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Abstract

Transcription factors (TFs) play a key role in regulating gene expression and responses to
stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and
RNA expression across eight rat tissues following endurance exercise training (EET) to map
epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered
tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible
regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes
(DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic
alterations providing better access for TFs to affect target genes, or via changes in TF
expression or activity enabling target gene response. We identified TF motifs enriched among
correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related
phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their
gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating
diverse organ effects of EET.
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Abbreviations
Abbreviation | Definition
HEART Heart
SKM-GN Skeletal muscle (Gastrocnemius)
WAT-SC Subcutaneous white adipose tissue
BAT Brown adipose tissue
LIVER Liver
LUNG Lung
KIDNEY Kidney
HIPPOC Hippocampus
EET Endurance Exercise Training
DAR Differentially accessible regions
DEG Differentially expressed genes
DEGaP Differentially expressed gene associated peak
TSS Transcription start site
TES Transcription end site
TF Transcription factor
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Introduction

Regular exercise impacts health and modulates disease processes through the body. Exercise
maintains muscle function, improves cardiovascular wellness and cognitive performance, and
lowers the risk of cardiovascular disease and many other disorders, ranging from dementia to
several cancer types!. The molecular processes mediating the adaptations induced by exercise
training across tissues are poorly understood.

As the main regulators of gene transcription, transcription factors (TFs) act via the recruitment of
other factors, co-activators, or co-repressors, to cis-regulatory elements at the promoter or distal
regions of target genes. The access of TFs to cis-motifs partly depends on chromatin structure.
Hence, along with changes in chromatin accessibility and other epigenetic modifications,
including DNA methylation, TFs govern gene expression in tissues as well as gene responses
to stimuli. TFs are critical exercise-response mediators?* and, in skeletal muscle, exercise
training-induced transcriptomic changes have been associated with different TFs than those
induced by acute exercise®.

Our companion multi-tissue analysis of the molecular response dynamics during endurance
exercise training found that the majority of differentially regulated genes are tissue specific
whereas a small proportion are shared across multiple tissues>®. Thus, gene responses to
training are likely mediated through the combinatorial function of tissue-enriched and shared
transcriptional regulators. Shared exercise-induced TF regulation can elicit tissue-specific
functions, as seen with PPARYy, which is implicated in PGC1a-stimulated mitochondrial
biogenesis’, regulation of adipogenesis®, and hippocampal BDNF activity and its cognitive
effects®. As complex regulatory patterns drive tissue-specific gene regulation'?, they are likely to
be involved in mediating the diverse effects of exercise training on tissues. This highlights the
importance of identifying the TFs that coordinate gene responses to training in multiple tissues
and inferring their underlying mechanisms. However, few studies have evaluated training-
induced genome-wide changes in RNA expression, chromatin accessibility, and DNA
methylation'!, and have concentrated on few tissues, mainly skeletal muscle.

We leveraged the study design of the Molecular Transducers of Physical Activity Consortium
(MoTrPAC) endurance exercise training (EET) study in rats’ to characterize the TFs mediating
gene responses to training across multiple tissues. During 8 weeks of EET, genome-wide
transcriptome, chromatin accessibility, and DNA methylation were assayed in 8 tissues from
age-matched male and female rats. By integrative analysis of all three omes within the same
tissues, we establish a map of the regulatory transcriptional responses to training across
tissues.

Results

Characterization of epigenetic and transcriptional responses to endurance training

To understand the epigenetic and transcriptional response mechanisms elicited during eight
weeks of EET, we analyzed ATAC-seq, RNA-seq and RRBS profiles generated in skeletal
muscle (gastrocnemius; SKM-GN), heart, hippocampus (HIPPOC), kidney, liver, lung, brown
adipose tissue (BAT), and subcutaneous white adipose tissue (WAT-SC) from rats subjected to
1, 2, 4, and 8 weeks of training (Fig 1a) and untrained controls. We identified differentially
accessible regions (DARs; F test adjusted p value < 0.1), differentially methylated regions
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(DMRs: F test adjusted p value < 0.1), and differentially expressed genes (DEGs; F test
adjusted p value < 0.1) between EET and control groups (Fig 1b). To characterize the
transcriptional and epigenomic changes induced by EET across tissues, we evaluated the
tissue-specificity of DARs, DMRs, and DEGs. Although most expressed genes, open chromatin
sites, and methylation sites were detectable in multiple tissues, the majority of DARs (90%),
DMRs (91%), and DEGs (66%) were identified in only one tissue (Fig 1c, Fig. S1). This
suggested that gene regulatory responses to EET were largely confined to individual tissues,

which was in line with another MoTrPAC manuscript®.

We then examined the distribution patterns of log2 fold change (L2FC) in gene expression,
L2FC in chromatin accessibility, and L2FC in methylation across time points and sexes (Fig. S2,
S3, S4 respectively). While the ratios of up- to down-regulated analytes (i.e. DEGs, DARs,
DMRs) were similar across the majority of tissues, L2FC patterns differed between tissues.
Notably, the spread of L2FC was notably higher among DMRs than DEGs or DARSs in each
tissue. Additionally, we observed sex differences among DEGs in HIPPOC, BAT, and WAT-SC.
Sex differences were more prevalent among DARs and DMRs in a majority of tissues. Overall,
the proportion of DEGs showing concordant changes (L2FC) across timepoints and sex groups
was higher than that of DARs and DMRs (Fig. 1d). Notably, heart, SKM-GN, and kidney
exhibited the most consistency in expression changes across all groups, whereas WAT-SC
showed the least. In BAT, we detected pronounced variations in DEG as well as in DAR profiles
between earlier and late time points in both sexes (Fig. S2g and S3g). Gene set enrichment
analysis among week 1 or week 8 DEGs in males and females highlighted varying pathway
enrichment patterns that were, in most cases, consistent across sexes and time points (Fig S5).
SKM-GN and heart shared enrichment for oxidative phosphorylation and cardiac muscle
contraction pathways, as well as markers for Parkinson’s, Huntington's, and Alzheimer's
diseases. WAT-SC DEGs were enriched for the chemokine signaling pathway and immune-
related diseases including systemic lupus erythematosus, asthma, and primary
immunodeficiency.

We investigated whether alterations in cell type proportions contributed to the expression
changes observed. Cell type deconvolution analysis (See Methods) identified changes in
immune cell type proportions that were related to training duration in BAT (Fig. 1e and Fig. S6a)
and to sex in WAT (Fig. 1f and Fig. S6b). Differential analysis was conducted in male and
female samples separately, suggesting that DEGs in WAT-SC are independent of sex-specific
cell type composition changes.

To further characterize the epigenomic changes induced by EET across tissues, we examined
the genomic distribution of DARs vs. that of all open chromatin regions detected (Fig. 1g,h).
Compared to all accessible regions, DARs were significantly enriched at proximal promoters
across all tissues except WAT, which was excluded due to a scarcity of DARs identified (Fig
1h,k, Methods). Consistent with previous studies'?!3, open chromatin peaks across tissues were
predominantly located in intronic and distal intergenic regions. Given the importance of the
proximal promoter in the regulation of gene transcription'*, the enrichment of DARSs in this
region suggested that EET results in the transcriptional activation of target genes. DMRs were
significantly enriched at downstream regions across all tissues except WAT, relative to all
methylation sites in each tissue (Fig 1i,j,I). Unlike DARs and DMRs, open chromatin regions that
mapped to DEGs, which we refer to as DEG-associated peaks (DEGaPs), shared a similar
genomic distribution as the peaks associated with all expressed genes (Fig S7); however,
ATAC-seq peaks that mapped to either expressed genes or DEGs contained a higher
proportion of intronic peaks and a lower proportion of distal intergenic peaks compared to all
open chromatin peaks in the dataset.
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Tissue specificity is not only limited to the training response itself. Within each ome, we
identified a consistent pattern of tissue-specific enrichment of the analytes that exhibit a
significant training response in a given tissue (Figure 2). In the case of both RNAseq and
ATACseq data, DEGs and DARs in a given tissue were, on average, more highly expressed
(Figure 2a,d) and more highly accessible (Figure 2b,e), respectively, at baseline in the tissue
with the significant training response. Conversely, DMRs in a given tissue were more
hypomethylated in the tissue with the significant training response (Figure 2c,f). While there is
some overlap in significant training responses across tissues, the majority of training response
analytes represent tissue-enriched analytes, even if they are not tissue-specific.

Identification of distal correlated epigenetic regulation despite few DARs and DMRs
mapping to adjacent DEGs

We next sought out DAR-DEG associations by assessing the concordance between chromatin
accessibility and gene expression changes. We assigned each DAR to the nearest gene, and
determined the fraction of DARs that were annotated to DEGs. Applying a hypergeometric test,
we found that BAT, SKM-GN, and liver showed a higher proportion of overlap between DARs
and DEGs (Fig 3a). The substantial overlap between DARs and DEGs in BAT may be related to
the EET-induced increase in immune cell populations (see Fig. 1e). SKM-GN and liver showed
the highest count of DARs among all tissues (Fig. 1b). Despite hundreds of DARs in both kidney
and lung, only a few of their nearest genes were DEGs (Fig 3a). Similarly, we investigated
DMR-DEG associations by assigning each DMR to the nearest gene and determining the
fraction that were annotated to DEGs. Only BAT and WAT-SC have significant overlaps
between DMRs and DEGs (Fig 3b). BAT and WAT-SC are the two tissues with the largest
number of DMRs in the dataset by a considerable margin.

The binding of TFs to distal open chromatin regions can regulate gene transcription!>!6. Given
the modest proportion of DARs mapped to adjacent DEGs, we extended the search window and
sought relationships outside the closest gene for a given DAR. With respect to the location of
DARs relative to the TSS of the nearest DEG, in all tissues, the majority of nearest DAR-DEG
pairs reflected a normal distribution with a median centered approximately 1 Mb away from the
nearest DEG, and a substantial left tail representing closer pairs (Fig 3c). BAT, SKM-GN, and
liver contributed most of the DARs adjacent to a DEG, confirming our earlier observations (Fig
3a). A similar pattern is seen when measuring the distance between a DMR and the nearest
DEG (Fig 3d) and the distance between a DMR and the nearest DAR (Fig 3e). BAT and WAT-
SC contain the majority of closest DMR-DEG pairs likely because of their greater DMR-DEG
overlap (Fig 3b) and BAT contains the majority of closest DMR-DAR relationships.

DARs that were adjacent to DEGs tended to be more highly correlated with gene expression
changes (Fig 3f, Fig S8), a pattern predominantly seen in SKM-GN and liver. In contrast, the
majority of DMRs adjacent to DEGs exhibit strong positive or negative correlations driven
primarily by BAT and WAT-SC (Fig 39, Fig S9). Interestingly, while instances of adjacent DMRs
and DARs are more limited in this study, in tissues more populated by DAR-DMR pairs, positive
correlation tended to occur when the DMR was upstream of the DAR, and correlation was
decreased or negative when the DMR was downstream of the DAR (Fig 3h, Fig S10).

DAR-DEG pairs are associated with distinct pathways in each tissue and MAZ and
SMAD3 represent key regulatory TFs

We focused on DARs and DEGs located within 500 kb from each other, and isolated those that
were either positively or negatively correlated across time points and sexes (Pearson correlation


https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523450; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

coefficient > 0.5 or <-0.5, respectively; Supplementary Table 1). Thus, the identified DAR-DEG
pairs comprised DARs that mapped to nearby DEGs along with distal, within-500 kb DARs that
correlated with DEGs. Pathway enrichment analysis among DAR-DEG pairs identified distinct
patterns of enrichment for each tissue (Fig S11). In agreement with the training-associated
increase in immune cell types inferred from cell type deconvolution analysis (see Fig. 1e), DAR-
DEG pairs in BAT showed enrichment for several immune pathways. Lung also showed
considerable enrichment for immune-associated pathways, suggesting activating roles in
antigen defense by exercise. By contrast, liver DAR-DEG pairs were primarily enriched for lipid
biosynthesis and metabolic processes, while heart DAR-DEG pairs were enriched for muscle
movement and filament sliding, and SKM-GN DAR-DEG pairs were enriched for myofiber
synthesis and muscle contraction (Fig S11). These results suggested that the correlated
epigenetic and transcriptional changes induced by training affected tissue-specific functions.

To identify key regulators of the training response in each tissue, we analyzed TF motif
enrichment at the DARs of DAR-DEG pairs. Notably, we identified MAZ and SMADS as
regulatory TFs in specific tissues (Fig. 4a-c). In SKM-GN, an 8.6% enrichment for MAZ binding
sites was found among DAR-DEG pairs vs. a 2.7% enrichment among active peaks in that
tissue (p-value = 0.01912). In lung, there was a 26% enrichment for MAZ binding sites among
DAR-DEG pairs vs. a 2.7% general enrichment (p-value = 1.168e-04). In SKM-GN and in the
lung, MAZ motifs were predominantly found in DARs that were negatively correlated with
differential gene expression (Fig 4a,b). MAZ can act both as a transcriptional activator and a
repressor'*!7. In SKM-GN, MAZ target genes included: Igf2 (Fig 4d), which plays pivotal roles in
exercise response'®1?, SKM growth, and differentiation?’; Ppp1r15a, which is associated with
innate immunity?!; and Sall2 (Fig 4e), a TF typically associated with development and neuronal
differentiation??. In the lung, MAZ targets included immune response genes such as Mpeg1,
Oas2, Nfkb2 (Fig 4f), as well as stress response gene Hspb6.

SMAD3 binding sites were enriched in the liver (Fig 4c), with a 22% enrichment among DAR-
DEG pairs vs. a 5.4% general enrichment (p-value = 1.255e-05), suggesting combinatorial
transcriptional regulation. Paired DAR sets were positively correlated with Glul expression (Fig
S12a,b), negatively correlated with Lpar3 (Fig S12c¢,d) expression, and negatively correlated
with multiple members of the Serpina gene family (Fig 4c, S12e,f). Fkbp4 expression was also
negatively correlated with a single SMAD3 motif-containing DAR (Fig 4g). The remaining
SMAD3 targets Abhd2 (Fig S12g), Onecut1 (Fig S12h), Ccnd1 (Fig S12i), and Xbp1 (Fig S12j)
shared a similar training response pattern with lower L2FC in male subjects than female
subjects in most time points. Notably, SMADS3 has been identified as a major regulator of
exercise response in human SKM??. Other potential transcriptional regulators along with target
genes are illustrated in Fig. S12.

Correlated DMR-DEG pairs enriched for key TFs in adipose and lung tissue

We identified DMR-DEG pairs located within 500kb of each other and whose L2FC training
responses were either positively or negatively correlated across time points and sexes ( > 0.5 or
< -0.5) (Supplementary Table 2). The majority of DMR-DEG pairs were found in WAT-SC, 329
of 393 in total, while 33 were found in lung, 13 in heart, 12 in SKM-GN, and 6 in liver. The heavy
skew towards WAT-SC is accounted for by the increased numbers of both DEGs and DMRs
found in the tissue. We identified 24 TFs whose motifs were significantly enriched among the
DMRs in correlated neighboring DMR-DEG pairs in each tissue (Fig 4H). The majority of
enriched TFs were found in WAT-SC, while 4 were found in lung, and LRF was the only TF
enriched in SKM-GN. NF1-halfsite was the most significantly enriched TF in WAT-SC, with
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motifs found in 27 DMRs correlated to 55 distinct DEGs (Fig S13a), including chr2-
375476_cluster1, whose training response is highly correlated (r > 0.75 or r < -0.75) for five
genes, four negatively correlated: Rab25 (Fig S13b), Crabp2 (Fig S13c), Paqr6 (Fig S13d),
Tmem?79 (Fig S13e), and one positively correlated: Syt11 (Fig S13f).

AP-2gamma is enriched in multiple tissues, with motifs found in 19 DMRs correlated to 51
DEGs in WAT-SC (Fig S13g), and found in 5 DMRs correlated to 7 DEGs in lung (Fig S13h).
B4galnt1 is a member of positively correlated target DMR-DEG pairs in both WAT-SC (Fig S13i)
and lung (Fig S13j). Members of the Rho GTPase family are represented by target DMR-DEG
pairs in both tissues as well, including Arhgap9 in lung (Fig S13k) and Arhgap9, Arhgef4,
Arhgef25, and Arhgef2 in WAT-SC. The TMEM family is also represented in both tissues:
Tmem176b in lung, and Tmem79 in WAT-SC.

Characterization of TF expression responses to EET

As putative transcriptional regulators were inferred from DAR-DEG and DMR-DEG correlations
in a restricted number of tissues, we sought to independently characterize TF expression
responses to EET per tissue over the 8-week training period. We measured the RNA levels of
all TF-encoding genes and assessed their protein abundances and phosphorylation levels,
based on mass spectrometry data from a subset of 6 tissues. Various subsets of TFs exhibited
significant changes at the transcriptome (Fig 5a), proteome (Fig 5b), and phosphoproteome (Fig
5c) levels in each tissue. BAT and WAT-SC had the largest and most significant changes in TF
gene expression (Fig 5a), which included immune-related TF genes such as Irf8 and Pou2f2
responding in both tissues and /rf1 and Spi1 specifically in BAT. Transcript levels of Egr1
decreased significantly across multiple tissues including SKM-GN, heart, kidney, and lung.
Fellow early response gene Fos also decreased across the same tissues, reaching significance
in kidney. Myb expression was significantly altered in both HIPPOC, where transcript levels
increased in response to training in both sexes, and kidney where transcript levels increased in
females, but decreased in males.

Similar to TF gene expression changes, TF protein level responses to EET were largely tissue-
specific (Fig 5b). WAT-SC and lung exhibited the most significant changes. Select TFs showed
significant protein level changes in multiple tissues, including RORC which decreased in female
subjects in both lung and kidney. PBX1 decreased in WAT-SC while PBX2 decreased in kidney,
and ATF1 and ATF3 increased in male subject protein levels in WAT-SC and heart,
respectively. NR4A1 (NUR77) and MEF2A levels decreased in SKM-GN at week 8 of training,
while MEF2C levels increased at week 2 of training.

MEF2C showed significant protein phosphorylation changes in SKM-GN, lung, and WAT-SC
(Fig 5¢). Other MEF family members MEF2A and MEF2D also exhibited changes in
phosphorylation in lung and SKM-GN, respectively. A number of TFs had multiple significant
phosphosite changes in a single tissue, including two NF1 phosphosites in heart, two STAT3
sites and two ATF2 sites in liver, two RFX5 and two MEF2C sites in lung, and two USF2 sites
and four TRPS1 sites in WAT-SC.

Now that we determined which TFs were found to have significant training responses at either a
transcriptome, proteome or phosphoproteome level, we wanted to find which of their motifs
were enriched among the promoter regions of DEGs, identifying potential training-induced
regulatory relationships. We found a number of TFs whose motifs were enriched among DEGs
(Fig 5d, Fig S14-S15), including eight statistically significant motif enrichments. The majority of
significantly enriched TFs were found in SKM-GN: SF1, SIX1 (Fig 5e), SIX2 who exhibited a
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significant training response at the transcriptome level, MEF2C with significant training
responses at both the proteome and phosphoproteome levels (Fig 5f), and MEF2D with a
significant training response at the proteome level. MEF2A had a significant training response at
the phosphoproteome level in heart, while PU.1 had a significant training response at the
transcriptome level in lung, and IRF:BATF had a significant training response at the proteome
level in lung (Fig 59).

SIX1 DEG targets in SKM-GN exhibit a range of functions and training responses, including
collagen gene Col3a1, and muscle contraction associated gene Lmod1, both of which
decreased in response to training. Protein modification-associated genes Golga4 and Art1
increased over training while ubiquitin gene Usp2 decreased. Malic enzyme Me3, which is
involved in the oxidative decarboxylation of malate to pyruvate, is consistently higher expressed
during training. MEF2C protein levels significantly increased at week 2 of training then returned
to baseline, while phosphorylation increased significantly throughout the eight weeks of training.
Among MEF2C target genes, clock gene Per1 demonstrated the highest increase in expression
at the onset of training, while Semaéc, Ankh, Ptpn1, and Phkg1 exhibit decreased expression
following training. Dystrophin (Dmd), a critical protein for muscle fiber integrity®*, was the most
negatively correlated with MEF2C protein level changes, but positively correlated with MEF2C
phosphorylation changes. IRF:BATF targets in lung predominantly exhibited decreased
expression following training, including tubulin gene Tuba7c, mitochondrial biogenesis-
associated gene Perm1 and actin cytoskeleton organizational gene Cfl1. We examine the DEG
targets of other TFs with significant training responses in Supplemental Figures S16 and S17,
including JUND, which is enriched for DEGs in SKM-GN, heart and WAT-SC, and NR4A1
(NUR77) which significantly decreased in protein level in SKM-GN as did the majority of its DEG
targets including heat shock protein Hspail and dual specificity phosphatase Dupd1. Altogether,
these findings support the functional relevance of EET-regulated TFs.

DARs vs. DMRs vs. DEGaPs show distinct TF motif enrichment patterns that differentially
correlate with TF gene expression

The lack of nearby DARs or DMRs for the majority of DEGs within each tissue (see Fig. 3a,b)
led us to hypothesize that DARs, DMRs, and DEGaPs may mediate different paths of
transcriptional regulation: i) DARs and DMRs coordinating a combination of direct and long-
range regulatory mechanisms, ii) a combination of statically open cis-regulatory elements
(DEGaPs) and changes in TF behavior influencing differential gene expression. To address this,
we analyzed TF binding site enrichment at either DARs, DMRs, or DEGaPs relative to all open
chromatin peaks in each tissue (Fig. 6a,b,c; see Methods).

Due to their very low number of DARs, WAT and HIPPOC were removed from the analysis (Fig.
6a). Motif enrichment patterns varied greatly across the six remaining tissues, reflecting a high
degree of tissue-specificity. Motifs for both FOX and KLF families of TFs were over-represented
among SKM-GN DARs. KLFs are zinc-finger TFs that have been associated with myogenesis
and muscle fusion via their recruitment to Muscle Creatine Kinase (MCK) promoters?®. SIX2 and
MEF2C motifs were enriched in heart, COUP-TFII in kidney, and SP2 in liver. HOXA10 and
HOXD12 motifs were enriched in lung, while both IRF8 and IRF3 motifs were enriched in BAT.
Tissue-specific patterns of motif enrichment were maintained when measuring the frequency of
motif presence in DARs across tissues (Fig S18a).

A similar pattern of tissue-specific motif enrichment was observed among DMRs for each tissue
(Fig 6b), although with different TFs enriched among DMRs vs DARs. MYOG was the most
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significantly enriched TF among DMRs in SKM-GN, along with two neuronal TFs NEUROD1,
NEUROGZ2. Another nervous system-associated TF NKX2.2 was the most significantly enriched
in heart. PRDM9 was the most enriched in HIPPOC, as was PAX5 in kidney, and multiple HOX
TFs in liver including HOXA10 and HOXD12 which were enriched among DARs in lung. TF
enrichment significance among DMRs overlapped more between lung, BAT and WAT-SC tissue
with ELK4, ELK1, ETV1 and ETV4 all enriched across the three tissues. GLIS3 enrichment was
isolated to WAT-SC. As with DARs, the frequency of motif presence in DMRs across tissues
maintained tissue specificity and even more sharply distinguished lung, BAT and WAT-SC
tissues (Fig S19a).

Motif enrichment patterns among DEGaPs differed considerably from those in DARs and DMRs
(Fig. 6¢). Indeed, pairwise motif enrichment comparisons between DARs, DMRs, and DEGaPs
per tissue were weakly correlated (<0.39; Fig S21, Fig S22, Fig S23). Motif enrichment
significance in DEGaPs was greater in lung, BAT, and WAT-SC, presumably due to their higher
proportions of DEGs (see Fig. 1b). MEF2 TF motifs were enriched across lung, BAT, and WAT-
SC, as well as in SKM and heart, forming one cluster; on the other hand, ETS and ELF TF
motifs were more exclusively enriched in lung, BAT, and WAT-SC and formed another cluster.
MEF2 TFs are typically involved in muscle tissue regeneration?®. ETS and ELF TFs are
associated with the regulation of immunity?”-?8, suggesting that they may be related to the
immune cell type composition changes occurring in adipose tissues. With respect to tissue-
specific enrichment, motifs of immediate early genes including JUN and FOS were enriched in
HIPPOC (Fig S20a), HNF1 and ZIC families of TFs in kidney, and FOX and SOX TF families in
liver.

To establish correlations between the motifs enriched at either DARs, DMRs, or DEGaPs and
the relative expression levels of the corresponding TFs, we examined TF gene expression
patterns in control tissues (Fig S18b, Fig S19b, Fig S20b respectively) and L2FC in TF gene
expression following EET (Fig S18c, Fig S19c, Fig S20c, respectively). We found a stronger
correlation between motif enrichment and TF control gene expression levels among DEGaPs
(Fig S20d-f) than among DARs (Fig S18d-f), and even found a negative correlation consistently
among DMRs (Fig S19d-f). Conversely, there was no correlation between motif enrichment and
L2FC in TF gene expression, be it among DARs (Fig. S18a,c), DMRs (Fig. S19a,c), or DEGaPs
(Fig. S20a,c). These findings suggest that the influence of DEGaPs on DEG expression is more
dependent upon the expression level of the associated TFs, whereas DARs and DMRs can
influence DEGs directly, supporting the concept that DEGaPs vs. DARs and DMRs mediate
distinct paths of transcriptional regulation.

DARs, DMRs, and DEGaPs show cross-tissue motif enrichment conservation at specific
genomic regions

The different genomic distributions of DARs and DMRs (see Fig. 1h,j) also suggested that some
regions may contribute more to the regulation of EET gene responses than others. Thus,
following the mapping of tissue DARs, DMRs, and DEGaPs to various genomic regions (i.e.
promoter, upstream, downstream, 3’'UTR, 5’'UTR, intron, exon, distal intergenic), we examined
motif enrichment among each subcategory of DARs, DMRs, and DEGaPs. We found that
tissues shared conserved patterns of TF motif enrichment at the DARs mapped to proximal
promoter, downstream, and 3’'UTR regions (Fig 6d). Proximal promoter DARs showed strong
enrichment for SP and KLF TFs, MAZ and PITX1. Downstream DARs were enriched for NPAS
and BMALA1, two core circadian clock TFs, as well as NKX TFs. The NF1 subcluster also
showed enrichment among 3’ UTR DARs, while THRB was most highly enriched among 3’ UTR
DARs.
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In contrast, TFs were most highly enriched among downstream DMRs versus other genomic
regions (Fig 6e), including multiple KLF TFs, MYOG, MAZ and EGR1. ETV2 and ETS1 were
enriched among proximal promoter DMRs, while BM2 and PIT1 were enriched among upstream
DMRs. Another cluster of TFs were enriched among exon DMRs including c-MYC, HIF2A, and
MYOD. TF enrichment among DEGaPs was most significant in intronic regions, one of the
regions most populated with DEGaPs (Fig 6f). Notably, however, there was no enrichment
among distal intergenic DEGaPs despite their large proportion of total DEGaPs. TFs enriched
among intronic DEGaPs include SCL, SMADS, THRB and ERRA. Significant enrichment was
also found among exonic DEGaPs, highly correlated to intronic DEGaP enrichments. While also
highly enriched among intronic DEGaPs, the most enriched TFs among promoter DEGaPs
include MAZ and multiple KLF family members. Overall, genomic features appeared to be a
driving force in clustering the enriched binding motifs among DEGaPs, DARs, and DMRs.

Differential TF motif enrichment at DEGaPs of upregulated vs. downregulated DEGs

A companion EET MoTrPAC manuscript (Nair et al. manuscript under review), found that the
biological pathways that were over-represented among upregulated vs. downregulated DEGs in
each tissue after 8 weeks of training were distinct, suggesting that different sets of TFs were
involved in their regulation. We sought to predict the sets of TFs that may preferably bind to up-
regulated genes, and those that may bind to down-regulated genes. After identifying the
DEGaPs related to up-regulated DEGs and those linked to downregulated DEGs in each tissue,
we refined each DEGaP category into distal intergenic, intron, and promoter peak subsets (the
most prevalent genomic features among peaks, as shown in Fig. 1g), and determined their
respective patterns of TF motif enrichment. We then generated z scores for each TF enrichment
across the peak sets, and applied hierarchical clustering to the TFs. We found that, in most
tissues, clustering was mainly driven by differences in TF motif enrichment between the
promoter peaks associated with up-regulated DEGs vs. those associated with down-regulated
DEGs (Fig S24). Adipose tissues had the greatest motif enrichment overlap between promoter
peaks associated with up-regulation and those associated with down-regulation.

Restricting the TF motifs enriched within each subset of promoter peaks (i.e. promoter peaks
associated with either up- or down-regulation) to those conserved across all four time points
(Fig. S25), revealed some overlap in motif enrichment between the tissues (Fig. 7a,b). For
instance, CLOCK, BHLHE41, and MYC (c-Myc) were among the TF motifs enriched across
WAT-SC, heart, lung, SKM-GN, and kidney at the promoter peaks associated with upregulation;
another set of TFs enriched primarily in heart and lung included ZFX and EBF2, while ATF2 was
enriched in SKM-GN and kidney. Among the promoter peaks associated with downregulation,
there was less consistent enrichment across tissues, however NKX2 was enriched across SKM-
GN, kidney, liver, and lung, and SOX9 was enriched among 6 of the 8 tissues. Twenty seven
TFs were shared between the 50 TFs associated with upregulation (Fig. 7a) and the 39
associated with downregulation (Fig. 7b), suggesting their involvement in both positive and
negative regulation depending on the tissue. Heart, SKM-GN, and kidney shared the most
enriched motifs associated with upregulation and lung, liver, and SKM-GN shared the most
enriched motifs associated with downregulation (Fig 7c,d). Overall, while gene responses and
TF responses were largely tissue-specific, tissues showed an overlap in the sets of TFs
associated with either upregulated or downregulated DEGs, suggesting that specific patterns of
EET-induced regulation could be conserved across tissues.
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Identification of DEGs associated with EET-induced phenotypic changes

Exercise elicits various phenotypic changes such as increased aerobic capacity (VO2max) and
reduced body fat mass, all of which reflect physiological adaptations. As several parameters
were clinically measured throughout the EET period, we sought to: i) assess possible
correlations between phenotypic alterations and gene expression responses to training, ii) infer
key transcriptional regulators based on their motif enrichment at the accessible promoters of
DEGs that correlated with phenotypic changes.

Parameters measured included weight, body fat mass, body lean mass, body water, lactate
levels, and VO2 max (Fig. S26). Body weight and fat mass were significantly lower in 8-week
trained rats than in controls (Fig S26a,b), with the greatest difference observed in males. VO2
max significantly increased in both females and males in response to EET (Fig S26c). Body
lean mass also increased in both sexes, though significance was only reached in females (Fig
S26d). Lactate (Fig S26e) and body water (Fig S26f) showed no significant changes relative to
control, though a significant decrease in lactate levels was observed between week 4 and week
8 in males. Positively correlated parameters included VO2 max vs. body lean mass, and body
weight and body fat mass (Fig 8a).

In most tissues, DEGs formed 2 separate clusters based on their either positive or negative
correlation with a measured parameter change (Fig S27). Correlation with body fat involved the
highest proportion of DEGs in most tissues (Fig. 8b), except for BAT and HIPPOC.

Connection of key TFs to phenotypic changes

To identify key regulators of the DEGs that were associated with phenotypic changes, we
analyzed motif enrichment at the corresponding promoter DEGaPs. In SKM-GN, the promoter
DEGaPs of genes that were positively correlated with changes in VO2 max were significantly
enriched for NR5A2 and ERRG motifs (Fig. 8c). The VO2 max-correlated DEG targets of those
two TFs and of AP-2GAMMA and AP-2ALPHA, whose motif enrichment did not reach
significance, showed considerable overlap (Fig 8d). The positive correlation between three of
the DEGs targeted by either NR5A2, ERRG, or/and AP-2GAMMA (Me3, Rora, and Lgi3) and
VO2 max change is depicted in Fig. 8e-g.

In SKM-GN, we also found a positive correlation between DEGs and body weight changes, and
identified the MyoD motif as significantly enriched at the corresponding promoter DEGaPs (Fig.
8h). While an enrichment for the COUP-TFIl and ERRA motifs was also detected, it did not
reach significance (Fig 8h). The Chd7, Rnf13, and RGD1562029 DEGs showed concurrent
enrichment for the MyoD, COUP-TFII, and ERRA motifs (Fig 8i). The positive correlation
between Chd7 expression and body weight change is illustrated in Fig. 8;.

As MAZ and SMAD3 have been identified as major regulators of the DARs-associated DEGs
(DAR-DEG pairs; see Fig. 4), we asked whether those DEGs correlated with phenotypic
changes. In SKM-GN, we found that MAZ targets Igf2 and Sall2 were positively and negatively
correlated with body fat change, respectively (Fig. 8k,l); in lung, Oas2 and Nfkb2 were
negatively and positively correlated with body fat change, respectively (Fig. 8m,n); in the liver,
SMAD3-target Fkbp4 was also positively correlated with body fat change (Fig 80). In each of
those correlations, as well as in the positive correlation between Chd7 and body weight, we
noted sex differences both in EET-dependent RNA levels and in phenotypic changes, as week
8-trained males deviated more from controls than week 8-trained females (Fig. 8j-0).
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In view of the characterization of TF expression responses to EET, we next evaluated
correlations between TF expression changes, at either the RNA or protein level (see Fig. 5) and
phenotypic changes. We observed the strongest correlations between TF RNAs and body fat
changes (Fig S28a), with Pknox1 in SKM-GN being the most positively correlated, and Srebf1 in
the kidney being the most negatively correlated. Srebf1 in the kidney was also the most
positively correlated with body lean mass changes. Rora was the most positively correlated with
VO2 max changes. Zeb1 and Zeb2 shared similar correlation patterns, namely a positive
correlation with body fat in WAT-SC. Gata2 had diverging correlation patterns depending on the
tissue: positively correlated with body weight and body fat in WAT-SC, and negatively correlated
with both measures in the lung. Similar to the correlations with TF RNA level-changes, the
strongest correlations at the protein level were with body fat changes. Remarkably, liver showed
the highest frequency of strong correlations (Fig S28b). In WAT-SC, JUN was the most
positively correlated with body fat, while TCFL2 and EHF were the most negatively correlated.
ZEB1 and ZEB2 maintained their correlation structure seen at the RNA level, with ZEB2 being
also positively correlated with body fat in the lung. IRF3 in SKM-GN was the most positively
correlated TF with body lean changes and CLOCK in WAT-SC was negatively correlated with
body fat. Connecting EET-modulated genes and proteins, and specifically TFs, with correlated
phenotypic changes suggest potential mechanistic roles. In particular, MAZ and SMAD3 target
gene correlation with body fat changes reinforces their functional role in the training response.

Discussion

Regular exercise has a variety of physiological benefits affecting many organ systems. The
comprehensive study of rats allowed extending the understanding of the molecular mechanisms
of EET to important tissues not feasible in human subjects. We integrated chromatin
accessibility, DNA methylation, and transcriptomic data from 8 rat tissues to infer the TFs
underlying EET responses in each tissue. We found multiple layers of regulation characterizing
EET adaptation, including utilization of the innate tissue-specific and genomic region-specific TF
machinery, changes in TF expression at transcriptome and proteome levels, post-translational
phosphorylation of TF proteins, direct relationships between proximal promoter DARs and
DMRs and their associated DEGs, interactions between more distant highly correlated DAR-
DEG and DMR-DEG pairs enriched for known TFs and specific training responses with distinct
TF enrichment patterns, some conserved across tissues (Fig 9). We isolated MAZ and SMAD3
as key regulatory TFs in SKM-GN, lung, and liver, found the down-regulation of immediate-early
response genes over EET and enrichment of KLF and SP TF motifs among proximal promoter
DEGaPs. We identified MEF2A, MEF2C and MEF2D TFs with significant changes in protein
level or phosphorylation whose motifs were enriched in DEGs in SKM-GN and heart. We found
that the DEGaPs of upregulated vs. downregulated DEGs show differential motif enrichment,
which predominantly occurs at promoter regions. Finally, we identified TFs associated with EET-
induced phenotypic changes including VO2 max and body weight.

In liver, the SMAD3 TF motif was the most enriched among correlated DAR-DEG pairs following
EET. While SMAD3 was recently established as a key regulator of the acute exercise response
in SKM?3, it is also an intracellular mediator of the TGF-B signaling pathway, which has been
associated with hepatic stellate cell (HSC) activation and liver fibrosis??*°. SMAD3-target genes
include collagens and fibrogenic markers such as smooth muscle actin and cadherin. In this
work, SMAD3 motif-containing DARs anti-correlated with Serpina family gene responses. Low
serum levels of Serpina4, also known as kallistatin, have been associated with liver diseases,
including liver fibrosis®'. SMAD3-target gene Lpar3 has been linked to liver regeneration
following damage?? and Lpar family members were previously associated with liver fibrosis*>.
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RNA expression of Glul, another potential SMAD3-target gene, was reported to decrease in
activated HSCs, which are responsible for extracellular matrix deposition in liver fibrosis*. We
speculate that TGF-B/SMAD signaling, which regulates ECM production and cytoskeletal
organization in HSCs, may be modulated by EET.

In SKM-GN and lung, MAZ was the most enriched TF motif among correlated DAR-DEG pairs.
Not previously linked to EET, MAZ can act both as a transcriptional activator and a
repressor'*!7. Multiple MAZ target genes found among the DAR-DEG pairs were associated
with immune response: Ppp1ri5a (Gadd34) is necessary for interferon production?®; Igf2, which
is primarily a growth hormone during development, is also involved in immune response?®-38;
Hspb6 acts as a mediator of platelet aggregation along with smooth muscle relaxation®; Mpeg1
expresses a transmembrane protein in macrophages in an antimicrobial capacity*’; Oas2 is a
type I-interferon response gene*!; mutations in Nfkb2 greatly damage the immune system*2.
Thus, MAZ could be involved in the inflammatory response occurring in SKM following
exercise®.

The motif of AP2-gamma, also known as TFAP2C, was enriched among correlated DMR-DEG
pairs in WAT-SC and lung. The AP2-gamma motif was also significantly enriched among DEGs
in SKM-GN that are correlated with a change in VO2max over EET. AP2-gamma’s primarily
studied function is in early development morphogenesis*; however, it has also been shown to
have an inflammatory role by activating Th17 and Th1 cells**. The NF1-halfsite motif was also
enriched among correlated DMR-DEG pairs in WAT-SC. NF1 negatively regulates the
RAS/MAPK pathway*®, and mutations in the protein lead to neurofibromatosis type 1 which can
have numerous negative effects including musculoskeletal defects and impaired exercise
capabilities*”.

Several TFs that were downregulated by EET in SKM-GN either at the RNA level (Fos, Jun,
Egri, and Atf3) or at the protein level (NR4A1) represent immediate-early response genes
(IEGs), which were previously reported to be induced by acute exercise*3->!. Stress-inducible
ATF3 was shown to reduce the RNA expression of inflammatory chemokines and cytokines in
mouse SKM following acute exercise, and ATF3 knockout resulted in impairment of some of the
molecular adaptations to exercise training*®>2. In SKM, NR4A1 regulates genes associated with
glucose uptake, glycogen synthesis, and promoting muscle growth>* as well as mediating
inflammatory response’®*>3. As exercise represents a stressful stimulus, modulation of IEGs may
help tissues like SKM-GN to recover their homeostasis and thus facilitate their adaptation to
exercise training. The two gene targets of NR4A1 with the largest correlated decreases in EET-
response gene expression in our study were the heat shock protein Hspail, a critical element of
the cellular stress response®®, and Dupd1 (Dusp29), which has been linked to regulation of
muscle cell differentiation, development, and atrophy>’.

We found that binding sites for circadian clock TFs were over-represented at the promoter
DEGaPs of DEGs that were associated with VO2 max changes in SKM-GN. Notably, there were
enriched motifs for the nuclear receptors NR5A2 and ERRG>® which bind to the core clock
proteins CLOCK>® and BMAL1%°, respectively. Moreover, we found an over-representation of
binding sites for circadian clock-related TFs at promoter and downstream DARs (NPAS and
BMAL1 motif), and at the DEGaPs of upregulated DEGs (CLOCK maotif) in multiple tissues,
suggesting a cross-tissue, exercise training effect on circadian clock factors. It is noteworthy
that the EET program in rats was conducted during an active, dark phase, thus excluding that
the enrichment for circadian clock TF motifs would be related to exercise training in the inactive
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phase. Recent studies revealed interactions between exercise and circadian rhythms. Some
demonstrated that time of exercise can modify the transcriptional response to acute exercise,
while others showed that exercise can modify the muscle clock phase and expand the circadian
transcriptome in SKM6!-66,

Limitations of our study include the use of inbred rats, which eliminates effects of genetic
diversity, and high variance in some tissues, thus reducing statistical power. However,
differences in cell type composition within testing groups of same strain, same age, same sex
rats suggest greater than initially anticipated interindividual variation and stronger applicability to
the diversity expected in human responses to EET. Exercise effects on cell type composition
could only be addressed computationally in assays of bulk tissue. Many integrated multiomic
EET responses that we identified, such as muscle development in SKM-GN, innate immunity in
lung, increased immune cell type proportions in adipose tissues, and metabolic processes in
liver may contribute to known health effects of exercise. The goal of the MoTrPAC project is to
provide the first systematic compendium of exercise effects. Follow-up studies of the multi-
organ roadmap of genomic regulatory responses that we have identified are warranted.

Our multi-omic analysis across rat tissues allowed us to map the epigenomic changes to the
transcriptional changes occurring during EET and infer TFs driving training responses. By
providing a view of the complex interplay between chromatin structure modifications, DNA
methylation, gene transcription, and TF abundance and activity throughout EET, this work
provides a comprehensive survey of the multi-organ gene control mechanisms underlying the
effects of regular exercise. This insight helps further the goal of maximizing the benefits of
exercise in healthy individuals and developing targeted exercise therapies for patients with
disease or disability.

Methods

Animal study design
Animal care

Male and female Fischer 344 (F344) inbred rats from the National Institute on Aging were
transported to the University of lowa a minimum of 4 weeks prior to starting exercise training.
Rats were housed with the same sex, 2 per cage (146.4 square inches of floor space) in
ventilated racks (Thoren Maxi-Miser IVC Caging System) on Tekland 7093 Shredded Aspen
bedding and fed the Lab Diet 5L79 pelleted diet.

Rats were acclimated to a reverse dark-light cycle with lights OFF at 9:00am and lights ON at
9:00pm, with temperature controlled at 68-77°F and humidity of 25-55%. For these studies we
will use Zeitgeber Time (ZT) to refer to time of day relative to the time of lights off/lights on with
lights off at ZT12. All experimental interventions and husbandry were performed during the
active, dark phase of the rats under red light. All animal procedures were approved by the
Institutional Animal Care and Use Committee at the University of lowa.

Treadmill familiarization
Prior to exercise training, rats were acclimated to treadmill exercise on a Panlab 5-lane rat

treadmill (Harvard Instruments, Model LE8710RTS). Day 1-2 consisted of static treadmill
exploration for 10 minutes. Days 3-5 consisted of running at 6m/min at 0° incline for 10 minutes,
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speed was increased to 10m/min between Days 6-12. On Day 12, rat running behavior was
scored for compliance with running at 12m/min for 5 minutes at a 10° incline. Based on running
behavior, rats received a score from 1-4 with 4 being the highest score. Rats that were assigned
a score of 1 were removed from the study. 25 male and 25 female compliant rats were
randomized to a control or training group.

Progressive exercise training protocol

At 6-months of age, 1, 2, 4 or 8 weeks of exercise training began. Control rats were placed on a
static treadmill for 15 min per day, 5 times per week. Exercise training consisted of a
progressive training protocol 5 times per week at ZT13-20, to target 70% VO2max (see below).
Week 1 sessions started at 13m/min for males and 16m/min for females at 5° for 20 minutes,
with duration increased by one minute each day until reaching 50 min on day 31 of training. The
treadmill grade was increased from 5° to 10° at the start of week 3. The treadmill speed
increased at the start of week 2 (15m/min males, 18m/min females), 4 (18m/min males,
21m/min females), 5 (20m/min males, 23m/min females), 6 (23m/min males, 26m/min

females), and 7 (25m/min males, 28m/min females) and was fixed for the final 10 days of
training. Rats performing less than 4 days of training per week were removed from the study
and euthanized as described below.

Body composition measurements

Body composition (lean tissue%, fat tissue% and body fluid) was measured for all rats 13 days
prior to the start of training and 5 days prior to euthanasia in the 4 and 8-week training

groups using the minispec LF90Il Body Composition Rat and Mice Analyzer (Bruker, 6.2 MHz
Time Domain Nuclear Magnetic Resonance (TD-NMR) system). VO2max was determined prior
to commencing training in all rats, and during the last week of training for rats in the 4- and 8-
week exercise groups, in a single-lane enclosed treadmill (Columbus Instruments Metabolic
Modular Treadmill), with rats acclimated two days prior to testing. For testing, the rat was placed
in the treadmill and testing began once oxygen consumption stabilized. The testing protocol
consisted of a 15 min warm up at 9 m/min and 0° incline. The incline was increased to 10° and
treadmill speed was increased by 1.8 m/min every 2 minutes®’. During the test, electric shocks
were used if the rat stopped running and sat on the shock area. Testing stopped when the rat
sat on the shock area 3 consecutive times and did not respond to increased shock. Blood was
then taken from the tail to measure lactate. VO2max was determined as a leveling off of oxygen
uptake, despite increased workload, a respiratory exchange ratio above 1.05, and an
unhaemolyzed blood lactate concentration =26 mM.

Euthanasia and tissue collection

On the day of euthanasia, food was removed at ZT11.5, 3 hours before tissue collections which
took place between ZT14.5-17.5, a minimum of 48 hours post their last exercise bout. Rats
were deeply anesthetized with approximately 1-2% isoflurane in oxygen, and gastrocnemius,
white adipose, liver, lung, and heart were removed under anesthesia. Following removal of the
heart, the rat was decapitated using a guillotine. The brain was removed from the skull and
hippocampus dissected. The remaining tissues ( kidney, brown adipose, and hippocampus)
were dissected post death. All tissues were cleaned of excess connective/fat tissue and
immediately flash-frozen in liquid nitrogen, placed in cryovials and stored at -80°C. Rat tissues
were archived and cyropulverized at the MoTrPAC Biospecimens Repository, until distributed to
Chemical Analysis Sites for respective assays®.
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Data production and quantification
ATAC-seq data generation

Nuclei from 30 mg white adipose, 15 mg brown adipose, and 10 mg of other tissue samples
were extracted using the Omni-ATAC protocol with modifications=. The white adipose, brown
adipose, and hippocampus tissues were processed using no-douncing nuclei extraction.
Cryopulverized tissue powder was incubated in the homogenization buffer for 10 min at 4°C,
tubes inverted every 2-3 minutes. Other tissue powder was incubated in the homogenization
buffer for 5 minutes on ice and dounced 10 times using pestle A and 20 times with pestle B.
Nuclei were stained with DAPI and counted using an automated cell counter. 50,000 nuclei (or
max. 500 pl nuclei) were added to 1 ml ATAC-RSB buffer and spun at 1000 g for 10 minutes,
and the supernatant was removed.

The nuclei pellet was resuspended in 50 pl of transposition mixture and incubated at 37°C for
30 minutes with 1000 rpm shaking. The transposed DNA was purified using Qiagen MinElute
Purification kits (Qiagen # 28006), and amplified using NEBnext High-Fidelity 2x PCR Master
Mix (NEB, M0541L) and custom indexed primers®. 1.8x SPRiselect beads were used to clean
the PCR reaction and remove primer dimers. The ATAC-seq libraries were sequenced on a
NovaSeq 6000 using 2x50bp with 35 million pairs of reads per sample.

ATAC-seq data processing and normalization

Reads were demultiplexed with bcl2fastg2 (v2.20.0) and processed with the ENCODE ATAC-
seq pipeline (v1.7.0) (https:/github.com/ENCODE-DCC/atac-seq-pipeline)®®. Samples from the
same sex and training group were analyzed as biological replicates. Reads were aligned to
genome rn6.0.967° with Bowtie 2 (v2.3.4.3)”!. Duplicate and mitochondrial chromosome mapped
reads were removed. Peaks were called using MACS2 (v2.2.4)"2, both from reads from each
sample and pooled reads from all biological replicates. Pooled peaks were compared with the

peaks called for each replicate individually using irreproducible discovery rate’* and thresholded
to generate an optimal set of peaks. Optimal peaks from all workflows were concatenated,

trimmed to 200 base pairs around the summit, sorted and merged with bedtools (v2.29.0)7# to
generate a master peak list. This peak list was intersected with the filtered alignments from each
sample using bedtools coverage to generate a peak by sample matrix of raw counts. Peaks
from non-autosomal chromosomes were removed. Peaks that did not have at least 10 read
counts in four samples in a tissue were removed. Filtered raw counts were then quantile-

normalized with limma-voom”. This version of the normalized data was used for downstream
analyses.

ATAC-seq peak assignment to genomic features

Accessible regions identified using ATAC-seq were assigned to one of the nine terms of
genomic features using Ensembl Rn6 GTF (gene annotation file) and function annotatePeak of

package ChlPseeker’® (v1.8.6).
Nine genomic features are defined as:
Promoter (<=1 kb) (proximal promoter): within +/- 1 kb from the transcription start site (TSS);

Promoter (1-2 kb): +/- 1 to 2 kb from the TSS;


https://www.zotero.org/google-docs/?Tu5Hc1
https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523450; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Upstream (<5kb) 2-5 kb upstream from the TSS;

Downstream (< 5 kb): within 5kb downstream of the transcription end site (TES);

5" UTR (5’ untranslated region); Exon; Intron; 3' UTR (3’ untranslated region);

Distal Intergenic: regions > 5kb downstream of TES or > 5kb upstream from next TSS;
Overlaps Gene: overlaps with gene annotation, but not in any terms above.

All ATAC-seq identified accessible regions were assigned to the closest genomic feature of a
genome. Differentially expressed gene associated peaks (DEGaPs) are defined as all
accessible regions assigned to the differentially expressed gene.

DNA methylation data generation

Rat tissues were disrupted in GenFind v2 lysis buffer (Beckman Coulter, Indianapolis, IN) with a
tissue ruptor (Omni International, Kennesaw, GA). Genomic DNA was extracted in a BiomekFx
automation workstation (Beckman Coulter, Chaska, MN). DNA sample quantification was done
by Qubit assay (dsDNA HR assay, Thermo Fisher Scientific) and quality was determined by
Nanodrop A260/280 and A260/230 ratios. Reduced representation bisulfite sequencing
(RRBS)”” libraries were generated with the Ovation® RRBS Methyl-Seq kit from Tecan
Genomics (Baldwin Park, CA). Quantity of the libraries was determined by Qubit High Sensitivity
assays (Thermo Fisher Scientific) and quality evaluation was done by Bioanalyzer High
Sensitivity DNA Chip (Agilent Technologies, Santa Clara, CA). Libraries were sequenced on a
NovaSeq 6000 platform (lllumina, San Diego, CA) using paired-end 100 base-pair run
configuration.

RRBS data processing and normalization

bcl2fastq (version 2.20) was used to demultiplex reads with options --use-bases-mask
Y*,I8Y*,I*,Y* --mask-short-adapter-reads 0 --minimum-trimmed-read-length 0 (lllumina, San
Diego, CA). FastQC (v0.11.8) was used to calculate pre-alignment QC metrics’® and reads were
indexed and aligned to the Ensembl Rattus norvegicus (rm6) genome using Bismark (v0.20.0)"°.
Bowtie 2 (v2.3.4.3) was used to quantify the percent of reads that mapped to globin, rRNA and
phix sequence contaminants and spike-ins’!. Chromosome mapping percentages were
calculated with SAMtools (v1.3.1)8 and NuGEN’s “nodup.py” script quantified PCR duplicates.

CpG sites were selected for downstream analysis if they exhibited methylation coverage >= 10
in all samples. Individual CpG sites were divided into 500 base-pair windows and clustered with
the Markov clustering algorithm R package MCL®'. Quantile normalization of sites/clusters was
conducted separately on each tissue using R package preprocessCore®.

RNA-seq data generation

Rat tissue powders were further disrupted using Agencourt RNAdvance tissue lysis buffer
(Beckman Coulter, Brea, CA) with a tissue ruptor (Omni International, Kennesaw, GA, # 19-
040E). The total RNA was quantified using NanoDrop (ThermoFisher Scientific, # ND-ONE-W)
and Qubit assay (ThermoFisher Scientific). Total RNA quality was determined by either
Bioanalyzer or Fragment Analyzer analysis.


https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523450; this version posted October 23, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

500 ng total RNA was used for library generation. Universal Plus mRNA-Seq kit from
NuGEN/Tecan (# 9133) was used to select polyadenylated RNA. The generated sequencing
libraries contain dual barcodes (i7 and i5) and UMIs (unique molecular identifiers) to accurately
quantify the transcript levels. The RNA-seq libraries were sequenced on a NovaSeq 6000 using
2x100 bp with 35 million pairs of reads per sample.

RNA-seq data processing and normalization

Reads were demultiplexed with bcl2fastq2 (v2.20.0). Adapters were trimmed with cutadapt
(v1.18). STAR (v2.7.0d) was used to index and align reads to genome rn6.0.96 and gene
annotations’. Bowtie 2 (v2.3.4.3) was used to index and align reads to globin, rRNA, and phix
sequences in order to quantify the percent of reads that mapped to these contaminants and
spike-ins’!. UMIs were used to accurately quantify PCR duplicates with NUGEN'’s “nudup.py”
script (https://github.com/tecangenomics/nudup). QC metrics from every stage of the
quantification pipeline were compiled, in part with multiQC (v1.6)%3. Lowly expressed genes
(having 0.5 or fewer counts per million in all but one sample) were removed and normalization
was performed separately in each tissue. These filtered raw counts were used as input for
differential analysis with DESeq2%*. To generate normalized sample-level data, filtered gene
counts were TMM-normalized using edgeR::calcNormFactors, followed by conversion to log
counts per million with edgeR::cpm®>. The same normalization technique was used on the 8
week control samples of each tissue for cross-tissue comparisons.

Proteomics data generation

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was conducted on six tissues:
heart and liver at the Broad Institute and skeletal muscle, kidney, lung, and white adipose at
Pacific Northwest National Laboratory (PNNL). Sample processing followed a modified version
of a previous protocol®. Peptides were labeled using tandem mass tag (TMT)®” and samples
were grouped into sex- and training time point-based TMT11 multiplexes. Multiplex samples
were fractionated by high pH reversed phase separation. Heart and liver samples underwent
online separation with a nanoflow Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher
Scientific), and then analyzed with a Q-Exactive Plus mass spectrometer (Thermo Fisher
Scientific). The remaining tissues’ samples underwent online separation with a nanoAcquity M-
Class UHPLC system (Waters), and analyzed with a Q Exactive HF mass spectrometer
(Thermo Fisher Scientific).

Phosphoproteomics data generation

Phosphopeptide enrichment was performed through immobilized metal affinity chromatography
(IMAC)®°. Phosphopeptides were eluted off IMAC beads in 3x70 pl agarose bead elution buffer,
desalted with C18 stage tips, eluted with 50% ACN, and then lyophilized. Samples were
reconstituted in 3% ACN / 0.1% FA for LC-MS/MS analysis. Heart and liver samples were
separated by a nanoflow Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher Scientific)
and analyzed with a Q-Exactive HFX mass spectrometer (Thermo Fisher Scientific). SKM-GN,
WAT-SC, kidney and lung samples were separated by a Dionex Ultimate 3000 UHPLC direct-
inject system (Thermo Fisher Scientific) then analyzed with a Q-Exactive HFX mass
spectrometer.
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Proteomics and phosphoproteomics data processing and normalization

For heart and liver, raw MS/MS data samples were processed by a Spectrum Mill (v.7.09.215)
(Agilent Technologies). For the remaining tissues, sample processing was implemented by an
in-house cloud-based proteomics pipeline executed in the Google Cloud Platform?. In all
tissues, MS2 spectra were processed and searched against the rat RefSeq protein database
(downloaded November 2018). Log. TMT ratios to the common reference were used as
quantitative values for all proteins and phosphosites. Principal component analysis and median
protein abundance across samples were used to find sample outliers. Proteomics features that
were not fully quantified in at least two plexes within a tissue and non-rat contaminants were
removed. Median-centering and mean absolute deviation scaling of Log, TMT ratios were done
for sample normalization. Plex batch effects were removed using limma::removeBatchEffect
function in R (v 3.48.0). Phosphoproteome data was not normalized to the total proteome due to
the lack of complete overlap of phosphosites and total proteome features (80.5% - 89.7%).

Statistical analysis
Differential analysis

Differential analyses were performed in each tissue of each ome. Males and females in one
dataset were analyzed separately. Limma with empirical Bayes variance shrinkage was used for
ATAC-seq, proteomics, and phosphoproteomics data®®; the edgeR pipeline for methylation
analysis was used for RRBS data®®; DESeq2 was used for RNA-Seq’®. For all proteomics and
ATAC-seq data, the input for differential analysis was normalized as described above. For RNA-
Seq, the input was filtered raw counts, in accordance with the DESeqg2 workflow.

To select analytes that changed over the training time course, we performed F-tests (limma,
edgeR::giImQLFTest) or likelihood ratio tests (DESeg2::nbinomLRT, Irtest) to compare a full
model with ome-specific technical covariates and training group as a factor variable (i.e.
sedentary control, 1 week, 2 weeks, 4 weeks, 8 weeks) against a reduced model with only
technical covariates. For each analyte, male- and female-specific p-values were combined using
Fisher's sum of logs meta-analysis to provide a single p-value, referred to as the training p-
value. To account for false discovery rate across all statistical tests, the training p-values were
adjusted across all datasets within each ome using Independent Hypothesis Weighting (IHW)
with tissue as a covariate®. Training-differential features were selected at 10% IHW FDR.

We used the contrasts of each training time point versus the sex-matched sedentary controls to
calculate time- and sex-specific effect sizes, their variance, and their p-values (e.g., using linear
F-tests), referred to as the timewise summary statistics. Specifically, for limma models we used
limma::contrasts.fit and limma::eBayes, for DESeq2 models we used DESeq2::DESeq, for
edgeR models we used edgeR::;gimQLFTest. Covariates were selected from assay-specific
technical metrics that explained variance in the data and were not correlated with exercise
training: RNA integrity number (RIN), median 5’-3’ bias, percent of reads mapping to globin, and
percent of PCR duplicates as quantified with Unique Molecular Identifiers (UMIs) for RNA-Seq;
fraction of reads in peaks and library preparation batch for ATAC-seq.

Identification of transcription factor motifs using HOMER

Transcription factor motif enrichment analysis was performed on sets of DARs and DEGaPs for
each tissue. DARs for motif enrichment analysis were selected for each tissue by satisfying an
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adjusted p-value threshold of 0.1. Similarly, DEGaPs for each tissue were selected by isolating
the DEGs that satisfied an adjusted p-value threshold of 0.1, and selecting peaks annotated to
the DEGs that contained a median normalized accessibility of -1. For genomic feature-specific
analysis, DEGaPs were divided based upon their gene region annotation. The analysis was
carried out by findMotifsGenome.pl (HOMER v4.11.1)°!. It was performed on the +50 bp
flanking regions of the peak summits. The search lengths of the motifs were 8, 10, and 12 bp.
We applied the -find flag to generate a list of all known rat motifs contained within the +50 bp
flanking regions of the summits for each peak in the ATACseq dataset, using the same settings
as above.

DAR genomic feature TF motif enrichment analysis

Applying the output from HOMER, the top ten significantly enriched TF motifs among DARs and
DEGaPs in each tissue were selected for further downstream analysis and cross-tissue
comparisons. TFs were removed from further analysis if their gene was not expressed in the
tissue in which their motifs were enriched. TF motif enrichments for differentially accessible
regions (DARs) divided into gene features were calculated using the Fisher test. The test
compared the ratio of DARs containing the motif for a specific TF/non-DARs containing this
motif in one genomic feature, and the ratio of DARs containing this motif / non-DARs containing
this motif in other genomic features. p values were adjusted and FDR cutoff = 0.1 to select
significant motifs in specific genomic features.

Correlations between DARs and DEGs

We selected DARs whose centers were within 500kb of a DEG TSS in each tissue. We then
calculated the Pearson correlation of the L2FC of the DAR and the DEG for each sex at each
week. We considered a DAR-DEG pair for further analysis if their training response Pearson
correlation was greater than 0.5 or less than -0.5 and the DAR contained a known motif for a TF
expressed within the tissue.

Cell-type deconvolution

Cell type deconvolution was conducted by the R package CellCODE®? using the getallSPVs
function. Marker sets were generated using the IRIS (Immune Response In Silico’® and DMAP
(Differentiation Map) reference datasets®®. The Kruskal-wallis test was implemented with the R
function kruskal.test to determine if the variability in cell type proportion across samples in a
given tissue would suggest a significant training response or sex difference.

Pathway enrichment

Pathway enrichment analysis of up-regulated DEGs at each time point was performed using the
R package gprofiler2:gost®> against Gene Ontology Biological Process, Reactome,
WikiPathways and KEGG databases. Top 10 pathway enrichments for each tissue are
displayed as bubble plots with sizes indicating the number of significant genes enriched in
different pathways relative to the pathway size (number of genes in that pathway) and colors
indicating the significance (BH-corrected p-value). At least 10 genes were required to be
enriched in a pathway with a maximum of 200 genes.
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Correlations between Phenotypic Measures and DEGs

Phenotypic measures were calculated at weeks 4 and 8 of EET and in week 8 controls.
Measures were presented as changes between time point and original baseline measurements
in each rat. For each phenotypic measure and DEG combination, we calculated the Pearson
correlation between the change in phenotypic measure between baseline and a given time
point, and the gene expression of the DEG at the time point for each animal subject. We
isolated the DEGs that exhibited > 0.5 or < -0.5 correlations with each phenotypic measure in
each tissue and selected the DEGaPs annotated to the promoter region of the DEGs. TF motif
enrichment significance among a set of positively or negatively correlated DEG’s promoter
DEGaPs in a tissue were determined by an exact binomial test comparing the frequency of
enrichment among phenotype-correlated DEGs versus general enrichment among the promoter
DEGaPs in the tissue.

Data Availability

MoTrPAC data will be publicly available at time of publication via motrpac-data.org/data-access.
Data access inquiries should be sent to motrpac-helpdesk@lists.stanford.edu. Additional

resources can be found at motrpac.org and motrpac-data.org.

Code Availability

MoTrPAC data processing pipelines for RNA-Seq, ATAC-seq, RRBS, and proteomics will be
made public at the time of publication: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline,
https://github.com/MoTrPAC/motrpac-atac-seq-pipeline,
https://github.com/MoTrPAC/motrpacrrbs-pipeline, https://github.com/MoTrPAC/motrpac-
proteomics-pipeline. Normalization and QC scripts will be available at
https://github.com/MoTrPAC/motrpac-bic-norm-qgc. Code for the underlying differential analysis
for the manuscript will be provided in the MotrpacRatTrainingémo R package
(motrpac.github.io/MotrpacRatTrainingémo). Code for conducting the analysis and generating
the figures contained within this paper will be available at

https://github.com/gsmith990306/Mo TrPAC_PASS1B_Transcription_Factor_Paper.
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Figure 1: Epigenetic and transcriptional responses to training programs. (a) 6-month old rats of
both sexes underwent training programs. Tissues were collected and subjected to multiomics
profiling, including ATAC-seq, RNA-seq, proteomics. (b) Higher number and percentage of
differentially expressed genes (DEGs) were identified than differentially accessible regions
(DARs) and differentially methylated regions (DMRs) after training in most tissues (F test
FDR<0.1). (c) Many accessible regions, methylation sites, and genes were identified in all
tissues and training-induced features were highly tissue-specific.(d) Distribution of L2FC
positive/negative consistency in RNAseq, ATACseq and RRBS differential analytes across
tissues. The sum of the sign(L2FC) at each time point in males and females for each analyte is
calculated with values ranging from -8 (negative L2FC at all time points and sexes) to 0 (half
positive and half negative L2FC) to 8 (positive L2FC at all time points and sexes). Heart and
SKM-GN RNAseq DEGs are more consistently up or down-regulated while WAT-SC RNAseq
DEGs are less consistent, for example. (e,f) Cell type deconvolution analysis-generated -log10
p-values of Kruskal-Wallis test measuring significant predicted changes in tissue cell type
composition based on training (e) or sex (f). Brown adipose exhibited increased proportions of
immune cell types after training. White adipose exhibited sex-specific changes in proportions of
immune cell types and pericytes. (g-j) Distribution of genomic locations of all accessible regions
(9), DARSs (h), all methylation sites (i) and DMRs (j). (k) DARs enriched for the proximal
promoter compared to all accessible regions. (I) DMRs are enriched for the downstream region
compared to all methylation sites.
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Figure 2: In general, genes are more highly expressed, chromatin peaks are more highly
accessible and methylation sites are more hypomethylated in the tissues in which they exhibit a
differential training response. (a-c) heatmaps of all differential analytes across eight tissues in
RNAseq (a), ATACseq (b), and RRBS (c). Columns reflect z scores of baseline expression (a),
accessibility (b), or methylation (c), across the eight tissues. Rows are annotated by the tissues
in which each analyte exhibits a differential training response. (d-f) Mean z-score of control gene
expression (d), chromatin peak accessibility (e), and site methylation (f), for the differential
training response analytes for each tissue.
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Figure 3: Responses in chromatin accessibility and DNA methylation may not directly link with
the expression of the closest genes. (a) Count of DARs annotated to a DEG or a non-DEG. The
closest gene to most DARs is not a DEG. * reflects p < 0.05 for hypergeometric test measuring
the significance of the DAR-DEG overlap. (b) Count of DMRs annotated to a DEG or a non-
DEG. Similar to DARs, the closest gene to most DMRs is not a DEG. * reflects p < 0.05 for
hypergeometric test measuring the significance of the DMR-DEG overlap (c-e) Distributions of
distance between DARs and nearest DEG TSS (c), DMRs and nearest DEG TSS (d), and
DMRs and nearest DAR (e). DARs (c) and DMRs (d,e) are colored by tissue. (f-h) Density
scatter plots of DAR-DEG training response correlation vs. distance (f), DMR-DEG training
response correlation vs distance (g), and DMR-DAR training response correlation vs distance
(h). DARs with high positive correlation to gene expression enriched for TSS-proximal regions in
most tissues while DMRs with high positive and negative correlation to gene expression
enriched for TSS-proximal regions. DAR-DMR correlations tended more positive when DMRs
were upstream of DARs, and tended more negative when DMRs were downstream of DARs.
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Figure 4: Responsive transcription factors in correlated DAR-DEG pairs. (a-c) Correlation
heatmaps of correlated DAR-DEG pairs with binding sites for enriched TFs Maz in SKM-GN (a),
and lung (b), and Smad3 in liver (c). (d-g) Training response L2FC scatter plots of correlated
DAR-DEG Maz and Smad3 targets. Maz-target DARs in SKM-GN correlated with 1gf2 (d), and
Sall2 (e), and in lung correlated with Nfkb2 (f). SMAD3-target DAR in liver correlated with Fkbp4

(9).
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Figure 5: TFs showed significant EET responses at multiple omic levels. (a-c) Significant TF
training responses at the transcriptomic (a), proteomic (b) and phosphoproteomic (c) levels. All
TFs satisfy p-value < 0.1 in the specified ome and L2FC values are displayed at each time point
and sex. Tissue of significance is color-annotated on the left side of each row. (d) TFs with
significant changes at the transcriptomic, proteomic and phosphoproteomic levels and whose
proximal promoter motif targets are enriched for DEGs are shown. Significant enrichments (p <
0.05) are represented with a *. Solid lines reflect the frequency of TF proximal promoter motif
targets to be DEGs while the dashed lines show the frequency of DEGs among expressed
genes in each tissue. Lines are colored by the tissue of TF training response and target DEG
enrichment and TFs are individually colored by the source of their TF training response (RNA,
Protein, Protein and Phosphoprotein, and Phosphoprotein). (e-g) Examples of TFs with
significant enrichments for DEGs among proximal promoter motif targets. Heatmaps display the
targets for the TFs Six1 in SKM-GN (e), MEF2C in SKM-GN (f), and IRF:BATF in Lung (g). For
each target, the L2FC across time points and sexes is displayed as well as the L2FC for the TF
itself.
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Figure 6: TF motif enrichment at the tissue level and at the genomic feature level in each tissue.
(a-c) -log10 p-value of TF motif enrichment in tissue DARs (a), DMRs (b), and DEGaPs (c). Top
enriched TFs were selected for each tissue in (a-c). (d-f) -log10 p-value of TF motif enrichment
among sets of DARs (d), DMRs (e), and DEGaPs (f) split by genomic feature. Distinct sets of TF
motifs are significantly enriched in proximal promoter regions (<=1kb from TSS) and
downstream regions, shared by multiple tissues for DARs and DMRs, while TFs are most
heavily enriched among intronic DEGaPs in most tissues.
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Figure 7: Tissues shared sets of TFs enriched in the promoter regions of genes that were up- or
down-regulated after 8 weeks of training. (a-b) Heatmaps of relative enrichment of TFs among
the promoter peaks of up- (a) or down-regulated genes (b) across tissues. (c-d) Number of
enriched TFs shared between pairs of tissues in the promoter peaks of up- (c) or down-

regulated genes (d).
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Figure 8: TF enrichment among phenotype-correlated DEGs. (a) Heatmap of Pearson
correlation between phenotypic measures. Strong relationships between body lean and VO2
max and body fat and weight gain. (b) Frequency of tissue DEGs positively (> 0.5) or negatively
(< -0.5) correlated with each phenotypic measure. (c) Comparison of TF enrichment among the
active promoter peaks of VO2 max positively correlated DEGs vs TF enrichment among the
total active promoter peak set in SKM-GN. * represents binomial test significance (p < 0.05) for
difference in phenotype correlated DEG frequency and general frequency. (d) Overlap of target
DEGs for most enriched TFs among VO2 max positively correlated DEG promoter peaks. (e-g)
Scatter plots of gene expressed vs correlated phenotypic measure. In SKM-GN, VO2-max
change is positively correlated with Me3 (e), Rora (f), and Lgi3 (g). (h) Comparison of TF
enrichment among the active promoter peaks of body weight positively correlated DEGs vs TF
enrichment among the total active promoter peak set in SKM-GN. * represents binomial test
significance (p < 0.05) for difference in phenotype correlated DEG frequency and general
frequency. (i) Overlap of target DEGs for most enriched TFs among body weight positively
correlated DEG promoter peaks. (j-0) Scatter plots of gene expression vs correlated phenotypic
measure. In SKM-GN, weight gain is positively correlated with Chd7 (j), and body fat change is
positively correlated with Igf2 (k), and negatively correlated with Sall2 (I). In lung, body fat
change is negatively correlated with Oas2 (m), and positively correlated with Nfkb2 (n), and in
liver, body fat change is positively correlated with Fkbp4 (o).
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Figure 9: Transcription factors regulate exercise training-induced gene expression via multiple
methods. Following eight weeks of endurance training, multiomic analysis across eight tissues
have noted gene regulation through direct proximal promoter DAR to DEG relationships, DAR to
distant correlated DEG relationships, tissue-specific or gene-region-specific TF machinery, and
through changes in TF expression within a specific tissue. Enriched TF gene targets are
associated with metabolism, muscle regeneration, immune responses and circadian rhythm
pathways.
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