

1 Plasma after both SARS-CoV-2 boosted vaccination and COVID-19 potently neutralizes BQ.1.1
2 and XBB.1

3 Running title: COVID-19 convalescent plasma neutralizes BQ.1.1.

4

5 David J Sullivan¹, Massimo Franchini², Jonathon W. Senefeld³, Michael J. Joyner³, Arturo
6 Casadevall¹, Daniele Focosi⁴

7

8 ¹Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD
9 21218, USA; dsulliv7@jhmi.edu; acasade1@jhu.edu

10 ²Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
11 massimo.franchini@asst-mantova.it

12 ³Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902,
13 USA joyner.michael@mayo.edu; senefeld.jonathon@mayo.edu

14 ⁴North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy.
15 daniele.focosi@gmail.com

16

17 **Keywords:** convalescent plasma; SARS-CoV-2; COVID-19; BQ.1.1; XBB; BF.7: virus
18 neutralization.

19 **Abbreviations:** VOC: variant of concern; VaxCCP, plasma from both vaccinated and COVID-
20 19 convalescent subjects.

21 **Author contributions:** DJS: data extraction, table curation and design, and writing original
22 draft; D.F.: conceptualization, data access and verification and manuscript revision; M.F. data
23 access and verification and manuscript revision; JWS data access and verification and
24 manuscript revision, MJJ and AC manuscript revision.

25 **Data availability statement:** all the data used for this manuscript are available in the
26 Supplementary Dataset file.

27

28 **Corresponding author:** David Sullivan, 615 N. Wolfe St Rm W4606, Baltimore MD 21205.
29 Tel 410 502 2522, fax 410 955 0105. E-mail dsulliv7@jhmi.edu

30

31 **Word counts:** Abstract 199; Text – 2087.

32 Abstract

33 Objectives

34 Recent 2022 SARS-CoV-2 Omicron variants, have acquired resistance to most neutralizing anti-
35 Spike monoclonal antibodies authorized, and the BQ.1.* sublineages are notably resistant to all
36 authorized monoclonal antibodies. Polyclonal antibodies from individuals both vaccinated and
37 recently recovered from Omicron COVID-19 (VaxCCP) could retain new Omicron neutralizing
38 activity.

39 Methods

40 Here we reviewed BQ.1.* virus neutralization data from 920 individual patient samples from 43
41 separate cohorts defined by boosted vaccinations with or without recent Omicron COVID-19, as
42 well as infection without vaccination.

43 Results

44 More than 90% of the plasma samples from individuals in the recently (within 6 months) boosted
45 VaxCCP study cohorts neutralized BQ.1.1, and BF.7 with 100% neutralization of WA-1, BA.4/5,
46 BA.4.6 and BA.2.75. The geometric mean of the geometric mean 50% neutralizing titers (GM
47 (GMT_{50}) were 314, 78 and 204 for BQ.1.1, XBB.1 and BF.7, respectively. Compared to VaxCCP,
48 plasma sampled from COVID-19 naïve subjects who also recently within 6 months received at
49 least a third vaccine dose had about half of the GM (GMT_{50}) for all viral variants.

50 Conclusions

51 Boosted VaxCCP characterized by either recent vaccine dose or infection event within 6 months
52 represents a robust, variant-resilient, passive immunotherapy against the new Omicron BQ.1.1,
53 XBB.1 and BF.7 variants.

54

55

56

57

58	Table of contents	
59	Introduction	4
60	Results	4
61	Discussion.....	6
62	Search strategy and selection criteria	7
63	References	9
64	Table 1	11
65	Table 2	13
66	Figure 1.....	14
67	Figure 2.....	15
68	Figure 3.....	16
69	Supplementary Table 1.....	17
70	Supplementary Table 2.....	18
71	Supplementary Table 3.....	21
72	Supplementary Figure 1.....	24
73	Supplementary Figure 2.....	25
74	Supplementary Figure 3.....	26
75		
76		

77 **Introduction**

78 In immunocompromised (IC) patients both passive immunotherapies and small molecule antivirals
79 are often necessary to treat COVID-19 or eliminate persistently high SARS-CoV-2 viral load.
80 Chronic, persistent viral loads increase both transmission and mutation risk, and prevent
81 administration of the required immunosuppressive/antineoplastic therapies(1). Small molecule
82 antivirals have not been formally validated for IC patients, who often have contraindications, and
83 the convergent evolution of the Omicron variant of concern (VOC) has led to inefficacy of all the
84 anti-Spike monoclonal antibodies (mAbs) authorized so far for both treatment or prevention, e.g.
85 in the highly prevalent BQ.1.* sublineages(2). The other rapidly growing XBB.* and BF.7
86 sublineages are also highly resistant to anti-Spike mAbs(3). Polyclonal plasma from individuals
87 who are both vaccinated and had COVID-19 (VaxCCP) has more than ten times the antibody
88 levels capable of neutralizing pre-Omicron variants as well as Omicron variants BA.1 through
89 BA.4/5(4, 5). Polyclonal COVID-19 convalescent plasma (CCP) has thousands of distinct
90 antibody specificities of different isotypes, including many capable of SARS-CoV-2
91 neutralization. High-titer pre-Omicron CCP contains Omicron neutralizing activity despite being
92 collected before variant appearance(4, 5).

93
94 Given that CCP remains a recommended therapy for IC(1, 6, 7), we systematically reviewed recent
95 primary research for neutralization results against BQ.1.1 by plasma collected from vaccinated
96 subjects with or without COVID-19 or after recent Omicron infection alone.

97 **Results**

98 Ten articles were included (**Figure 1**) which contained virus neutralizations with WA-1, BQ.1.1,
99 BA.4/5, BA.4.6, XBB.1 and BF.7, assessed with either live authentic SARS-CoV-2 or SARS-
100 CoV-2 pseudovirus neutralization assays and represented data from 920 patients (**Supplementary**
101 **Table 1**). Qu *et al.* in the USA reported on Spring and Summer 2022 breakthrough infections with
102 BA.1 and BA.4/5 in two sampled cohorts with predominantly unvaccinated individuals, as well as
103 a third cohort of healthcare workers after a single monovalent booster vaccination in the Fall of
104 2021(8) (**Table 1**). Zou *et al.* in the USA in the Summer and Fall of 2022 sampled individuals who
105 had already received 3 mRNA BNT162b2 vaccinations with or without previous COVID-19, both
106 before and about 4 weeks after a 4th monovalent or bivalent vaccine booster vaccination(9). Miller
107 *et al.* also in the USA sampled both before the 3rd vaccination dose and about 4 weeks after
108 monovalent mRNA vaccination in the Fall of 2021, as well as with the 4th vaccine dose in the
109 Summer or Fall of 2022, with either monovalent or bivalent booster vaccinations in Fall of 2022
110 in those with no documented COVID-19(10). Cao *et al.* in China investigated BQ.1.1
111 neutralizations from plasma of 4 cohorts after 3 doses of CoronaVac (Fall 2021) without COVID-
112 19 or 2-12 weeks after BA.1, BA.2 and BA.5 infection(3). Planas *et al.* in France evaluated
113 GMT₅₀ in plasma from individuals both 4 and 16 weeks after a third monovalent mRNA vaccine
114 dose in the Fall of 2021 as well as 12 and 32 weeks after vaccine breakthrough BA.1/2 or BA.5
115 infection(11). Davis *et al* in the USA sampled after the 3rd mRNA vaccine monovalent dose in the
116 Fall of 2021 and also after either a 4th monovalent mRNA dose or a bivalent (wild-type + BA.4/5)
117 vaccine dose in the Summer and Fall of 2022(12). Kurhade *et al* in the USA also compared
118 GMT₅₀ after the 4th monovalent vaccine dose or 3 mRNA doses with the 4th the bivalent dose
119 without COVID-19 and also after bivalent boost with recent COVID-19(13). Wang *et al* in the
120 USA compared GMT₅₀ after three vaccine doses, the 4th monovalent vaccine dose or 3 mRNA
121 doses with the 4th the bivalent dose without COVID-19, and also after 2-3 vaccine doses and recent
122

123 BA.2 breakthrough infection or 3-4 mRNA vaccine doses and recent BA.4/5 breakthrough
124 infection(14). Ito et al in Japan compared breakthrough infections after BA.2 and BA.5 after 2-3
125 doses of mRNA vaccines in the Spring and Summer of 2022(15). Akerman et al in Australia
126 characterized neutralizing antibodies in four groups 1) sampling one to three months after 3 doses
127 of mRNA vaccines with an Omicron infection in 2022; 2) sampling 3 months after 4 doses of
128 mRNA vaccine; 3) sampling 6 months after 3 doses of mRNA vaccine and 4) sampling 3-6 months
129 after last vaccine in a larger cohort who had the original WA-1 infection in early 2020 as well as
130 3 more doses of mRNA vaccine(16).

131
132 These diverse cohorts were assembled into 3 groups, 1) plasma after both 2-4 vaccine doses and
133 COVID-19 (VaxCCP); 2) plasma from subjects after administration of 3-4 vaccine doses (i.e.
134 boosted), but either self-reported as COVID-19-naïve or anti-nucleocapsid negative; and 3)
135 Omicron infection without vaccination (CCP) as well as participants sampled 6 to 11 months after
136 previous vaccine dose and before the booster vaccination. Boosted VaxCCP neutralized BQ.1.1,
137 XBB.1 and BF.7 with approximately 3 times the dilutional potency of the vaccine-only or 2-6
138 times CCP/pre-boost vaccination groups for all viral variants (**Table 2 and Figure 2**). Importantly,
139 while there was a 19-fold reduction in neutralization by boosted VaxCCP against BQ.1.1 compared
140 to WA-1, more than 90% of the boosted VaxCCP samples neutralized BQ.1.1 as well as XBB.1
141 and BF.7 (**Table 2 and Figure 2c**). Three cohorts within the boosted VaxCCP group were below
142 at 90% neutralization with one sampled late, 8 months after BA.1/2 breakthrough infection(11)
143 and the other two from a single study after BA.2 and BA.5 (**Supplementary Table 2 and 3**).
144 Except for the GMT (GMT₅₀) against XBB.1 at 78, the other viral variant neutralizations were in
145 the same range as pre-Alpha CCP neutralizing WA-1 (i.e., 311)(4). By comparison the large
146 randomized clinical trial which effectively reduced outpatient COVID-19 progression to
147 hospitalizations had a GMT₅₀ of 60 for WA-1 with pre-Alpha CCP(17). Boosted vaccinations at
148 3-4 doses without COVID-19, showed GM (GMT₅₀) of 118 for BQ.1.1, with only 6 of 23 cohorts
149 over 90% neutralizations, for 79% overall (i.e. 326 of 414 individuals). Four separate
150 studies(8),(13),(12),(10) characterized BQ.1.1 virus neutralizations with plasma after the new
151 bivalent (wild-type + BA.4/5) mRNA vaccine booster in the Fall of 2022, with 88% (103 of 117
152 samples) neutralization activity within 4 weeks of bivalent booster (**Supplementary Table 3**).
153

154 Many studies performed virus neutralizations on samples drawn before the 3rd or 4th vaccine dose
155 which were 6 to 11 months after last vaccine dose. The GM (GMT₅₀)'s for BQ.1.1 and BA.2.75
156 were about 6 times reduced compared to VaxCCP even though the fold reductions were similar
157 (**Figure 3, Table 2**). In agreement with lower GMT₅₀ for neutralizations was the low percent
158 neutralizing BQ.1.1 (63%), XBB.1 (50%), and BF.7 (75%) at 6 to 11 months after vaccination
159 (**Figure 3, Table 2 and Supplementary Table 3**).

160
161 Five studies used the lentiviral pseudovirus assays, with diverse Spike proteins cloned in, while
162 the other four were live virus assays using different cell types (**Supplementary Table 1**). Notably,
163 Planas *et al* employed the IGROV-1 cell type for better growth of Omicron sublineages(11). While
164 the single study fold reductions (FR) and percent neutralizations normalize the results between
165 studies, the GMT₅₀ can vary between studies even amongst the live authentic viral neutralization
166 studies (e.g., mNeonGreen™ reporter assays versus cytopathic effects)(9, 13). We sorted the live
167 authentic viral neutralizations from the pseudoviral neutralizations, plotting also the minimum and
168 maximums (**Supplementary Figures 1-3**). In general, the live authentic SARS-CoV-2

169 neutralization assays for VaxCCP appeared to have similar antibody neutralization levels, with the
170 single study by Cao et al(3) employing lentiviral pseudovirus with lower dilutional titers. In
171 contrast, the GMT_{50} achieved with pseudoviral assays in the boosted vaccinations without COVID-
172 19 appeared slightly higher than the ones achieved with authentic virus.
173

174 Discussion

175 The FDA deemed CCP safe and effective for both immunocompetent and IC COVID-19
176 outpatients(6, 7, 18), and further extended its authorized use in the IC patient population in
177 December 2021(7, 18), at a time when oral antiviral therapy promised a no transfusion outpatient
178 solution and many anti-Spike mAbs were still effective.
179

180 Up until the present, CCP remained a backup bridge for IC patients, durable against the changing
181 variants and as a salvage therapy in seronegative IC patients. With the recent advent of Omicron
182 XBB.* and BQ.1.* defeating the remaining anti-Spike mAbs, boosted VaxCCP, recently collected
183 within the last 6 months of either a vaccine dose or SARS-CoV-2 is likely to be the only viable
184 remaining passive antibody therapy in the 2022-23 Winter for IC patients who have failed to make
185 antibodies after vaccination and still require B-cell depleting drugs or immunosuppressive therapy.
186 In a literature review of CCP from diverse VOC waves as well as boosted vaccinees and VaxCCP
187 up to BA-1, VaxCCP showed higher neutralization titers against Omicron at levels above 300
188 dilutional GMT_{50} ⁴.
189

190 The accelerated evolution of SARS-CoV-2 VOCs has created the problem that the pharmaceutical
191 development of additional mAbs is not worth the effort and cost given their expected short useful
192 clinical life expectancy, so the anti-Spike mAb pipeline has remained stuck in 2022. High levels
193 of antibodies in donor plasma from both boosted vaccinations and COVID-19 convalescent plasma
194 (VaxCCP) neutralizing more than 93% of BQ.1.1 and BF.7, with XBB.1 at 89%. Recently collected
195 plasma within a 6 months window from those boosted vaccinees without prior documented
196 COVID-19 had a 20-30% reduction in neutralization percent for BQ.1.1 and XBB.1 with 10%
197 reduction for the others and a third of the GM (GMT_{50}) neutralizing antibody levels compared to
198 VaxCCP. In those vaccinated with last dose more than 6 months prior to sample collection, both
199 the neutralization percent and neutralizing antibody titers fell further, compared to the recently
200 boosted VaxCCP group. Four studies (Planas(11), Zou(9), Cao(3) and Kurhade(13)) had directly
201 comparative cohorts in the three groups which increases the robustness reduction in neutralizations
202 with the vaccine only or more than 6 months to last vaccine or infection event compared to
203 VaxCCP. The main limitation of our systematic review is the small number of studies reporting
204 virus neutralization with BQ.1.1 with most available as pre-prints without peer-review yet.
205 However, we note that peer-review itself does not change GMT_{50} or neutralization numbers and
206 the authors of these papers have considerable expertise in the topic.
207

208 Boosted VaxCCP has full potential to replace anti-Spike mAbs for passive antibody therapy of IC
209 patients against recent Omicron sublineages, in the meanwhile polyclonal IgG formulations can
210 be manufactured. VaxCCP qualification in the real-world will likely remain constrained on high-
211 throughput serology, whose correlation with GMT_{50} is not perfect(19, 20). Nevertheless, the very
212 high prevalence (93%) of Omicron-neutralizing antibodies and the high GM (GMT_{50}) in recently
213 boosted VaxCCP reassure about its potency, and further confirm that exact donor-recipient VOC

214 matching is dispensable. Overall, our findings urge WHO to revise its guidelines and recommend
215 boosted VaxCCP for therapy of COVID-19 in IC patients.

216

217

218 **Search strategy and selection criteria**

219 On November 19, 2022 we initially searched PubMed, medRxiv and bioRxiv for manuscripts
220 reporting BQ.1.1 neutralization, using English language as a restriction. Search of bioRxiv with
221 same keywords now yields 17 records of which only 10 contained plasma viral neutralization data.
222 Search of medRxiv produced 3 records which did not have BQ.1.1 neutralizations. PubMed
223 retrieved 3 entries using (“BQ.1.1”) and (“neutralization”), one of which was focused on anti-
224 Spike mAb alone(2) and the other 2 were duplicates from bioRxiv(8, 12). Articles underwent
225 evaluation for data extraction by two assessors (DS and DF) with disagreements resolved by third
226 assessor (AC). Articles lacking plasma BQ.1.1 virus neutralizations were excluded. The process
227 of study selection is represented in the PRISMA flow diagram (**Figure 1**).
228

229 The type of viral assay (live or pseudovirus), time interval to blood sample, GMT_{50} , minimum and
230 maximum neutralizing 50% dilutional titer for WA-1 (pre-Alpha wild-type) and Omicron
231 sublineages BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB.1 and BF.7 and number out of total that
232 neutralized Omicron were abstracted from study text, graphs and tables. Two studies (Wang(14)
233 and Qu(8)) reported BQ.1 and those were separate cohorts in addition to BQ.1.1. Prism v. 9.4
234 (GraphPad Software, San Diego, CA, USA) was used for data analysis. While all manuscripts
235 included neutralization data against WA-1, BQ.1.1, BA.4/5 and BA.2.75, only a subset of
236 manuscripts included neutralization data for BA.4.6, XBB.1 and BF.7 which were assembled for
237 relevance to present circulating variants. Historic early Omicron partial neutralization data on
238 variants like BA.1 or BA.2 were excluded because of the full set data with BA.4/5 and BA.2.75.
239

240 Statistical significance between \log_{10} transformed GMT_{50} was investigated using Tukey’s test. The
241 multiple comparison test was a two-way ANOVA with Alpha 0.05 on log transformed GMT_{50} .
242 The log normal test was performed on WA-1, BQ.1.1, BA.4/5, BA.4.6, XBB.1 and BF.7 virus
243 GMT_{50} . Two studies(10, 11) reported the median titer rather than the GMT_{50} . Compiled data
244 abstracted from the published studies is available in the supplementary dataset.
245

246 **Funding**

247 This study was supported by the U.S. Department of Defense’s Joint Program Executive Office
248 for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), in collaboration
249 with the Defense Health Agency (DHA) (contract number: W911QY2090012) (DS), with
250 additional support from Bloomberg Philanthropies, State of Maryland, the National Institutes of
251 Health (NIH) National Institute of Allergy and Infectious Diseases 3R01AI152078-01S1 (DS,
252 AC), NIH National Center for Advancing Translational Sciences U24TR001609-S3 and
253 UL1TR003098.

254

255 **Role of the funding source**

256 The study sponsors did not contribute to the study design; the collection, analysis, and
257 interpretation of data; manuscript preparation, and the decision to submit the paper for publication.

258 The views expressed are those of the authors and should not be construed to represent the positions
259 of the U.S. Army or the Department of Defense. The data and opinions presented do not reflect
260 the view of the U.S. government.

261

262 Conflict of interest disclosure

263 DJS reports AliquantumRx Founder and Board member with stock options (macrolide for
264 malaria), Hemex Health malaria diagnostics consulting and royalties for malaria diagnostic test
265 control standards to Alere- all outside of submitted work. AC reports being part of the scientific
266 advisory board of SabTherapeutics and has received personal fees from Ortho Diagnostics,
267 outside of the submitted work. All other authors report no relevant disclosures.

268

269

270

271 **References**

1. Senefeld JW, Franchini M, Mengoli C, Cruciani M, Zani M, Gorman EK, et al. COVID-19 convalescent plasma for the treatment of immunocompromised patients: a systematic review. medRxiv. 2022:2022.08.03.22278359.
2. Arora P, Kempf A, Nehlmeier I, Schulz SR, Jack HM, Pohlmann S, et al. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect Dis. 2022 Nov 18. PubMed PMID: 36410372. Epub 2022/11/22.
3. Cao Y, Jian F, Wang J, Yu Y, Song W, Yisimayi A, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. bioRxiv. 2022:2022.09.15.507787.
4. Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. Nature Communications. 2022 2022/10/29;13(1):6478.
5. Li M, Beck EJ, Laeyendecker O, Eby YJ, Tobian AA, Caturegli P, et al. Convalescent plasma with a high level of virus-specific antibody effectively neutralizes SARS-CoV-2 variants of concern. Blood Adv. 2022:2022.03.01.22271662.
6. Hinton DM. Convalescent Plasma EUA Letter of Authorization 06032021. In: FDA, editor. FDA in brief: FDA; 2021.
7. O'Shaughnessy JA. Convalescent Plasma EUA Letter of Authorization 12282021 . FDA website2021.
8. Qu P, Evans JP, Faraone J, Zheng Y-M, Carlin C, Anghelina M, et al. Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. bioRxiv. 2022:2022.10.19.512891.
9. Zou J, Kurhade C, Patel S, Kitchin N, Tompkins K, Cutler M, et al. Improved Neutralization of Omicron BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 with Bivalent BA.4/5 Vaccine. bioRxiv. 2022:2022.11.17.516898.
10. Miller J, Hachmann NP, Collier A-rY, Lasrado N, Mazurek CR, Patio RC, et al. Substantial Neutralization Escape by the SARS-CoV-2 Omicron Variant BQ.1.1. bioRxiv. 2022:2022.11.01.514722.
11. Planas D, Bruel T, Staropoli I, Guivel-Benhassine F, Porrot F, Maes P, et al. Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies. bioRxiv. 2022:2022.11.17.516888.
12. Davis-Gardner ME, Lai L, Wali B, Samaha H, Solis D, Lee M, et al. mRNA bivalent booster enhances neutralization against BA.2.75.2 and BQ.1.1. bioRxiv. 2022:2022.10.31.514636.
13. Kurhade C, Zou J, Xia H, Liu M, Chang HC, Ren P, et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1, and XBB.1 by 4 doses of parental mRNA vaccine or a BA.5-bivalent booster. bioRxiv. 2022:2022.10.31.514580.
14. Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. bioRxiv. 2022:2022.11.23.517532.
15. Ito J, Suzuki R, Uriu K, Itakura Y, Zahradnik J, Deguchi S, et al. Convergent evolution of the SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant. bioRxiv. 2022:2022.12.05.519085.

314 16. Akerman A, Milogiannakis V, Jean T, Esneu C, Silva MR, Ison T, et al. Emergence and
315 antibody evasion of BQ and BA.2.75 SARS-CoV-2 sublineages in the face of maturing antibody
316 breadth at the population level. medRxiv. 2022:2022.12.06.22283000.

317 17. Sullivan DJ, Gebo KA, Shoham S, Bloch EM, Lau B, Shenoy AG, et al. Early Outpatient
318 Treatment for Covid-19 with Convalescent Plasma. N Engl J Med. 2022 Mar 30. PubMed
319 PMID: 35353960. Pubmed Central PMCID: PMC9006786. Epub 2022/03/31.

320 18. Villa C. EUA 26382 COVID-19 Convalescent Plasma. In: OBRR, editor. FDA
321 (<https://www.fda.gov/media/155159/download>)2021.

322 19. Stone M, Grebe E, Sulaeman H, Di Germanio C, Dave H, Kelly K, et al. Evaluation of
323 Commercially Available High-Throughput SARS-CoV-2 Serologic Assays for Serosurveillance
324 and Related Applications. Emerg Infect Dis. 2022 Mar;28(3):672-83. PubMed PMID: 35202525.
325 Pubmed Central PMCID: PMC8888213. Epub 2022/02/25.

326 20. Patel EU, Bloch EM, Clarke W, Hsieh YH, Boon D, Eby Y, et al. Comparative
327 Performance of Five Commercially Available Serologic Assays To Detect Antibodies to SARS-
328 CoV-2 and Identify Individuals with High Neutralizing Titers. J Clin Microbiol. 2021 Jan
329 21;59(2). PubMed PMID: 33139419. Epub 2020/11/04.

330

331 **Table 1**

332 Synopsis of included studies, reporting plasma sources, epoch of sampling, region, time since
 333 vaccination/infection to plasma sampling, and sample size. The cohorts were split into three
 334 groups-1) boosted vaccinations and recent COVID-19 (VaxCCP), 2) boosted vaccines only
 335 without documented COVID-19 (Vac only) and 3) infection alone or pre-boosted sampling
 336 before 3rd or 4th vaccine dose (Infection only or pre-boost)

Study	Vaccine and COVID-19 history at sample time	Group	Time period of plasma sampling	Geography	Sampling time mean or median (min-max)	Sample number
Cao(3)	3xCorVac+BA.1 inf	VaxCCP	Spring 2022	China	5-7 weeks post hosp admit (42 weeks avg)	50
Cao(3)	3xCorVac +BA.2 inf	VaxCCP	Summer 2022	China	3-11 weeks post hosp admit (8 weeks mean)	39
Cao(3)	3xCorVac +BA.5 inf	VaxCCP	Summer/Fall 2022	China	2-11 weeks (mean 5 weeks)	36
Zou(9)	4xBNT162b2+BTI	VaxCCP	Summer/Fall 2022	USA	4 weeks post dose	20
Planas(11)	mRNAVacx3+ BA.1/2 inf	VaxCCP	Spring/Fall 2022	France	32 weeks post BTI BA.1/2	13
Wang(14)	2-3xmRNAVac+ BA.2 BTI	VaxCCP	Spring/Fall 2022	USA	2-23 weeks (mean 6 wk (3over 90 days))	14
Wang(14)	3-4xmRNAVac+ BA.4/5 BTI	VaxCCP	Summer/Fall 2022	USA	2-8 weeks (mean 4 weeks)	20
Kurhade(13)	3xmRNAVac+bivalent t+BTI	VaxCCP	Fall 2022	USA	4 weeks post with infection history	23
Ito(15)	2-3xmRNAVac+BA.2 BTI	VaxCCP	Spring 2022	Japan	2-8 weeks	14
Ito(15)	2-3xmRNAVac+BA.5 BTI	VaxCCP	Summer 2022	Japan	2-3 weeks	20
Zou(9)	3xBNT162b2+bivalent nt+BTI	VaxCCP	Summer/Fall 2022	USA	4 weeks post dose	19
Akerman(16)	3xmRNA +bivalent	VaxCCP	Fall 2022	Australia	4-12 weeks post BTI	29
Planas(11)	3xmRNAVac+ BA.1/2 inf	VaxCCP	Spring/Fall 2022	France	12 weeks post BTI BA.1/2	16
Planas(11)	3xmRNAVac+ BA.5 inf	VaxCCP	Fall 2022	France	8 weeks post BTI BA.5	15
Davis(12)	3xmRNAVac	Vac only	Fall 2021	USA	1-4 weeks post boost	12
Kurhade(13)	4xmRNAVac	Vac only	Summer 2022	USA	4-12 weeks	25
Cao(3)	3xCorVac	Vac only	Fall 2021	China	4 weeks	40
Zou(9)	4xBNT162b2	Vac only	Summer/Fall 2022	USA	4 weeks post dose	20
Planas(11)	3xmRNAVac	Vac only	Winter 2021/2022	France	16 weeks post 3rd dose	10
Wang(14)	3xmRNAVac	Vac only	Fall 2021	USA	2-12 weeks (mean 5 weeks)	14
Wang(14)	3xmRNAVac+monovalent	Vac only	Summer/Fall 2022	USA	3-4 weeks	19
Wang(14)	3xmRNAVac+bivalent	Vac only	Summer/Fall 2022	USA	3-4 weeks	21
Davis(12)	3xmRNAVac+monovalent	Vac only	Summer/Fall 2022	USA	10-15 weeks post boost	12
Akerman(16)	4xmRNA	Vac only	Fall 2022	Australia	12 weeks	23
Akerman(16)	3xmRNAVac after 2020 WA-1	Vac only	Summer/Fall 2022	Australia	3-6 months	47

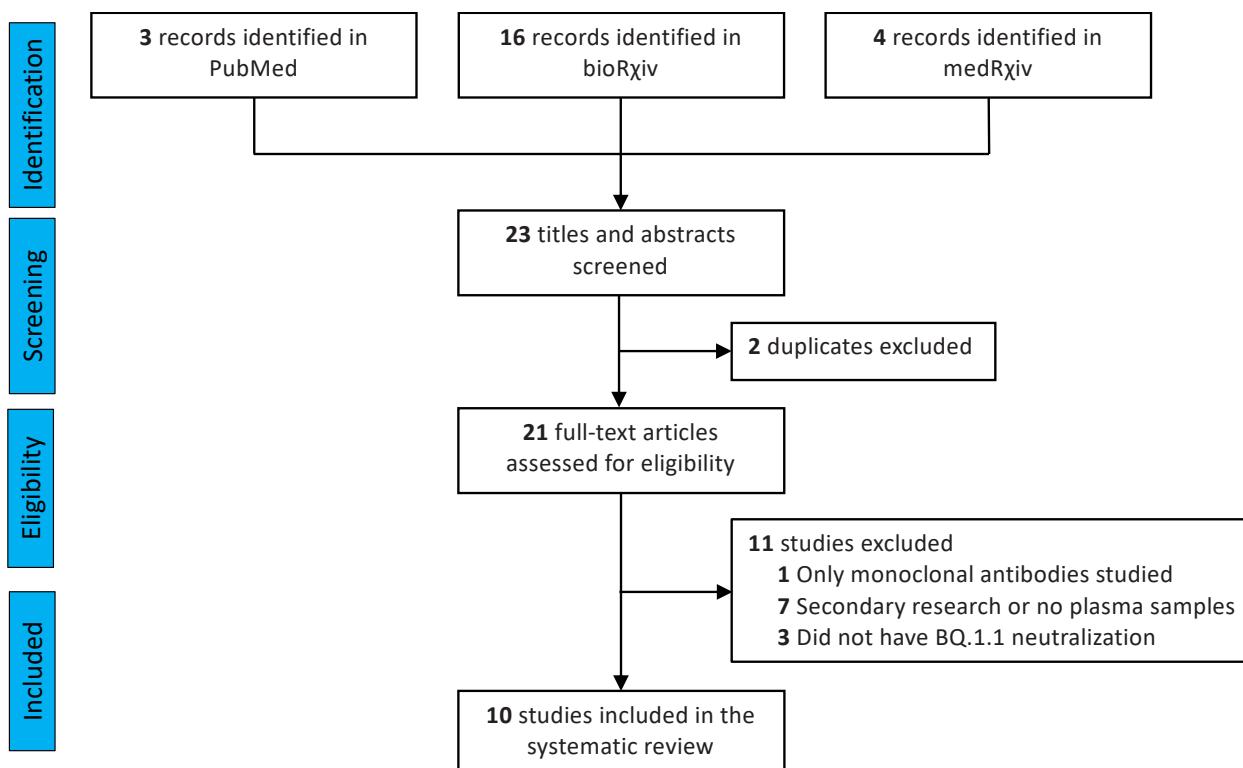
Kurhade(13)	3xmRNAvac+bivalent	Vac only	Fall 2022	USA	4 weeks post	29
Davis(12)	3xmRNAvac+bivalent	Vac only	Summer/Fall 2022	USA	2-6 weeks post booster (8 no vacc. 10 no infection)	12
Qu(8)	3xmRNAvac	Vac only	Fall 2021	USA	2-13 weeks	15
Zou(9)	3xBNT162b2+bivalent	Vac only	Summer/Fall 2022	USA	4 week post dose	18
Planas(11)	3xmRNAvac	Vac only	Fall/Winter 2021	France	4 weeks post 3rd dose	18
Miller(10)	3xBNT162b2	Vac only	Fall 2021	USA	2-4 weeks	16
Miller(10)	3xmRNA+monovalent	Vac only	Spring/Fall 2022	USA	2-9 weeks	18
Miller(10)	3xmRNA +bivalent	Vac only	Fall 2022	USA	2-3 weeks	15
Qu(8)	BA.4/5 inf (17-unvac)	Inf only	Summer 2022	USA	not stated	20
Qu(8)	Hosp BA.1 (6-unvac;5-2xmRNAvac)	Inf only	Spring 2022	USA	1 week post hospitalization	15
Zou(9)	3xBNT162b2+BTI	preboost with BNT162b	Summer/Fall 2022	USA	preboost with BNT162b (6-11 months post last dose)	20
Zou(9)	3xBNT162b2 +BTI	preboost with bivalent	Summer/Fall 2022	USA	preboost with bivalent (6-11 months post last dose)	19
Zou(9)	3xBNT162b2	preboost with bivalent	Summer/Fall 2022	USA	preboost with bivalent (6-11 months post last dose)	18
Zou(9)	3xBNT162b2	preboost with BNT162b	Summer/Fall 2022	USA	preboost with BNT162b (6-11 months post last dose)	20
Akerman(16)	3xmRNA	Preboost	Fall 2022	Australia	preboost (6 months)	47
Miller(10)	2xBNT162b2	preboost with BNT162b	Fall 2021	USA	preboost (6-11 months post last dose)	16
Miller(10)	3xmRNA	preboost with bivalent	Fall 2022	USA	preboost with bivalent (6-11 months post last dose)	15
Miller(10)	3xmRNA	preboost with monovalent	Spring/Fall 2022	USA	preboost with monovalent (6-11 months post last dose)	18

338 **Table 2**

339 GM (GMT₅₀) of plasma from three different sources against recent Omicron sublineages.

Neutralization virus	WA-1	BQ.1.1	BA.4/5	BA.4.6	BA.2.75	XBB.1	BF.7
Post COVID-19/vaccine (study cohorts)	12	16	14	7	9	9	4
GM (GMT ₅₀)	5876*	314	987	346	303	78	204
Fold reduction from WA-1	ref	19	6	17	19	75	32
Samples tested	294	237**	328	135	231	125	148
Samples neutralizing	285	221	326	135	230	111	146
Percent neutralizing	97	93	99	100	100	89	99
Boosted vaccine (study cohorts)	19	23	19	10	14	10	7
GM (GMT ₅₀)	3766	118	346	126	107	52	357
Fold reduction from WA-1	ref	32	11	30	35	72	12
Samples tested	384	414	384	206	261	217	158
Samples neutralizing	383	326	363	191	231	125	149
Percent neutralizing	100	79	95	93	89	58	94
Infection only or preboosted vaccine (study cohorts)	10	12	10	7	9	5	5
GM (GMT ₅₀)	870	47	96	103	57	23	110
Fold reduction from WA-1	ref	19	9	8	15	38	9
Samples tested	184	220	184	136	162	101	84
Samples neutralizing	182	139	144	104	104	50	63
Percent neutralizing	99	63	78	76	64	50	75

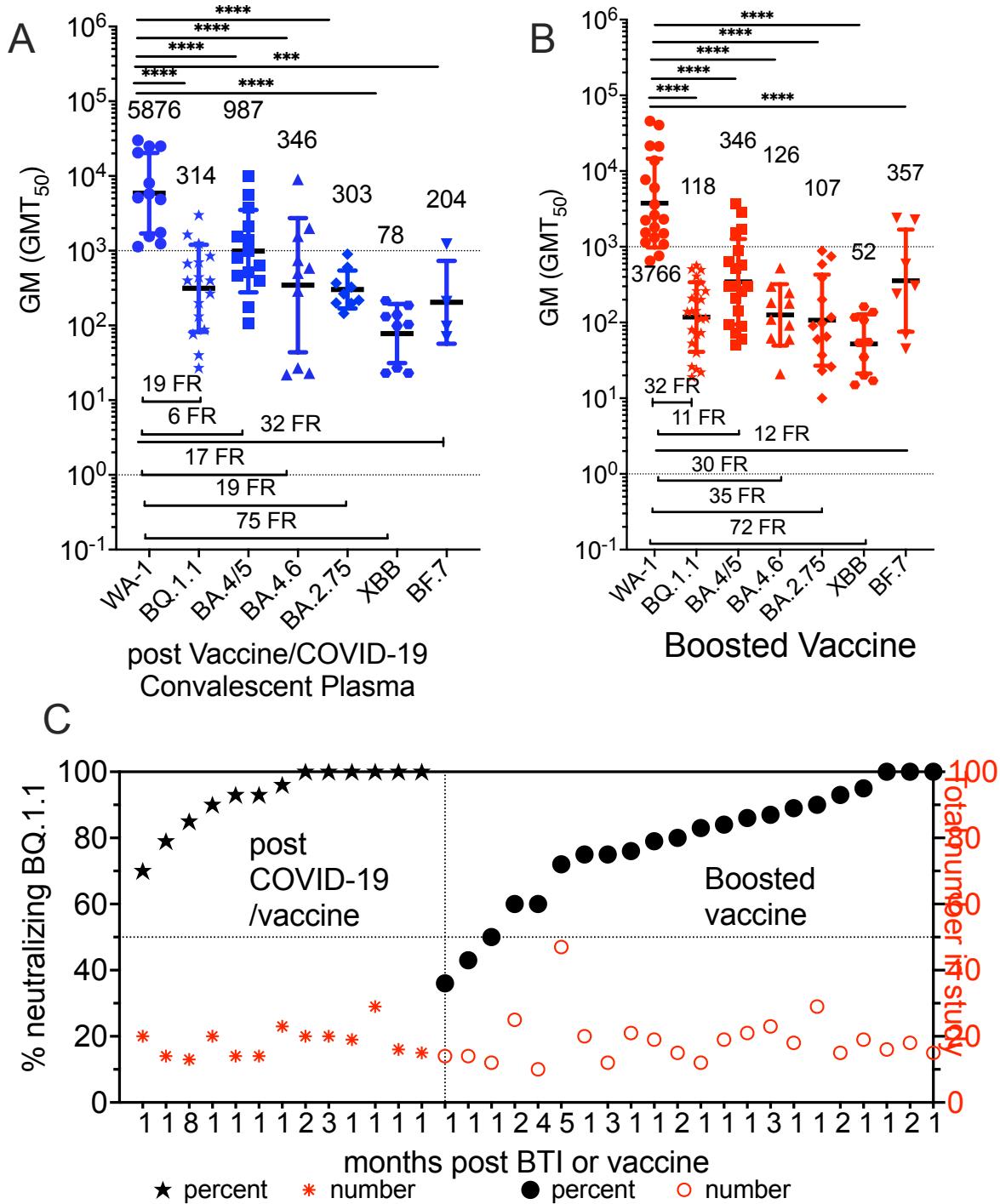
340 *Pre-Alpha CCP from 27 different studies had a GM (GMT₅₀) of 311 from 707 samples with 315
341 or 45% neutralizing omicron BA.1(4).


342 ** percent neutralizations after CoronaVac and Omicron COVID-19 in the paper by Cao *et al*
343 could not be retrieved from the manuscript. 237 samples from the 6 other cohorts were used for
344 percent neutralization.

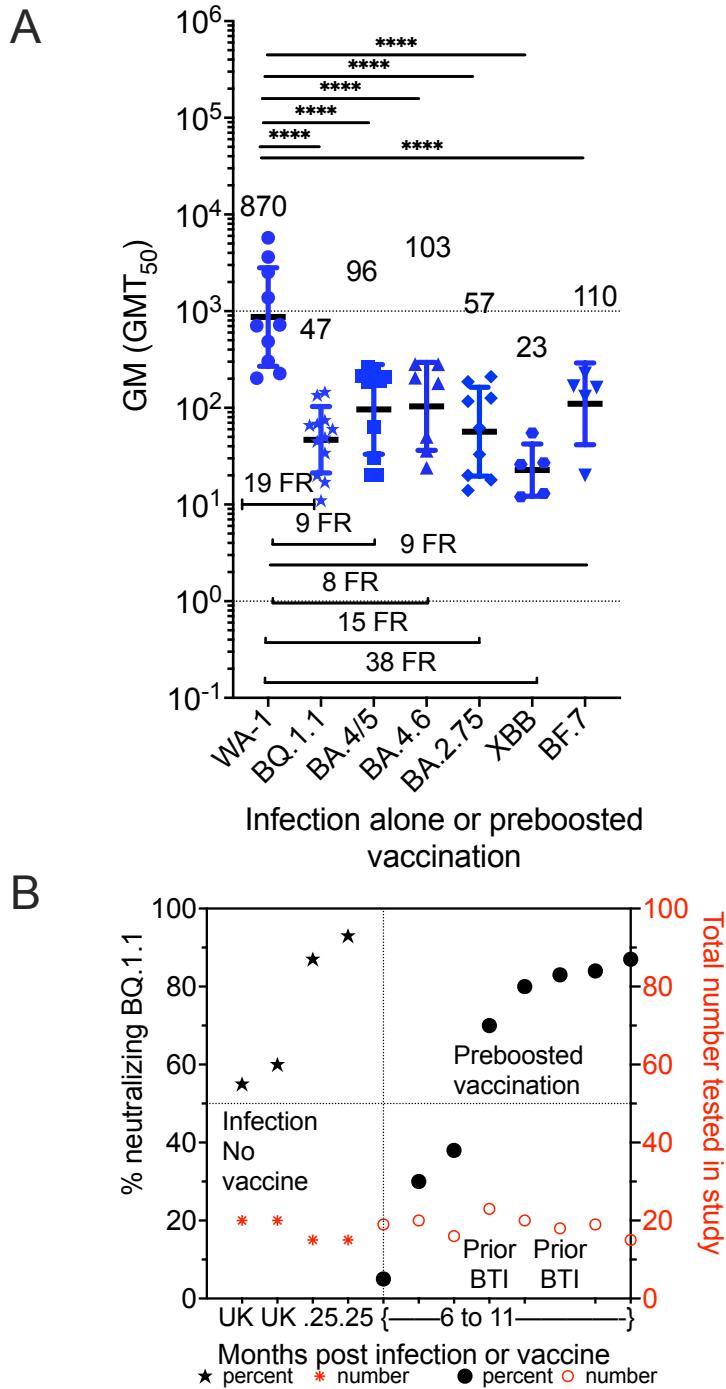
345

346

347 **Figure 1**


348 PRISMA flowchart for the current study. Number of records identified from various sources,
349 excluded by manual screening, found eligible and included according to subgroup analyses.
350

351


352 **Figure 2**

353 Neutralizing GMT (GMT_{50}) against WA-1, BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB, BF.7. A) post boosted
 354 vaccinations and COVID-19 and B) boosted vaccinated plasma without COVID-19. Geometric standard
 355 deviation for error bars, fold reduction (FR) below data, and number of studies above x-axis. Geomeans
 356 statistically significant in difference by multiple comparison in Tukey's test are indicated. C) The percent
 357 of total samples within a study which neutralized Omicron BQ.1.1 graphed in increasing percentages on
 358 left y axis with the total number of samples tested on the right y axis.

360 **Figure 3**

361 Geometric mean neutralizing titers (GMT_{50}) against WA-1, BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB, BF.7
362 A) plasma Omicron infection alone or pre-boosted-6 to 11 months after last vaccine dose sampled in 2021
363 or 2022. Geometric standard deviation for error bars, fold reduction (FR) above data, and number of studies
364 above x-axis. GM (GMT_{50}) statistically significant in difference by multiple comparison in Tukey's test are
365 indicated. B). The percent of total samples within a study which neutralized Omicron BQ.1.1 graphed in
366 increasing percentages on left y-axis with the total number of samples tested on the right y-axis.

368 **Supplementary Table 1**

369 Virus neutralization assays.

Reference	Assay	Virus	Replication-competent cells	neutralization threshold
Qu(8)	Pseudovirus	Lentiviral pseudovirus	HEK293T-ACE-2	80
Miller(10)	Pseudovirus	Lentiviral pseudovirus	HEK293T-ACE-2	20
Cao(3)	Pseudovirus	VSV pseudovirus	HEK293T-ACE-2	20
Wang(14)	Pseudovirus	VSV pseudovirus	VeroE6-	100
Ito(15)	Pseudovirus	Lentiviral pseudovirus	HEK293T-ACE-2	150
Akerman(16)	Live virus	Live authentic SARS-CoV-2	VeroE6-TMPRSS2	20
Davis(12)	Live virus	Live authentic SARS-CoV-2	VeroE6-TMPRSS2	20
Kurhade(13)	Live virus	mNeonGreen reporter USA-WA1/2020 SARS-CoV-2	Vero E6-TMPRSS2	20
Planas(11)	Live virus	Live authentic SARS-CoV-2	IGROV-1 or Vero E6-TMPRSS2	30
Zou(9)	Live virus	mNeonGreen reporter USA-WA1/2020 SARS-CoV-2	Vero E6-TMPRSS2	20

370

371

372

373

Supplementary Table 2

374

375

GMT₅₀ of different plasma sources against BQ.1.1, BA.4/5, BA.4.6, BA.2.75, XBB.1 and BF.7 and fold-reductions (FR) compared to WA-1.

papers	Vaccine and COVID-19 history at sample time	Group	#	WA-1 GMT ₅₀	BQ.1.1 GMT ₅₀	FR BQ.1.1	BA.4/5 GMT ₅₀	FR BA.4/5	BA.4.6 GMT ₅₀	FR BA.4.6	BA.2.75 GMT ₅₀	FR BA.2.75	XBB.1 GMT ₅₀	FR XB B	BF.7 GMT ₅₀	FR BF.7
Cao(3)	3xCorVac+BA.1 BTI	VaxCCP	50	1557	27	58	107	15	23	68	197	8	23	68	70	22
Cao(3)	3xCorVac +BA.2 BTI	VaxCCP	39	1245	40	31	175	7	22	57	217	6	23	54	97	13
Cao(3)	3xCorVac +BA.5 BTI	VaxCCP	36	1136	77	15	508	2	27	42	145	8	27	42	208	5
Zou(9)	4xBNT162b2+BTI	VaxCCP	20	5120	132	39	629	8	587	9	265	19	99	52		
Planas(11)	3xmRNAvac+ BA.1/2 BTI	VaxCCP	13	8000	200	40	400	20	500	16	200	40				
Wang(14)	2-3xmRNAvac+ BA.2 BTI	VaxCCP	14	24970	849	29	3727	7					186	134		
Wang(14)	2-3xmRNAvac+ BA.2 BTI--BQ.1	VaxCCP	14		1250	20										
Wang(14)	3-4xmRNAvac+ BA.4/5 BTI	VaxCCP	20	20507	671	31	5541	4					214	96		
Wang(14)	3-4xmRNAvac+ BA.4/5 BTI--BQ.1	VaxCCP	20		1644	12										
Kurhade(13)	3xmRNAvac+bivalent+ BTI	VaxCCP	23	5776	267	22	1558	4	744	8	367	16	103	56	1223	5
Ito(15)	2-3xmRNAvac+BA.2 BTI	VaxCCP	14		400	7	800									
Ito(15)	2-3xmRNAvac+BA.5 BTI	VaxCCP	20		400	5	2100									
Zou(9)	3xBNT162b2+bivalent+ BTI	VaxCCP	19	4847	444	11	1377	4	1564	3	326	15	131	37		
Akerman(16)	3xmRNA +bivalent	VaxCCP	29	1748	88	20	468	4	289	6			139	13		
Planas(11)	3xmRNAvac+ BA.1/2 BTI	VaxCCP	16	25000	700	36	1000	25	2000	13	600	42				
Planas(11)	3xmRNAvac+ BA.5 BTI	VaxCCP	15	30000	3000	10	10000	3	9000	3	900	33				
Davis(12)	3xmRNAvac	Vac only	12	758	19	40	50	15			23	33				
Kurhade(13)	4xmRNAvac	Vac only	25	1533	22	70	95	16	62	25	26	59	15	102	69	22
Cao(3)	3xCorVac	Vac only	40	652	24	27	72	9	21	31	90	7	20	33	45	14
Zou(9)	4xBNT162b2	Vac only	20	1325	26	51	89	15	92	14	37	36	17	78		
Planas(11)	3xmRNAvac	Vac only	10	1500	40	38	60	25	60	25	10	150				
Wang(14)	3xmRNAvac	Vac only	14	7687	139	55	628	12					108	71		

Wang(14)	3xmRNAvac--BQ.1	Vac only	14		208	37										
Wang(14)	3xmRNAvac+monovalent	Vac only	19	21182	261	81	1540	14						137	155	
Wang(14)	3xmRNAvac+monovalent--BQ.1	Vac only	19		496	43										
Wang(14)	3xmRNAvac+bivalent	Vac only	21	13736	337	41	1688	8						162	85	
Wang(14)	3xmRNAvac+bivalent--BQ.1	Vac only	21		568	24										
Davis(12)	3xmRNAvac+monovalent	Vac only	12	1812	53	34	142	13				65	28			
Akerman(16)	4xmRNA	Vac only	23	1141	80	14	257	4	179	6				117	10	
Akerman(16)	3xmRNAvac after 2020 WA-1	Vac only	47	1075	70	15	212	5	110	10				54	20	
Kurhade(13)	3xmRNAvac+bivalent	Vac only	29	3620	73	50	298	12	183	20	98	37	35	103	305	12
Davis(12)	3xmRNAvac+bivalent	Vac only	12	2312	112	21	576	4			201	12				
Qu(8)	3xmRNAvac--BQ.1	Vac only	15		140	19										
Qu(8)	3xmRNAvac	Vac only	15	2616	114	23	300	9	246	11	589	4			238	11
Zou(9)	3xBNT162b2+bivalent	Vac only	18	2237	143	16	518	4	524	4	117	19	55	41		
Planas(11)	3xmRNAvac	Vac only	18	6000	200	30	300	20	300	20	60	100				
Miller(10)	3xBNT162b2	Vac only	16	45695	261	175	887	52			387	118			595	77
Miller(10)	3xmRNA+ monovalent	Vac only	18	21507	406	53	2829	8			745	29			2276	9
Miller(10)	3xmRNA +bivalent	Vac only	15	40515	508	80	3693	11			883	46			2399	17
Qu(8)	BA.4/5 inf (17-unvac)	Inf only	20	707	66	11	190	4	180	4	210	3			162	4
Qu(8)	BA.4/5 inf (17-unvac)--BQ.1	Inf only	20		68	10										
Qu(8)	Hosp BA.1 (6-unvac;5-2xmRNAvac)	Inf only	15	720	145	5	263	3	205	4	186	4			227	3
Qu(8)	Hosp BA.1 (6-unvac;5-2xmRNAvac)--BQ.1	Inf only	15		135	5										
Zou(9)	3xBNT162b2+BTI	Preboost with BNT162b	20	2516	60	42	226	11	283	9	126	20	55	46		
Zou(9)	3xBNT162b2 +BTI	Preboost with bivalent	19	1377	74	19	207	7	282	5	62	22	27	51		
Zou(9)	3xBNT162b2	Preboost with bivalent	18	226	11	21	20	11	24	9	14	16	12	19		
Zou(9)	3xBNT162b2	Preboost with BNT162b	20	303	17	18	30	10	36	8	18	17	13	23		
Akerman(16)	3xmRNA	Preboost	47	203	34	6	63	3	50	4				26	8	

Miller(10)	2xBNT162b2	Preboost with BNT162b	16	484	20	24	20	24			20	24			20	24
Miller(10)	3xmRNA	Preboost with bivalent	15	3633	45	81	211	17			33	110			131	28
Miller(10)	3xmRNA	Preboost with monovalent	18	5731	49	117	184	31			117	49			168	34

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

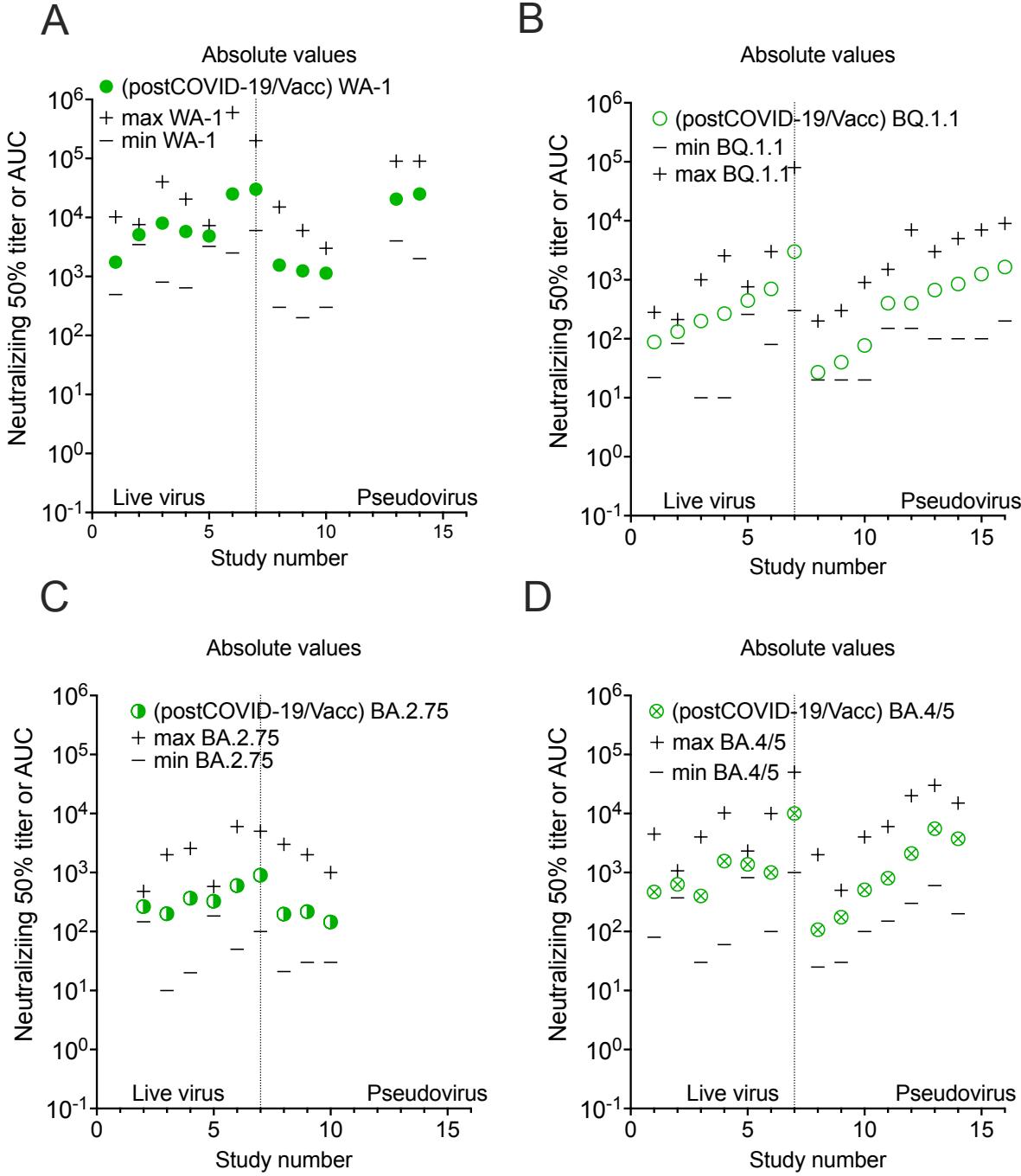
402

Supplementary Table 3

403

Neutralizing activity numbers (#) by study cohort.

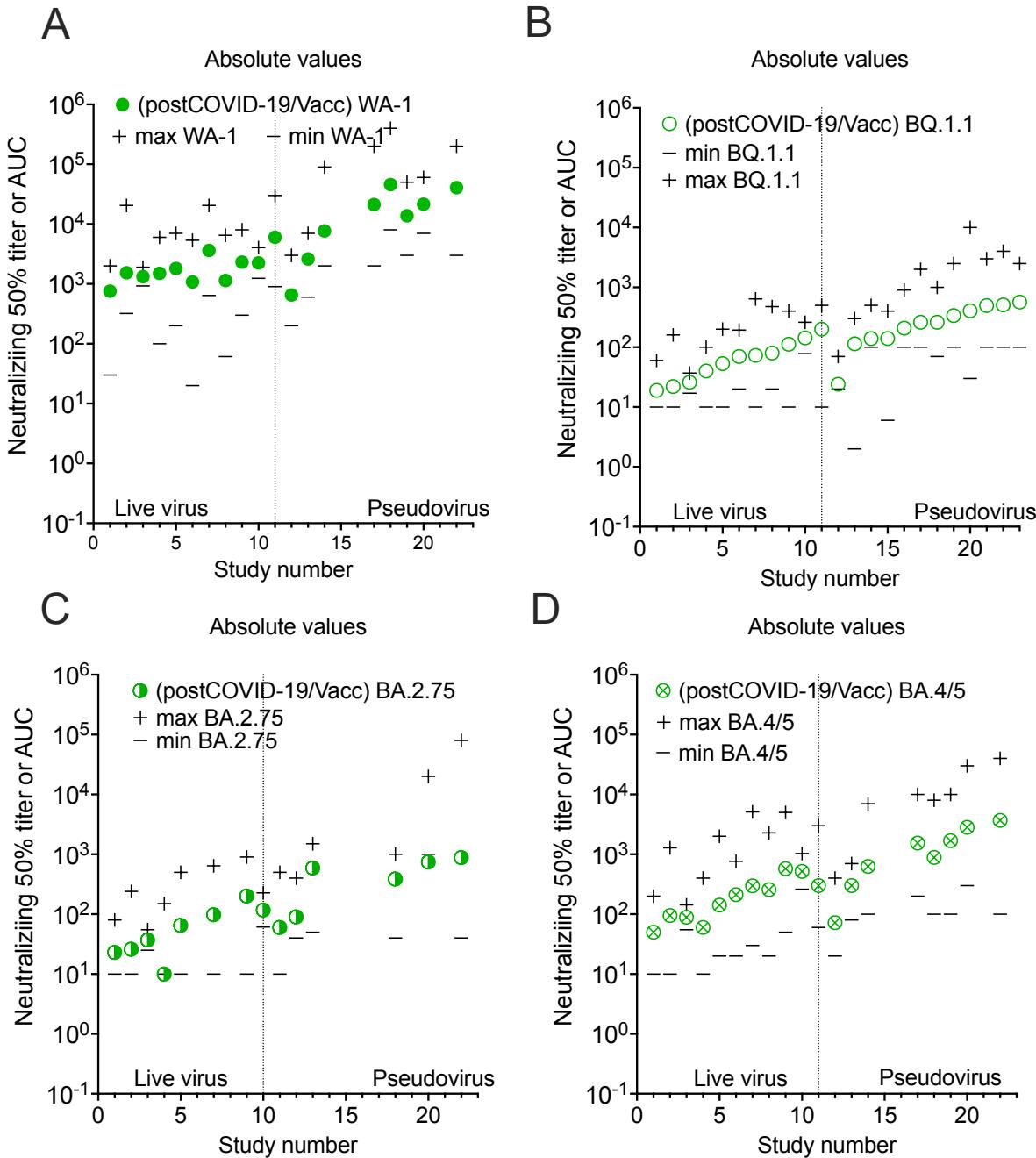
papers	Vaccine and COVID-19 history at sample time	groups	WA-1 number	WA-1 neutralizing number	BQ.1 .1 number	BQ.1.1 neutralizing number	BA.4 /5 number	BA.4/5 neutralizing number	BA.4 .6 number	BA.4.6 neutralizing number	BA.2. 75 number	BA.2.75 neutralizing number	XBB .1 number	XBB.1 neutralizing number	BF.7 number	BF.7 neutralizing number
Cao(3)	3xCorVac+BA.1 BTI	VaxCCP	50	50			50	50			50	50			50	49
Cao(3)	3xCorVac +BA.2 BTI	VaxCCP	39	39			39	39			39	39			39	38
Cao(3)	3xCorVac +BA.5 BTI	VaxCCP	36	36			36	36			36	36			36	36
Zou(9)	4xBNT162b2+BTI	VaxCCP	20	20	20	20	20	20	20	20	20	20	20	19		
Planas(11)	3xmRNAvac+ BA.1/2 BTI	VaxCCP	13	13	13	11	13	12	13	13	13	11				
Wang(14)	2-3xmRNAvac+ BA.2 BTI	VaxCCP	14	14	14	13	14	14					14	8		
Wang(14)	2-3xmRNAvac+ BA.2 BTI--BQ.1	VaxCCP			14	13										
Wang(14)	3-4xmRNAvac+ BA.4/5 BTI	VaxCCP	20	20	20	18	20	20					20	14		
Wang(14)	3-4xmRNAvac+ BA.4/5 BTI--BQ.1	VaxCCP			20	20										
Kurhade(13)	3xmRNAvac+bivalent+BTI	VaxCCP	23	23	23	22	23	23	23	23	23	23	23	22	23	23
Ito(15)	2- 3xmRNAvac+BA.2 BTI	VaxCCP			14	11	14	13								
Ito(15)	2- 3xmRNAvac+BA.5 BTI	VaxCCP			20	14	20	20								
Zou(9)	3xBNT162b2+bivalent+BTI	VaxCCP	19	19	19	19	19	19	19	19	19	20	19	19		
Akerman (16)	3xmRNA +bivalent	VaxCCP	29	20	29	29	29	29	29	29			29	29		
Planas(11)	3xmRNAvac+ BA.1/2 BTI	VaxCCP	16	16	16	16	16	16	16	16	16	16				
Planas(11)	3xmRNAvac+ BA.5 BTI	VaxCCP	15	15	15	15	15	15	15	15	15	15				
Davis(12)	3xmRNAvac	Vac only	12	12	12	6	12	11			12	9				
Kurhade(13)	4xmRNAvac	Vac only	25	25	25	15	25	23	25	22	25	17	25	8	25	21
Cao(3)	3xCorVac	Vac only	40	40			40	39			40	40			40	37
Zou(9)	4xBNT162b2	Vac only	20	20	20	15	20	8	20	19	20	19	20	10		


Planas(11)	3xmRNAvac	Vac only	10	10	10	6	10	7	10	5	10	3				
Wang(14)	3xmRNAvac	Vac only	14	14	14	5	14	14					14	3		
Wang(14)	3xmRNAvac--BQ.1	Vac only			14	6										
Wang(14)	3xmRNAvac+mono valent	Vac only	19	19	19	15	19	19					19	8		
Wang(14)	3xmRNAvac+mono valent--BQ.1	Vac only			19	16										
Wang(14)	3xmRNAvac+bivale nt	Vac only	21	21	21	16	21	21					21	9		
Wang(14)	3xmRNAvac+bivale nt--BQ.1	Vac only			21	18										
Davis(12)	3xmRNAvac+mono valent	Vac only	12	12	12	9	12	12			12	10				
Akerman (16)	4xmRNA	Vac only	23	23	23	20	23	23	23	22			23	17		
Akerman (16)	3xmRNAvac after 2020 WA-1	Vac only	47	46	47	34	47	45	47	43			47	32		
Kurhade(13)	3xmRNAvac+bivale nt	Vac only	29	29	29	26	29	29	29	28	29	28	29	20	29	28
Davis(12)	3xmRNAvac+bivale nt	Vac only	12	12	12	10	12	12			12	11				
Qu(8)	3xmRNAvac--BQ.1	Vac only			15	14										
Qu(8)	3xmRNAvac	Vac only	15	15	15	12	15	15	15	15	15	14			15	14
Zou(9)	3xBNT162b2+bivale nt	Vac only	18	18	19	18	18	18	19	19	19	18	19	18		
Planas(11)	3xmRNAvac	Vac only	18	18	18	16	18	18	18	18	18	13				
Miller(10)	3xBNT162b2	Vac only	16	16	16	16	16	16			16	16			16	16
Miller(10)	3xmRNA+ monovalent	Vac only	18	18	18	18	18	18			18	18			18	18
Miller(10)	3xmRNA+bivalent	Vac only	15	15	15	15	15	15			15	15			15	15
Qu(8)	BA.4/5 inf(17- unvac)	Inf only	20	20	20	12	20	15	20	14	20	15			20	14
Qu(8)	BA.4/5 inf(17- unvac)--BQ.1	Inf only			20	11										
Qu(8)	Hosp BA.1 (6- unvac;5- 2xmRNAvac)	Inf only	15	14	15	13	15	11	15	12	15	8			15	14

Qu(8)	Hosp BA.1 (6-unvac;5-2xmRNAvac)--BQ.1	Inf only			15	14									
Zou(9)	3xBNT162b2+BTI	Preboost with BNT162b	20	20	20	16	20	19	20	19	20	17	20	17	
Zou(9)	3xBNT162b2 +BTI	Preboost with bivalent	19	19	19	16	19	19	19	19	19	17	19	12	
Zou(9)	3xBNT162b2	Preboost with bivalent	18	18	19	1	18	9	19	9	19	5	19	2	
Zou(9)	3xBNT162b2	Preboost with BNT162b	20	19	20	6	20	12	20	12	20	8	20	5	
Akerman (16)	3xmRNA	Preboost	23	23	23	16	23	21	23	19			23	14	
Miller(10)	2xBNT162b2	Preboost with BNT162b	16	16	16	6	16	5			16	7			16 4
Miller(10)	3xmRNA	Preboost with bivalent	15	15	15	13	15	15			15	9			15 14
Miller(10)	3xmRNA	Preboost with monovalent	18	18	18	15	18	18			18	18			18 17

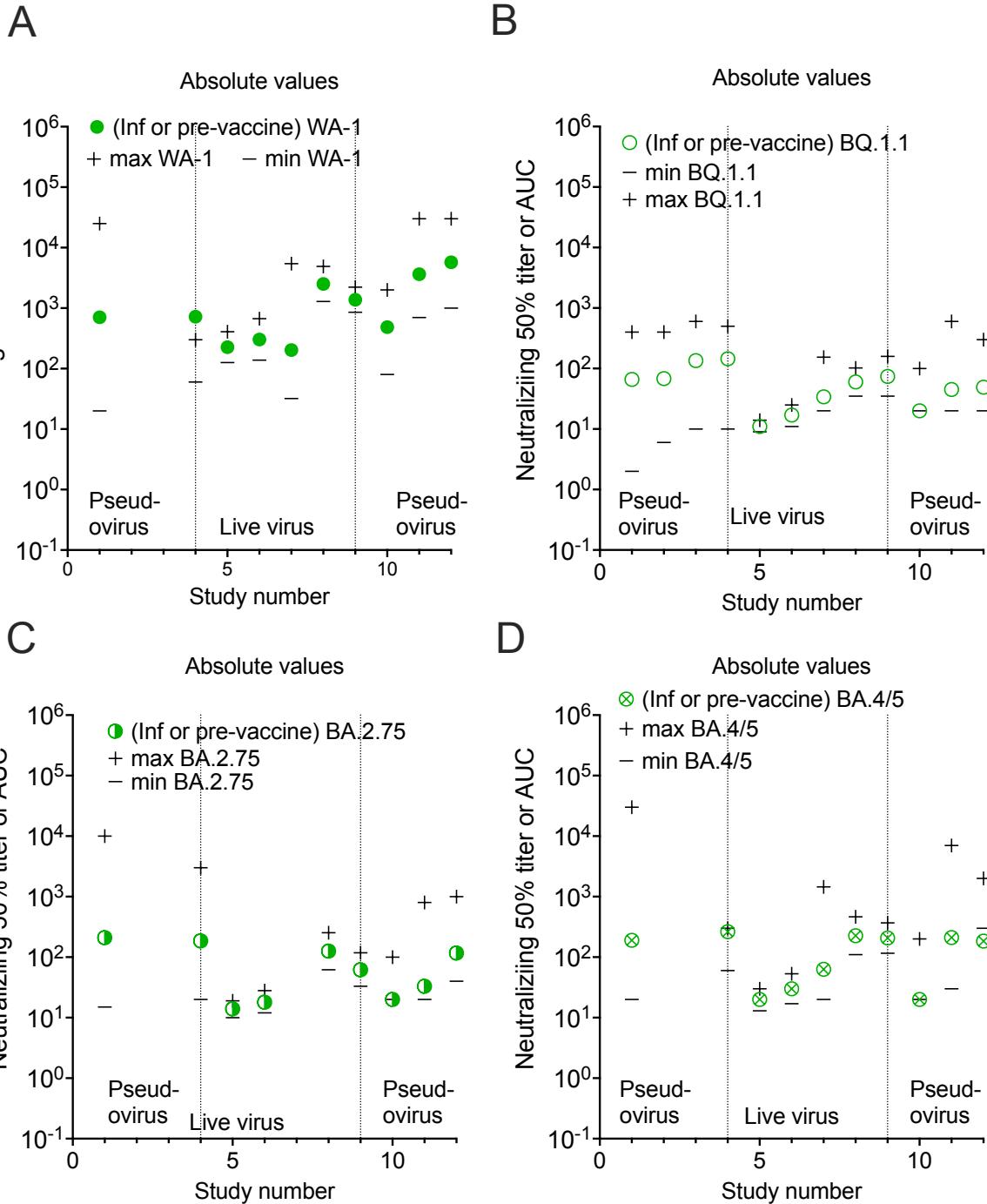
404

405 **Supplementary Figure 1**


406 Plasma GMT₅₀ from post boosted vaccinations and COVID-19 sorted by study cohort with live virus
407 assays on the left and pseudovirus on right, with individual sample minimum and maximum
408 dilution titer also shown. A) WA-1; B) BQ.1.1; C) BA.2.75; D) BA.4/5.

409
410
411

412 **Supplementary Figure 2**


413 Plasma GMT₅₀ from boosted vaccinations only without COVID-19 sorted by study cohort with
414 live virus assays on the left and pseudovirus on right with individual sample minimum and
415 maximum dilution titer also shown. A) WA-1; B) BQ.1.1; C) BA.2.75; and D) BA.4/5.

422 **Supplementary Figure 3**

423 Plasma GMT₅₀ from Omicron infection alone and also pre-boosted in 2021 or 2022 6 to 11 months
424 after last vaccine dose sampled sorted by study cohort with live virus assays on the left and
425 pseudovirus on right with minimum and maximum dilution titer also shown. A) WA-1; B) BQ.1.1;
426 C) BA.2.75; and D) BA.4/5.

427

428