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Abstract

Single-cell proteomics by mass spectrometry (MS) is emerging as a powerful and unbiased
method for the characterization of biological heterogeneity. So far, it has been limited to
cultured cells, whereas an expansion of the method to complex tissues would greatly
enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP),
a technology that integrates high-content imaging, laser microdissection and multiplexed
MS. scDVP resolves the context-dependent, spatial proteome of murine hepatocytes at a
current depth of 1,700 proteins from a slice of a cell. Half of the proteome was differentially
regulated in a spatial manner, with protein levels changing dramatically in proximity to the
central vein. We applied machine learning to proteome classes and images, which
subsequently inferred the spatial proteome from imaging data alone. scDVP is applicable
to healthy and diseased tissues and complements other spatial proteomics or spatial

omics technologies.
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INTRODUCTION

Mass spectrometry (MS)-based single-cell proteomics (scProteomics) has made tremendous
progress within just a few years and can now quantify more than 1000 proteins in cultured cells
=3 While this trajectory is promising, proteome depth, throughput and lack of spatial context limits
biological use. We have recently introduced Deep Visual Proteomics (DVP), a spatial technology
that combines imaging, cell segmentation, laser microdissection and MS into a single workflow to
investigate complex tissues with various cell types and metabolic niches *. DVP overcomes depth
and throughput limitations with pooling the required number of cells with similar morphological
features and staining patterns to identify statistically and analytically robust cellular phenotypes
(“biological fractionation”). By its nature, it depends on prior knowledge of adequate markers of
the cells of interest that resolve their heterogeneity. These markers might not be available for all
subtypes of cells or those tissues that have rapidly changing proteome types such as
heterogenous tumors. To address this, we here developed single-cell Deep Visual Proteomics
(scDVP), a complementary technology that extends true scProteomics into the tissue context.
We use scDVP to explore spatial characteristics of hepatocyte subsets in mammalian liver - a
highly organized and functionally repetitive tissue, in which the proteome of hepatocytes is
determined by paracrine signaling, as well as oxygen and nutrient gradients °. These metabolic
gradients require distinct functional cell states along the portal to central vein axis. This
phenomenon of liver zonation has been described by single-cell RNA sequencing for hepatocytes
(scRNAseq) ®’, FACS and MS-based proteomics &, and multiplexed imaging °. Despite this long
and varied background, it still remains an open question how and to what degree hepatocyte

proteomes differ spatially.

RESULTS

Robust isolation and characterization of hepatocyte shapes in situ

To map the proteome of mouse hepatocytes at single-cell resolution, we established a modular
and automated workflow aimed at lossless sample preparation of the initial input cell for injection
into the mass spectrometer (Fig. 1a). Mice livers were embedded and immediately frozen after
cardiac arrest. We fixed 10 um sections and stained them with a one-step protocol marking portal
and central veins, the sinusoidal architecture, nuclei and cell membranes (Fig. 1b, see Methods).
Individual cells were segmented by deep learning as before #, and the resulting masks transferred
to a laser microdissection microscope that automatically excised and collected individual shapes
in 384-well plates. Given hepatocyte sizes of 20-30 um, one shape cut from a 10 ym section
corresponds to a third or half of a hepatocyte. We automated protein extraction and digestion by
reagent addition into the same plate, omitting extra transfer steps, followed by peptide separation
on the Evosep system and injection into a trapped ion mobility Time of Flight (timsTOF) SCP

mass spectrometer '° (Fig. 1a).
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Fig. 1: Isolation and characterization of individual hepatocyte shapes in situ. a, The scDVP workflow comprised
embedding of fresh mouse liver tissue, staining and high-content microscopy, Al-guided hepatocyte segmentation,
cutting and sorting of cells on a laser microdissection microscope, peptide preparation with or without dimethyl labeling.
The AO channel contains the reference proteome and A4 and A8 two individual samples, which are all analyzed by
ultra-high sensitivity LC-MS. Created with BioRender.com. b, Liver painting with four stains. Left: E-cadherin marks
portal vein regions, glutamate-ammonia ligase (Glul) surrounds the central vein, the cell segmentation marker

Phalloidin, and the sinusoidal and nuclear counterstain wheat-germ agglutinin (WGA). Right: False color overlay of all

channels. Scale bars 100 um.

To establish an efficient workflow, we applied our established scProteomics protocol ? and titrated
the number of cells required to obtain a robust signal (Supplementary Fig. S1a). We performed
initial experiments on five adjacent shapes per well (corresponding to about two complete
hepatocyte cell masses), cut from randomly chosen locations. With these five shapes, we reached
a median depth of 1,235 proteins across 230 samples (Supplementary Fig. S1b). Results
confirmed expected liver biology, for instance by differential expression of the portal vein marker
argininosuccinate lyase (Asl) and central Cyp2e1 (Supplementary Fig. S1c). Using zonation
anchor proteins to arrange all samples in pseudo-space (Supplementary Fig. S1d), we
characterized spatially enriched gene sets along the =zonation axis. While oxidative

phosphorylation and amino acid metabolism were among processes upregulated in proximity to
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the portal vein, drug metabolism and steroid hormone biosynthesis were increased proximal to
the central vein, providing positive controls for low input proteomics (Supplementary Fig. S2a and
S2b).

Multiplex-DIA (mDIA) drastically increases proteome depth in single shapes

Encouraged by these spatial results, we next asked if single shapes alone could produce deep
and interpretable proteomic results. To improve sensitivity further we adopted and optimized
elements of our scProteomics workflow ''. These include addition of the surfactant n-Dodecyl-B-
D-maltoside (DDM) to maximize peptide recovery '?, lowering the chromatographic flow rate to
100 nL/min for increased ionization efficiency ? (‘Whisper gradients’ on the Evosep system) and
achieving higher chromatographic resolution with zero dead volume columns (lonOpticks) 3. Most
importantly, we added a labeled reference channel for multiplexed data-independent acquisition
(DIA) that decouples identification and quantification ' (Fig. 1a).

For scDVP, we constructed a dimethyl-labeled bulk liver reference. Our robotic sample
preparation setup achieved greater than 99% labeling efficiency in all three channels
(Supplementary Fig. S3a). We co-injected 10ng of the reference proteome together with the
labeled proteomes of two single shapes. This resulted in a doubling of identified proteins with a
median number of 1,726 proteins across three biological replicates and 455 single shapes, at
twice the previous throughput (Fig. 2a). A maximum of more than 2,769 proteins were identified
in one shape, and 3,738 unique proteins were found across all samples (Supplementary Fig. S3b,
S3c). Four histone components ranked in the top 10 but we also found many transcription factors.
The number of detected proteins correlated logarithmically with the microdissected area
(Supplementary Fig. S3d), indicating that scDVP requires the highest possible MS sensitivity.

Data completeness across all samples increased with median intensity per protein and
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Fig. 2: Depth of single shape proteomes and estimation of the nuclear compartment. a, Number of proteins
quantified in the original workflow (single shape, 44 min Evosep gradient, 15 cm column at 500 nL/min, dia-PASEF 4
without optimized windows, library-dependent search in DIA-NN '%; numbers identical to Supplementary Fig. S1A),
versus our new mDIA (two single shapes and reference proteome, 31 min Evosep gradient, 15 cm column at 100
nL/min, dia-PASEF with optimized window design, library-dependent search in DIA-NN). b, Left: Intensity of the top
four histone proteins across all samples, including hepatocytes and quality control arteriole structures. Right: WGA-

stain of cells corresponding to marked data points in the scatterplot. Scale bar: 10um.
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coefficients of variation (CVs) were about 0.6 indicative of biological heterogeneity in the data
(Supplementary Fig. S3e, S3f). We hypothesized that the nuclear proportion in the cell slice would
correlate with the intensity of these histones. Indeed, shapes with lowest histone intensities did
not have any evident nuclear signal, while top intensities were in shapes with large or two nuclei.
In addition to this, the intensity of the top four abundant histone proteins was highest in arterioles
that we cut as technical control structures that are composed of more than one cell and nucleus
(Fig. 2b).

Single shape proteomes accurately reflect hepatocyte zonation

To test the biological validity of our proteomics data, we first reduced dimensionality in a principal
component analysis (PCA) which revealed that PC1 represented the measured distance of a
hepatocyte to portal and central vein (Fig. 3a and 3b). Overlays of known liver zonation markers
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Fig. 3, Single shape proteomes are accurate descriptors of zonated hepatocytes. a, Principal component analysis
(PCA) of all hepatocytes. The color overlay corresponds to the ratio of measured distance portal vein over central vein

in the microscopy image. b, Measured distance ratio versus Eigenvalues of PC 1. Relative distance of 0 is at the portal

Legend continued on next page
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vein, of 1 is at the central vein. Black: Smoothing curve. ¢, Heatmap of protein expression as z-score per protein across
all samples. Proteins are ordered according to ANOVA fold change across eight PC1-guided bins; samples are ranked
according to their PC1 Eigenvalue. The five top and bottom proteins are given as well as five ribosomal subunits within
the 10 middle ranks. Only proteins that were detected in 90% of all samples are included. d, Protein expression as in
c of selected marker proteins. e, Expression of the top 10 significant proteins in eight measured distance bins, relative
to total expression from portal to central. Zonation peak at PV: positive ANOVA fold change (n = 6), and vice versa (n
= 4). Error bars represent standard deviation. f, Selected gene sets in individual PC1-guided bins versus all others bins,
depicting normalized enrichment score after gene set enrichment analysis. Dot size: significance. PPAR: Peroxisome
proliferator-activated receptor; OXPHOS: Oxidative phosphorylation; NAFLD: Non-alcoholic fatty liver disease. g,
Levels of urea cycle and connected enzymes from portal (left) to central (right) PC1-guided bins. Portal box: active in
portal regions. Central box: active in central region. h, Levels of peroxisomal enzymes related to very-long chain fatty

acid degradation, spatially resolved as in g.

including Cyp2e1 and Asl showed opposite visual enrichment along PC1 (Supplementary Figs.
S4a and S4b). In contrast, PC2 Eigenvalues did not correlate with measured distance or
hepatocyte zonation markers but rather with cytoskeletal components (Supplementary Figs. S4c
and S4d). PC2 was also the dimension in which portal arterioles, which we excised as technical
controls, separated from hepatocytes (Supplementary Fig. S4e). Based on PC1 Eigenvalues we
grouped the data into eight bins, which was a good compromise between meaningful separation
and a sufficient number of samples per group. ANOVA testing revealed that 53% of all proteins
detected in at least half of the samples were significantly different between zones (FDR < 0.05,
Supplementary Fig. S5a). Zonation was also apparent after PC1 Eigenvalue sorting at the total
proteome level (Fig. 3c) and for known hepatocyte zonation markers (Fig. 3d). Only 5.8% of these
proteins were expressed equally in all zones (multiple testing adjusted Shapiro-Wilk test, p >
0.05), including Electron Transfer Flavoprotein  (Etfb), the electron acceptor in mitochondrial
fatty acid p-oxidation (Supplementary Fig. S5b).

The correlation of zonal proteomes indicated that portal and periportal regions were more similar
to one another than central and pericentral zones (Fig. 3b, Supplementary Fig. S5c). Indeed, the
spatial expression of the top-10 significant zonation markers followed a hockey-stick curve from
portal to central (Fig.3e), similar to Wnt-controlled transcripts in a scRNAseq dataset © and in line
with a central vein origin of Wnt signaling '°. In contrast, this pattern was absent for the hits with
the highest p values (least zonated hits, Supplementary Fig. S5d).

® confirmed the directionality of the most

A cross-omics comparison with scRNAseq data
prominent zonation markers (Pearson’s R 0.85, Supplementary Fig. S6a and S6b). However, the
relative expression differences from portal to central vein were less extreme in our proteomics
dataset compared to scRNAseq. Notably, a number of proteins were regulated only in the RNA
or protein dimension, or even inversely correlated (Supplementary Fig. S6¢c and S6d), such as
Epoxide Hydrolase 2 in the peroxisomal fatty acid degradation pathway. Members of glutathione

metabolism had similar spatial distribution in both datasets (Supplementary Fig. S6e).
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Enrichment of functional protein sets across PC1-guided bins confirmed that arginine
biosynthesis and oxidative phosphorylation were highly enriched towards the portal vein (Fig. 3f).
In line with this, all proteins participating in ammonia fixation of the urea cycle were portally
expressed, while ammonia-capture on glutamate were strongly central (Fig. 3g). To our surprise,
several other disease and signaling related pathways were also zonated including those involved
in Non-Alcoholic Fatty Liver Disease (NAFLD) and Peroxisome proliferator-activated receptor
(PPAR) signaling (Fig. 3f). This was corroborated by prominent central expression of enzymes
required for peroxisomal degradation of very-long-chain fatty acids, and w-oxidation of
dicarboxylic C12 fatty acids such as coconut oil (Fig. 3h). We conclude that the spatial proteome

data from single hepatocyte shapes is biologically accurate and informative.

Proteomes of single hepatocytes are regulated by spatial context

Combining the single shape proteomes with their inherent spatial information and staining
intensities, scDVP revealed clear dependence of fluorescent intensities with the eight proteome
classes established above (Fig. 4a and 4b). We compared proteomes, in which cells were direct

neighbors (n = 26) to pairs of not neighboring cells that were assigned to the same proteomic bin.
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Fig. 4, Combining imaging and proteome data for a machine-learned model. a, Fluorescence intensities of
Alexa568 (portal vein marker E-cadherin) and Alexa647 (central vein marker Glul), with percentages in indicated bins.
b, Intensities of the spatial markers as in (a) across eight PC1-guided proteome bins. ¢, Confusion matrix of a machine-
learned model with five classes, informed by microscopy and proteomics data. d, Predicted classes of segmented
hepatocytes. Hue is maximum class probability. e, Density plot of predicted versus measured intensities of a section
excluded from machine learning (R = 0.78). f, Spatial depiction of data in (e) with microscopy ground truth on top right,

and three predictions. CV: Central vein; PV: Portal vein; *sectioning artifact. Scale bar 50 pm.
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Neighbors had significantly more similar intensity profiles, yet only for portal but not central
markers (Supplementary Fig. S7a). Interestingly, periportal cells that were assigned to the same
proteome class were typically multiples of 350 pum apart within one biological replicate
(Supplementary Fig. S7b, S7c), which corresponds to the expected vein-to-vein distance in
mouse liver tissue. This also held true for cells of the intermediate and central zones, although
less prominent.

Encouraged by the evident complementarity between extensive proteomics and spatial data, we
reasoned that the microscopic image could contain sufficient information to predict the proteome.
To this end, we trained a machine learning model on 17 features to predict the proteome classes
from imaging data. We grouped the training set into five proteome classes by k-means clustering
(Supplementary Fig. S8a), and used the information in all imaging channels as predictors
(Supplementary Fig. S8b). This model reached an average precision of 0.94 (Supplementary Fig.
S8c and S8d), correctly assigning the proteome class of almost all cells. Errors occurred
exclusively between spatially neighboring classes (Fig. 4c).

We tested model performance on a new section (not used in training) from which we measured
60 single-shape proteomes. Visual inspection indicated that the predicted classes were correctly
located in proximity to central or portal vein, even in the presence of cutting artifacts (Fig. 4d). We
used the class probabilities as weights to predict the spatial proteome, which accurately
approximated overall protein intensities (R = 0.78 between prediction and measurement, Fig. 4e).
When predicting the proteome of a larger section for all quantified proteins the ML model correctly
assigned the spatial directionality of zonation markers, as well as their expected extension into
the intermediate zone (Fig. 4f). Thus, the model confirms the accuracy of measured single shape

proteomes, and is furthermore a potent predictor of spatial proteomes across any imaged areas.

DISCUSSION

Here we present a single-cell, spatial map of the murine liver acquired by MS-based proteomics.
Our approach successfully combined microscopic imaging data with ultra-high sensitivity
proteomics, building on four major technological advances: (1) Al-assisted segmentation and
laser microdissection, (2) multiplex-DIA, (3) low-flow gradients, and (4) the ultra-high sensitivity
of a timsTOF SCP mass spectrometer.

To date MS-based single-cell proteomics has been exclusively reported for cell suspensions.
State-of-the-art workflows currently reach a proteomic depth of up to 2,000 proteins in cultured
cells, with about 250 pg of cellular protein mass. This is similar to the protein material in our sliced
hepatocytes taking the section thickness of 10 um and hepatocyte size of 20-30 um into account.
With our scDVP workflow, we achieved more than 1,700 proteins per single shape (and up to
2,700) despite working from sections that were fixed, stained, imaged and laser dissected. The

size of our shapes correlated strongly with the number of identified proteins, suggesting that
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scDVP is currently limited by MS sensitivity and will thus profit from continuous technical
developments.

Our proteomics data from single shapes correctly and accurately recapitulates liver physiology by
direction, extent and spatial organization of zonation. More than half of quantified proteins were
significantly different between portal and central zone, in line with scRNAseq data ®'". The fact
that we detected all of the previously used markers of liver zonation &, suggests that our proteomic
depth is sufficient to integrate into other omics datasets. This became further apparent on the
level of functional pathways, including signaling and disease pathways. Interestingly, peroxisomal
degradation of very-long-chain fatty acids, as well as dicarboxylic C12 fatty acids such as coconut
oil, was enriched in proximity to the central vein. Biochemical evidence by radiolabeling
experiments support the notion that non-mitochondrial fatty acid oxidation localizes to pericentral
regions '®. A rhythmic expression pattern has been previously shown for a large number of liver
transcripts and proteins "', While we have not covered the temporal aspect here, the scDVP
approach could contribute to such studies by adding a spatial dimension.

In the previously described DVP workflow we used pools of cells combined on the basis of
common features, such as the expression intensity of already known markers, or morphology *.
This approach allows a deep, rapid and robust proteome characterization that accurately
represents the underlying biology. By analyzing single cellular shapes without prior assumptions,
scDVP now removes the dependency on established markers or features. This makes it a
promising approach in heterogeneous tissues with partially or not defined subtypes of cells, such
as in many tumor tissues. Moreover, scDVP can be a method of choice to map proteomic
disturbances along gradients of, for instance, signaling factors, nutrients or gases, and in
physiological settings that may create impediments for other omics methods, for instance in
extracellular fibrotic scars.

We have shown that single-cell data can be used to train an accurate machine learning model
that predicts the proteome class from visual information only. Evidence suggests that
morphological features such as nuclear vacuolation and texture associate with zonation, and can
even serve as a progression and stratification marker of non-alcoholic fatty liver disease %°.
Combining such easily available features and extensive proteomic sampling can clearly lead to
higher precision of the predictive models. Transfer learning might then extend the approach to
many new areas, as already shown for single-cell transcriptomics data ?'. The modular nature of
scDVP makes it compatible with other spatial omics technologies such as spatial transcriptomics,
epigenomics # or multiplexed imaging. In conclusion, ScDVP is a powerful tool for basic discovery

science, working in concert with DVP and other omics methods to enrich spatial workflows.
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METHODS

Mouse experiments and organ harvesting

Pathogen-free male and female 10-week-old C57BL/6J-rj mice were purchased from Janvier
(France) and maintained at the appropriate biosafety level under constant temperature and
humidity conditions with a 12 h light cycle. Animals were allowed food and water ad libitum. All
experiments were performed on 12- or 13-week-old wild-type mice. These were sacrificed by
cervical dislocation, and the liver was rapidly excised through a ventral opening of the peritoneum.
The organ was rinsed in cold PBS, and the left lateral lobe was divided into three pieces. For this
study, the distal-caudal quarter was embedded in Optimal Cutting Temperature (O.C.T.) medium
(Sakura Finetek, Japan) in 15 mm disposable cryomolds (Sakura Finetek, Japan) and frozen in
isopentane that was prior cooled to dew point in liquid nitrogen. Fully solidified blocks were
transferred to dry ice, and then to a -80 °C freezer until further processing. Animal handling and
organ withdrawal were performed in accordance with the governmental and international animal
welfare guidelines and ethical oversight by the local government for the administrative region of
Upper Bavaria (Germany), registered under ROB-55.2-2532.Vet_02-16-208.

Immunofluorescence staining

Two-micrometer polyethylene naphthalate (PEN) membrane slides were pre-treated by UV
ionization for one hour at 254 nm. Without delay, slides were consecutively washed for five
minutes each in 350 mL acetone, 7 mL VECTABOND reagent to 350 mL with acetone, and then
washed in ddH20 for 30 seconds before drying in a gentle nitrogen air flow. For sectioning, tissue
blocks were transferred to a cryostat (Leica CM3050) at -18 °C chamber and -15 °C object
temperature, and left to equilibrate for 30 minutes. Blocks were then trimmed, and final sections
were cut at 10 ym thickness with a disposable high-profile blade (Leica 818). Frozen sections
were transferred to pre-treated, cold PEN-membrane slides, and melted for less than 5 seconds
on a room temperature surface. The sections were then fixed in pre-warmed 4% PFA in PBS at
37 °C, then in 95% ethanol at room temperature, and finally again in 4% PFA in PBS at 37 °C.
Slides were rinsed in PBS and left in 5% BSA-PBS blocking solution for one hour until staining.
Sections were stained for one hour at 37 °C in a humid and dark chamber with 200 pL of a one-
step liver painting in 1% BSA: 1:300 phalloidin coupled to Atto-425 (Sigma 66939), 1:200 wheat-
germ agglutinin (WGA) coupled to Alexa Fluor 488 (Invitrogen W11261), 1:100 anti-e cadherin
coupled to Alexa Fluor 555 (BD 560064), anti-glutamine synthase (Abcam ab176562), and 1:500
anti-rabbit nanobody coupled to Alexa Fluor 647 (Chromotek srbAF647-1-100). Slides were
washed three times for two minutes in PBS in the dark, and mounted with 21 pL ProLong Diamond
mounting medium (Invitrogen, P36961) and a 22 x 22 mm #1.5 coverslip. Slides were stored until

imaging in 50 mL tubes with desiccating material at 4 °C.
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High-content imaging

Sections were imaged on an OperaPhenix high-content microscope, controlled with Harmony
v4.9 software, at 40X magnification, binning of two and a per tile overlap of 10%. At an excitation
wavelength of 425 nm, 555 nm and 647 nm, 80% laser intensity were used at an illumination time
of 100 ms, while 20% and 20 ms were used in the 488 nm channel. E-cadherin and glutamine

synthetase were imaged simultaneously, while phalloidin and WGA were imaged consecutively.

Image post-processing

Acquired images were flat-field corrected using the Harmony software. Stitching of image tiles
was performed using the ashlar python API % with a max shift value of 30. Stitched images were
exported as tif files and imported into the Biological Image Analysis Software (BIAS) * with the
packaged import tool. In BIAS, large tif images were first retiled to 1024 x 1024 px at an overlap
of 5%. Hepatocytes were identified with a deep neural network for histological cytoplasm
segmentation on the basis of CFP staining at 1.2 input spatial scaling, 40% detection confidence
and 30% contour confidence. Only contours between 30 pm? and 300 um? were taken into
consideration. After removal of duplicates and false identifications by supervised machine
learning, contours were exported together with three calibration points that were chosen at
characteristic tissue positions. Contour outlines were simplified by removing 99% of data points.
For five-shape proteomes, directly adjacent shapes forming a pentagon-like structure were
manually picked. Single shapes were randomly picked and every 15" to 25" shape was assigned
to adjacent wells in a 384-well plate. Arterioles were manually assigned based on WGA signal,

ellipticity, and proximity to the E-cadherin positive portal vein.

Laser microdissection

Contour outlines were imported after reference point alignment, and shapes were cut by laser
microdissection with the LMD7 (Leica) in a semi-automated manner at the following settings:
power 59, aperture 1, speed 60, middle pulse count 1, final pulse -1, head current 48 - 52%, pulse
frequency 3282, offset 100. For the five-shape experiment, the microscope was controlled with
LMD v8.2, with which five directly adjacent shapes were sorted into a low-binding 384-well plate
(Eppendorf 0030129547) with one empty well between samples. Single shapes were cut and
sorted with the software LMD beta 10 after calibration of the gravitational stage shift into 384-well
plates into all wells, leaving the outermost rows and columns empty. Plates were sealed,

centrifuged at 1,000xg for 5 minutes and then frozen at -20 °C until further processing.

Reference peptide preparation for five-shape and single-shape proteomes
The proximal part of two biologically independent lobes of the same mice as in the scDVP
experiments was used to construct a library. The tissue embedded in O.C.T. was removed from

-80 °C and directly disintegrated in a plastic bag with a rubber hammer. Pieces of approximately
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1mm?® were transferred into a low-binding 96-well plate with magnets (BeatBox Tissue Kit,
Preomics, Germany), covered with 50 uL of 60 mM triethylammonium bicarbonate buffer with
10% acetonitrile (ACN; lysis buffer), and lysed in a BeatBox (Preomics, Germany) at standard
settings for 10 minutes. Samples were then boiled at 96 °C for 20 minutes, transferred to 1.5 mL
low-binding tubes, filled up to 500 uL with lysis buffer and sonicated for 5 times 30 seconds on/off
cycles. After centrifugation at 2,000xg for 1 minute, the protein concentration in the supernatant
was estimated on a Nanodrop, and LysC and trypsin were added at a protein-to-enzyme ratio of
1:100. After digest for 20 hours, samples were acidified to 1% TFA, centrifuged at 3,000xg for 10
minutes at room temperature, and dried in a SpeedVac for 30 minutes. Digest was filled to 1mL
with buffer A (0.1% formic acid [FA]), and desalted on C-18 columns (Waters WAT036820). They
were activated and equilibrated with 2mL of methanol, 2 mL of buffer B (100% ACN, 0.1% FA)
and 2mL of buffer A, before sample loading. Peptides were washed with buffer A two times, eluted
in 80% ACN with 0.2% FA, and dried down.

Library fractionation for five-shape proteomes

Peptides were reconstituted in 18uL buffer A* (0.1% FA, 2% ACN) fractionated on a 30 cm long
1.9 ym ReproSil C18 column (PepSep) using a 100min high-pH gradient. The concentration of
Buffer B was increased from 3% to 30% in 45 min, to 40% in 12 min, to 60% in 5 min, to 95% in
10 min, kept constant for 10 min, reduced to 5% in 10 min and kept constant for 8 min. The eluted
peptides were automatically collected into 48 fractions with a concatenation time of 90 seconds
per fraction. The fractions were dried in a SpeedVac, reconstituted in 0.1% FA and directly loaded

onto Evotips.

Labelling of single-shape reference proteome

Peptides were reconstituted to 0.125 pg/uL in 60 mM triethylammonium bicarbonate buffer with
10% CAN, pH 8.5. The peptides were then dimethyl-labeled with 0.15% light formaldehyde
(CH20) and 0.023 M sodium cyanoborohydrate (NaBH3CN) for 1 hour at room temperature,
quenched with 0.13% ammonia and acidified to 1% TFA. After drying in a SpeedVac, pellets were
re-constituted in 100 pL buffer A, and desalted via 5 ug C18 columns on an AssayMap (Agilent)
following the standard protocol. The resulting reference peptides were dried, and reconstituted to
1 ng/pL in buffer A.

Peptide preparation of single shapes and dimethyl labeling for multiplexing

Peptides were prepared semi-automated on a Bravo pipetting robot (Agilent), similar as previously
described ''. For this, plates were removed from the freezer and centrifuged. The wells were then
washed on the robot with 28 pL of 100% acetonitrile and dried in a SpeedVac (Eppendorf) at 45
°C for 20 minutes. Shapes were then re-suspended in 6 pL of 80 mM triethylammonium
bicarbonate buffer (pH 8.5, Sigma) with 0.013% dodecyl-B-D-maltoside (DDM, Sigma), and
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cooked for 30 minutes at 95 °C in a PCR cycler at a lid temperature of 110 °C. After addition of 1
WL of 80% acetonitrile (final concentration 10%), samples were incubated for another 30 minutes
at 75 °C, cooled briefly, and 1 yL with 4 ng LysC and 6 ng trypsin was added. We digested the
samples for 18 hours, and added 1 pL of either intermediate (CD20) or heavy formaldehyde
(**CD-0) to a final concentration of 0.15%. Without delay, either light (NaBH;CN) or heavy
(NaBD3CN) sodium cyanoborohydrate were added to 0.023 M to retrieve A4 and A8 dimethyl
labeled single-shape samples. The sealed plate was then incubated at room temperature for 1

hour, and the reaction was quenched to 0.13% ammonia, and acidified to 1% TFA.

Peptide loading onto C-18 tips

C-18 tips (Evotip Pure, EvoSep, Denmark) were activated for 5 minutes in 1-propoanl, washed
twice with 50 pL of buffer B (99.9% ACN, 0.1% FA), activated for 5 minutes in 1-propanol, and
washed twice with 50 uL buffer A (0.1% formic acid). Single-shape samples were then loaded
automatically with the Agilent Bravo robot into 30 pL buffer in the tip that was spun through the
C-18 disk for a few seconds only. For loading, 10 pL of 1 ng/ pL reference peptides (AQ) were
pipetted first, followed by A4, and A8 samples with the same tip. Wells were rinsed with 15 L
buffer A that were also loaded onto the tip. After peptide binding, the disk was further washed
once with 50 uL buffer A, and then overlayed with 150 uL buffer A. All centrifugation steps were
performed at 700xg for 1 minute, expect sample loading for 2 minutes.

For five shape proteomes, plates were treated as above, with the exception of lysis in 4.5 uL 60
mM triethylammonium bicarbonate buffer, pH 8.5 without DDM, and consecutive addition of 1 yL
Lys-C and 1.5 pL trypsin to achieve the same digestion volume as above. Five-shape samples
were not dimethyl labeled and multiplexed, but acidified directly after digest, and loaded manually

onto Evotips following the protocol described above.

LC-MS/MS analysis of five-shapes

Samples were measured with the Evosep One LC system (EvoSep) coupled to a timsTOF SCP
mass spectrometer (Bruker Daltonics, US). The 30SPD (samples per day) method was used with
the Evosep Performance column 15 cm, 150 um ID (EV1137 EvoSep, Denmark) at 40°C inside
a nanoelectrospray ion source (Bruker Daltonics, US) with a 10 ym emitter (ZDV Sprayer 10,
Bruker Daltonics, US). The mobile phases were 0.1% FA in LC-MS-grade water (buffer A) and
99.9% ACN/0.1% FA (buffer B). We used a dia-PASEF method with 16 dia-PASEF scans
separated into 4 ion mobility windows per scan covering an m/z range from 400 to 1200 by 25 Th

* ). The mass

windows and an ion mobility range from 0.6 to 1.6 Vs cm? (‘standard scheme
spectrometer was operated in high sensitivity mode, with an accumulation and ramp time at 100
ms, capillary voltage set to 1750V and the collision energy as a linear ramp from 20 eV at 1/Ko =
0.6 Vs cm?to 59 eV at 1/Ko = 1.6 Vs cm™.
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LC-MS/MS analysis of single shapes

Samples were measured with the Evosep One LC system (EvoSep) coupled to a timsTOF SCP
mass spectrometer (Bruker Daltonics, US). The Whisper40 SPD (samples per day) method was
used with the Aurora Elite CSI third generation 15 cm and 75 ym ID (AUR3-15075C18-CS
lonOpticks, Australia) at 50 °C inside a nanoelectrospray ion source (Bruker Daltonics, US). The
mobile phases were 0.1% formic acid in LC—MS-grade water (buffer A) and 99.9% ACN/0.1% FA
(buffer B). The timsTOF SCP was operated with an optimal dia-PASEF method generated with
our Python tool py_diAID 2. The method contained 8 dia-PASEF scans with variable width and 2
ion mobility windows per dia-PASEF scan, covering an m/z from 300 to 1200 and an ion mobility
range from 0.7 to 1.3 Vs cm™, as previously used on the same gradient and similar input material
amount "'. The mass spectrometer was operated in high sensitivity mode, with an accumulation
and ramp time at 100 ms, capillary voltage set to 1400 V and the collision energy as a linear ramp
from 20 eV at 1/Ko = 0.6 Vs cm? to 59 eV at 1/Ko = 1.6 Vs cm™.

The labeling efficiency was accessed on the same LC-MS/MS in dda-PASEF mode with ten
PASEF scans per topN acquisition cycle. Singly charged precursors were excluded by their
position in the m/z-ion mobility plane using a polygon shape, and precursor signals over an
intensity threshold of 1,000 arbitrary units were picked for fragmentation. Precursors were isolated
with a 2 Th window below m/z 700 and 3 Th above, as well as actively excluded for 0.4 minutes
when reaching a target intensity of 20,000 arbitrary units. All spectra were acquired within a m/z

range of 100 to 1700. All other settings were kept as described before.

Spectral library generation

The spectral library was generated on five dda-PASEF single shots from 50 ng mouse reference
peptide, using the same chromatography method as above. Spectra were search with FragPipe
v18.0 % using MSFragger v3.5, Philosopher v4.4.0, and EasyPQP v0.1.32 against a mouse
FASTA reference file with 55319 entries used throughout this study, excluding 50% decoys.
Standard settings of the DIA_SpecLib_Quant workflow were used with the following exceptions:
N-terminal and lysine mass shift of 28.0313 Da were set as fixed modifications, and methionine
oxidation as variable modification. Carbamidomethylation was unselected as samples were not
reduced and alkylated. One missed cleavage was accepted. The precursor charge ranged from
2 to 4. The peptide mass range was set to 300 to 1,800, and peptide length from 7 to 30. For DIA-

NN compatibility, the column ‘FragmentLossType’ was removed in the output library file.

Spectral search

All 263 files were search together in DIA-NN (version 1.8.1) '® against the above-generated
library, using a mass and MS1 mass accuracy of 15.0, scan windows of 9, and activated
isotopologues, MBR, heuristic protein inference and no shared spectra, in single-pass mode.

Proteins were inferred from genes. Library generation was set as ‘IDs, RT & IM profiling’, and
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‘Robust LC (high precision)’ as quantification strategy. Dimethyl labeling at N-termini and lysins
was set as fixed modification at 28.0313Da, and A4 or A8 were spaced 4.0251 Da or 8.0444 Da
from the reference AO ({--fixed-mod Dimethyl, 28.0313, nK} and {--channels Dimethyl, 0, nK, 0:0;
Dimethyl, 4, nK, 4.0251:4.0251; Dimethyl, 8, nK, 8.0444:8.0444}). Additional settings were --

original-mods --peak-translation --ms1-isotope-quant --report-lib-info.

Data analysis
To determine the quantities of the precursors in the DIA-NN report.tsv file, we utilized the Python-

" In brief, RefQuant determines the ratio between target- and

based RefQuant algorithm
reference channel for each individual fragment ion and MS1 peak that is available. This gives a
collection of ratios from which RefQuant estimates a likely overall ratio between target and
reference. The ratio between target and reference was rescaled by the median reference intensity
over all runs for the given precursor, thereby giving a meaningful intensity value for the target
channel. The RefQuant quantification matrix was filtered for ‘Lib.PG.Q.Value’ < 0.01, ‘Q.value’ <
0.01 and ‘Channel.Q.Value’ < 0.15 and was then collapsed to protein groups using the MaxLFQ
algorithm ?® as implemented in the R package iq (v. 1.9.6) ?” with median normalization turned
off. Protein group data was then further analyzed in R v4.2.1 operating in RStudio v2022.07.2.
Samples were excluded if the number of detected proteins was below 1.5 or above 3 standard
deviations from the sample identification median, or within [806, 3362] identified proteins,
resulting into a dropout of 8.9% (41 of 459 samples). Four additional samples were removed due
to their outlier position on the PCA. After sample filtering, data was median normalized to a set of
proteins that was quantified across all samples (100% completeness, 175 proteins), thus
correcting for the dependency of protein numbers on shape size into account. For hepatocyte
specific analysis, the arteriole proteomes were removed prior to normalization. We manually
chose eight proteome classes for all comparative spatial analyses, and five classes for machine
learning as a compromise between meaningful separation and having enough samples per class.
Proteome bins were based on an equidistant split of PC1 Eigenvalues, distance classes
accordingly on a split of portal over central vein distance ratios, and applied as indicated. Principle
Component Analyses (PCA) were performed with the PCAtools v2.8.0 package. Limma v3.52.4
was used for statistical testing across proteome bins on a 50%-complete protein data matrix.
‘FDR’ was applied for multiple testing correction, and an FDR cutoff of 5% was considered
significant. Heatmapping was performed with pheatmap 1.0.12, the completeness of the data
matrix is indicated in the figure legends. Proteomic Gene Set Enrichment Analyses (GSEA) were
done with WebGestalt 2019 28 in an R environment using KEGG metabolic pathways as a library
and an FDR threshold for reporting of 1. Significance was defined as FDR < 5%, and normalized
enrichment scores are reported here. Urea cycle and peroxisomal fatty acid degradation proteins
were manually curated. Normality was assessed with Shapiro-Wilk’s test, and p values were

corrected for multiple testing and expressed as false discovery rate. Spatial data from xml files
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was plotted with the package sf v1.0-9. For comparisons to scRNAseq data, the dataset of
Halpern et al. ® was used, for which we binned the proteome data into nine bins guided by PC1
as described above. The GSEA was calculated with WebGestalt at a reporting and significance

FDR cutoff of 5%, and KEGG, Reactome, and Gene Ontology Biological Processes as libraries.

Image processing

Image data analysis was done in Python (3.8.11). Image shapes were extracted from the stitched
tiles using Pillow (9.0.0). For each shape, the bounding box was calculated by taking the floor and
ceiling of each shape coordinate and taking the maximum and minimum in x and y. The bounding
rectangle was used to crop out the respective region of interest (ROIl) of the image. For image
with offset extraction, the center of each bounding rectangle was calculated and rounded to the
next integer. An offset of 1,000 was added to each direction to additionally capture the
surrounding environment, and the bounding box was highlighted. For composite images, each
image was exported per channel with matplotlib (3.5.1), reloaded, merged with NumPy (1.4.2),
and saved again. Imaged was used to manually measure the distance of a shape to its proximal

portal and central vein.

Machine learning

For each shape and in all four channels (CFP, Alexa488, Alexa568, Alexa647), the mean, median,
minimum, and maximum intensity of each bounding box were calculated, as well as the shape
area. This feature list was saved with pandas (1.22.3). Proteomics data was clustered with a k-
means algorithm into five clusters. Next, we used a supervised learning approach to classify the
proteomic clusters based on the feature list. The training was performed using the scikit-learn
package (1.0.2). Data (n=408) was randomly split in train and test datasets (split = 0.2). For
classification, we used a RandomForest-Classifier (n_estimators=200) and achieved a testing
accuracy of 0.90. To export probabilities, we used the predict proba functionality of
RandomForest. Diagnostic plots were generated using the Yellowbrick package (1.5). The

random state was set to 23 for train/test-split and RandomForestClassifier.

Data availability

Proteomics and imaging data will be available upon publication.
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scDVP, Supplementary Figure 1

Supplementary Fig. 1: Five shape proteomes resolve liver zonation. a, Titration of number of shapes (10 um thick)
versus proteome depth achieved (n = 3). b, Protein numbers per five shapes across 230 samples. Line is a smoothing
curve. ¢, Principal component analyses with a color overlay of two indicated zonation markers; n.q. not quantified. d,
Unbiased k means clustering of all samples into four bins. e, Marker expression sorted by central (top) or portal (bottom)
markers in the indicated k means clusters in d, expressed as z-score of log2 transformed protein abundances, and
sorted according to summed zonal probability across all markers.
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Supplementary Figure 2

Supplementary Fig. 2: Statistical analysis of five shape proteomes. a, Volcano plot after an ANOVA over four

sorted k means clusters (see Supplementary Fig. 1d). Statistically significant proteins (FDR < 0.05, n = 333 of 1652)

with an absolute fold change of more than 0.5 are labeled. Colors indicate upregulation towards portal, or central zones.

b, Overrepresentation analysis of statistically significant proteins in a. Samples are grouped into two bins depending

on their visual expression profile on the heatmap. Euclidian clustering for both samples and proteins. Significant terms

(FDR < 0.05) are presented on the right. Protein expression as z-score of log2 transformed protein abundances.
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Supplementary Fig. 3: Performance overview of single shape proteomes. a, Labeling efficiency of 10 ng mouse
liver peptide samples. Mean efficiency by intensity is stated in the bar (n = 5, mean +/- standard deviation). b, Number
of proteins per sample (N = 455). The dotted line is the median, the fine pricked line is the sample exclusion cutoff of
median minus 1.5 standard deviations. Samples were measured from left to right. Shape type indicates whether the
samples was included for the final analysis. ¢, Association between the area of the cut shape, and number of proteins.
Line is alog10 regression curve. d, Percentage of proteins quantified, binned into four groups, versus log10 transformed
median intensities in the respective bin. e, Coefficient of variation (CV) prior and after complete proteome normalization
(see Methods section). f, Proteins ranked by median intensity across all samples, versus median log10 transformed

intensity. Top and bottom 10 proteins are indicated.
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Supplementary Fig. 4: Dimensionality reduction of single shape data. a, Color overlay is expression level of the
portal marker Asl, or b, the central marker Cyp2e1. c, Eigenvalues of PC2 versus measured distance ratio portal
over central vein for all shapes. D, Top 10-leading edges as Eigenvectors (arrows) with proteins. E, Arterioles were

cut as quality controls (see Methods section), and separate from hepatocytes on PC2 (n = 6).

Single Cell Deep Visual Proteomics Page 22


https://doi.org/10.1101/2022.12.03.518957
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.03.518957; this version posted December 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a b i
4 |
Aldhtat 160 8 = 0.75 @ﬂ‘?.
o : 120 25 < Gladi ¢
Otc : o x Hadhb
150 : 80 & = 050 | Rpl14 §
H T 1
Asst : Gstm1 40 . o
os Acaatad® § '%
R . Cybsag & 0.25 i
— ArgT Uetanss Acaa1b® Q
S 00 ® g S 0.00 . ........__l
o eest g : Gsta3
= ® . P 025 050 0.75 1.00 Portal ——» Central
s i Sor Shapiro-Wilk score Zone
- dob : Ephx1@ écyp?:aﬁ
3 o  AtpSati 0o & Ugttat d
T ; . 0-3 1 Zonation peak
o -~ CV
50 é - PV
° ° ° e . g 0.2 4
Q
: 3
o == —
. E 0.14 1
[0]
0 14
; 00
-0.50 -0.25 0.00 0.25 0.50 0.75 Portal Central
log,FC Binned distance

scDVP, Supplementary Figure 5

Supplementary Fig. 5: Functional analysis of single shape data. a, Volcano plot after ANOVA across eight PC1-
guided proteome bins. Color overlay specifies adjusted p value, the top 20 significant proteins are labeled. b, Score
and multiple testing adjusted p value of a Shapiro-Wilk normality test. Lowest proteins are labeled. ¢, Spearman
correlation matrix with heatmap color overlay indicating Spearman’s R, comparing the eight PC1-guided proteome
zones. d, Relative expression normalized to 1 for each contributing protein (n = 10) of the least significant Shapiro-Wilk

hits in b, from portal to central distance-guided bins.
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Supplementary Fig. 6: Comparison of scDVP and scRNAseq data. a, Abundance normalized to 1 across 9 bins in

Halpern et al. © (left, marker expression guided bins), and this scDVP data (PC1-guided bins). b, Intensity correlation

of all hits (opaque dots, color according to cluster) and markers (black dots). Linear regression as dashed line, with

Pearson correlation coefficient given in the figure. One prominent hit marked with zone in brackets. ¢, As b, with outliers

marked. Blue: Regulated on transcript level, red: regulated on protein level. Corresponding zone in brackets. d,

Correlation coefficient for targets across all bins, with multiple testing adjusted p value. Top ten hits on either side are

labeled in dark red, and marker proteins in orange. e, A significant hit after gene set enrichment analysis on Pearson

correlation coefficient, with normalized abundance of protein levels as heatmap colors.
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Supplementary Fig. 7: Neighborhood analysis of scDVP data. a, Intensity difference of directly adjacent
neighbors (‘TRUE’) versus samples in the same proteome bin, but different lobules (‘FALSE’), for selected marker
proteins. b, Measured distance of samples that belong to the same PC1-guided proteome bin. ¢, As in b, measured
distance against difference in PC1 Eigenvalue, the color scheme represents data density. White dotted intersect at
multiples of 350 ym.
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Supplementary Fig. 8: Machine learning (ML) accurately predicts proteome class. a, k means clustering, dividing
all samples into five classes that inform the ML. b, Feature importance of the ML model, relative to the highest
contributor. ¢, Receiver-Operating-Characteristics for each class. The individual Area Under the Curve (AUC) is given

in the graph. d, Precision-recall-curve for the five classes.
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