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Abstract 

Transcription factors (TFs) play a key role in regulating gene expression and responses to 
stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and 
RNA expression across eight rat tissues following endurance exercise training (EET) to map 
epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered 
tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible 
regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes 
(DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic 

alterations providing better access for TFs to affect target genes, or via changes in TF 
expression or activity enabling target gene response. We identified TF motifs enriched among 
correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related 
phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their 
gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating 

diverse organ effects of EET. 
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Abbreviations 

Abbreviation Definition 

HEART Heart 

SKM-GN Skeletal muscle (Gastrocnemius) 

WAT-SC Subcutaneous white adipose tissue 

BAT Brown adipose tissue 

LIVER Liver 

LUNG Lung 

KIDNEY Kidney 

HIPPOC Hippocampus  

EET Endurance Exercise Training 

DAR Differentially accessible regions 

DEG Differentially expressed genes 

DEGaP Differentially expressed gene associated peak 

TSS Transcription start site 

TES Transcription end site 

TF Transcription factor 
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Introduction 

Regular exercise impacts health and modulates disease processes through the body. Exercise 
maintains muscle function, improves cardiovascular wellness and cognitive performance, and 
lowers the risk of cardiovascular disease and many other disorders, ranging from dementia to 

several cancer types1. The molecular processes mediating the adaptations induced by exercise 
training across tissues are poorly understood. 

As the main regulators of gene transcription, transcription factors (TFs) act via the recruitment of 
other factors, co-activators, or co-repressors, to cis-regulatory elements at the promoter or distal 
regions of target genes. The access of TFs to cis-motifs partly depends on chromatin structure. 
Hence, along with changes in chromatin accessibility and other epigenetic modifications, 
including DNA methylation, TFs govern gene expression in tissues as well as gene responses 

to stimuli. TFs are critical exercise-response mediators2,3 and, in skeletal muscle, exercise 
training-induced transcriptomic changes have been associated with different TFs than those 

induced by acute exercise4.  

Our companion multi-tissue analysis of the molecular response dynamics during endurance 
exercise training found that the majority of differentially regulated genes are tissue specific 

whereas a small proportion are shared across multiple tissues5,6. Thus, gene responses to 
training are likely mediated through the combinatorial function of tissue-enriched and shared 
transcriptional regulators. Shared exercise-induced TF regulation can elicit tissue-specific 
functions, as seen with PPAR´, which is implicated in PGC1α-stimulated mitochondrial 

biogenesis7, regulation of adipogenesis8, and hippocampal BDNF activity and its cognitive 

effects9. As complex regulatory patterns drive tissue-specific gene regulation10, they are likely to 
be involved in mediating the diverse effects of exercise training on tissues. This highlights the 
importance of identifying the TFs that coordinate gene responses to training in multiple tissues 
and inferring their underlying mechanisms. However, few studies have evaluated training-
induced genome-wide changes in RNA expression, chromatin accessibility, and DNA 

methylation11, and have concentrated on few tissues, mainly skeletal muscle. 

We leveraged the study design of the Molecular Transducers of Physical Activity Consortium 

(MoTrPAC) endurance exercise training (EET) study in rats5 to characterize the TFs mediating 
gene responses to training across multiple tissues. During 8 weeks of EET, genome-wide 
transcriptome, chromatin accessibility, and DNA methylation were assayed in 8 tissues from 
age-matched male and female rats. By integrative analysis of all three omes within the same 
tissues, we establish a map of the regulatory transcriptional responses to training across 
tissues. 

Results 

Characterization of epigenetic and transcriptional responses to endurance training  

To understand the epigenetic and transcriptional response mechanisms elicited during eight 

weeks of EET, we analyzed ATAC-seq, RNA-seq and RRBS profiles generated in skeletal 
muscle (gastrocnemius; SKM-GN), heart, hippocampus (HIPPOC), kidney, liver, lung, brown 
adipose tissue (BAT), and subcutaneous white adipose tissue (WAT-SC) from rats subjected to 
1, 2, 4, and 8 weeks of training (Fig 1a) and untrained controls. We identified differentially 
accessible regions (DARs; F test adjusted p value < 0.1), differentially methylated regions 
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(DMRs: F test adjusted p value < 0.1), and differentially expressed genes (DEGs; F test 
adjusted p value < 0.1) between EET and control groups (Fig 1b). To characterize the 
transcriptional and epigenomic changes induced by EET across tissues, we evaluated the 
tissue-specificity of DARs, DMRs, and DEGs. Although most expressed genes, open chromatin 
sites, and methylation sites were detectable in multiple tissues, the majority of DARs (90%), 
DMRs (91%), and DEGs (66%) were identified in only one tissue (Fig 1c, Fig. S1). This 
suggested that gene regulatory responses to EET were largely confined to individual tissues, 

which was in line with another MoTrPAC manuscript6. 

We then examined the distribution patterns of log2 fold change (L2FC) in gene expression, 
L2FC in chromatin accessibility, and L2FC in methylation across time points and sexes (Fig. S2, 
S3, S4 respectively). While the ratios of up- to down-regulated analytes (i.e. DEGs, DARs, 
DMRs) were similar across the majority of tissues, L2FC patterns differed between tissues. 
Notably, the spread of L2FC was notably higher among DMRs than DEGs or DARs in each 
tissue. Additionally, we observed sex differences among DEGs in HIPPOC, BAT, and WAT-SC. 
Sex differences were more prevalent among DARs and DMRs in a majority of tissues. Overall, 
the proportion of DEGs showing concordant changes (L2FC) across timepoints and sex groups 
was higher than that of DARs and DMRs (Fig. 1d). Notably, heart, SKM-GN, and kidney 
exhibited the most consistency in expression changes across all groups, whereas WAT-SC 
showed the least. In BAT, we detected pronounced variations in DEG as well as in DAR profiles 
between earlier and late time points in both sexes (Fig. S2g and S3g). Gene set enrichment 

analysis among week 1 or week 8 DEGs in males and females highlighted varying pathway 
enrichment patterns that were, in most cases, consistent across sexes and time points (Fig S5). 
SKM-GN and heart shared enrichment for oxidative phosphorylation and cardiac muscle 
contraction pathways, as well as markers for Parkinson’s, Huntington's, and Alzheimer's 
diseases. WAT-SC DEGs were enriched for the chemokine signaling pathway and immune-
related diseases including systemic lupus erythematosus, asthma, and primary 
immunodeficiency. 

We investigated whether alterations in cell type proportions contributed to the expression 
changes observed. Cell type deconvolution analysis (See Methods) identified changes in 
immune cell type proportions that were related to training duration in BAT (Fig. 1e and Fig. S6a) 
and to sex in WAT (Fig. 1f and Fig. S6b). Differential analysis was conducted in male and 
female samples separately, suggesting that DEGs in WAT-SC are independent of sex-specific 

cell type composition changes. 

To further characterize the epigenomic changes induced by EET across tissues, we examined 
the genomic distribution of DARs vs. that of all open chromatin regions detected (Fig. 1g,h). 
Compared to all accessible regions, DARs were significantly enriched at proximal promoters 
across all tissues except WAT, which was excluded due to a scarcity of DARs identified (Fig 

1h,k, Methods). Consistent with previous studies12,13, open chromatin peaks across tissues were 
predominantly located in intronic and distal intergenic regions. Given the importance of the 

proximal promoter in the regulation of gene transcription14, the enrichment of DARs in this 
region suggested that EET results in the transcriptional activation of target genes. DMRs were 
significantly enriched at downstream regions across all tissues except WAT, relative to all 
methylation sites in each tissue (Fig 1i,j,l). Unlike DARs and DMRs, open chromatin regions that 
mapped to DEGs, which we refer to as DEG-associated peaks (DEGaPs), shared a similar 
genomic distribution as the peaks associated with all expressed genes (Fig S7); however, 
ATAC-seq peaks that mapped to either expressed genes or DEGs contained a higher 

proportion of intronic peaks and a lower proportion of distal intergenic peaks compared to all 
open chromatin peaks in the dataset. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2023. ; https://doi.org/10.1101/2023.01.10.523450doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.10.523450
http://creativecommons.org/licenses/by-nd/4.0/


Tissue specificity is not only limited to the training response itself. Within each ome, we 
identified a consistent pattern of tissue-specific enrichment of the analytes that exhibit a 
significant training response in a given tissue (Figure 2). In the case of both RNAseq and 
ATACseq data, DEGs and DARs in a given tissue were, on average, more highly expressed 
(Figure 2a,d) and more highly accessible (Figure 2b,e), respectively, at baseline in the tissue 
with the significant training response. Conversely, DMRs in a given tissue were more 
hypomethylated in the tissue with the significant training response (Figure 2c,f). While there is 

some overlap in significant training responses across tissues, the majority of training response 
analytes represent tissue-enriched analytes, even if they are not tissue-specific. 

Identification of distal correlated epigenetic regulation despite few DARs and DMRs 
mapping to adjacent DEGs 

We next sought out DAR-DEG associations by assessing the concordance between chromatin 
accessibility and gene expression changes. We assigned each DAR to the nearest gene, and 
determined the fraction of DARs that were annotated to DEGs. Applying a hypergeometric test, 
we found that BAT, SKM-GN, and liver showed a higher proportion of overlap between DARs 
and DEGs (Fig 3a). The substantial overlap between DARs and DEGs in BAT may be related to 
the EET-induced increase in immune cell populations (see Fig. 1e). SKM-GN and liver showed 
the highest count of DARs among all tissues (Fig. 1b). Despite hundreds of DARs in both kidney 
and lung, only a few of their nearest genes were DEGs (Fig 3a). Similarly, we investigated 

DMR-DEG associations by assigning each DMR to the nearest gene and determining the 
fraction that were annotated to DEGs. Only BAT and WAT-SC have significant overlaps 
between DMRs and DEGs (Fig 3b). BAT and WAT-SC are the two tissues with the largest 
number of DMRs in the dataset by a considerable margin. 

The binding of TFs to distal open chromatin regions can regulate gene transcription15,16. Given 
the modest proportion of DARs mapped to adjacent DEGs, we extended the search window and 
sought relationships outside the closest gene for a given DAR. With respect to the location of 
DARs relative to the TSS of the nearest DEG, in all tissues, the majority of nearest DAR-DEG 
pairs reflected a normal distribution with a median centered approximately 1 Mb away from the 
nearest DEG, and a substantial left tail representing closer pairs (Fig 3c). BAT, SKM-GN, and 
liver contributed most of the DARs adjacent to a DEG, confirming our earlier observations (Fig 
3a). A similar pattern is seen when measuring the distance between a DMR and the nearest 
DEG (Fig 3d) and the distance between a DMR and the nearest DAR (Fig 3e). BAT and WAT-

SC contain the majority of closest DMR-DEG pairs likely because of their greater DMR-DEG 
overlap (Fig 3b) and BAT contains the majority of closest DMR-DAR relationships. 

DARs that were adjacent to DEGs tended to be more highly correlated with gene expression 
changes (Fig 3f, Fig S8), a pattern predominantly seen in SKM-GN and liver. In contrast, the 
majority of DMRs adjacent to DEGs exhibit strong positive or negative correlations driven 
primarily by BAT and WAT-SC (Fig 3g, Fig S9). Interestingly, while instances of adjacent DMRs 
and DARs are more limited in this study, in tissues more populated by DAR-DMR pairs, positive 
correlation tended to occur when the DMR was upstream of the DAR, and correlation was 
decreased or negative when the DMR was downstream of the DAR (Fig 3h, Fig S10). 

DAR-DEG pairs are associated with distinct pathways in each tissue and MAZ and 
SMAD3 represent key regulatory TFs 

We focused on DARs and DEGs located within 500 kb from each other, and isolated those that 

were either positively or negatively correlated across time points and sexes (Pearson correlation 
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coefficient > 0.5 or <-0.5, respectively; Supplementary Table 1). Thus, the identified DAR-DEG 
pairs comprised DARs that mapped to nearby DEGs along with distal, within-500 kb DARs that 
correlated with DEGs. Pathway enrichment analysis among DAR-DEG pairs identified distinct 
patterns of enrichment for each tissue (Fig S11). In agreement with the training-associated 
increase in immune cell types inferred from cell type deconvolution analysis (see Fig. 1e), DAR-
DEG pairs in BAT showed enrichment for several immune pathways. Lung also showed 
considerable enrichment for immune-associated pathways, suggesting activating roles in 

antigen defense by exercise. By contrast, liver DAR-DEG pairs were primarily enriched for lipid 
biosynthesis and metabolic processes, while heart DAR-DEG pairs were enriched for muscle 
movement and filament sliding, and SKM-GN DAR-DEG pairs were enriched for myofiber 
synthesis and muscle contraction (Fig S11). These results suggested that the correlated 
epigenetic and transcriptional changes induced by training affected tissue-specific functions.  

To identify key regulators of the training response in each tissue, we analyzed TF motif 
enrichment at the DARs of DAR-DEG pairs. Notably, we identified MAZ and SMAD3 as 
regulatory TFs in specific tissues (Fig. 4a-c). In SKM-GN, an 8.6% enrichment for MAZ binding 
sites was found among DAR-DEG pairs vs. a 2.7% enrichment among active peaks in that 
tissue (p-value = 0.01912). In lung, there was a 26% enrichment for MAZ binding sites among 
DAR-DEG pairs vs. a 2.7% general enrichment (p-value = 1.168e-04). In SKM-GN and in the 
lung, MAZ motifs were predominantly found in DARs that were negatively correlated with 

differential gene expression (Fig 4a,b). MAZ can act both as a transcriptional activator and a 

repressor14,17. In SKM-GN, MAZ target genes included: Igf2 (Fig 4d), which plays pivotal roles in 

exercise response18,19, SKM growth, and differentiation20; Ppp1r15a, which is associated with 

innate immunity21; and Sall2 (Fig 4e), a TF typically associated with development and neuronal 

differentiation22. In the lung, MAZ targets included immune response genes such as Mpeg1, 
Oas2, Nfkb2 (Fig 4f), as well as stress response gene Hspb6.  

SMAD3 binding sites were enriched in the liver (Fig 4c), with a 22% enrichment among DAR-
DEG pairs vs. a 5.4% general enrichment (p-value = 1.255e-05), suggesting combinatorial 
transcriptional regulation. Paired DAR sets were positively correlated with Glul expression (Fig 
S12a,b), negatively correlated with Lpar3 (Fig S12c,d) expression, and negatively correlated 
with multiple members of the Serpina gene family (Fig 4c, S12e,f). Fkbp4 expression was also 
negatively correlated with a single SMAD3 motif-containing DAR (Fig 4g). The remaining 
SMAD3 targets Abhd2 (Fig S12g), Onecut1 (Fig S12h), Ccnd1 (Fig S12i), and Xbp1 (Fig S12j) 
shared a similar training response pattern with lower L2FC in male subjects than female 
subjects in most time points. Notably, SMAD3 has been identified as a major regulator of 

exercise response in human SKM23. Other potential transcriptional regulators along with target 
genes are illustrated in Fig. S12. 

Correlated DMR-DEG pairs enriched for key TFs in adipose and lung tissue 

We identified DMR-DEG pairs located within 500kb of each other and whose L2FC training 

responses were either positively or negatively correlated across time points and sexes ( > 0.5 or 
< -0.5) (Supplementary Table 2). The majority of DMR-DEG pairs were found in WAT-SC, 329 
of 393 in total, while 33 were found in lung, 13 in heart, 12 in SKM-GN, and 6 in liver. The heavy 
skew towards WAT-SC is accounted for by the increased numbers of both DEGs and DMRs 
found in the tissue. We identified 24 TFs whose motifs were significantly enriched among the 
DMRs in correlated neighboring DMR-DEG pairs in each tissue (Fig 4H). The majority of 
enriched TFs were found in WAT-SC, while 4 were found in lung, and LRF was the only TF 
enriched in SKM-GN. NF1-halfsite was the most significantly enriched TF in WAT-SC, with 
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motifs found in 27 DMRs correlated to 55 distinct DEGs (Fig S13a), including chr2-
375476_cluster1, whose training response is highly correlated (r > 0.75 or r < -0.75) for five 
genes, four negatively correlated: Rab25 (Fig S13b), Crabp2 (Fig S13c), Paqr6 (Fig S13d), 
Tmem79 (Fig S13e), and one positively correlated: Syt11 (Fig S13f). 

AP-2gamma is enriched in multiple tissues, with motifs found in 19 DMRs correlated to 51 
DEGs in WAT-SC (Fig S13g), and found in 5 DMRs correlated to 7 DEGs in lung (Fig S13h). 
B4galnt1 is a member of positively correlated target DMR-DEG pairs in both WAT-SC (Fig S13i) 

and lung (Fig S13j). Members of the Rho GTPase family are represented by target DMR-DEG 
pairs in both tissues as well, including Arhgap9 in lung (Fig S13k) and Arhgap9, Arhgef4, 
Arhgef25, and Arhgef2 in WAT-SC. The TMEM family is also represented in both tissues: 
Tmem176b in lung, and Tmem79 in WAT-SC. 

Characterization of TF expression responses to EET 

As putative transcriptional regulators were inferred from DAR-DEG and DMR-DEG correlations 
in a restricted number of tissues, we sought to independently characterize TF expression 
responses to EET per tissue over the 8-week training period. We measured the RNA levels of 
all TF-encoding genes and assessed their protein abundances and phosphorylation levels, 
based on mass spectrometry data from a subset of 6 tissues. Various subsets of TFs exhibited 
significant changes at the transcriptome (Fig 5a), proteome (Fig 5b), and phosphoproteome (Fig 
5c) levels in each tissue. BAT and WAT-SC had the largest and most significant changes in TF 

gene expression (Fig 5a), which included immune-related TF genes such as Irf8 and Pou2f2 
responding in both tissues and Irf1 and Spi1 specifically in BAT. Transcript levels of Egr1 
decreased significantly across multiple tissues including SKM-GN, heart, kidney, and lung. 
Fellow early response gene Fos also decreased across the same tissues, reaching significance 
in kidney. Myb expression was significantly altered in both HIPPOC, where transcript levels 
increased in response to training in both sexes, and kidney where transcript levels increased in 
females, but decreased in males.  

Similar to TF gene expression changes, TF protein level responses to EET were largely tissue-
specific (Fig 5b). WAT-SC and lung exhibited the most significant changes. Select TFs showed 
significant protein level changes in multiple tissues, including RORC which decreased in female 
subjects in both lung and kidney. PBX1 decreased in WAT-SC while PBX2 decreased in kidney, 
and ATF1 and ATF3 increased in male subject protein levels in WAT-SC and heart, 

respectively. NR4A1 (NUR77) and MEF2A levels decreased in SKM-GN at week 8 of training, 
while MEF2C levels increased at week 2 of training. 

 MEF2C showed significant protein phosphorylation changes in SKM-GN, lung, and WAT-SC 
(Fig 5c). Other MEF family members MEF2A and MEF2D also exhibited changes in 
phosphorylation in lung and SKM-GN, respectively. A number of TFs had multiple significant 
phosphosite changes in a single tissue, including two NF1 phosphosites in heart, two STAT3 
sites and two ATF2 sites in liver, two RFX5 and two MEF2C sites in lung, and two USF2 sites 
and four TRPS1 sites in WAT-SC. 

Now that we determined which TFs were found to have significant training responses at either a 
transcriptome, proteome or phosphoproteome level, we wanted to find which of their motifs 
were enriched among the promoter regions of DEGs, identifying potential training-induced 
regulatory relationships. We found a number of TFs whose motifs were enriched among DEGs 

(Fig 5d, Fig S14-S15), including eight statistically significant motif enrichments. The majority of 
significantly enriched TFs were found in SKM-GN: SF1, SIX1 (Fig 5e), SIX2 who exhibited a 
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significant training response at the transcriptome level, MEF2C with significant training 
responses at both the proteome and phosphoproteome levels (Fig 5f), and MEF2D with a 
significant training response at the proteome level. MEF2A had a significant training response at 
the phosphoproteome level in heart, while PU.1 had a significant training response at the 
transcriptome level in lung, and IRF:BATF had a significant training response at the proteome 
level in lung (Fig 5g). 

SIX1 DEG targets in SKM-GN exhibit a range of functions and training responses, including 

collagen gene Col3a1, and muscle contraction associated gene Lmod1, both of which 
decreased in response to training. Protein modification-associated genes Golga4 and Art1 
increased over training while ubiquitin gene Usp2 decreased. Malic enzyme Me3, which is 
involved in the oxidative decarboxylation of malate to pyruvate, is consistently higher expressed 
during training. MEF2C protein levels significantly increased at week 2 of training then returned 
to baseline, while phosphorylation increased significantly throughout the eight weeks of training. 
Among MEF2C target genes, clock gene Per1 demonstrated the highest increase in expression 
at the onset of training, while Sema6c, Ankh, Ptpn1, and Phkg1 exhibit decreased expression 

following training. Dystrophin (Dmd), a critical protein for muscle fiber integrity24, was the most 
negatively correlated with MEF2C protein level changes, but positively correlated with MEF2C 
phosphorylation changes. IRF:BATF targets in lung predominantly exhibited decreased 
expression following training, including tubulin gene Tuba1c, mitochondrial biogenesis-
associated gene Perm1 and actin cytoskeleton organizational gene Cfl1. We examine the DEG 

targets of other TFs with significant training responses in Supplemental Figures S16 and S17, 
including JUND, which is enriched for DEGs in SKM-GN, heart and WAT-SC, and NR4A1 
(NUR77) which significantly decreased in protein level in SKM-GN as did the majority of its DEG 
targets including heat shock protein Hspa1l and dual specificity phosphatase Dupd1. Altogether, 
these findings support the functional relevance of EET-regulated TFs.  

DARs vs. DMRs vs. DEGaPs show distinct TF motif enrichment patterns that differentially 
correlate with TF gene expression 

The lack of nearby DARs or DMRs for the majority of DEGs within each tissue (see Fig. 3a,b) 
led us to hypothesize that DARs, DMRs, and DEGaPs may mediate different paths of 
transcriptional regulation: i) DARs and DMRs coordinating a combination of direct and long-
range regulatory mechanisms, ii) a combination of statically open cis-regulatory elements 
(DEGaPs) and changes in TF behavior influencing differential gene expression. To address this, 

we analyzed TF binding site enrichment at either DARs, DMRs, or DEGaPs relative to all open 
chromatin peaks in each tissue (Fig. 6a,b,c; see Methods).  

Due to their very low number of DARs, WAT and HIPPOC were removed from the analysis (Fig. 
6a). Motif enrichment patterns varied greatly across the six remaining tissues, reflecting a high 
degree of tissue-specificity. Motifs for both FOX and KLF families of TFs were over-represented 
among SKM-GN DARs. KLFs are zinc-finger TFs that have been associated with myogenesis 

and muscle fusion via their recruitment to Muscle Creatine Kinase (MCK) promoters25. SIX2 and 
MEF2C motifs were enriched in heart, COUP-TFII in kidney, and SP2 in liver. HOXA10 and 
HOXD12 motifs were enriched in lung, while both IRF8 and IRF3 motifs were enriched in BAT. 
Tissue-specific patterns of motif enrichment were maintained when measuring the frequency of 
motif presence in DARs across tissues (Fig S18a). 

A similar pattern of tissue-specific motif enrichment was observed among DMRs for each tissue 
(Fig 6b), although with different TFs enriched among DMRs vs DARs. MYOG was the most 
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significantly enriched TF among DMRs in SKM-GN, along with two neuronal TFs NEUROD1, 
NEUROG2. Another nervous system-associated TF NKX2.2 was the most significantly enriched 
in heart. PRDM9 was the most enriched in HIPPOC, as was PAX5 in kidney, and multiple HOX 
TFs in liver including HOXA10 and HOXD12 which were enriched among DARs in lung. TF 
enrichment significance among DMRs overlapped more between lung, BAT and WAT-SC tissue 
with ELK4, ELK1, ETV1 and ETV4 all enriched across the three tissues. GLIS3 enrichment was 
isolated to WAT-SC. As with DARs, the frequency of motif presence in DMRs across tissues 

maintained tissue specificity and even more sharply distinguished lung, BAT and WAT-SC 
tissues (Fig S19a). 

Motif enrichment patterns among DEGaPs differed considerably from those in DARs and DMRs 
(Fig. 6c). Indeed, pairwise motif enrichment comparisons between DARs, DMRs, and DEGaPs 
per tissue were weakly correlated  (<0.39; Fig S21, Fig S22, Fig S23). Motif enrichment 
significance in DEGaPs was greater in lung, BAT, and WAT-SC, presumably due to their higher 
proportions of DEGs (see Fig. 1b). MEF2 TF motifs were enriched across lung, BAT, and WAT-
SC, as well as in SKM and heart, forming one cluster; on the other hand, ETS and ELF TF 
motifs were more exclusively enriched in lung, BAT, and WAT-SC and formed another cluster. 

MEF2 TFs are typically involved in muscle tissue regeneration26. ETS and ELF TFs are 

associated with the regulation of immunity27,28, suggesting that they may be related to the 
immune cell type composition changes occurring in adipose tissues. With respect to tissue-
specific enrichment, motifs of immediate early genes including JUN and FOS were enriched in 
HIPPOC (Fig S20a), HNF1 and ZIC families of TFs in kidney, and FOX and SOX TF families in 

liver. 

To establish correlations between the motifs enriched at either DARs, DMRs, or DEGaPs and 
the relative expression levels of the corresponding TFs, we examined TF gene expression 
patterns in control tissues (Fig S18b, Fig S19b, Fig S20b respectively) and L2FC in TF gene 
expression following EET (Fig S18c, Fig S19c, Fig S20c, respectively). We found a stronger 
correlation between motif enrichment and TF control gene expression levels among DEGaPs 
(Fig S20d-f) than among DARs (Fig S18d-f), and even found a negative correlation consistently 
among DMRs (Fig S19d-f). Conversely, there was no correlation between motif enrichment and 
L2FC in TF gene expression, be it among DARs (Fig. S18a,c), DMRs (Fig. S19a,c), or DEGaPs 
(Fig. S20a,c). These findings suggest that the influence of DEGaPs on DEG expression is more 
dependent upon the expression level of the associated TFs, whereas DARs and DMRs can 
influence DEGs directly, supporting the concept that DEGaPs vs. DARs and DMRs mediate 

distinct paths of transcriptional regulation. 

DARs, DMRs, and DEGaPs show cross-tissue motif enrichment conservation at specific 
genomic regions 

The different genomic distributions of DARs and DMRs (see Fig. 1h,j) also suggested that some 
regions may contribute more to the regulation of EET gene responses than others. Thus, 
following the mapping of tissue DARs, DMRs, and DEGaPs to various genomic regions (i.e. 
promoter, upstream, downstream, 3’UTR, 5’UTR, intron, exon, distal intergenic), we examined 
motif enrichment among each subcategory of DARs, DMRs, and DEGaPs. We found that 
tissues shared conserved patterns of TF motif enrichment at the DARs mapped to proximal 
promoter, downstream, and 3’UTR regions (Fig 6d). Proximal promoter DARs showed strong 
enrichment for SP and KLF TFs, MAZ and PITX1.  Downstream DARs were enriched for NPAS 
and BMAL1, two core circadian clock TFs, as well as NKX TFs. The NF1 subcluster also 

showed enrichment among 3’ UTR DARs, while THRB was most highly enriched among 3’ UTR 
DARs.  
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In contrast, TFs were most highly enriched among downstream DMRs versus other genomic 
regions (Fig 6e), including multiple KLF TFs, MYOG, MAZ and EGR1. ETV2 and ETS1 were 
enriched among proximal promoter DMRs, while BM2 and PIT1 were enriched among upstream 
DMRs. Another cluster of TFs were enriched among exon DMRs including c-MYC, HIF2A, and 
MYOD. TF enrichment among DEGaPs was most significant in intronic regions, one of the 
regions most populated with DEGaPs (Fig 6f). Notably, however, there was no enrichment 
among distal intergenic DEGaPs despite their large proportion of total DEGaPs. TFs enriched 

among intronic DEGaPs include SCL, SMAD3, THRB and ERRA. Significant enrichment was 
also found among exonic DEGaPs, highly correlated to intronic DEGaP enrichments. While also 
highly enriched among intronic DEGaPs, the most enriched TFs among promoter DEGaPs 
include MAZ and multiple KLF family members. Overall, genomic features appeared to be a 
driving force in clustering the enriched binding motifs among DEGaPs, DARs, and DMRs. 

Differential TF motif enrichment at DEGaPs of upregulated vs. downregulated DEGs  

A companion EET MoTrPAC manuscript (Nair et al. manuscript under review), found that the 
biological pathways that were over-represented among upregulated vs. downregulated DEGs in 
each tissue after 8 weeks of training were distinct, suggesting that different sets of TFs were 
involved in their regulation. We sought to predict the sets of TFs that may preferably bind to up-
regulated genes, and those that may bind to down-regulated genes. After identifying the 
DEGaPs related to up-regulated DEGs and those linked to downregulated DEGs in each tissue, 

we refined each DEGaP category into distal intergenic, intron, and promoter peak subsets (the 
most prevalent genomic features among peaks, as shown in Fig. 1g), and determined their 
respective patterns of TF motif enrichment. We then generated z scores for each TF enrichment 
across the peak sets, and applied hierarchical clustering to the TFs. We found that, in most 
tissues, clustering was mainly driven by differences in TF motif enrichment between the 
promoter peaks associated with up-regulated DEGs vs. those associated with down-regulated 
DEGs (Fig S24). Adipose tissues had the greatest motif enrichment overlap between promoter 
peaks associated with up-regulation and those associated with down-regulation. 

Restricting the TF motifs enriched within each subset of promoter peaks (i.e. promoter peaks 
associated with either up- or down-regulation) to those conserved across all four time points 
(Fig. S25), revealed some overlap in motif enrichment between the tissues (Fig. 7a,b). For 
instance, CLOCK, BHLHE41, and MYC (c-Myc) were among the TF motifs enriched across 

WAT-SC, heart, lung, SKM-GN, and kidney at the promoter peaks associated with upregulation; 
another set of TFs enriched primarily in heart and lung included ZFX and EBF2, while ATF2 was 
enriched in SKM-GN and kidney. Among the promoter peaks associated with downregulation, 
there was less consistent enrichment across tissues, however NKX2 was enriched across SKM-
GN, kidney, liver, and lung, and SOX9 was enriched among 6 of the 8 tissues. Twenty seven 
TFs were shared between the 50 TFs associated with upregulation (Fig. 7a) and the 39 
associated with downregulation (Fig. 7b), suggesting their involvement in both positive and 
negative regulation depending on the tissue. Heart, SKM-GN, and kidney shared the most 
enriched motifs associated with upregulation and lung, liver, and SKM-GN shared the most 
enriched motifs associated with downregulation (Fig 7c,d). Overall, while gene responses and 
TF responses were largely tissue-specific, tissues showed an overlap in the sets of TFs 
associated with either upregulated or downregulated DEGs, suggesting that specific patterns of 

EET-induced regulation could be conserved across tissues.  
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Identification of DEGs associated with EET-induced phenotypic changes 

Exercise elicits various phenotypic changes such as increased aerobic capacity (VO2max) and 
reduced body fat mass, all of which reflect physiological adaptations. As several parameters 
were clinically measured throughout the EET period, we sought to: i) assess possible 
correlations between phenotypic alterations and gene expression responses to training, ii) infer 
key transcriptional regulators based on their motif enrichment at the accessible promoters of 
DEGs that correlated with phenotypic changes. 

Parameters measured included weight, body fat mass, body lean mass, body water, lactate 

levels, and VO2 max (Fig. S26). Body weight and fat mass were significantly lower in 8-week 
trained rats than in controls (Fig S26a,b), with the greatest difference observed in males. VO2 
max significantly increased in both females and males in response to EET (Fig S26c). Body 
lean mass also increased in both sexes, though significance was only reached in females (Fig 
S26d). Lactate (Fig S26e) and body water (Fig S26f) showed no significant changes relative to 
control, though a significant decrease in lactate levels was observed between week 4 and week 
8 in males. Positively correlated parameters included VO2 max vs. body lean mass, and body 
weight and body fat mass (Fig 8a). 

In most tissues, DEGs formed 2 separate clusters based on their either positive or negative 
correlation with a measured parameter change (Fig S27). Correlation with body fat involved the 
highest proportion of DEGs in most tissues (Fig. 8b), except for BAT and HIPPOC.  

Connection of key TFs to phenotypic changes 

To identify key regulators of the DEGs that were associated with phenotypic changes, we 

analyzed motif enrichment at the corresponding promoter DEGaPs. In SKM-GN, the promoter 
DEGaPs of genes that were positively correlated with changes in VO2 max were significantly 
enriched for NR5A2 and ERRG motifs (Fig. 8c). The VO2 max-correlated DEG targets of those 
two TFs and of AP-2GAMMA and AP-2ALPHA, whose motif enrichment did not reach 
significance, showed considerable overlap (Fig 8d). The positive correlation between three of 
the DEGs targeted by either NR5A2, ERRG, or/and AP-2GAMMA (Me3, Rora, and Lgi3) and 
VO2 max change is depicted in Fig. 8e-g. 

In SKM-GN, we also found a positive correlation between DEGs and body weight changes, and 
identified the MyoD motif as significantly enriched at the corresponding promoter DEGaPs (Fig. 
8h). While an enrichment for the COUP-TFII and ERRA motifs was also detected, it did not 

reach significance (Fig 8h). The Chd7, Rnf13, and RGD1562029 DEGs showed concurrent 
enrichment for the MyoD, COUP-TFII, and ERRA motifs (Fig 8i). The positive correlation 
between Chd7 expression and body weight change is illustrated in Fig. 8j. 

As MAZ and SMAD3 have been identified as major regulators of the DARs-associated DEGs 
(DAR-DEG pairs; see Fig. 4), we asked whether those DEGs correlated with phenotypic 
changes. In SKM-GN, we found that MAZ targets Igf2 and Sall2 were positively and negatively 
correlated with body fat change, respectively (Fig. 8k,l); in lung, Oas2 and Nfkb2 were 
negatively and positively correlated with body fat change, respectively (Fig. 8m,n); in the liver, 
SMAD3-target Fkbp4 was also positively correlated with body fat change (Fig 8o). In each of 
those correlations, as well as in the positive correlation between Chd7 and body weight, we 
noted sex differences both in EET-dependent RNA levels and in phenotypic changes, as week 
8-trained males deviated more from controls than week 8-trained females (Fig. 8j-o). 
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In view of the characterization of TF expression responses to EET, we next evaluated 
correlations between TF expression changes, at either the RNA or protein level (see Fig. 5) and 
phenotypic changes. We observed the strongest correlations between TF RNAs and body fat 
changes (Fig S28a), with Pknox1 in SKM-GN being the most positively correlated, and Srebf1 in 
the kidney being the most negatively correlated. Srebf1 in the kidney was also the most 
positively correlated with body lean mass changes. Rora was the most positively correlated with 
VO2 max changes. Zeb1 and Zeb2 shared similar correlation patterns, namely a positive 

correlation with body fat in WAT-SC. Gata2 had diverging correlation patterns depending on the 
tissue: positively correlated with body weight and body fat in WAT-SC, and negatively correlated 
with both measures in the lung. Similar to the correlations with TF RNA level-changes, the 
strongest correlations at the protein level were with body fat changes. Remarkably, liver showed 
the highest frequency of strong correlations (Fig S28b). In WAT-SC, JUN was the most 
positively correlated with body fat, while TCFL2 and EHF were the most negatively correlated. 
ZEB1 and ZEB2 maintained their correlation structure seen at the RNA level, with ZEB2 being 
also positively correlated with body fat in the lung. IRF3 in SKM-GN was the most positively 
correlated TF with body lean changes and CLOCK in WAT-SC was negatively correlated with 
body fat. Connecting EET-modulated genes and proteins, and specifically TFs, with correlated 
phenotypic changes suggest potential mechanistic roles. In particular, MAZ and SMAD3 target 
gene correlation with body fat changes reinforces their functional role in the training response. 

Discussion 

Regular exercise has a variety of physiological benefits affecting many organ systems. The 
comprehensive study of rats allowed extending the understanding of the molecular mechanisms 
of EET to important tissues not feasible in human subjects. We integrated chromatin 
accessibility, DNA methylation, and transcriptomic data from 8 rat tissues to infer the TFs 
underlying EET responses in each tissue. We found multiple layers of regulation characterizing 
EET adaptation, including utilization of the innate tissue-specific and genomic region-specific TF 
machinery, changes in TF expression at transcriptome and proteome levels, post-translational 
phosphorylation of TF proteins, direct relationships between proximal promoter DARs and 

DMRs and their associated DEGs, interactions between more distant highly correlated DAR-
DEG and DMR-DEG pairs enriched for known TFs and specific training responses with distinct 
TF enrichment patterns, some conserved across tissues (Fig 9). We isolated MAZ and SMAD3 
as key regulatory TFs in SKM-GN, lung, and liver, found the down-regulation of immediate-early 
response genes over EET and enrichment of KLF and SP TF motifs among proximal promoter 
DEGaPs. We identified MEF2A, MEF2C and MEF2D TFs with significant changes in protein 
level or phosphorylation whose motifs were enriched in DEGs in SKM-GN and heart. We found 
that the DEGaPs of upregulated vs. downregulated DEGs show differential motif enrichment, 
which predominantly occurs at promoter regions. Finally, we identified TFs associated with EET-
induced phenotypic changes including VO2 max and body weight. 

In liver, the SMAD3 TF motif was the most enriched among correlated DAR-DEG pairs following 
EET. While SMAD3 was recently established as a key regulator of the acute exercise response 

in SKM23, it is also an intracellular mediator of the TGF-³ signaling pathway, which has been 
associated with hepatic stellate cell (HSC) activation and liver fibrosis29,30. SMAD3-target genes 
include collagens and fibrogenic markers such as smooth muscle actin and cadherin. In this 
work, SMAD3 motif-containing DARs anti-correlated with Serpina family gene responses. Low 
serum levels of Serpina4, also known as kallistatin, have been associated with liver diseases, 

including liver fibrosis31. SMAD3-target gene Lpar3 has been linked to liver regeneration 

following damage32 and Lpar family members were previously associated with liver fibrosis33. 
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RNA expression of Glul, another potential SMAD3-target gene, was reported to decrease in 

activated HSCs, which are responsible for extracellular matrix deposition in liver fibrosis34. We 
speculate that TGF-³/SMAD signaling, which regulates ECM production and cytoskeletal 
organization in HSCs, may be modulated by EET.  

In SKM-GN and lung, MAZ was the most enriched TF motif among correlated DAR-DEG pairs. 
Not previously linked to EET, MAZ can act both as a transcriptional activator and a 

repressor14,17. Multiple MAZ target genes found among the DAR-DEG pairs were associated 

with immune response: Ppp1r15a (Gadd34) is necessary for interferon production35; Igf2, which 

is primarily a growth hormone during development, is also involved in immune response36-38; 

Hspb6 acts as a mediator of platelet aggregation along with smooth muscle relaxation39; Mpeg1 

expresses a transmembrane protein in macrophages in an antimicrobial capacity40; Oas2 is a 

type I-interferon response gene41; mutations in Nfkb2 greatly damage the immune system42. 
Thus, MAZ could be involved in the inflammatory response occurring in SKM following 

exercise43.  

The motif of AP2-gamma, also known as TFAP2C, was enriched among correlated DMR-DEG 

pairs in WAT-SC and lung. The AP2-gamma motif was also significantly enriched among DEGs 
in SKM-GN that are correlated with a change in VO2max over EET. AP2-gamma’s primarily 

studied function is in early development morphogenesis44; however, it has also been shown to 

have an inflammatory role by activating Th17 and Th1 cells45. The NF1-halfsite motif was also 
enriched among correlated DMR-DEG pairs in WAT-SC. NF1 negatively regulates the 

RAS/MAPK pathway46, and mutations in the protein lead to neurofibromatosis type 1 which can 
have numerous negative effects including musculoskeletal defects and impaired exercise 

capabilities47. 

Several TFs that were downregulated by EET in SKM-GN either at the RNA level (Fos, Jun, 
Egr1, and Atf3) or at the protein level (NR4A1) represent immediate-early response genes 

(IEGs), which were previously reported to be induced by acute exercise48-51. Stress-inducible 
ATF3 was shown to reduce the RNA expression of inflammatory chemokines and cytokines in 
mouse SKM following acute exercise, and ATF3 knockout resulted in impairment of some of the 

molecular adaptations to exercise training48,52. In SKM, NR4A1 regulates genes associated with 

glucose uptake, glycogen synthesis, and promoting muscle growth53 as well as mediating 

inflammatory response54,55. As exercise represents a stressful stimulus, modulation of IEGs may 
help tissues like SKM-GN to recover their homeostasis and thus facilitate their adaptation to 
exercise training. The two gene targets of NR4A1 with the largest correlated decreases in EET-
response gene expression in our study were the heat shock protein Hspa1l, a critical element of 

the cellular stress response56, and Dupd1 (Dusp29), which has been linked to regulation of 

muscle cell differentiation, development, and atrophy57. 

We found that binding sites for circadian clock TFs were over-represented at the promoter 

DEGaPs of DEGs that were associated with VO2 max changes in SKM-GN. Notably, there were 

enriched motifs for the nuclear receptors NR5A2 and ERRG58 which bind to the core clock 

proteins CLOCK59 and BMAL160, respectively. Moreover, we found an over-representation of 
binding sites for circadian clock-related TFs at promoter and downstream DARs (NPAS and 
BMAL1 motif), and at the DEGaPs of upregulated DEGs (CLOCK motif) in multiple tissues, 
suggesting a cross-tissue, exercise training effect on circadian clock factors. It is noteworthy 
that the EET program in rats was conducted during an active, dark phase, thus excluding that 
the enrichment for circadian clock TF motifs would be related to exercise training in the inactive 
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phase. Recent studies revealed interactions between exercise and circadian rhythms. Some 
demonstrated that time of exercise can modify the transcriptional response to acute exercise, 
while others showed that exercise can modify the muscle clock phase and expand the circadian 

transcriptome in SKM61-66. 

Limitations of our study include the use of inbred rats, which eliminates effects of genetic 
diversity, and high variance in some tissues, thus reducing statistical power. However, 
differences in cell type composition within testing groups of same strain, same age, same sex 
rats suggest greater than initially anticipated interindividual variation and stronger applicability to 

the diversity expected in human responses to EET. Exercise effects on cell type composition 
could only be addressed computationally in assays of bulk tissue. Many integrated multiomic 
EET responses that we identified, such as muscle development in SKM-GN, innate immunity in 
lung, increased immune cell type proportions in adipose tissues, and metabolic processes in 
liver may contribute to known health effects of exercise. The goal of the MoTrPAC project is to 
provide the first systematic compendium of exercise effects. Follow-up studies of the multi-
organ roadmap of genomic regulatory responses that we have identified are warranted.   

Our multi-omic analysis across rat tissues allowed us to map the epigenomic changes to the 
transcriptional changes occurring during EET and infer TFs driving training responses. By 
providing a view of the complex interplay between chromatin structure modifications, DNA 
methylation, gene transcription, and TF abundance and activity throughout EET, this work 
provides a comprehensive survey of the multi-organ gene control mechanisms underlying the 

effects of regular exercise. This insight helps further the goal of maximizing the benefits of 
exercise in healthy individuals and developing targeted exercise therapies for patients with 
disease or disability. 

Methods 

Animal study design 

Animal care 

Male and female Fischer 344 (F344) inbred rats from the National Institute on Aging were 
transported to the University of Iowa a minimum of 4 weeks prior to starting exercise training. 
Rats were housed with the same sex, 2 per cage (146.4 square inches of floor space) in 
ventilated racks (Thoren Maxi-Miser IVC Caging System) on Tekland 7093 Shredded Aspen 
bedding and fed the Lab Diet 5L79 pelleted diet. 

Rats were acclimated to a reverse dark-light cycle with lights OFF at 9:00am and lights ON at 
9:00pm, with temperature controlled at 68-77°F and humidity of 25-55%. For these studies we 

will use Zeitgeber Time (ZT) to refer to time of day relative to the time of lights off/lights on with 
lights off at ZT12. All experimental interventions and husbandry were performed during the 
active, dark phase of the rats under red light. All animal procedures were approved by the 
Institutional Animal Care and Use Committee at the University of Iowa. 

Treadmill familiarization 

Prior to exercise training, rats were acclimated to treadmill exercise on a Panlab 5-lane rat 
treadmill (Harvard Instruments, Model LE8710RTS). Day 1-2 consisted of static treadmill 
exploration for 10 minutes. Days 3-5 consisted of running at 6m/min at 0° incline for 10 minutes, 
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speed was increased to 10m/min between Days 6-12. On Day 12, rat running behavior was 
scored for compliance with running at 12m/min for 5 minutes at a 10° incline. Based on running 
behavior, rats received a score from 1-4 with 4 being the highest score. Rats that were assigned 
a score of 1 were removed from the study. 25 male and 25 female compliant rats were 
randomized to a control or training group. 

Progressive exercise training protocol 

At 6-months of age, 1, 2, 4 or 8 weeks of exercise training began. Control rats were placed on a 

static treadmill for 15 min per day, 5 times per week. Exercise training consisted of a 
progressive training protocol 5 times per week at ZT13-20, to target 70% VO2max (see below). 
Week 1 sessions started at 13m/min for males and 16m/min for females at 5° for 20 minutes, 
with duration increased by one minute each day until reaching 50 min on day 31 of training. The 
treadmill grade was increased from 5° to 10° at the start of week 3. The treadmill speed 
increased at the start of week 2 (15m/min males, 18m/min females), 4 (18m/min males, 
21m/min females), 5 (20m/min males, 23m/min females), 6 (23m/min males, 26m/min 
females),  and 7 (25m/min males, 28m/min females) and was fixed for the final 10 days of 
training. Rats performing less than 4 days of training per week were removed from the study 
and euthanized as described below. 

Body composition measurements 

Body composition (lean tissue%, fat tissue% and body fluid) was measured for all rats 13 days 

prior to the start of training and 5 days prior to euthanasia in the 4 and 8-week training 
groups  using the minispec LF90II Body Composition Rat and Mice Analyzer (Bruker, 6.2 MHz 
Time Domain Nuclear Magnetic Resonance (TD-NMR) system). VO2max was determined prior 
to commencing training in all rats, and during the last week of training for rats in the 4- and 8-
week exercise groups, in a single-lane enclosed treadmill (Columbus Instruments Metabolic 
Modular Treadmill), with rats acclimated two days prior to testing. For testing, the rat was placed 
in the treadmill and testing began once oxygen consumption stabilized. The testing protocol 
consisted of a 15 min warm up at 9 m/min and 0° incline. The incline was increased to 10° and 

treadmill speed was increased by 1.8 m/min every 2 minutes67. During the test, electric shocks 
were used if the rat stopped running and sat on the shock area. Testing stopped when the rat 
sat on the shock area 3 consecutive times and did not respond to increased shock. Blood was 
then taken from the tail to measure lactate. VO2max was determined as a leveling off of oxygen 
uptake, despite increased workload, a respiratory exchange ratio above 1.05, and an 

unhaemolyzed blood lactate concentration ≥6 mM. 

Euthanasia and tissue collection 

On the day of euthanasia, food was removed at ZT11.5, 3 hours before tissue collections which 
took place between ZT14.5-17.5, a minimum of 48 hours post their last exercise bout. Rats 
were deeply anesthetized with approximately 1-2% isoflurane in oxygen, and gastrocnemius, 
white adipose, liver, lung, and heart were removed under anesthesia. Following removal of the 
heart, the rat was decapitated using a guillotine. The brain was removed from the skull and 
hippocampus dissected. The remaining tissues ( kidney, brown adipose, and hippocampus) 
were dissected post death. All tissues were cleaned of excess connective/fat tissue and 
immediately flash-frozen in liquid nitrogen, placed in cryovials and stored at -80°C. Rat tissues 
were archived and cyropulverized at the MoTrPAC Biospecimens Repository, until distributed to 

Chemical Analysis Sites for respective assays5. 
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Data production and quantification 

ATAC-seq data generation 

Nuclei from 30 mg white adipose, 15 mg brown adipose, and 10 mg of other tissue samples 
were extracted using the Omni-ATAC protocol with modifications65. The white adipose, brown 
adipose, and hippocampus tissues were processed using no-douncing nuclei extraction. 
Cryopulverized tissue powder was incubated in the homogenization buffer for 10 min at 4°C, 
tubes inverted every 2-3 minutes. Other tissue powder was incubated in the homogenization 
buffer for 5 minutes on ice and dounced 10 times using pestle A and 20 times with pestle B. 
Nuclei were stained with DAPI and counted using an automated cell counter. 50,000 nuclei (or 
max. 500 µl nuclei) were added to 1 ml ATAC-RSB buffer and spun at 1000 g for 10 minutes, 
and the supernatant was removed. 

The nuclei pellet was resuspended in 50 µl of transposition mixture and incubated at 37°C for 
30 minutes with 1000 rpm shaking. The transposed DNA was purified using Qiagen MinElute 
Purification kits (Qiagen # 28006), and amplified using NEBnext High-Fidelity 2x PCR Master 

Mix (NEB, M0541L) and custom indexed primers68. 1.8x SPRIselect beads were used to clean 
the PCR reaction and remove primer dimers. The ATAC-seq libraries were sequenced on a 
NovaSeq 6000 using 2x50bp with 35 million pairs of reads per sample. 

ATAC-seq data processing and normalization 

Reads were demultiplexed with bcl2fastq2 (v2.20.0) and processed with the ENCODE ATAC-

seq pipeline (v1.7.0) (https://github.com/ENCODE-DCC/atac-seq-pipeline)69. Samples from the 
same sex and training group were analyzed as biological replicates. Reads were aligned to 

genome rn6.0.9670 with Bowtie 2 (v2.3.4.3)71. Duplicate and mitochondrial chromosome mapped 

reads were removed. Peaks were called using MACS2 (v2.2.4)72, both from reads from each 
sample and pooled reads from all biological replicates. Pooled peaks were compared with the 

peaks called for each replicate individually using irreproducible discovery rate73 and thresholded 
to generate an optimal set of peaks. Optimal peaks from all workflows were concatenated, 

trimmed to 200 base pairs around the summit, sorted and merged with bedtools (v2.29.0)74 to 
generate a master peak list. This peak list was intersected with the filtered alignments from each 
sample using bedtools coverage to generate a peak by sample matrix of raw counts. Peaks 

from non-autosomal chromosomes were removed. Peaks that did not have at least 10 read 
counts in four samples in a tissue were removed. Filtered raw counts were then quantile-

normalized with limma-voom75. This version of the normalized data was used for downstream 
analyses.  

ATAC-seq peak assignment to genomic features 

Accessible regions identified using ATAC-seq were assigned to one of the nine terms of 
genomic features using Ensembl Rn6 GTF (gene annotation file) and function annotatePeak of 

package ChIPseeker76 (v1.8.6). 

Nine genomic features are defined as:  

Promoter (<=1 kb) (proximal promoter): within +/- 1 kb from the transcription start site (TSS);  

Promoter (1-2 kb): +/- 1 to 2 kb from the TSS;  
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Upstream (<5kb) 2-5 kb upstream from the TSS;  

Downstream (< 5 kb): within 5kb downstream of the transcription end site (TES);  

5' UTR (5’ untranslated region); Exon; Intron; 3' UTR (3’ untranslated region);  

Distal Intergenic: regions > 5kb downstream of TES or > 5kb upstream from next TSS; 

Overlaps Gene: overlaps with gene annotation, but not in any terms above. 

All ATAC-seq identified accessible regions were assigned to the closest genomic feature of a 
genome. Differentially expressed gene associated peaks (DEGaPs) are defined as all 

accessible regions assigned to the differentially expressed gene.  

DNA methylation data generation 

Rat tissues were disrupted in GenFind v2 lysis buffer (Beckman Coulter, Indianapolis, IN) with a 
tissue ruptor (Omni International, Kennesaw, GA). Genomic DNA was extracted in a BiomekFx 
automation workstation (Beckman Coulter, Chaska, MN). DNA sample quantification was done 
by Qubit assay (dsDNA HR assay, Thermo Fisher Scientific) and quality was determined by 
Nanodrop A260/280 and A260/230 ratios. Reduced representation bisulfite sequencing 
(RRBS)77 libraries were generated with the Ovation® RRBS Methyl-Seq kit from Tecan 
Genomics (Baldwin Park, CA). Quantity of the libraries was determined by Qubit High Sensitivity 
assays (Thermo Fisher Scientific) and quality evaluation was done by Bioanalyzer High 
Sensitivity DNA Chip (Agilent Technologies, Santa Clara, CA). Libraries were sequenced on a 
NovaSeq 6000 platform (Illumina, San Diego, CA) using paired-end 100 base-pair run 

configuration. 

RRBS data processing and normalization 

bcl2fastq (version 2.20) was used to demultiplex reads with options --use-bases-mask 
Y*,I8Y*,I*,Y* --mask-short-adapter-reads 0 --minimum-trimmed-read-length 0 (Illumina, San 
Diego, CA). FastQC (v0.11.8) was used to calculate pre-alignment QC metrics78 and reads were 
indexed and aligned to the Ensembl Rattus norvegicus (rn6) genome using Bismark (v0.20.0)79. 
Bowtie 2 (v2.3.4.3) was used to quantify the percent of reads that mapped to globin, rRNA and 
phix sequence contaminants and spike-ins71. Chromosome mapping percentages were 
calculated with SAMtools (v1.3.1)80 and NuGEN’s <nodup.py= script quantified PCR duplicates. 

CpG sites were selected for downstream analysis if they exhibited methylation coverage >= 10 
in all samples. Individual CpG sites were divided into 500 base-pair windows and clustered with 
the Markov clustering algorithm R package MCL81. Quantile normalization of sites/clusters was 

conducted separately on each tissue using R package preprocessCore82. 

RNA-seq data generation 

Rat tissue powders were further disrupted using Agencourt RNAdvance tissue lysis buffer 
(Beckman Coulter, Brea, CA) with a tissue ruptor (Omni International, Kennesaw, GA, # 19-
040E). The total RNA was quantified using NanoDrop (ThermoFisher Scientific, # ND-ONE-W) 
and Qubit assay (ThermoFisher Scientific). Total RNA quality was determined by either 
Bioanalyzer or Fragment Analyzer analysis. 
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500 ng total RNA was used for library generation. Universal Plus mRNA-Seq kit from 
NuGEN/Tecan (# 9133) was used to select polyadenylated RNA. The generated sequencing 
libraries contain dual barcodes (i7 and i5) and UMIs (unique molecular identifiers) to accurately 
quantify the transcript levels. The RNA-seq libraries were sequenced on a NovaSeq 6000 using 
2x100 bp with 35 million pairs of reads per sample. 

RNA-seq data processing and normalization 

Reads were demultiplexed with bcl2fastq2 (v2.20.0). Adapters were trimmed with cutadapt 

(v1.18). STAR (v2.7.0d) was used to index and align reads to genome rn6.0.96 and gene 

annotations70. Bowtie 2 (v2.3.4.3) was used to index and align reads to globin, rRNA, and phix 
sequences in order to quantify the percent of reads that mapped to these contaminants and 

spike-ins71. UMIs were used to accurately quantify PCR duplicates with NuGEN’s <nudup.py= 
script (https://github.com/tecangenomics/nudup). QC metrics from every stage of the 

quantification pipeline were compiled, in part with multiQC (v1.6)83. Lowly expressed genes 
(having 0.5 or fewer counts per million in all but one sample) were removed and normalization 
was performed separately in each tissue. These filtered raw counts were used as input for 

differential analysis with DESeq284. To generate normalized sample-level data, filtered gene 
counts were TMM-normalized using edgeR::calcNormFactors, followed by conversion to log 

counts per million with edgeR::cpm85. The same normalization technique was used on the 8 
week control samples of each tissue for cross-tissue comparisons. 

Proteomics data generation 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was conducted on six tissues: 
heart and liver at the Broad Institute and skeletal muscle, kidney, lung, and white adipose at 
Pacific Northwest National Laboratory (PNNL). Sample processing followed a modified version 

of a previous protocol86. Peptides were labeled using tandem mass tag (TMT)87 and samples 
were grouped into sex- and training time point-based TMT11 multiplexes. Multiplex samples 

were fractionated by high pH reversed phase separation. Heart and liver samples underwent 
online separation with a nanoflow Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher 
Scientific), and then analyzed with a Q-Exactive Plus mass spectrometer (Thermo Fisher 
Scientific). The remaining tissues’ samples underwent online separation with a nanoAcquity M-
Class UHPLC system (Waters), and analyzed with a Q Exactive HF mass spectrometer 
(Thermo Fisher Scientific).  

Phosphoproteomics data generation 

Phosphopeptide enrichment was performed through immobilized metal affinity chromatography 
(IMAC)5. Phosphopeptides were eluted off IMAC beads in 3x70 µl agarose bead elution buffer, 
desalted with C18 stage tips, eluted with 50% ACN, and then lyophilized. Samples were 
reconstituted in 3% ACN / 0.1% FA for LC-MS/MS analysis. Heart and liver samples were 
separated by a nanoflow Proxeon EASY-nLC 1200 UHPLC system (Thermo Fisher Scientific) 

and analyzed with a Q-Exactive HFX mass spectrometer (Thermo Fisher Scientific). SKM-GN, 
WAT-SC, kidney and lung samples were separated by a Dionex Ultimate 3000 UHPLC direct-
inject system (Thermo Fisher Scientific) then analyzed with a Q-Exactive HFX mass 
spectrometer. 
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Proteomics and phosphoproteomics data processing and normalization 

For heart and liver, raw MS/MS data samples were processed by a Spectrum Mill (v.7.09.215) 
(Agilent Technologies). For the remaining tissues, sample processing was implemented by an 

in-house cloud-based proteomics pipeline executed in the Google Cloud Platform5. In all 
tissues, MS2 spectra were processed and searched against the rat RefSeq protein database 
(downloaded November 2018). Log2 TMT ratios to the common reference were used as 
quantitative values for all proteins and phosphosites. Principal component analysis and median 
protein abundance across samples were used to find sample outliers. Proteomics features that 

were not fully quantified in at least two plexes within a tissue and non-rat contaminants were 
removed. Median-centering and mean absolute deviation scaling of Log2 TMT ratios were done 
for sample normalization. Plex batch effects were removed using limma::removeBatchEffect 
function in R (v 3.48.0). Phosphoproteome data was not normalized to the total proteome due to 
the lack of complete overlap of phosphosites and total proteome features (80.5% - 89.7%). 

Statistical analysis  

Differential analysis 

Differential analyses were performed in each tissue of each ome. Males and females in one 
dataset were analyzed separately. Limma with empirical Bayes variance shrinkage was used for 

ATAC-seq, proteomics, and phosphoproteomics data88; the edgeR pipeline for methylation 

analysis was used for RRBS data89; DESeq2 was used for RNA-Seq78. For all proteomics and 
ATAC-seq data, the input for differential analysis was normalized as described above. For RNA-
Seq, the input was filtered raw counts, in accordance with the DESeq2 workflow. 

To select analytes that changed over the training time course, we performed F-tests (limma, 
edgeR::glmQLFTest) or likelihood ratio tests (DESeq2::nbinomLRT, lrtest) to compare a full 
model with ome-specific technical covariates and training group as a factor variable (i.e. 
sedentary control, 1 week, 2 weeks, 4 weeks, 8 weeks) against a reduced model with only 
technical covariates. For each analyte, male- and female-specific p-values were combined using 

Fisher’s sum of logs meta-analysis to provide a single p-value, referred to as the training p-
value. To account for false discovery rate across all statistical tests, the training p-values were 
adjusted across all datasets within each ome using Independent Hypothesis Weighting (IHW) 

with tissue as a covariate90. Training-differential features were selected at 10% IHW FDR.  

We used the contrasts of each training time point versus the sex-matched sedentary controls to 

calculate time- and sex-specific effect sizes, their variance, and their p-values (e.g., using linear 
F-tests), referred to as the timewise summary statistics. Specifically, for limma models we used 
limma::contrasts.fit and limma::eBayes, for DESeq2 models we used DESeq2::DESeq, for 
edgeR models we used edgeR::glmQLFTest. Covariates were selected from assay-specific 
technical metrics that explained variance in the data and were not correlated with exercise 
training: RNA integrity number (RIN), median 5’-3’ bias, percent of reads mapping to globin, and 
percent of PCR duplicates as quantified with Unique Molecular Identifiers (UMIs) for RNA-Seq; 
fraction of reads in peaks and library preparation batch for ATAC-seq.  

Identification of transcription factor motifs using HOMER 

Transcription factor motif enrichment analysis was performed on sets of DARs and DEGaPs for 

each tissue. DARs for motif enrichment analysis were selected for each tissue by satisfying an 
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adjusted p-value threshold of 0.1. Similarly, DEGaPs for each tissue were selected by isolating 
the DEGs that satisfied an adjusted p-value threshold of 0.1, and selecting peaks annotated to 
the DEGs that contained a median normalized accessibility of -1. For genomic feature-specific 
analysis, DEGaPs were divided based upon their gene region annotation. The analysis was 

carried out by findMotifsGenome.pl (HOMER v4.11.1)91. It was performed on the ±50 bp 
flanking regions of the peak summits. The search lengths of the motifs were 8, 10, and 12 bp. 
We applied the -find flag to generate a list of all known rat motifs contained within the ±50 bp 
flanking regions of the summits for each peak in the ATACseq dataset, using the same settings 

as above. 

DAR genomic feature TF motif enrichment analysis 

Applying the output from HOMER, the top ten significantly enriched TF motifs among DARs and 

DEGaPs in each tissue were selected for further downstream analysis and cross-tissue 
comparisons. TFs were removed from further analysis if their gene was not expressed in the 
tissue in which their motifs were enriched. TF motif enrichments for differentially accessible 
regions (DARs) divided into gene features were calculated using the Fisher test. The test 
compared the ratio of DARs containing the motif for a specific TF/non-DARs containing this 
motif in one genomic feature, and the ratio of DARs containing this motif / non-DARs containing 
this motif in other genomic features. p values were adjusted and FDR cutoff = 0.1 to select 
significant motifs in specific genomic features. 

Correlations between DARs and DEGs 

We selected DARs whose centers were within 500kb of a DEG TSS in each tissue. We then 

calculated the Pearson correlation of the L2FC of the DAR and the DEG for each sex at each 
week. We considered a DAR-DEG pair for further analysis if their training response Pearson 
correlation was greater than 0.5 or less than -0.5 and the DAR contained a known motif for a TF 
expressed within the tissue. 

Cell-type deconvolution 

Cell type deconvolution was conducted by the R package CellCODE92 using the getallSPVs 

function. Marker sets were generated using the IRIS (Immune Response In Silico93 and DMAP 

(Differentiation Map) reference datasets94. The Kruskal-wallis test was implemented with the R 
function kruskal.test to determine if the variability in cell type proportion across samples in a 
given tissue would suggest a significant training response or sex difference. 

Pathway enrichment 

Pathway enrichment analysis of up-regulated DEGs at each time point was performed using the 

R package gprofiler2:gost95 against Gene Ontology Biological Process, Reactome, 
WikiPathways and KEGG databases. Top 10 pathway enrichments for each tissue are 
displayed as bubble plots with sizes indicating the number of significant genes enriched in 

different pathways relative to the pathway size (number of genes in that pathway) and colors 
indicating the significance (BH-corrected p-value). At least 10 genes were required to be 
enriched in a pathway with a maximum of 200 genes. 
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Correlations between Phenotypic Measures and DEGs 

Phenotypic measures were calculated at weeks 4 and 8 of EET and in week 8 controls. 
Measures were presented as changes between time point and original baseline measurements 
in each rat. For each phenotypic measure and DEG combination, we calculated the Pearson 
correlation between the change in phenotypic measure between baseline and a given time 
point, and the gene expression of the DEG at the time point for each animal subject. We 
isolated the DEGs that exhibited > 0.5 or < -0.5 correlations with each phenotypic measure in 

each tissue and selected the DEGaPs annotated to the promoter region of the DEGs. TF motif 
enrichment significance among a set of positively or negatively correlated DEG’s promoter 
DEGaPs in a tissue were determined by an exact binomial test comparing the frequency of 
enrichment among phenotype-correlated DEGs versus general enrichment among the promoter 
DEGaPs in the tissue. 

Data Availability 

MoTrPAC data will be publicly available at time of publication via motrpac-data.org/data-access. 

Data access inquiries should be sent to motrpac-helpdesk@lists.stanford.edu. Additional 

resources can be found at motrpac.org and motrpac-data.org. 

Code Availability 

MoTrPAC data processing pipelines for RNA-Seq, ATAC-seq, RRBS, and proteomics will be 
made public at the time of publication: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline, 
https://github.com/MoTrPAC/motrpac-atac-seq-pipeline, 
https://github.com/MoTrPAC/motrpacrrbs-pipeline, https://github.com/MoTrPAC/motrpac-
proteomics-pipeline. Normalization and QC scripts will be available at 
https://github.com/MoTrPAC/motrpac-bic-norm-qc. Code for the underlying differential analysis 
for the manuscript will be provided in the MotrpacRatTraining6mo R package 
(motrpac.github.io/MotrpacRatTraining6mo). Code for conducting the analysis and generating 
the figures contained within this paper will be available at 
https://github.com/gsmith990306/MoTrPAC_PASS1B_Transcription_Factor_Paper. 
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Figure 1: Epigenetic and transcriptional responses to training programs. (a) 6-month old rats of 
both sexes underwent training programs. Tissues were collected and subjected to multiomics 
profiling, including ATAC-seq, RNA-seq, proteomics. (b) Higher number and percentage of 
differentially expressed genes (DEGs) were identified than differentially accessible regions 
(DARs) and differentially methylated regions (DMRs) after training in most tissues (F test 
FDR<0.1). (c) Many accessible regions, methylation sites, and genes were identified in all 
tissues and training-induced features were highly tissue-specific.(d) Distribution of L2FC 
positive/negative consistency in RNAseq, ATACseq and RRBS differential analytes across 
tissues. The sum of the sign(L2FC) at each time point in males and females for each analyte is 
calculated with values ranging from -8 (negative L2FC at all time points and sexes) to 0 (half 
positive and half negative L2FC) to 8 (positive L2FC at all time points and sexes). Heart and 
SKM-GN RNAseq DEGs are more consistently up or down-regulated while WAT-SC RNAseq 
DEGs are less consistent, for example. (e,f) Cell type deconvolution analysis-generated -log10 
p-values of Kruskal-Wallis test measuring significant predicted changes in tissue cell type 
composition based on training (e) or sex (f). Brown adipose exhibited increased proportions of 
immune cell types after training. White adipose exhibited sex-specific changes in proportions of 
immune cell types and pericytes. (g-j) Distribution of genomic locations of all accessible regions 
(g), DARs (h), all methylation sites (i) and DMRs (j). (k) DARs enriched for the proximal 
promoter compared to all accessible regions. (l) DMRs are enriched for the downstream region 
compared to all methylation sites. 
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Figure 2:  In general, genes are more highly expressed, chromatin peaks are more highly 
accessible and methylation sites are more hypomethylated in the tissues in which they exhibit a 
differential training response. (a-c) heatmaps of all differential analytes across eight tissues in 
RNAseq (a), ATACseq (b), and RRBS (c). Columns reflect z scores of baseline expression (a), 
accessibility (b), or methylation (c), across the eight tissues. Rows are annotated by the tissues 
in which each analyte exhibits a differential training response. (d-f) Mean z-score of control gene 
expression (d), chromatin peak accessibility (e), and site methylation (f), for the differential 
training response analytes for each tissue. 
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Figure 3:  Responses in chromatin accessibility and DNA methylation may not directly link with 
the expression of the closest genes. (a) Count of DARs annotated to a DEG or a non-DEG. The 
closest gene to most DARs is not a DEG. * reflects p < 0.05 for hypergeometric test measuring 
the significance of the DAR-DEG overlap. (b) Count of DMRs annotated to a DEG or a non-
DEG. Similar to DARs, the closest gene to most DMRs is not a DEG. * reflects p < 0.05 for 
hypergeometric test measuring the significance of the DMR-DEG overlap (c-e) Distributions of 
distance between DARs and nearest DEG TSS (c), DMRs and nearest DEG TSS (d), and 
DMRs and nearest DAR (e). DARs (c) and DMRs (d,e) are colored by tissue. (f-h) Density 
scatter plots of DAR-DEG training response correlation vs. distance (f), DMR-DEG training 
response correlation vs distance (g), and DMR-DAR training response correlation vs distance 
(h). DARs with high positive correlation to gene expression enriched for TSS-proximal regions in 
most tissues while DMRs with high positive and negative correlation to gene expression 
enriched for TSS-proximal regions. DAR-DMR correlations tended more positive when DMRs 
were upstream of DARs, and tended more negative when DMRs were downstream of DARs. 
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Figure 4: Responsive transcription factors in correlated DAR-DEG pairs. (a-c) Correlation 
heatmaps of correlated DAR-DEG pairs with binding sites for enriched TFs Maz in SKM-GN (a), 
and lung (b), and Smad3 in liver (c). (d-g) Training response L2FC scatter plots of correlated 
DAR-DEG Maz and Smad3 targets. Maz-target DARs in SKM-GN correlated with Igf2 (d), and 
Sall2 (e), and in lung correlated with Nfkb2 (f). SMAD3-target DAR in liver correlated with Fkbp4 
(g). 
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Figure 5: TFs showed significant EET responses at multiple omic levels. (a-c) Significant TF 
training responses at the transcriptomic (a), proteomic (b) and phosphoproteomic (c) levels. All 
TFs satisfy p-value < 0.1 in the specified ome and L2FC values are displayed at each time point 
and sex. Tissue of significance is color-annotated on the left side of each row. (d) TFs with 
significant changes at the transcriptomic, proteomic and phosphoproteomic levels and whose 
proximal promoter motif targets are enriched for DEGs are shown. Significant enrichments (p < 
0.05) are represented with a *. Solid lines reflect the frequency of TF proximal promoter motif 
targets to be DEGs while the dashed lines show the frequency of DEGs among expressed 
genes in each tissue. Lines are colored by the tissue of TF training response and target DEG 
enrichment and TFs are individually colored by the source of their TF training response (RNA, 
Protein, Protein and Phosphoprotein, and Phosphoprotein). (e-g) Examples of TFs with 
significant enrichments for DEGs among proximal promoter motif targets. Heatmaps display the 
targets for the TFs Six1 in SKM-GN (e), MEF2C in SKM-GN (f), and IRF:BATF in Lung (g). For 
each target, the L2FC across time points and sexes is displayed as well as the L2FC for the TF 
itself. 
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Figure 6: TF motif enrichment at the tissue level and at the genomic feature level in each tissue. 
(a-c) -log10 p-value of TF motif enrichment in tissue DARs (a), DMRs (b),  and DEGaPs (c). Top 
enriched TFs were selected for each tissue in (a-c). (d-f) -log10 p-value of TF motif enrichment 
among sets of DARs (d), DMRs (e), and DEGaPs (f) split by genomic feature. Distinct sets of TF 
motifs are significantly enriched in proximal promoter regions (<=1kb from TSS) and 
downstream regions, shared by multiple tissues for DARs and DMRs, while TFs are most 
heavily enriched among intronic DEGaPs in most tissues. 
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Figure 7: Tissues shared sets of TFs enriched in the promoter regions of genes that were up- or 
down-regulated after 8 weeks of training. (a-b) Heatmaps of relative enrichment of TFs among 
the promoter peaks of up- (a) or down-regulated genes (b) across tissues. (c-d) Number of 
enriched TFs shared between pairs of tissues in the promoter peaks of up- (c) or down-
regulated genes (d). 
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Figure 8: TF enrichment among phenotype-correlated DEGs. (a) Heatmap of Pearson 
correlation between phenotypic measures. Strong relationships between body lean and VO2 
max and body fat and weight gain. (b) Frequency of tissue DEGs positively (> 0.5) or negatively 
(< -0.5) correlated with each phenotypic measure. (c) Comparison of TF enrichment among the 
active promoter peaks of VO2 max positively correlated DEGs vs TF enrichment among the 
total active promoter peak set in SKM-GN. * represents binomial test significance (p < 0.05) for 
difference in phenotype correlated DEG frequency and general frequency. (d) Overlap of target 
DEGs for most enriched TFs among VO2 max positively correlated DEG promoter peaks. (e-g) 
Scatter plots of gene expressed vs correlated phenotypic measure. In SKM-GN, VO2-max 
change is positively correlated with Me3 (e), Rora (f), and Lgi3 (g). (h) Comparison of TF 
enrichment among the active promoter peaks of body weight positively correlated DEGs vs TF 
enrichment among the total active promoter peak set in SKM-GN. * represents binomial test 
significance (p < 0.05) for difference in phenotype correlated DEG frequency and general 
frequency. (i) Overlap of target DEGs for most enriched TFs among body weight positively 
correlated DEG promoter peaks. (j-o) Scatter plots of gene expression vs correlated phenotypic 
measure. In SKM-GN, weight gain is positively correlated with Chd7 (j), and body fat change is 
positively correlated with Igf2 (k), and negatively correlated with Sall2 (l). In lung, body fat 
change is negatively correlated with Oas2 (m), and positively correlated with Nfkb2 (n), and in 
liver, body fat change is positively correlated with Fkbp4 (o). 
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Figure 9: Transcription factors regulate exercise training-induced gene expression via multiple 
methods. Following eight weeks of endurance training, multiomic analysis across eight tissues 
have noted gene regulation through direct proximal promoter DAR to DEG relationships, DAR to 
distant correlated DEG relationships, tissue-specific or gene-region-specific TF machinery, and 
through changes in TF expression within a specific tissue. Enriched TF gene targets are 
associated with metabolism, muscle regeneration, immune responses and circadian rhythm 
pathways. 
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