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Abstract

Immune receptor proteins play a key role in the immune system and have shown great promise as
biotherapeutics. The structure of these proteins is critical for understanding their antigen binding
properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately
predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell
receptors (TCRBuilder2). We show that ImmuneBuilder generates structures with state of the art
accuracy while being far faster than AlphaFold2. For example, on a benchmark of 34 recently solved
antibodies, ABodyBuilder2 predicts CDR-H3 loops with an RMSD of 2.81A, a 0.09A improvement
over AlphaFold-Multimer, while being over a hundred times faster. Similar results are also achieved
for nanobodies, (NanoBodyBuilder2 predicts CDR-H3 loops with an average RMSD of 2.89A, a 0.55A
improvement over AlphaFold2) and TCRs. By predicting an ensemble of structures, ImmuneBuilder
also gives an error estimate for every residue in its final prediction. ImmuneBuilder is made freely
available, both to download (https://github.com/oxpig/ImmuneBuilder) and to use via our webserver
(http://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred). We also make available structural models
for ~150 thousand non-redundant paired antibody sequences (https://zenodo.org/record/7258553).
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1 Introduction

1.1 Immune receptor proteins

The adaptive immune system in humans is effec-
tive at identifying and neutralising a wide range
of pathogens. To achieve this, immune cells have
developed antigen-specific proteins such as T-cell
receptors (TCRs) or, in the case of B-cells, anti-
bodies. While antibodies are capable of binding
with great affinity and specificity to the surface of
almost any antigen, TCRs target digested pieces

of intracellular proteins that are presented on the
cell surface by the major histocompatibility com-
plex (MHC). Due to their key role in identifying a
wide range of antigens, antibodies and TCRs have
become proteins of particular interest for thera-
peutic development, with several TCR drugs in
clinical trials [1] and over a hundred approved
antibody drugs [2, 3]. Nanobodies, single-domain
antibodies naturally found in organisms such as
camelids and sharks, have also received significant
interest as therapeutics, with a recently accepted
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Fig. 1 Structural representation of an antibody variable domain (PDB code 1GIG), a TCR variable domain (PDB code
7SU9) and a nanobody (PDB code 4LAJ) with labelled regions. The heavy and beta chains are shown in green while the
light and alpha chains are blue. As these structures show, antibodies and TCRs are structurally similar and the nanobody
is also similar to an individual chain of an antibody or TCR. However, their CDR loops occupy distinct areas of structural

space.

nanobody drug and a number undergoing clinical
trials [4].

All three of these immune proteins are built
up from immunoglobulin (Ig) domains with the
binding site either sitting between two Ig domains
in the case of antibodies (VH and VL) and TCRs
(Va and V), or being found at the tip of one Ig
domain (VHH), in the case of nanobodies.

The binding site of antibodies and TCRs is
concentrated in six loops, three on each of the two
Ig domains known collectively as the complemen-
tarity determining regions (CDRs). In nanobodies
the binding site is concentrated in only three CDR
loops on its single Ig domain. These CDR loops
show variable length, composition and structure
with the most variable being CDR-H3 in the case
of antibodies and nanobodies [5]. This loop also
tends to be the largest contributor to the binding
site [6]. An example of the structure of an anti-
body variable domain, a TCR variable domain and
a nanobody are shown in Figure 1.

Despite the similarities in the global structure
of antibodies, TCRs and nanobodies, their binding
sites are known to have distinct properties and
their CDRs have different length distributions as
well as occupying distinct areas of structural space
[7, 8].

As with many proteins, the availability of
sequence data far outstrips structural informa-
tion [9-13], but structural information allows for a
more in-depth understanding than studies focused
on sequence alone [14]. For example, knowledge of
CDR loop conformations has been used to help

identify antibodies that bind to similar targets
[15], while accurate knowledge of side chain atom
placement can aid in identifying key interactions
in antibody-antigen binding [16, 17].

1.2 Structure Prediction

Experimental structure determination is time-
consuming and expensive [18]. Computationally
predicted structural models can be used to circum-
vent this problem. This is particularly the case for
immune proteins, as next-generation sequencing
of immune receptor repertories is now routinely
used in the study of the adaptive immune sys-
tem [19, 20]. These methods enable researchers
to obtain millions of sequences per study, mak-
ing structural analysis of this data a challenge.
For example, Observed Antibody Space (OAS)
contains over two billion antibody heavy chain
sequences and is growing rapidly [9, 10]. If this
huge amount of sequence data is to even partially
be analysed in terms of structure, rapid accurate
methods for the prediction of antibody structures
are required.

AlphaFold2 is a deep learning method that
has revolutionised the field of computational pro-
tein structure prediction, achieving near exper-
imental accuracy for a large number of single
chain proteins [21]. This was then extended to
AlphaFold-Multimer to accurately predict pro-
tein complexes [22]. Many methods have followed
from AlphaFold2 and AlphaFold-Multimer but
these remain the de facto gold standard for single
domains and complexes [23-25].
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The AlphaFold2 model can be divided into
two main steps: In the first step, the Evoformer
module is used to extract evolutionary couplings
from alignments of many protein sequences into
information-rich embeddings. It then uses these
embeddings in the structure module to predict the
3D structure of a given protein sequence.

Structure prediction methods specific to a cer-
tain class of protein tend to outperform more
general methods [26, 27]. By using knowledge spe-
cific to a type of protein, they can easily predict
the conserved regions in that protein allowing
greater focus on harder details. For example,
DeepH3 was shown to outperform TrRosetta on
antibodies [28, 29], while Nanonet obtains results
of similar accuracy to AlphaFold2 on nanobodies
with a far simpler architecture [30]. More recent
examples of this are IgFold [25] and EquiFold [31],
where the authors trained antibody-specific mod-
els that predict structures of comparable accuracy
to AlphaFold-Multimer.

In this paper we present ImmuneBuilder, a set
of deep learning models developed to predict the
structure of proteins of the immune system. By
training on specific proteins types, we are able to
create rapid accurate models, enabling ImmuneB-
uilder to be routinely used on large sequence data
sets. We have built three models, ABodyBuilder2,
an antibody specific model, NanoBodyBuilder2,
a nanobody specific model and TCRBuilder2 a
TCR specific model. We show that these meth-
ods perform at least as well as state of the art
methods for their respective protein types while
predicting structures in a fraction of the time. We
also demonstrate that these methods both accu-
rately predict details of the structure and create
physically and biologically sensible structures.

The three ImmuneBuilder models are made
freely available for download and as web-servers.

2 Results

Throughout the results section we will show the
results for ABodyBuilder2 (AB2) on antibodies
with the results for NanoBodyBuilder2 (nanobod-
ies) and TCRBuilder2 (TCRs) given in the SI. All
three methods show qualitatively similar results.

We compare AB2 to several other meth-
ods. These methods are a homology modelling
method (the original version of ABodyBuilder

[32] (ABB)), one general protein structure predic-
tion method (AlphaFold-Multimer [22] (AFM)),
and three antibody-specific methods (ABlooper
[33] (ABL), IgFold [25] (IgF) and EquiFold [31]
(EqF)). As a benchmark, we selected a non-
redundant set of 34 antibody structures recently
added to SAbDAb [11, 13] (see methods). This
was done so none of the antibody structures in the
benchmark would have been seen during training
for any of the benchmarked methods. To give a
complete picture of how these methods perform,
we carryout a comprehensive benchmark using five
different measures. Figure 2 shows an example
of a prediction by ABodyBuilder2, highlighting
important aspects of structural modelling.

2.1 Accuracy of prediction

To measure how accurately the backbone atoms
are predicted, the RMSD between predicted and
true structures for each antibody region were com-
pared. The RMSD for each CDR and framework is
computed by aligning each antibody chain to the
crystal structure and then calculating the RMSD
between the C,, N, C and Cs atoms. Regions are
defined using the IMGT numbering scheme [34].
The results of this analysis are shown in Table 1.
In SI tables A1 and B2 we give the results for the
same tests for nanobodies and TCRs respectively.

The experimental error in protein structures
generated via X-ray crystallography has been esti-
mated to be around 0.6A for regions with organ-
ised secondary structure (such as the antibody
frameworks) and around 1A for protein loops [35].
On average, the predicted structures for most of
the antibody regions using any method have errors
within the range of what would be expected from
experimentally resolved crystal structures. The
exception to this is CDR-~-H3, where all methods
make the worst predictions.

ABodyBuilder2 is the most accurate method
at predicting the structure of CDR-H3 (RMSD of
2.81A), closely followed by AlphaFold-Multimer
(RMSD of 2.90A). EquiFold, IgFold and ABlooper
generate structures with CDR-H3 loops around
10% less accurate than ABodyBuilder2 and
AlphaFold-Multimer. The worst method for pre-
dicting CDR-H3 loops is the original version of
ABodyBuilder, showcasing how deep learning has
improved our ability to model.
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Method CDR-H1 CDR-H2 CDR-H3 Fw-H CDR-L1 CDR-L2 CDR-L3 Fw-L
ABodyBuilder (ABB) 1.53 1.09 3.46 0.65 0.71 0.55 1.18 0.59
ABlooper (ABL) 1.18 0.96 3.34 0.63 0.78 0.63 1.08 0.61
IgFold (IgF) 0.86 0.77 3.28 0.58 0.55 0.43 1.12 0.60
EquiFold (EqF) 0.86 0.80 3.29 0.56 0.47 0.41 0.93 0.54
AlphaFold-M (AFM) 0.86 0.68 2.90 0.55 0.47 0.40 0.83 0.54
ABodyBuilder2 (AB2) 0.85 0.78 2.81 0.54 0.46 0.44 0.87 0.57

Table 1 Comparison between ABodyBuilder, ABlooper, IgFold, EquiFold, AlphaFold-Multimer and ABodyBuilder2 at
predicting the backbone atoms for each chain. The mean RMSD to the crystal structure across the test set for each of the

six CDRs and framework is shown. RMSDs are given in Angstroms (A).

2.2 Heavy and light chain packing

As described in the introduction, in antibodies the
binding site sits between the heavy and light chain
variable regions (VH and VL). With half of the
CDRs on each chain, the relative VH-VL orienta-
tion can have a significant impact on the structure
of the binding site. To quantify how accurate each
method is at predicting the relative orientation
between chains, in Table 2 we show the average
absolute error in the five angles (Hl, HC1, HC2,
LC1, LC2) and distance (dc) that fully charac-
terise VH-VL orientation [36]. A brief description
of how these values are defined is given in the
SI, for a more complete description see [36]. The
results for TCR domains are given in SI Table B2.

Method HL HC1 LC1 HC2 LC2 dc

Xtal 1.18 0.48 0.75 0.62 0.80 0.11

ABB 0.83 1.09 0.82 1.81 0.90 0.10
ABL 0.80 0.97 0.83 1.70 0.90 0.12
Igk 0.63 0.91 0.71 1.40 0.74 0.14
EqF 0.64 0.98 0.64 1.68 0.72 0.11
AFM 0.67 0.74 0.69 1.45 0.63 0.11
AB2 0.64 0.90 0.66 1.37 0.61 0.12

Table 2 Comparison of VH-VL orientation between
ABodyBuilder (ABB), ABlooper (ABL), IgFold (IgF),
EquiFold (EqF), AlphaFold-Multimer (AFM) and
ABodyBuilder2 (AB2). Values shown were calculated
using ABangle [36]. HL, HC1, LC1, HC2, LC2 and dc are
defined in the ST and [36]. The error in the angles HL, HC1,
LC1, HC2 and LC2 is shown in degrees with the error in
the distance dc given in Angstroms (A). The average
standard deviation observed in antibodies experimentally
resolved over five times is shown for comparison (Xtal).

As an upper bound for the accuracy of pre-
dicted structures, the average standard deviation
of the VH-VL orientation measurements in 55
antibodies with structures resolved over five times
is shown in Table 2. In the original study [36], the
vector dc was chosen as an axis as it was found

to be the most conserved amongst antibody struc-
tures. All of the benchmarked methods predict
this distance with very high accuracy. All meth-
ods are also accurate at predicting the angles, with
small errors with respect to what is observed in
experiments. However, small deviations in these
angles will still have an impact on the structure of
the binding site. ABodyBuilder2 is on average the
most accurate method at heavy and light chain
packing by a small margin.

2.3 Side chain and chemical surface
accuracy

During binding, an antigen will mostly form inter-
actions via side chain atoms on the surface. There-
fore to be able to study antigen binding, predicted
antibody structures must accurately model the
position of side chain atoms and whether they
are exposed on the surface or buried. To bench-
mark the accuracy of side-chain modelling we use
a method similar to [37], where a side chain torsion
angle is considered correct if it is within 40 degrees
of the true conformation. The original implemen-
tation of ABodyBuilder will occasionally fail to
predict a side chain, this is treated as an incorrect
prediction. A residue is labelled as buried if its rel-
ative solvent accessibility (calculated as described
n [38]) is below 7.5%. The results of this analy-
sis are given in Table 3 for ABodyBuilder2 and in
SI Tables A1 and B2 for Nanobodies and TCRs
respectively.

As ABlooper and IgFold are deep learning
methods that only predict the backbone (leaving
side chain prediction to OpenMM [39] and Rosetta
[40] respectively), it is perhaps not surprising
that they are the least accurate at modelling the
chemical surface. EquiFold, AlphaFold-Multimer
and ABodyBuilder2, all of which output all-atom
structures, predict the x1 and x2 side chain
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Fig. 2 Example of an antibody structure predicted with ABodyBuilder2. The heavy chain is shown in green, the light
chain in blue and the crystal structure in white. The figure on the left shows the overall Fv structure, demonstrating how
ABodyBuilder2 accurately predicts the relative orientation between the heavy and light chain. The figures on the right focus
on the structure of CDR loops. The top image showcases the accuracy of ABodyBuilder2 at modelling side chain atoms
and the bottom image shows its accuracy at predicting the backbone of CDR loops.

Method x1 X2 x3 x4 E/B
ABB 0.81 0.77 0.63 0.56 0.92
ABL 0.75 070 0.60 0.53 0.90
IgF 0.77 066 0.54 0.52 091
EqF 0.84 071 061 055 0.94
AFM 0.85 0.77 059 0.58 0.91
AB2 0.85 0.78 0.63 0.52 0.91

Table 3 Comparison of surface accuracy for

ABodyBuilder (ABB), ABlooper (ABL), IgFold (IgF),

EquiFold (EqF), AlphaFold-Multimer (AFM) and

ABodyBuilder2 (AB2). Values shown are percentages

representing the accuracy when modelling each of the first

four torsion angles of the side chain (x) if they exist. E/B

gives the accuracy at predicting whether a residue is

exposed or buried.

atoms with high accuracy while struggling to
model longer side chains. The original implemen-
tation of ABodyBuilder predicts side chains with
comparable accuracy to AlphaFold-Multimer and
ABodyBuilder2. All methods are highly accurate
at predicting whether a residue is exposed or
buried, EquiFold is the most accurate.

2.4 Physical plausibility and
accurate stereochemistry

Although deep learning models are trained on
crystal structures, they will occasionally predict

conformations that are very rare or do not occur
in nature. We next check for the presence of
steric clashes, cis-peptide bonds, D-amino acids,
or bonds with nonphysical lengths in the mod-
els generated by each method. For bond lengths,
only the peptide bond is checked as all other
bond lengths are fixed to their literature value
in all benchmarked methods but ABlooper and
EquiFold.

ABodyBuilder2 and AlphaFold-Multimer both
generate structures of comparable quality to
experimentally resolved ones, whereas IgFold
appears to generate a number of cis-peptide bonds
and clashes even after being refined with Rosetta
[40]. EquiFold does not use an energy based
method to refine its predicted structures and
hence all of the structures it generates are unphys-
ical. This shows that a refinement step is still
necessary to ensure structures generated by deep
learning based methods are realistic (Table 4).

The results for TCRs and nanobodies are
shown in SI Tables A1 and B2 respectively.
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Method ~Leptide  D-amino o p 4 cpach
bond acid
Xtal 0 0 0 0
ABB 19 0 3 9
ABL* 1 0 1 1
IgF 0 0 51 10
EqF 271 4 2 765
AFM 0 0 0 0
AB2 0 0 0 0

Table 4 Quality check for models generated using
ABodyBuilder (ABB), ABlooper (ABL), IgFold (IgF),
EquiFold (EqF), AlphaFold-Multimer (AFM) and
ABodyBuilder2 (AB2). The errors observed in
experimentally resolved crystal structures (Xtal) are also
shown for comparison. A peptide bond length is
considered to be incorrect if it is more than 0.1A away
from its literature value. Peptide bonds including a
proline were not included in the calculation of cis-isomers.
Two non-bonded heavy atoms are considered to be
clashing when they are closer than 0.63 times their
Van-der-Waals radius [37]. (*) Calculated using the latest
version of ABlooper, updated since publication to reduce
the number of D-amino acids and cis-isomers.

2.5 Computational cost

The original version of AlphaFold-Multimer is by
far the most computationally expensive of the
benchmarked methods. It requires over one ter-
abyte of sequence data and takes around three
hours to generate one structure when run on five
CPUs. Significant speed-ups can be obtained by
reducing the size of the sequence database, using
faster sequence alignment algorithms, or using
GPUs [41, 42]. Even with these modifications it
takes around thirty minutes on a GPU to generate
a single structure. All other methods benchmarked
can be run on five CPUs in under a minute, with
the fastest being EquiFold due to its lack of a
refinement step. This makes them all well suited
for high throughput structural modelling of next-
generation sequencing data. ABodyBuilder2 can
also be sped up significantly by using a GPU tak-
ing around five seconds to generate an antibody
structure on a Tesla P100.

2.6 Error estimation

ABodyBuilder2 predicts four structures for each
antibody. We found that the diversity between
predictions, as in ABlooper, can be used to esti-
mate the uncertainty in the final prediction. If the
structures predicted by all four models disagree in
a region then the final prediction for this region is
likely to be incorrect. This allows ABodyBuilder2
to give a confidence score for each residue that can

be used to filter for incorrectly modelled struc-
tures. In Figure 3 we show how the root mean
squared predicted error (RMSPE) for CDR-H3
residues correlates with CDR-H3 RMSD.

Error estimation for CDR-H3
1.75 °

CDR-H3 RMSPE (&)

CDR-H3 RMSD (A)

Fig. 3 Scatter plot showing the CDR-H3 RMSD against
the root mean squared predicted error for all structures in
the benchmark. The line shown is the best fit with the 95%
confidence interval shown as the shaded area around it.

A low predicted error does not necessarily
indicate an accurate structure. However, a high
predicted error works as a good filter for remov-
ing inaccurate models. For example, if a predicted
error cut-off of around 1A is set for the current
benchmark, it would remove 6 structures with an
average RMSD of 4.20A. The average CDR-H3
RMSD for the remaining set would then be 2.52A.

3 Discussion

We present ImmuneBuilder, a set of three open
source and freely available tools for modelling
immune proteins capable of rapidly generating
accurate antibody, TCR, and nanobody struc-
tures. ImmuneBuilder can produce structures of
antibodies and TCRs with accuracy comparable
to AlphaFold-Multimer while being over a hun-
dred times faster and without the need for large
sequence databases. ABodyBuilder2 is shown to
be the most accurate of the antibody-specific tools
and the only one to consistently predict structures
with correct stereochemistry.

By measuring the variability between predic-
tions, ImmuneBuilder is able to provide an error
estimate for each residue. In combination with
its prediction speed and accuracy, the ability to
filter for incorrect models make it a useful tool
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for incorporating structural information into data
from next-generation sequencing experiments.

To further demonstrate the wusefulness of
ImmuneBuilder, we predicted the structure of
around 148 thousand non-redundant paired anti-
body sequences from OAS [10] and make these
freely available at (https://zenodo.org/record/
7258553).

4 Methods

In the methods section we describe in detail the
data and models for creating ABodyBuilder2.
Details for NanoBodyBuilder2 and TCRBuilder2
are given in the SI.

4.1 Data

The data used to train, test, and validate ABody-
Builder2 was extracted from SAbDab [11], a
database containing all antibody structures in the
PDB [43]. The training data was extracted on the
31st of July 2021 resulting in a total of 7084 struc-
tures. Filters were used to ensure structures in the
training data had both the VH and VL chains and
were not missing residues other than at the start
and end of the chain. Structures with the same
amino acid sequence were kept in the training
data to expose the model to antibodies with mul-
tiple conformations. As a validation set, we used
the set of 49 antibodies in the Rosetta Antibody
Benchmark. Structures with the same sequence as
antibodies in the validation set were removed from
the training set.

For the test data, we extracted all PDB files
containing antibody Fv structures in SAbDab
added between the 1st of August 2021 and the
1st of June 2022. Only crystal structures resolved
by X-ray diffraction and with a resolution bet-
ter than 2.3A were kept. A set of non-redundant
Fvs were then selected from these and further fil-
tered to remove antibodies with CDR-H3s longer
than 22 amino acids and structures with miss-
ing residues. Finally, it was ensured that there
were no structures with the same sequence in the
test, training, and validation sets. This resulted
in the set of 34 Fvs that was used to benchmark
ABodyBuilder2 against other methods. A full list
of PDB codes for structures used in the train-
ing, validation and test set are given at https:
//github.com/oxpig/ImmuneBuilder.

Antibody sequence

H: [ QVHLVQSGAEVKKPGASVKAGVNT (. . .) |

L: [DIoMTQSPSSLSASVGDRVNIACR(. . .) |

I
[ ABodyBuilder2 model ]

!

~

Ensemble of four structures
- /

[ Model selection ]

r .

Top ranked prediction
. J

Structural refinement
with OpenMM
~

(Final structure

Fig. 4 Pipeline used to predict structures by ABody-
Builder2. First, the heavy and light chain sequences are
fed into four separate deep learning models to predict an
ensemble of structures. The closest structure to the average
is then selected and refined using OpenMM [39] to remove
clashes and other stereo-chemical errors. The same pipeline
is used for NanoBodyBuilder2 and TCRBuilder2.
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4.2 Deep learning architecture

The architecture of the deep learning model
behind ABodyBuilder2 is an antibody-specific
version of the structure module in AlphaFold-
Multimer with several modifications. Residues are
treated as rigid bodies, each one defined by a 3D
point in space and a matrix representing its ori-
entation. The input node features are a one-hot
encoded representation of the sequence and the
input edge features are relative positional encod-
ings. At the start, all residues are set at the origin
with the same orientation.

The model is composed of eight update blocks
run sequentially. At every iteration, the node fea-
tures are first updated in a structurally aware
way using the Invariant Point Attention layer,
and then residue coordinates and orientations are
updated using the Backbone Update layer. For
further details on how these layers work, see the
original AlphaFold2 paper [21]. Finally, torsion
angles for each residue are predicted from node
features and are then used to reconstruct an all-
atom structure using hard-coded rules. Unlike
AlphaFold-Multimer, all blocks have their own
weights.

The main term in the loss function is the Frame
Aligned Point Error (FAPE) loss, which quanti-
fies how structurally similar the true and predicted
structures are in the local reference frame of each
residue. For details see [21]. In AlphaFold2, the
FAPE loss is clamped at 10A focusing on cor-
rectly placing residues relative to those closest
to it. Similar to AlphaFold-Multimer, a modified
version of FAPE loss is used for ABodyBuilder2
in which more focus is given to correctly plac-
ing CDR residues relative to the framework. This
is achieved by clamping the FAPE loss at 30A
when it is calculated between framework and CDR,
residues and at 10A otherwise. The final loss term
is a sum of the average backbone FAPE loss after
every backbone update and the full atom FAPE
loss from the final structure.

As is done in AlphaFold2, a structural vio-
lation term is added to the loss function. This
penalises nonphysical conformations with a term
for bond angles, bond distances, and clashing
heavy atoms. In our models, this term was
reduced by an order of magnitude with respect to
AlphaFold2 as this was found to slightly improve
prediction accuracy without significantly harming

the physicality of the final prediction. Finally, the
side-chain and backbone torsion angle loss from
AlphaFold2 is also used.

Each model was trained in two stages. In the
first stage, the structural violations term of the
loss function was set to zero and a dropout of
10% was used. The RAdam optimiser [44] was
used with a cosine annealing scheduler with warm
restarts every 50 epochs, learning rates between
le-3 and le-4, and a weight decay of le-3. For
the second stage, the structural violations loss is
added and dropout is set to zero. RAdam is also
used for this stage with a fixed learning rate of le-
4 and weight decay of 1le-3. To aid with stability,
the norm of gradients is clipped to a value of 0.1
in the second stage of training. For both stages,
a batch size of 64 is used and training is stopped
if there was no improvement in the validation set
after 100 epochs. On average, training took around
four weeks for each model on a single GPU.

4.3 Model selection

ABodyBuilder2 is composed of four deep learning
models trained independently to predict antibody
structures. To select the best prediction, we align
all predicted structures and choose as the final
prediction the closest one to the average. This
reduces the method’s sensitivity to small fluctua-
tions in the training set. It also results in a small
improvement in prediction accuracy.

4.4 Structural refinement

Although the models are encouraged to predict
physically plausible structures during training,
they will occasionally produce structures with
steric clashes, incorrect peptide bond lengths, or
cis-peptide bonds. A restrained energy minimisa-
tion procedure with OpenMM is used to resolve
these issues. The AMBERI14 protein force field
[45] with an added harmonic force term to keep
the heavy atoms of the backbone close to their
original positions is used. In the rare case when
two side chain atoms are predicted by the model
to be within 0.2A of each other, the clashing side
chains are deleted and remodelled using pdbfixer
[39]. AMBERI14 does not explicitly consider chi-
rality, so when the predicted structure contains
peptide bonds in the cis configuration, an addi-
tional force is added to flip their torsion angles
into the trans configuration.
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By design, the ABodyBuilder2 deep learning
model will always generate amino acids in their
L-stereoisomeric form. However, it was found that
during energy minimisation residues are occasion-
ally flipped into their D-stereoisomer. To fix this,
a method similar to that in [46] is used. First,
the chirality at the carbon alpha centre of each
D-stereoisomeric residue is fixed by flipping the
hydrogen atom. The structure is then relaxed
keeping the flipped hydrogen atoms in place before
a final minimisation.

4.5 Benchmarked methods

We compared ABodyBuilder2 to five other meth-
ods: AlphaFold-Multimer, EquiFold, IgFold, the
original version of ABodyBuilder and ABlooper.
AlphaFold-Multimer was run using the freely
available version of the code [22]. It was run with-
out the use of templates and using the updated
weights in version 2.2. This generated 25 struc-
tures per antibody out of which the top ranked
was selected for the benchmark. The public ver-
sion of their respective code bases (as of December
15th) was used to generate EquiFold [31] and
IgFold [25] models. As in their paper, Rosetta
[40] is used to minimise IgFold models. The orig-
inal version of ABodyBuilder [32] was run by
using the SAbBox Singularity container (https://
process.innovation.ox.ac.uk/software/p/20120-a/
sabbox-singularity-platform---academic-use/1)
from July 2022 excluding all templates with a
sequence identity of 99% or higher. ABlooper [33]
(version 1.1.2) was run to remodel the CDR loops
from the ABodyBuilder predictions. Structures
generated by all methods were numbered using
ANARCI [47].
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