their ability to quantitatively reduce fibrosis as
114  characterized by image-based single-cell profiling of procollagen |, a-smooth muscle actin

115  (aSMA), and F-actin. In injury signaling conditions, such as following myocardial infarction (Ml),
116  myocardial cells are exposed to elevated proinflammatory'® 8. To represent these signaling
117  contexts in an in vitro system, we included IL13 and TGFB, shown to be elevated following

118  cardiac injury, in our treatment conditions to represent proinflammatory and profibrotic

119  contexts respectively'®*. We tested our candidate drugs under four total cytokine contexts
120  (baseline context with no added cytokine, fibrotic context represent by TGFB, inflammatory
121  context represented by IL1B, and combined context represent by both TGFB and IL1B)** 2. In
122 total, we used 108 treatment conditions consisting of one of the thirteen drugs at a low,

123 medium, or high dose combined with one of the four cytokine contexts. We also included

124  treatments of each cytokine context with no drug to establish a control baseline for cell

125  responses to cytokines. We imaged and quantified single-cell protein expression of three

126 fibrotic markers, procollagen |, a-smooth muscle actin (aSMA), and F-actin using high-content
127  microscopy and a custom CellProfiler software pipeline®.

128 Interestingly, the antifibrotic drugs in our screen induced differential effects on fibrosis. Of the
129 13 candidate drugs, WH-4-023, fasudil, and defactinib caused the strongest reduction of

130  procollagen |, F-actin, and aSMA expression in a TGFB signaling context, even at the lowest

131 dose (Figure 1A). Conversely, a second set of drugs including anakinra and glutathione

132 increased fibrotic marker expression in both TGFf and combined TGFB/IL1B contexts when

133  applied directly to fibroblasts. In a previous clinical study, anakinra, an IL1 receptor inhibitor,
134  was shown to improve cardiac function and prevented heart failure following acute MI*, While
135 anakinra has been shown to reduce infarct scar area in a mouse MI model, it also exhibits other
136  beneficial cardiac effects post-MlI including inhibition of post-MI myocyte apoptosis and

137  reduction in systemic inflammat*?. Based on these previous studies, it is likely that anakinra
138  has a net antifibrotic effect on fibroblasts in the presence of other myocardial cell types even
139  though anakinra treatment increased fibrotic marker expression in this experiment. A third set
140  of drugs showed more selective antifibrotic effects. For example, while fasudil significantly

141  reduced expression of all three fibrosis markers in a TGFp signaling context, pirfenidone only
142  significantly reduced F-actin (Figure 1 B-E). This third set of drugs is of particular interest as it
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143  contains drugs that differentially regulate markers for fibrosis. Given the recent clinical

144  effectiveness of pirfenidone for lung fibrosis, and success in diseases models for cardiac
145  fibrosis’®”’, we further investigated the mechanisms by which it regulates F-actin in cardiac
146  fibroblasts.

147  LogiMML.: logic-based mechanistic machine learning model predicts how drugs
148  regulate fibroblast phenotype

149  Assembled actin filaments play a key role in contractility as fibroblasts transition to become
150  myofibroblasts®. Therefore, we asked whether the previous mechanistic computational model
151  of the fibroblast signaling network™ could predict our experimentally measured inhibition of
152  filament assembly by pirfenidone from Figure 1D. While the model had correctly predicted

153  responses to a number of drugs including galunisertib®, here, the original mechanistic model
154  did not capture the ability of pirfenidone to suppress actin filament assembly in a TGF

155  signaling context (Figure 2 A).

156  Given the limitations of a model based only on prior knowledge, we asked whether drug

157  predictions could be improved by combining the mechanistic model with a machine learning
158  model that leverages data from the drug screen. Motivated by ‘white-box’ machine learning
159  strategies that combine mechanistic models with machine learning®®*°, we designed a logic-
160  based mechanistic machine learning (LogiMML) model to predict key regulators that conduct
161  signaling from network model inputs and simulated drugs to experimentally measured

162  phenotypic outputs (Figure 2 B, Figure S 1). As the 108 treatments were insufficient to infer

163  new links to phenotypic outputs from all 91 model nodes, we reduced the model’s

164  dimensionality by clustering nodes into modules. Eleven signaling modules were computed

165  based on a combined influence and sensitivity analysis, grouping nodes with similar predicted
166  behavior across signaling contexts. The machine learning component was then trained by

167  mapping the model-predicted activity of each network module for each of the 108

168  drug+cytokine treatments to respective experimentally measured outputs. Regularized ridge
169  regression was selected for the machine learning layer of the LogiMML model to reduce the
170  likelihood of overfitting®. As measured experimentally, the LogiMML model correctly predicted
171 the respective induction and suppression of F-actin by TGFB and pirfenidone (Figure 2 C). Leave-
172 one-out cross validation (LOOCV) was performed on the LogiMML model to evaluate

173 performance across variations in the experimental data set. The means and standard deviation
174  of the LOOCV MSE values were 0.022 and 0.080 for the F-actin Integrated Intensity model.

175  We next asked whether the LogiMML model could provide new mechanistic insights into how
176  F-actin is regulated by pirfenidone. First, we used the LogiMML model’s ridge regression

177  coefficients to predict the modules that most influence F-actin. We used the B coefficients from
178  the LogiMML model to predict the influence of a given signaling module on the cell feature of
179 interest. ‘PI3K’ and ‘Smad3’ modules were predicted to be the top positive regulators of F-

180  actin, while the ‘P38 Calcium’ module was predicted as the top negative regulator (Figure 2 D).
181  These predictions for fibroblasts are consistent with previous studies with other cell types
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182  showing that members of the ‘Smad3’ and ‘P38_Calcium’ signaling modules regulate F-actin

183  filament assembly in endothelial cells and that members of the ‘PI3K’ signaling module promote
184  actin filament remodeling during migration in embryonic fibroblasts ***. To identify which

185 individual signaling nodes within these three modules most regulate F-actin, we performed a
186  virtual knockdown screen of the mechanistic network model for regulators of F-actin in a

187  ‘TGFB+pirfenidone’ signaling context (Figure 2 E). In these analyses, the quantitative outputs of
188  the model are normalized outputs that can be compared to determine predicted increases or
189  decreases in a cell feature in response to a perturbation. Summarizing these analyses, the

190 LogiMML model predicts that pirfenidone regulation of F-actin is positively regulated by p38,
191  Akt, and CBP, while negatively regulated by ROS and NOX (Figure 2 F).

192

193  Drugs and pathways controlling fibroblast morphology and texture

194  Given the differential regulation of fibrosis marker protein expression, we asked whether other
195  aspects of fibroblast phenotype may also be differentially regulated by drugs and cytokines.

196  Qualitatively, we observed morphological changes in cell shape, actin-myosin stress fiber

197  formation, intracellular protein distribution, and cell area (e.g. for pirfenidone treatment see
198  Figure 1 E). To measure these characteristics of fibroblast phenotype, we developed a custom
199  CellProfiler image analysis pipeline quantifying 137 total single-cell cell features’>**. Integrated
200 intensities for the three fibrotic marker proteins, procollagen I, F-actin, and aSMA clustered

201  relatively close to each other across the feature space (Figure 3 A). As expected, expression of
202  these marker proteins and similar features were high under TGF and TGFB-like treatments,
203  and low under negative control and IL1P conditions. While the central rows of the heatmap

204  contain many features with similar treatment responses, the features at the top and bottom
205 regions of the heatmap show high heterogeneity in response to drugs. The significance of the
206  overall correlation between actin, aSMA, and collagen expression is two-fold: that some drugs
207  such as fasudil suppress a well-studied canonical myofibroblast activation program, and that the
208  responses to other drugs revealed that the overall phenotype space of fibroblasts is much more
209 diverse and can be specifically targeted with drugs like WH-4-023. Even within the

210  actinfaSMA/collagen cluster, the hierarchical clustering shows some examples where only in the

211 context of TGF treatment, some drugs up-regulated aSMA/collagen features while down-
212 regulating actin features.

213 The extraction of fibrotic marker proteins and the large degree of information about those

214  fibrotic features is a rich dataset with which we next wished to understand more directly how
215  they relate to each other and to treatment. Given the risk that some of our features carry

216  redundant information, we calculated the correlation between all features and clustered the
217  correlation matrix. This identified 15 strong sets of feature clusters. We selected one

218  representative feature of each cluster (Figure S2, Figure S3) based on choosing the cluster

219  member that demonstrated high variance across samples and low correlation with features from
220  other clusters. In addition to the 15 representative features, we retained the three integrated
221  intensity features for procollagen I, F-actin, and aSMA, yielding a final set of 18 distinct features
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222 of the original 137 features, which have the potential to represent the complexity of the larger
223 dataset.

224  In order to interpret the overall underlying relationships in the 18 selected features and how
225  they relate to treatments, we performed Principal Component Analysis (PCA) (Figure 3B-C).

226 Negative control treatments had a negative score on the first principal component (PC1), while
227  cells treated with TGFP showed a high positive score on PC1, indicating that the first principal
228  component correlates with an axis of classical fibroblast activation (Figure 4 B, Figure S4 A). This
229  was further supported by the PCA loading values for integrated procollagen I, F-actin, and

230 aSMA (Figure 3 C, Figure S4 B). These three features are expected to be relatively high in

231  activated myofibroblasts and indeed have strong positive loadings on PC1. On the PCA scores,
232 many of the ‘TGFB + Drug’ groups deviated from the control-TGFp axis defined on PC1, implying
233  that drugs induce phenotypic changes distinct from a simple reversal of TGFp's effects. To

234 further investigate drug-induced changes in phenotype, we analyzed the PCA scores and

235  loadings to infer links between drugs and the features they regulate. Notably, the Src inhibitor
236  WH-4-023 (WH) showed directionality on the scores plot similar to that of Actin Long Angular
237  Second Moment (Actin Long ASM, a measure for actin uniformity) on the loadings plot. Actin-
238  myosin stress fibers, composed of multiple actin filaments along with other proteins, contribute
239  to pathological fibrosis and myofibroblast differentiation®* . This feature and treatment pair
240  showed a negative value on PC1 and a positive value on PC2 relative to the TGFB and control
241  groups, respectively. The similar directionality of WH and Actin Long ASM suggests that Src

242 inhibition may modulate actin uniformity.

243  Based on the initial inference from the PCA, we revisited the images from the high-content
244  microscopy experiment. Fibroblasts treated with TGFpB exhibited discrete actin-myosin stress
245  fibers, and stress fibers were qualitatively reduced when WH-4-023 (WH) was added (Figure 4
246  A). Quantitative analysis of actin uniformity (inversely correlated with stress fibers) using Actin
247  Long Angular Second Moment (ASM) further supported that TGFp increased and Src inhibitor
248  WH reduced actin uniformity (Figure 4 B). The full dose response for Long Actin ASM to WH-4-
249 023 is shown in Figure S5.

250 To predict the signaling pathways that specifically regulate actin-myosin stress fibers, we again
251  applied the LogiMML coupled modeling approach, but this time training the ridge regression
252 layer of the model on experimental measurements of Actin Long ASM. The means and standard
253  deviation of the LOOCV MSE values were 0.083 and 0.142 for the Long Actin ASM model. The
254  LogiMML model regression coefficients predicted that the ‘Mechanical’ module was the top
255  positive regulator of Actin Long ASM and that the ‘PI3K’ module was the top negative regulator
256  of Actin Long ASM (Figure 4 C). To identify which individual signaling nodes within these two
257  modules most regulate Actin Long ASM, we performed a virtual knockdown screen of the

258  mechanistic network model for regulators of Actin Long ASM in the context of ‘TGFB+WH-4-
259 023’ and predicted that Rho, MKK4, and Akt are proximal regulators of Actin Long ASM and
260  actin-myosin stress fiber formation (Figure 4 D-E).
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261

262  PI3K signaling stimulates actin-myosin stress fiber formation and collagen

263  expression

264  After deriving a putative signaling schematic for Actin Long ASM using the LogiMML model, we
265 aimed to experimentally validate the prediction that inhibition of PI3K/Akt would suppress
266  stress fiber formation and thereby increase Actin Long ASM (Figure 4 E). In previous studies
267  using PI3K inhibitors, PI3K was shown to regulate fibroblast contractility, fibroblast-to-

268  myofibroblast transition, and TGFB-induced aSMA and collagen production®**. Given these
269  previously implicated roles for PI3K in myofibroblast activation and fibrosis, we wanted to

270 investigate if PI3K has a regulatory role for actin-myosin stress fiber formation in cardiac

271  fibroblasts. We treated human cardiac fibroblasts with either a negative control condition or a
272 20 uM dose of the PI3K inhibitor LY294002 (LY). Treatment with LY significantly increased Actin
273 Long ASM, but notably, it had no significant effect on the total assembly of actin filaments in
274  each cell, measured by integrated F-actin intensity (Figure 4 F-G). This selective effect of PI3K
275 inhibition on stress fiber formation, while having no significant effect on total F-actin, suggests
276  that actin filament assembly and stress fiber formation are differentially regulated processes.
277  PI3Kinhibition also significantly reduced integrated procollagen | intensity, demonstrating a
278  role for PI3K signaling in cardiac fibroblast collagen production (Figure 4G).

279 Discussion

280  Cardiac fibroblasts are central regulators and promising therapeutic targets following cardiac
281  injury. To identify how clinically relevant drugs regulate diverse aspects of fibroblast

282  phenotype, we performed high-content screening of 13 drugs in 4 environmental contexts. We
283  expanded our high-content microscopy feature set to 137 single-cell features, measuring

284  fibrotic marker protein intensity, intracellular protein distribution, fiber texture, and cell

285  morphology. After reducing the feature space and dimensionality of our experimental data, we
286  found that many aspects of fibroblast phenotype are uniquely induced by drug and cytokine
287  treatments. Notably, when administered with TGFB, the drugs WH-4-023, defactinib, fasudil,
288  and pirfenidone induced phenotypes that deviated from the PCA axis corresponding to classical
289  TGFp response. The differences between these phenotypes can be partially explained by

290 differential drug regulation of features capturing Procollagen | and aSMA expression, and actin
291 filament assembly and actin-myosin stress fiber formation. To predict how drugs regulate cell
292  signaling and influence phenotype, we developed the logic-based mechanistic machine learning
293  (LogiMML) approach which coupled the logic-based fibroblast network model with a ridge

294  regression model trained on the high-content drug screen. Using this expanded LogiMML

295  model, we predicted regulatory mechanisms for pirfenidone and Src inhibitor WH-4-023 on
296  actin filaments. We predicted that pirfenidone regulates actin filament assembly via the

297 ‘P38 Calcium’, ‘Smad3’, and ‘PI3K’ signaling modules, with Akt, p38, and CBP predicted to be
298  positive drivers of actin filament assembly within these modules. We also predicted that WH-4-
299 023 regulates actin-myosin stress fiber formation via the ‘PI3k’ and ‘Mechanical’ signaling
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300 modules. As predicted by the LogiMML model, we experimentally validated that PI3K inhibition
301  reduces actin-myosin stress fiber formation in human cardiac fibroblasts. These studies validate
302 the ability of the LogiMML approach to predict signaling mechanisms from a phenotypic screen.

303 Differential regulation of fibroblast phenotype by drugs and the development of
304 targeted antifibrotic therapies

305 Drugs that specifically target fibroblast signaling may provide directed control over the fibrotic
306  response. A major challenge in therapeutic development for fibrosis is that many drugs capable
307 of reducing fibrosis target non-specific regulatory pathways outside of the fibrotic response. For
308 example, the ALKS inhibitor galunisertib targets the TGFP receptor and shows promising

309 therapeutic reduction of fibrosis across organs* ™. While TGFp receptor inhibition can reduce
310 fibrosis, recent efforts in target discovery have successfully identified new approaches to

311  mitigate fibrosis that are more fibroblast specific. For example, it was shown that activating

312  fibroblast-specific TLR4 in mice can drive the development of skin and lung fibrosis and that

313 TLR4 inhibition reduces aSMA expression and collagen production in fibroblasts **. Another

314  study showed that fibroblast-specific knockout of STAT3 ameliorates skin fibrosis, and that

315  pharmacological inhibition of STAT3 successfully reduces myofibroblast activation, collagen

316  accumulation, and dermal thickening in experimental fibrosis in mice®. Future work can

317 advance our understanding of how candidate drugs regulate specific components of the fibrotic
318  response in fibroblasts and provide targeted control of fibrosis.

319 Features of cardiac fibroblast phenotype

320 Traditional fibrotic markers are not always expressed in fibroblasts and exhibit significant

321  heterogeneity and context dependence, in this study we aimed to explore multiple features of
322 the fibrotic response™. Following the reduction of the original set of 137 single-cell features
323  from our high content image analysis, we identified a set of 18 phenotypic features of

324  fibroblasts that exhibit high heterogeneity in response to drug treatments (Figure S 3, Table S
325  2). Notably, many of the features measuring fiber texture for aSMA and F-actin show different
326  response patterns compared to features measuring overall expression level for those respective
327  proteins (i.e. aSMA integrated intensity versus aSMA long correlation). This distribution of

328 features indicates that the expression and organization of aSMA and actin filaments are

329 independently regulated by candidate drugs. The processes of aSMA protein expression and
330 fiber assembly have different degrees of contribution to pathological fibrosis. For example, a
331  recent study showed that fibroblasts can compensate for the loss of Acta2 transcription and
332  form stress fibers using similar proteins, implying that stress fiber formation is more important
333  than aSMA production for the fibrotic response®’. Incorporating an expanded set of

334  measurements in future fibrosis studies may provide greater resolution of the fibrotic

335 phenotype in response to therapies and help evaluate changes in pathologically relevant

336 features beyond protein expression.
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337  Contributions of the LogiMML mechanistic machine learning approach

338  Mechanistic logic-based differential equation models have enabled systematic prediction of

339  drug action, yet these models are limited by the availability of priori knowledge ***7°, An

340 alternative is machine learning, although ‘black-box’ ML approaches like artificial neural

341  networks predict input-output relationships without mechanistic insight. In contrast, two recent
342  studies combined mechanistic modeling with machine learning models like regression and

343  visible neural networks to predict antibiotic stress on metabolism and drug synergies for

344  cancer®®. These ‘white-box’ approaches provide greater transparency of the intermediate

345  layers between input and output™.

346  The prior approach most similar to the LogiMML framework is ‘white-box’ machine learning
347  proposed by Yang et. al>>. In that study, a flux balance model of E. Coli metabolism with simple
348 linear regression to predict metabolic reactions important to growth on particular carbon

349  sources. In this study, we propose a method that combines regularized regression with a logic-
350 based model to predict signaling pathways in response to signaling perturbations

351  representative of drug effects.

352  Building on such advances for logic-based biological networks, our LogiMML mechanistic

353  machine learning approach combines the flexible trainability of a machine learning model with
354  the robust experimentally-determined internal network structure of a mechanistic model. In
355  this study, we used the LogiMML model to predict signaling mechanisms that mediate how

356  drugs regulate F-actin assembly and stress fiber formation in cardiac fibroblasts. However, this
357 is just one of many possible applications for this modeling framework. The LogiMML approach
358 is designed to work across multiple mechanistic modeling formalisms and types of experimental
359  data, coupling the mechanistic model and data to predict mechanisms for the phenotype of
360 interest. The flexible nature of LogiMML presents promising future applications to elucidate cell
361  signaling across many disease areas.

362  Src kinase as a therapeutic target for fibrosis

363  Of the 13 drugs used in this study, the Src inhibitor WH-4-023 (WH) was one of three drugs that
364 showed a strong reversal in TGFB-induced actin filament assembly, aSMA, and procollagen |
365 expression. WH was also effective at reversing the formation of actin-myosin stress fibers in
366  response to TGF. Src inhibitors dasatinib, ponatinib, and saracatinib have all been used in

367 clinical trials across different types of cancer™™2. In cancer, Src has been shown to promote

368  proliferation and metastasis through many signaling targets including FAK, Akt, Ras, and PI3K>~
369 %

370  Given that Src signaling affects many central regulatory pathways, recent studies have tested
371  the potential for Src inhibition as a therapy for fibrotic disease. In a renal fibrosis study, blocking
372 Src kinase using PP1 was shown to inhibit TGFB-induced expression of collagen |, aSMA, and
373 fibronectin®. In that study, Src inhibition was also shown the reduce the development of renal
374  fibrosis in obstructed kidneys in vivo in mice, indicating Src inhibition as a potential renal
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375  fibrosis and chronic kidney disease therapy. Another study focusing on lung fibrosis showed
376  that TGFB induces Src kinase activity in lung fibroblasts and that Src is required for

377  myofibroblast contraction®. Further, inhibition of Src kinase in vivo with AZD0530 reduced scar
378  area and aSMA expression in mice with bleomycin-induced lung fibrosis®.

379  While PI3K signaling has established relevance in fibrotic pathologies, this signaling pathway

380 has been heavily implicated in other disease models including cancer. Aberrant activation of
381  PI3K signaling has been shown to contribute to tumor progression in multiple cancers including
382  breast, lung, and ovarian cancers®. Changes in extracellular matrix remodeling have been

383  shown to influence many classically defined hallmarks of cancer, with ECM adhesion-induced
384  PI3K signaling shown to regulate self-sufficient cell growth via FAK signalin,<367’68 . Given the large
385  overlap between regulators of cytoskeletal restructuring and tumor progression, therapeutic
386  targets like PI3K could be efficient future drug targets that can modulate pathways governing
387  multiple diseases. The interplay between cytoskeleton regulation and cancer progression

388  should be further explored to identify other central regulators that may modulate both cancer
389  and fibrotic disease progression.

390 Inthis study, we applied the LogiMML network to investigate how Src contributes to actin-

391  myosin stress fiber formation induced by TGFB. We predicted that PI3K signaling contributes to
392  profibrotic Src signaling in cardiac fibrosis. This proposed mechanism is supported by previous
393  studies, showing that PI3K regulates fibroblast contractility and myofibroblast activation in skin
394 fibroblasts, and TGFB-induced aSMA and collagen production in lung fibroblasts***. To validate
395 this proposed profibrotic role for PI3K, we show that PI3K inhibition reduced procollagen |

396  production and actin-myosin stress fiber organization in HCFs. While previous work has shown
397 that mechanical stretch, Rho-kinase, and myosin light chain kinase (MLCK) positively regulate
398 the organization of actin filaments into stress fibers, the role of PI3K’s regulation of actin-

399  myosin stress fiber formation has not been thoroughly explored® . Here, we show that

400  treatment with PI3K inhibitor LY294002 (LY) significantly reduces stress fiber formation without
401  affecting the total amount of assembled actin filaments, implying PI3K positively and

402  specifically regulates actin-myosin stress fiber formation in cardiac fibroblasts. Future studies
403  should explore if Src kinase inhibitors mitigate cardiac fibrosis in vivo, and to what degree PI3K
404  kinase contributes to the regulation of cardiac fibrosis by Src.

405  Limitations and future directions

406  The main limitation of this study is that our modeling and experimental approaches address cell
407  signaling in cardiac fibroblasts in vitro, but do not address how fibroblasts respond to drugs in
408  anin vivo signaling environment. Our experimental data also captures some key fibrotic

409  proteins, but does not measure other fibrotic outputs of interest, like EDA fibronectin, and does
410  not capture a comprehensive signaling profile of the fibroblast. Despite these limitations, the
411  LogiMML framework was sufficient to predict a validated role for PI3K in promoting stress fiber
412  formation. Experimentally, future work could include proteomics or RNA-seq analysis of

413  fibroblasts to measure how drugs differentially regulate intracellular molecular profiles. To
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414  maximize reproducibility across the drug screen, we used 2D culture on multi-well plates

415  treated with CellBind. More focused follow-on studies could perform secondary validations
416  with various extracellular matrix, stiffness or mechanical stretch. Future modeling work could
417  include simulated conditions for in vivo or in vitro co-culture conditions to incorporate the

418  signaling influence of other cell types. Given the flexibility of the LogiMML modeling approach,
419  these simulated data could be feasibly paired with respective experimental data to make

420  predictions for fibroblast signaling under new conditions.

421 Conclusions

422 Inthis study, we showed that drugs exhibit differential effects on cardiac fibroblast phenotype
423  and work via distinct mechanisms that can be predicted by logic-based mechanistic machine
424  learning. By expanding the microscopy feature set in the high content imaging pipeline, we
425  captured greater resolution of the fibroblast phenotype and measured how phenotypic

426  features changed in response to drugs. Using our LogiMML modeling approach, we predicted
427  signaling mechanisms for how pirfenidone and Src inhibitor WH-4-023 affect actin filament
428  assembly and actin-myosin stress fiber formation, respectively. We predicted that PI3K

429  regulates F-actin stress fiber formation, which we experimentally validated in human cardiac
430 fibroblasts. This study presents new features of fibroblast phenotype to be further explored in
431  fibrosis, identifies specific roles for PI3K in cardiac fibroblast signaling, and demonstrates an
432  adaptable mechanistic machine learning approach to predict signaling outcomes for fibrosis
433 that can be expanded to other diseases.

434

435  Methods

436  In vitro experiments in human cardiac fibroblasts

437  Primary human ventricular cardiac fibroblasts were purchased from PromoCell (PromoCell C-12375;
438  PromoCell GmbH, Germany). Cells were cultured in DMEM containing 10% FBS and 1% Pen/Strep, and
439 were kept in an incubator maintained at 5% CO,. Cells were plated in a 96-well plate at 5,000 cells/well
440  and then grown in 10% FBS for 24 hours, serum starved for 24 hours, and then treated with the

441  following cytokine conditions for 96 hours: 0% FBS control media, 0% FBS media with 20ng/mL TGFB1
442 (Cell Signaling Technology, 8915LC), and 0% FBS media with 10 ng/mL human IL1B (Cell Signaling

443  Technology, 8900SC), or TGFB1 and IL1B combined. Cells were treated with these conditions either
444  alone or with 1 of 13 compounds at 1 of 3 concentrations. We determined drug concentrations via a
445 literature search, prioritizing concentrations that yielded significant effects in vitro in fibroblasts or
446  similar cell types. The drugs with their respective concentrations are as follows: [0.25,1,2] pug/ml of
447  anakinra (Kineret, SOBI Inc.), [1,5,10] uM valsartan (Sigma-Aldrich, SML0142-10MG), [0.2,1,2] uM BNP
448 (Sigma-Aldrich, B5900-.5MG), [1,5,10]uM valsartan combos respectively with [0.2,1,2] uM BNP,

449 [10,30,60]mM glutathione (Sigma-Aldrich, G4251-1G), [1,3,5] uM CW-HM12 (Cayman Chemical

450 Company, 19480), [10,20,50] uM salbutamol (Sigma-Aldrich, S8260-25MG), [5,10,25] pM marimistat
451 (Sigma-Aldrich, M2699-5Mg), [1,5,10] uM galunisertib (Selleck Chemicals, S2230), [12.5,25,50] uM

452  fasudil (Sigma-Aldrich, CDS021620-10MG), [10,25,50 JuM SB203580 (Sigma-Aldrich, S8307-1MG),

453 [1,5,10] mg/mL pirfenidone (Sigma-Aldrich, P2116-10MG), [5,10,20] uM defactinib (MedChem Express,
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454  HY-12289A), [5,10,20] pM WH-4-023 (Sigma-Aldrich, SML1334-5MG), and 20 pM LY294002 (Selleck
455  Chemicals, S1105). Cells were grown in these conditions for 72 hours.

456  Cells were then fixed in 4% PFA in PBS for 30 minutes, permeabilized and blocked for 1 hour in a solution
457  containing 3% BSA and 0.2% Triton, and then stained overnight at 4°C with a 1:500 Anti-Collagen |

458  antibody (Abcam, ab34710). After overnight incubation, cells were washed 3x in PBS and stained with
459 1:5000 Dapi, 1:1000 Phalloidin CruzFluor 647 Conjugate (Santa Cruz Biotechnology, sc-363797), 1:250 a-
460  Smooth Muscle Actin antibody (Sigma-Aldrich, C6198), and 1:1000 Goat-anti-Rabbit (ThermoFisher

461 Scientific, A-11034).

462  Microscopy and single-cell quantification

463 96-well plates we imaged using the Operetta CLS High-Content Analysis System (Perkin Elmer). All three
464  replicate wells for each condition were imaged and quantified. To quantify aSMA expression, an

465 automated image analysis pipeline was employed in CellProfiler (Broad Institute)®?. Fibroblast nuclei
466 were identified by the DAPI signal. Next, the collagen-positive region corresponding to each nucleus was
467  segmented using the “propagate” algorithm, using the segmented nucleus as the seed. Next, Fibroblast
468 boundaries were segmented using the “propagate” algorithm, musing the segmented collagen region as
469 the seed. aSMA signal was integrated within each cell's boundary. Short, medium, and long texture

470  feature information was derived using the MeasureTexture module in CellProflier using texture scales of
471 2, 6, and 10 pixels respectively. Texture feature values were calculated by subtracting the smallest angle
472  value of a given feature from the largest angle value of that same feature for each cell. F-actin and

473 procollagen expressions were quantified similarly.

474  Statistics

475 Feature values for each well were determined by taking the median value of the feature across all cells
476 in the center tile of each well. Well median values were used as replicates (n=3). Significance was

477 determined using an ANOVA with Tukey’s posthoc in comparisons between more than two groups, and
478 Student’s T-test in comparisons between two groups. Automated data analysis and statistical

479 calculations were performed using Python 3.8.5 and the ‘statsmodels’ Python module version 0.13.2.

480 Model Simulations

481  Drug simulations in the fibroblast network model were performed as previously described using
482  MATLAB version 2022a****"!, Predicted node activity is calculated using logic-based Hill

483  differential equations. Agonist and antagonist drug relationships were represented by altering
484  the activation function of the target node, representing either competitive or non-competitive
485  drug interactions with the respective target. To better represent the cell-to-cell variability

486  observed in in vitro cell responses to treatments, we employed a previously developed

487  ensemble modeling approach combining multiple simulations with random normally distributed
488  parameters’’. Ensemble simulations were performed using the MATLAB ‘normrnd’ function

489  from the ‘Statistics and Machine Learning’ toolbox to randomly sample parameters within a

490  normal distribution and simulation n of 100. The randomly sampled parameters and means of
491  the sampling ranges are as follows: baseline ligand inputs (0.25), mechanical input (0.85), drug
492  dose (0.85), and raised ligand inputs (0.6). The sampling range for each parameter was

493  calculated by paramMean + COV * paramMean where COV=0.0396. This COV value, used to
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494  scale stochasticity in the model was determined by taking the average coefficient of variation in
495  F-actin, procollagen I, and aSMA expression in human cardiac fibroblasts treated with TGFp

496  from our in vitro experiments. Code for all modeling, regression and data analysis is available at
497  at https://github.com/andersnelson/Logic-based_MMIL.

498  LogiMML Network-Regression Coupling

499  The LogiMML mechanistic machine learning model is comprised of a network model layer and a
500 Ridge regression layer. The independent ‘X’ variables used to train the regression model are
501 node activity values from the network model predicted under each simulated drug and

502  environmental condition. To reduce model complexity, network nodes were clustered into 11
503  signaling modules derived from k-means clustering on a combined sensitivity and influence
504  analysis on the network model™. Sensitivity analysis was performed by systematically

505  perturbing individual node values and measuring the change in all other nodes in response to
506 the perturbed node. The influence matrix, the transposition of the sensitivity matrix, was

507 combined with the sensitivity matrix and this combined matrix was used for the k-means

508 clustering. The node activity values were averaged within each module, and these modules’
509  mean activity values were fed into the regression layer. The dependent ‘Y’ variables for this
510 model were experimentally measured values from our high-content imaging experiments in
511  human cardiac fibroblasts. Sensitivity knockout analysis was performed by simulating a given
512  drug and cytokine context int network model i.e. “TGFB+pirfenidone’ and sequentially setting
513  each node ymax value to 0, measuring reduction or increase in the dependent variable e.g. ‘F-
514  actin Intensity’ upon knockdown.
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686  Figure 1: High-content microscopy screen for drugs that module fibroblast activation. A) Expression of
687  fibroblast activation markers procollagen I, F-actin, and aSMA in human cardiac fibroblasts upon

688  treatment of 13 drugs at 3 doses, under environmental contexts of TGF, IL1j, or both. Fold change
689 values show ‘drug vs. no drug’ Integrated Intensities for each protein. Panels B and C show

690  quantification and representative images of the effects of 50 uM fasudil, a Rho-kinase inhibitor, which
691  differentially regulates fibrotic protein expression. Panels D and E show quantification and

692 representative images of the effects of 10mg/mL pirfenidone, a non-specific inhibitor of TGFf

693 expression, which consistently regulates fibrotic protein expression. *p<0.05 ANOVA with Tukey’s post-
694 hoc.

695  Figure 2: LogiMML logic-based mechanistic machine learning approach guides model revision and

696  predicts network mechanisms underlying pirfenidone suppression of F-actin. A) Original fibroblast

697 network model predicts no change in F-actin upon TGFB or pirfenidone treatment. Experimental data
698  shows pirfenidone significantly reverses the increase of F-actin by TGFpB (data previously shown in figure
699 1 D). B) Schematic of the LogiMML approach for integrating logic-based network modeling with machine
700 learning to predict network mechanisms for cell phenotypes. The average activity within each network
701 module is mapped to predict fibroblast phenotypic features via a Ridge regression layer. C) The Coupled
702 LogiMML model predicts TGFf and pirfenidone effects on F-actin that qualitatively match experimental
703 data shown in panel A. D) LogiMML ridge regression coefficients show predicted relative influence of
704 network modules on F-actin. E) LogiMML node knockdown sensitivity analysis in the context of

705  TGFB+pirfenidone. Nodes from most influential modules are sequentially knocked down, predicting

706 change in F-actin upon knockdown. F) Schematic of the network mechanisms predicted for the actions
707  of pirfenidone on F-actin, derived from sensitivity analysis in panel E.

708 Figure 3: Survey of single-cell fibroblast phenotypic features in response to 13 drugs at 3 doses and 4
709  environmental contexts. A) 137 single-cell fibroblast features that quantify protein intensity, protein
710  localization, cell morphology, and fiber texture. This heatmap was organized on treatment and feature
711 axes by agglomerative hierarchical clustering. B) Principal component scores of experimental data

712 reduced to a set of 18 representative fibroblast features. C) Principal component loadings the reduced
713  of PCA scores and loadings define a primary axis of fibroblast activation with correlated protein

714  expression of procollagen, aSMA, and F-actin that is modulated by many drugs. Off-axis, the Src inhibitor
715 WH-4-023 modulated the cell texture feature Actin Long Angular Second Moment, which motivated

716  further study.

717  Figure 4: Logic-based mechanistic machine learning predicts the PI3K module to mediat how Src

718 inhibitor suppresses stress fibers, validated by subsequent experiments. A) Images of human cardiac
719  fibroblasts treated with baseline control stimulus, TGFB, or TGFB + 20 uM WH-4-023. B) Quantification
720  of Actin Long Angular Second Moment (ASM), a measure of actin uniformity and reduced stress fibers
721 based on images in panel A. C) Regression coefficients from the LogiMML mechanistic machine learning
722 model that predicts network modules that regulate actin long ASM. D) Knockdown sensitivity analysis
723 predicting individual proteins that regulate actin long ASM in the TGFB+WH-4-023 signaling context. E)
724  Signaling schematic for WH-4-023 effect on actin long ASM, derived from sensitivity analysis in panel D.
725 F) Human cardiac fibroblasts treated with 20 uM PI3K inhibitor LY294002 or baseline control stimulus,
726 measuring F-actin and procollagen expression. G) Quantification of long actin Angular Second Moment
727 (measure of actin uniformity), F-actin integrated intensity, and Procollagen | integrated intensity.

728 *p<0.05 ANOVA with Tukey’s post-hoc in panel B, and *p<0.05 Student’s T-test in panel G.
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