

1 **Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect**
2 **against the BA.5 Omicron variant**

3

4 Suzanne M. Scheaffer¹, Diana Lee², Bradley Whitener¹, Baoling Ying¹, Kai Wu², Hardik Jani²,
5 Philippa Martin², Nicholas J. Amato², Laura E. Avena², Daniela Montes Berrueta², Stephen D.
6 Schmidt³, Sijy O'Dell³, Arshan Nasir², Gwo-Yu Chuang², Guillaume Stewart-Jones², Richard A.
7 Koup³, Nicole A. Doria-Rose³, Andrea Carfi², Sayda M. Elbashir^{2¶}, Larissa B. Thackray^{1¶}, Darin
8 K. Edwards^{2¶}, and Michael S. Diamond^{1,4,5,6,7¶}

9

10 ¹Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA

11 ²Moderna, Inc., Cambridge MA, USA

12 ³Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD,
13 USA

14 ⁴Department of Pathology & Immunology, Washington University School of Medicine, St. Louis,
15 MO, USA

16 ⁵Department of Molecular Microbiology, Washington University School of Medicine, St. Louis,
17 MO, USA

18 ⁶The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy
19 Programs, Washington University School of Medicine. St. Louis, MO, USA

20 ⁷Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of
21 Medicine, Saint Louis, MO, USA

22

23 ¶ Corresponding authors: Sayda M. Elbashir, Ph.D. (Sayda.Elbashir@modernatx.com), Larissa B.
24 Thackray, Ph.D. (lthackray@wustl.edu), Darin K. Edwards (Darin.Edwards@modernatx.com), and
25 Michael S. Diamond, M.D., Ph.D. (mdiamond@wustl.edu).

26

27

28 **ABSTRACT**

29 **The emergence of SARS-CoV-2 variants in the Omicron lineage with large numbers**
30 **of substitutions in the spike protein that can evade antibody neutralization has resulted in**
31 **diminished vaccine efficacy and persistent transmission. One strategy to broaden vaccine-**
32 **induced immunity is to administer bivalent vaccines that encode for spike proteins from both**
33 **historical and newly-emerged variant strains. Here, we evaluated the immunogenicity and**
34 **protective efficacy of two bivalent vaccines that recently were authorized for use in Europe**
35 **and the United States and contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-**
36 **1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary immunization series in**
37 **BALB/c mice, both bivalent vaccines induced broader neutralizing antibody responses than**
38 **the constituent monovalent vaccines (mRNA-1273 [Wuhan-1], mRNA-1273.529 [BA.1], and**
39 **mRNA-1273-045 [BA.4/5]). When administered to K18-hACE2 transgenic mice as a booster**
40 **at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines**
41 **induced greater breadth and magnitude of neutralizing antibodies compared to an mRNA-**
42 **1273 booster. Moreover, the response in bivalent vaccine-boosted mice was associated with**
43 **increased protection against BA.5 infection and inflammation in the lung. Thus, boosting**
44 **with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances**
45 **immunogenicity and protection against currently circulating SARS-CoV-2 strains.**

46 INTRODUCTION

47 The SARS-CoV-2 pandemic has caused more than 600 million infections and 6.4 million
48 deaths (<https://covid19.who.int>). In response to the global public health challenge, multiple
49 companies rapidly developed vaccines using several different platforms (*e.g.*, (lipid nanoparticle
50 encapsulated mRNA, inactivated virion, nanoparticle, or viral-vectored vaccine); some of these
51 vaccines have been approved by regulatory agencies in different parts of the world and deployed
52 in billions of people, resulting in reduced numbers of infections, hospitalizations, and COVID-19-
53 related deaths. The target antigen for most of these SARS-CoV-2 vaccines is the spike protein
54 derived from historical strains that circulated in early 2020. However, the continuing evolution of
55 SARS-CoV-2, resulting in amino acid changes in the spike protein amidst successive waves of
56 infection, has jeopardized the efficacy of global vaccination campaigns and the control of virus
57 transmission¹.

58 The SARS-CoV-2 spike protein binds to angiotensin-converting enzyme 2 (ACE2) on human
59 cells to facilitate viral entry and infection². The S1 fragment of the spike protein contains the
60 receptor binding domain (RBD), which is the primary target of neutralizing antibodies elicited by
61 vaccination or produced after natural infection³⁻⁵. In late 2021, the first Omicron variants (BA.1
62 and BA.1.1) emerged, with greater than 30 amino acid substitutions, deletions, or insertions in the
63 spike protein. Since then, the Omicron lineage has continued to evolve (*i.e.*, BA.2, BA.4, BA.5,
64 BA.2.75, and BA.4.6) with additional or different sets of spike mutations that facilitate escape
65 from neutralizing antibodies^{6,7}. These changes in the spike protein of Omicron strains are
66 associated with symptomatic breakthrough infections in vaccinated and/or previously infected
67 individuals⁸⁻¹⁰.

68 To overcome the loss in efficacy of the vaccines against Omicron strains, third and even fourth
69 doses (herein, boosters) of mRNA vaccines encoding the historical (Wuhan-1) spike protein were
70 recommended, and vaccines with Omicron variant-matched spikes were rapidly designed and
71 tested. In humans, a booster dose of mRNA-1273 vaccine was associated with neutralizing
72 antibody titers against BA.1 that were approximately 20-fold higher than those assessed after the
73 second dose of vaccine¹¹. In both mice and non-human primates, boosting with either mRNA-1273
74 or an Omicron BA.1-matched (mRNA-1273.529) vaccine increased neutralizing titers and
75 protection against BA.1 infection compared to animals given a primary (two-dose) vaccination
76 series of mRNA-1273^{12,13}. Moreover, neutralizing antibody titers were higher, and BA.1 viral
77 burden in the lung was lower, in mice boosted with mRNA-1273.529 compared to the mRNA-
78 1273 vaccine.

79 Bivalent vaccines are one strategy to increase protection against currently circulating variants
80 as well as broaden neutralization to previous and potentially yet-to-emerge variants^{14,15}. When
81 administered as a booster dose, the bivalent vaccine mRNA-1273.211 encoding for the Wuhan-1
82 and Beta (B.1.351) spike proteins induced neutralizing antibody responses in humans against
83 B.1.351, Delta (B.1.617.2), and Omicron (BA.1) that were greater than that achieved by boosting
84 with the parental mRNA-1273 vaccine^{16,17}. Similarly, in interim data from other human studies,
85 boosting with a bivalent mRNA-1273.214 vaccine targeting the Wuhan-1 and BA.1 strains elicited
86 higher neutralizing antibody responses against BA.1, BA.2, and BA.4/5 than the mRNA-1273
87 booster, with neutralization of BA.4 and BA.5 assessed together, as the spike proteins of these two
88 sub-lineages are the same^{14,18}. Despite a lack of published data on the efficacy of bivalent Omicron-
89 matched vaccines or boosters against infection by Omicron variants in humans, bivalent mRNA
90 vaccine boosters that include Wuhan-1 and either BA.1 or BA.4/5 components recently were

91 authorized in Europe and the United States, in part due to the urgent need to broaden protection
92 against circulating SARS-CoV-2 variants.

93 Here, we evaluated in mice the antibody responses and protective activity against the
94 prevailing circulating Omicron variant, BA.5, after a primary vaccination series or boosting with
95 either of two Moderna bivalent vaccines, mRNA-1273.214 (containing 1:1 mix of mRNAs
96 encoding Wuhan-1 and BA.1 spike proteins) and mRNA-1273.222 (1:1 mix of mRNAs encoding
97 the Wuhan-1 and BA.4/5 spike proteins) and compared the results to monovalent vaccines that
98 contain mRNAs encoding for a single spike antigen (Wuhan-1 [mRNA-1273], BA.1 [mRNA-
99 1273.529], or BA.4/5 [mRNA1273.045]). In immunogenicity studies in BALB/c mice, performed
100 in the context of a primary vaccination series, robust anti-spike antibody responses were detected
101 with all mRNA vaccines, as measured against Wuhan-1 (S2P), BA.1 (S2P.529) and BA.4/5
102 (S2P.045) spike proteins. However, both bivalent vaccines induced broader neutralizing antibody
103 responses than the constituent monovalent vaccines against pseudoviruses displaying Wuhan-1,
104 BA.1, BA.2.75, or BA.4/5 spike proteins. In immunogenicity studies in K18-hACE2 mice
105 performed seven months after a primary vaccination series with mRNA-1273, animals boosted
106 with mRNA-1273.214 or mRNA-1273.222 had higher neutralization titers against authentic BA.1
107 and BA.5 viruses, as well as similar neutralization titers against Wuhan-1 and B.1.617.2 viruses,
108 compared to animals boosted with mRNA-1273. This response correlated with increased
109 protection one month later against challenge with BA.5, as the lowest viral RNA and pro-
110 inflammatory cytokine levels in the lung were observed in mice administered mRNA-1273.214 or
111 mRNA-1273.222 boosters. Thus, bivalent mRNA vaccine boosters that include mRNAs for both
112 Wuhan-1 and Omicron spike proteins induce protective immunity against historical and current
113 SARS-CoV-2 variant strains.

114 **RESULTS**

115 **Preclinical bivalent Omicron-targeted mRNA vaccines induce robust antibody**
116 **responses in BALB/c mice.** Immunization with bivalent vaccines that include components
117 targeting an Omicron spike and the original Wuhan-1 spikes could confer broader immunity. To
118 begin to address this question, we generated two lipid-encapsulated (LNP) mRNA vaccines
119 (mRNA-1273.529 and mRNA-1273.045) encoding a proline-stabilized SARS-CoV-2 spike from
120 BA.1 and BA.4/5 viruses, respectively. The mRNA-LNPs then were combined with mRNA-1273
121 in a 1:1 ratio to generate bench-side mixed versions of mRNA-1273.214 and mRNA-1273.222.
122 As a first test of their activity, we immunized BALB/c mice twice at a 3-week interval with 1 μ g
123 (total dose) of preclinical versions of mRNA-1273, mRNA-1273.529, mRNA-1273.045, mRNA-
124 1273.214 or mRNA-1273.222 vaccines (**Fig 1A**). Three weeks after the first dose (day 21) and
125 two weeks after the second dose (day 35), serum was analyzed for binding to Wuhan-1 (S2P),
126 BA.1 (S2P.529), and BA.4/5 (S2P.045) spike proteins by ELISA (**Fig 1B**).

127 Robust serum IgG binding was observed against S2P, S2P.529, and S2P.045 proteins after
128 a two-dose primary series with monovalent mRNA-1273, mRNA-1273.529, and mRNA-1273.045
129 vaccines as well as bivalent mRNA-1273.214 and mRNA-1273.222 vaccines, compared to
130 immunizing with PBS only. (a) S2P. On day 21, geometric mean titers (GMT) against S2P ranged
131 from 907 to 3,229 and increased by approximately 23- to 52-fold on day 35, with values ranging
132 from 27,001 to 111,514 across the vaccine groups (**Fig 1B**). On day 35, mice vaccinated with
133 mRNA-1273, mRNA-1273.214, or mRNA-1273.222 achieved higher GMTs than mice vaccinated
134 with mRNA-1273.529 or mRNA-1273.045 vaccines (b) S2P.529. Serum binding GMTs against
135 S2P.529 at day 21 ranged from 147 to 527 and increased by approximately 61- to 90-fold on
136 day 35, with values ranging from 9,372 to 34,494 across the vaccine groups (**Fig 1B**). There were

137 no significant differences in binding titers against S2P.529 across most groups on day 35, although
138 serum from mice vaccinated with mRNA-1273.045 showed reduced binding compared to mRNA-
139 1273. (c) S2P.045. At day 21, serum IgG binding GMTs against S2P.045 ranged from 1,545 to
140 3,421 and increased by approximately 17- to 52-fold on day 35, with values ranging from 45,495
141 to 83,142 (**Fig 1B**). On day 35, robust IgG GMTs against S2P.045 were observed for all mRNA
142 vaccinated groups with no substantive differences noted.

143 We next tested the inhibitory activity of serum antibodies from BALB/c mice that received
144 two doses of the different preclinical mRNA vaccines using a vesicular stomatitis virus (VSV)-
145 based neutralization assay with pseudoviruses displaying spike proteins of Wuhan-1 D614G,
146 BA.1, BA.2.75, or BA.4/5 (**Fig 1C and Extended Data Fig 1**). Serum obtained at day 35 from
147 mice vaccinated with mRNA-1273.222 or mRNA-1273.045 vaccines showed robust neutralizing
148 antibody responses (GMT: 19,036 and 13,804, respectively) against BA.4/5. When compared to
149 the neutralizing antibody response against Wuhan-1 D614G elicited by the mRNA-1273 vaccine
150 (GMT: 16,997), the response against BA.4/5 elicited by mRNA-1273.222 vaccine was equivalent,
151 if not slightly higher. Moreover, the neutralizing antibody response against Wuhan-1 D614G
152 elicited by the mRNA-1273.222 vaccine was greater than that elicited by the mRNA-1273.045
153 vaccine (GMT: 3,035 and 143, respectively). As expected, serum from the mRNA-1273.214 and
154 mRNA-1273.529 vaccine recipients robustly inhibited infection of BA.1 pseudoviruses, with
155 slightly greater titers elicited by the mRNA-1273.529 vaccine (GMT: 13,433 and 20,717,
156 respectively). However, the mRNA-1273.214 vaccine induced much greater serum neutralizing
157 activity against Wuhan-1 D614G (GMT: 8,443) than the mRNA-1273.529 vaccine (GMT:196).
158 The mRNA-1273 vaccine showed a robust response against Wuhan-1 D614G (GMT: 16,997), but
159 less effective responses against BA.1 (GMT: 1,024), BA.2.75 (GMT: 232), or BA.4/5 (GMT:157).

160 All of the Omicron-matched vaccines induced slightly greater (3.5 to 6.4-fold) neutralizing
161 antibody responses than mRNA-1273 against BA.2.75, although these differences did not attain
162 statistical significance.

163 We also evaluated serum neutralizing antibody capacity using a lentivirus-based
164 pseudovirus assay with virions displaying Wuhan-1, BA.1, or BA.4/5 spike proteins. The
165 neutralizing antibody responses measured with lentiviruses were similar to those obtained using
166 VSV pseudoviruses (**Fig 1D and Extended Data Fig 2**). On day 35, mice immunized with the
167 mRNA-1273.045 or mRNA-1273.222 vaccines had robust responses against BA.4/5 (GMT: 1,166
168 and 9,611, respectively), although the responses against Wuhan-1 and BA.1 were lower. Serum
169 from animals immunized with mRNA-1273 vaccine efficiently neutralized Wuhan-1 (GMT:
170 1,529) but the responses against BA.1 and BA.4/5 were lower (GMT: 473 and 138, respectively).
171 The mRNA-1273.529 and mRNA-1273.214 vaccines induced strong neutralizing antibody
172 responses against BA.1 (GMT: 15,831 and 7,235, respectively) with less inhibitory activity against
173 Wuhan-1 (GMT: 210 and 1,344, respectively) and BA.4/5 (GMT: 1,459 and 1,166, respectively).
174 Overall, based on data from the VSV and lentivirus pseudovirus assays, both bivalent mRNA-
175 1273.222 and mRNA-1273.214 vaccines offered the most neutralization breadth.

176 **Clinically representative versions of bivalent mRNA vaccines induce robust**
177 **neutralizing antibody responses in BALB/c mice.** We next evaluated the immunogenicity of
178 clinically representative versions of mRNA-1273.214 and mRNA-1273.222, where two
179 monovalent mRNAs were separately formulated into LNPs and then mixed in a 1:1 ratio in the
180 vial, a process that is representative of the commercial drug product. These versions were
181 compared to responses obtained with mRNA-1273. BALB/c mice were immunized twice at a 3-
182 week interval with 1 μ g (total dose) of mRNA-1273, mRNA-1273.214, or mRNA-1273.222

183 vaccines (**Fig 2A**). Two weeks after the second dose (day 35), serum was collected and analyzed
184 for neutralizing activity using VSV-based pseudoviruses displaying Wuhan-1 D614G, BA.1,
185 BA.2.75, or BA.4/5 spike proteins (**Fig 2B and Extended Data Fig 3**). Whereas mRNA-1273
186 induced a robust neutralizing antibody response against Wuhan-1 D614G (GMT: 28,920), 30 to
187 194-fold less activity was measured against pseudoviruses displaying BA.1, BA.2.75, and BA.4/5.
188 The breadth of neutralizing activity seen with the bivalent mRNA-1273.214 vaccine was better,
189 with the greatest responses against the matched BA.1 (GMT: 13,183) and 1.7 to 52-fold reductions
190 against Wuhan-1 D614G, BA.2.75, and BA.4/5, with the lowest potency against BA.4/5 (GMT:
191 293). The mRNA-1273.222 vaccine achieved the broadest inhibitory activity with the highest
192 neutralizing titers against the matched BA.4/5 (GMT: 15,561) and only 1.7 to 6.7-fold reductions
193 in activity against Wuhan-1 D614G, BA.1, and BA.2.75.

194 **Boosting with clinically representative versions of bivalent mRNA vaccines enhances**
195 **neutralizing antibody responses against Omicron variants and confers protection against**
196 **BA.5 infection in mice.** We next evaluated the performance of the bivalent vaccines as booster
197 injections in mice, as mRNA-1273.214 and mRNA-1273.222 have been authorized as boosters in
198 SARS-CoV-2 antigen-experienced humans. We took advantage of an existing cohort of female
199 K18-hACE2 transgenic C57BL/6 mice that had received two 0.25 μ g doses of mRNA-1273 or
200 control mRNA vaccine over a three-week interval and were rested subsequently for 31 weeks (**Fig**
201 **3A**). The 0.25 μ g dose of mRNA vaccine was used because the B and T cell responses generated
202 in C57BL/6 mice with this dose approximate in magnitude those observed in humans receiving
203 100 μ g doses^{12,19}. Blood was collected (pre-boost sample), and groups of animals were boosted
204 with either PBS (sham control), or 0.25 μ g of control mRNA, mRNA-1273, mRNA-1273.214, or
205 mRNA-1273.222 vaccines. Four weeks later, a post-boost blood sample was collected (**Fig 3A**),

206 and the neutralizing activity of pre- and post-boost serum antibodies was determined using
207 authentic SARS-CoV-2 viruses. At 31 weeks after completion of the primary mRNA-1273
208 vaccination series, pre-boost neutralizing antibody levels against WA1/2020 D614G (GMT: 454)
209 and B.1.617.2 (GMT: 277) were above the expected threshold (~1/60) of protection²⁰ (**Fig 3B**,
210 **Extended Data Figs 4 and 5**). However, these samples showed less or no neutralizing activity
211 (GMT: 63) against BA.1 or BA.5 at the lowest dilution tested (**Fig 3B, Extended Data Figs 4 and**
212 **5**), consistent with a 20-fold reduction reported in serum samples from humans immunized with
213 mRNA vaccines targeting ancestral SARS-CoV-2 strains^{6,7}.

214 Four weeks after boosting with mRNA-1273, mRNA-1273.214, or mRNA-1273.222,
215 neutralizing titers against WA1/2020 D614G and B.1.617.2 were approximately 4.2 to 6.0-fold
216 and 4.8 to 5.5-fold higher, respectively, than before boosting (**Fig 3C, Extended Data Figs 4-6**).
217 Boosting with mRNA-1273.214 or mRNA-1273.222 resulted in increased neutralizing titers
218 against BA.1 (3 to 5.1-fold) and BA.5 (2.6 to 4.4-fold), respectively (**Fig 3C, Extended Data Figs**
219 **4-6**), whereas mRNA-1273 boosted titers by a lesser degree (1.0 to 1.2-fold). Thus, both Omicron-
220 matched bivalent boosters augmented serum neutralizing activity against BA.1 and BA.5 more
221 than the parental mRNA-1273 booster.

222 One or two days after the post-boost bleed, K18-hACE2 transgenic mice were challenged
223 by the intranasal route with 10^4 FFU of BA.5 (**Fig 3A**), and at 4 days post-infection (dpi) viral
224 RNA levels were measured in the nasal washes, nasal turbinates, and lungs (**Fig 4A**). Although
225 Omicron strains are less pathogenic in mice and do not cause weight loss or mortality^{21,22}, viral
226 replication occurs allowing for evaluation of vaccine protection. In the upper respiratory tract
227 (nasal turbinates and nasal washes), mice boosted with PBS or with mRNA-1273, mRNA-1273-
228 214, or mRNA-1273.222 vaccines showed similarly reduced levels of BA.5 viral RNA at 4 dpi in

229 comparison to animals administered the control vaccine (**Fig 4A**). However, mice immunized with
230 two doses of mRNA-1273 and boosted with PBS sustained levels of viral RNA in the lungs that
231 were only slightly less than the control vaccine, suggesting that a primary mRNA-1273 vaccination
232 series provides limited protection against lower respiratory tract infection by BA.5. In contrast,
233 mRNA-1273, mRNA-1273-214, or mRNA-1273.222 vaccines showed greater protection against
234 BA.5 infection in the lung with 1,374 to 28,436-fold reductions in viral RNA (**Fig 4A**). Moreover,
235 boosting with the bivalent vaccines resulted in lower (7 to 21-fold) viral RNA levels in the lungs
236 than the mRNA-1273 vaccine. Analysis of infectious virus in the lung at 4 dpi using plaque assays
237 showed substantial reductions in viral burden in animals boosted with mRNA-1273, mRNA-1273-
238 214, or mRNA-1273.222 vaccines compared to those receiving a control vaccine or immunized
239 with two doses of mRNA-1273 and boosted with PBS (**Fig 4B**).

240 As another gauge of vaccine-induced protection, we measured cytokine and chemokine
241 levels in the lung of the BA.5-challenged K18-hACE2 mice at 4 dpi using a multiplexed assay
242 (**Fig 4C and Supplementary Table S1**). Mice immunized with the control vaccine or those
243 receiving a primary vaccination series with mRNA-1273 and a booster dose of PBS showed higher
244 levels of many inflammatory cytokines and chemokines in lung homogenates than unvaccinated,
245 unchallenged (naïve) animals. In comparison, substantially lower or undetectable levels of pro-
246 inflammatory cytokines and chemokines were detected in the lungs of BA.5-challenged mice that
247 were boosted with mRNA-1273, mRNA-1273-214, or mRNA-1273.222 vaccines. While there was
248 some variability in the data, for several cytokines and chemokines (*e.g.*, IFN- γ , CCL2, CCL3, and
249 CXCL9), levels trended lower after boosting with mRNA-1273-214 and mRNA-1273.222
250 compared to mRNA-1273. Thus, and consistent with the virological data, protection against BA.5-
251 induced lung inflammation was significantly increased by boosting with mRNA vaccines, with a

252 modest improvement observed after boosting with bivalent compared to the monovalent mRNA
253 vaccines.

254 **DISCUSSION**

255 Vaccine-induced immunity against SARS-CoV-2 has reduced human disease and curtailed
256 the COVID-19 pandemic. However, the emergence of SARS-CoV-2 variants with constellations
257 of amino acid changes in regions of the spike protein that bind neutralizing antibodies jeopardizes
258 immunity derived from vaccines designed against the historical Wuhan-1 SARS-CoV-2 strain.
259 The objective of this study was to evaluate in mice the activity of pre-clinical and clinically
260 representative Omicron-matched (BA.1 or BA.4/5) bivalent mRNA vaccines when administered
261 as a primary vaccination series or booster dose and to assess the breadth of neutralizing antibody
262 responses and ability to protect against currently circulating Omicron variants. The animal studies
263 performed here support the use of bivalent mRNA-1273.214 and mRNA-1273.222 vaccines that
264 were recently authorized for Europe and the United States, respectively.

265 We first compared the immunogenicity of the bivalent and constituent monovalent mRNA
266 vaccines in BALB/c mice in the context of a two-dose primary immunization series. Although
267 bivalent mRNA vaccines are conceived principally as boosters since most of the global population
268 has been previously infected or vaccinated, the analysis of the antibody response after a primary
269 immunization series provides insight into the potential breadth. Robust serum antibody binding
270 responses were detected against S2P, S2P.529, and S2P.045 proteins by all vaccines, although the
271 mRNA-1273.529 and mRNA-1273.045 vaccines had lower titers against non-matched spike
272 antigens. Moreover, serum generated from the bivalent mRNA-1273.222 and mRNA-1273.214
273 vaccines potently neutralized infection of both Omicron (BA.1. and BA.4/5) pseudoviruses, as
274 well as those displaying the historical Wuhan-1 D614G spike, demonstrating the best
275 neutralization breadth. These results are consistent with studies showing that monovalent vaccines
276 that match the spike protein generate greater inhibitory responses against specific variants relative

277 to historical viruses^{12,23,24}. In the context of the booster studies, the bivalent BA.1 and BA.4/5-
278 matched vaccines induced serum antibody responses that more broadly neutralized infection of
279 several authentic viruses, including WA1/2020 D614G, B.1.617.2, BA.1, and BA.5. These results
280 are consistent with human serum data obtained after immunization with bivalent mRNA vaccines
281 targeting B.1.351^{16,17} or BA.1^{14,18}. Increases in neutralizing antibody breadth with bivalent vaccine
282 formulations or boosters also have been reported in the context of inactivated^{25,26} and spike
283 protein-based²⁷⁻²⁹ SARS-CoV-2 vaccine candidates.

284 Seven months after completion of a primary mRNA-1273 vaccination series, K18-hACE2
285 mice were boosted with PBS, mRNA-1273, mRNA-1273.214, or mRNA-1273.222, and then one
286 month later challenged with BA.5. We used lower priming and boosting vaccine doses (0.25 µg
287 per mouse) than in our BALB/c mice studies, since we had observed that the levels of immunity
288 induced by the 0.25 µg dose in K18-hACE2 mice more closely match what is seen in humans^{12,19}.
289 For example, seven months after receiving two 0.25 µg doses of mRNA-1273, moderately high
290 (1/454 and 1/277) neutralizing titers still were present against the matched WA1/2020 D614G and
291 more closely related B.1.617.2, respectively, in K18-hACE2 mice, but this inhibitory activity was
292 almost completely lost against BA.1 and BA.5, similar to that seen in humans^{6,7}. Compared to a
293 third dose of mRNA-1273, both bivalent mRNA-1273.214 and mRNA-1273.222 vaccine boosters
294 induced greater neutralizing antibody responses against BA.1 and BA.5, and this correlated with
295 slightly increased protection against infection and inflammation in the lung after intranasal
296 challenge with BA.5 compared to the parental mRNA-1273 boost. In comparison, animals that
297 received a primary mRNA-1273 series, and were boosted with PBS, showed rather marginal
298 protection against lung infection. These results showing protective benefit of matched bivalent
299 vaccine boosters targeting Omicron variants are consistent with studies in mice immunized with

300 mRNA-1273, boosted with a monovalent mRNA-1273.529 vaccine, and challenged with BA.1¹²,
301 and predictive models in humans³⁰.

302 Notwithstanding the increased immunogenicity and protection by the bivalent vaccines,
303 boosting with the parental mRNA-1273 vaccine alone conferred protection against infection (119-
304 fold reduction in viral RNA levels and 142-fold reduction in infectious virus compared to boosting
305 with PBS) and inflammation in the lung against BA.5 despite inducing rather limited levels of
306 serum neutralizing antibodies against this variant. These findings are consistent with studies in
307 non-human primates¹³ and could reflect effects of neutralizing antibodies below the limit of our
308 assay detection (<1/30), non-neutralizing, cross-reactive antibodies against BA.5 that promote
309 clearance through Fc effector function activities^{31,32}, cross-reactive T cell responses^{33,34}, or
310 anamnestic B cell responses that rapidly generate cross-reactive neutralizing antibodies. Apart
311 from this, our experiments show that two bivalent mRNA vaccines including components against
312 BA.1 or BA.4/5 had relatively equivalent protective effects against BA.5 in the lungs. Although
313 there is a trend towards lower levels of BA.5 RNA after boosting with mRNA-1273.222 compared
314 to mRNA-1273.214 vaccines, our studies were not powered sufficiently to establish this increased
315 protection, and larger cohorts would be needed to reach this conclusion.

316 All mRNA vaccine boosters conferred protection in the upper respiratory tract, with
317 reductions in viral RNA levels measured in the nasal washes and nasal turbinates at 4 dpi. The
318 bivalent and mRNA-1273 vaccine boosters performed equivalently, with similar reductions in
319 viral burden compared to the control vaccine. It is unclear why the differences in protection in the
320 lung between bivalent and parental monovalent mRNA vaccine boosters did not extend to the nasal
321 washes and turbinates, although it may be because neutralizing IgG poorly penetrates this
322 compartment³⁵, and immune protection in the upper respiratory is mediated by other components

323 (e.g., T cells or trained innate immunity) not assayed here. Regardless, our data showing that both
324 bivalent vaccine boosters confer increased neutralizing activity as well as protection in the lungs
325 against BA.5 supports the recent decision for roll-out of BA.1 or BA.4/5-based bivalent boosters.

326 **Limitations of study.** We note several limitations in our study. (1) Female BALB/c and
327 K18-hACE2 mice were used to allow for group caging. Follow-up experiments with male mice
328 and larger cohorts are needed to extend these results and possibly detect differences between
329 mRNA-1273.214 and mRNA-1273.222 boosters. (2) We challenged K18-hACE2 mice with a
330 BA.5 isolate. While BA.5 is currently the dominant circulating strain (reaching up to ~89% in the
331 United States (<https://covid.cdc.gov/covid-data-tracker/#variant-proportions>) for the week ending
332 September 3, 2022), infection experiments using BA.2.75, BA.4.6, or other emerging strains may
333 be informative to determine the breadth of protection. (3) Our analysis did not account for non-
334 neutralizing antibody or cross-reactive T cell responses, both of which could impact protective
335 immunity. (4) We analyzed protection in the lung one month after boosting. A time course analysis
336 is needed to assess the durability of the boosted immune response. (5) Experiments were performed
337 in mice to allow for rapid testing and multiple comparison groups. Vaccination, boosting, and
338 BA.5 challenge in other animal models (e.g., hamsters and non-human primate) and ultimately in
339 humans is required for corroboration. (6) While our studies evaluated differences in breadth of
340 serum neutralizing antibody responses, a repertoire analysis at the monoclonal level could provide
341 insight as to how bivalent mRNA vaccines inhibit variant strains.

342 **Acknowledgements.** This study was supported by the NIH (R01 AI157155, NIAID
343 Centers of Excellence for Influenza Research and Response (CEIRR) contracts
344 HHSN272201400008C, 75N93021C00014, and 75N93019C00051). We thank Mehul Suthar for
345 the BA.5 isolate used in this study. We also acknowledge and thank Michael Whitt for support on
346 VSV-based pseudovirus production.

347 **Author contributions.** G.-Y.C., G.S.-J., and A.N. performed variant monitoring and
348 Omicron-variant vaccine design and quality control. S.M.S. performed and analyzed authentic
349 virus neutralization assays. S.M.S., B.W. and B.Y. performed mouse experiments. B.W. and B.Y.
350 performed and analyzed viral burden analyses. B.Y. analyzed chemokine and cytokine data. H.J.,
351 P.M., and N.J.A. performed ELISA binding experiments and analysis. K.W., D.L., D.M.B., and
352 L.A. performed VSV-pseudovirus neutralization assays and analysis. S.D.S., S.O., R.A.K., and
353 N.D.-R. performed lentivirus pseudovirus neutralization assays and analysis. A.C., S.E., and
354 D.K.E. provided mRNA vaccines and helped to design experiments. L.B.T. and M.S.D. designed
355 studies and supervised the research. M.S.D., L.B.T., and D.K.E. wrote the initial draft, with the
356 other authors providing editorial comments.

357 **Competing interests.** M.S.D. is a consultant for Inbios, Vir Biotechnology, Senda
358 Biosciences, Moderna, and Immunome. The Diamond laboratory has received unrelated funding
359 support in sponsored research agreements from Vir Biotechnology, Emergent BioSolutions, and
360 Moderna. G.-Y.C., G.S.-J., A.N., K.W., D.L., D.M.B., L.A., H.J., P.M., N.J.A., A.C., S.E. and
361 D.K.E. are employees of and shareholders in Moderna Inc.

362 **FIGURE LEGENDS**

363 **Figure 1. Robust antibody responses in BALB/c mice after a primary immunization**
364 **series with preclinical versions of monovalent and bivalent mRNA vaccines.** Six-to-eight-
365 week-old female BALB/c mice were immunized twice over a three-week interval with PBS or 1
366 µg total dose of preclinical versions of mRNA-1273 [Wuhan-1 spike], mRNA-1273.529 [BA.1
367 spike], mRNA-1273.045 [BA.4/5 spike], mRNA-1273.214 [benchside 1:1 mixture of mRNA-
368 1273 + mRNA-1273.529], or mRNA-1273.222 [benchside 1:1 mixture of mRNA-1273 + mRNA-
369 1273.045]. Immediately before (day 21) or two weeks after (day 35) the second vaccine dose,
370 serum was collected. **A.** Scheme of immunization and blood draws. **B.** Serum antibody binding to
371 Wuhan-1 (S2P), BA.1 (S2P.529), or BA.4/5 (S2P.045) spike proteins by ELISA at Day 21 and
372 Day 35 (n = 8, boxes illustrate mean values, dotted lines show the limit of detection [LOD]). **C.**
373 Neutralizing activity of serum at day 35 against VSV pseudoviruses displaying the spike proteins
374 of Wuhan-1 D614G, BA.1, BA.2.75, or BA.4/5 (n = 8, boxes illustrate geometric mean values,
375 dotted lines show the LOD). GMT values are indicated above the columns. **D.** Neutralizing activity
376 of serum at day 35 against pseudotyped lentiviruses displaying the spike proteins of Wuhan-1,
377 BA.1, or BA.4/5 (n = 8, boxes illustrate geometric mean values, dotted lines show the LOD). GMT
378 values are indicated above the columns. Statistical analysis. **B.** One-way ANOVA with Dunnett's
379 post-test. **C-D.** Kruskal-Wallis with Dunn's post-test (ns, not significant; * P < 0.05; ** P < 0.01;
380 *** P < 0.001; **** P < 0.0001).

381 **Figure 2. Robust neutralizing antibody responses in BALB/c mice after primary**
382 **series immunization with clinically representative versions of mRNA-1273, mRNA-1273.214,**
383 **and mRNA-1273.222.** Six-to-eight-week-old female BALB/c mice were immunized twice over a
384 three-week interval with PBS or 1 µg total dose of clinically representative versions of mRNA-

385 1273, mRNA-1273.214 [1::1 mixture in the vial of separately formulated mRNA-1273 and
386 mRNA-1273.529], or mRNA-1273.222 [1:1 mixture in the vial of separately formulated mRNA-
387 1273 and mRNA-1273.045]. Immediately before (day 21) or two weeks after (day 35) the second
388 vaccine dose, serum was collected. **A.** Scheme of immunization and blood draws. **B.** Neutralizing
389 activity of serum at day 35 against VSV pseudoviruses displaying the spike proteins of Wuhan-1
390 D614G, BA.1, BA.2.75, or BA.4/5 (n = 16, boxes illustrate geometric mean values, dotted lines
391 show the LOD). GMT values are indicated above the columns. Statistical analysis. Kruskal-Wallis
392 with Dunn's post-test (ns, not significant; ** P < 0.01; **** P < 0.0001).

393 **Figure 3. Neutralizing antibody responses in K18-hACE2 mice after boosting with
394 clinically representative versions of mRNA-1273, mRNA-1273.214, and mRNA-1273.222.**

395 Seven-week-old female K18-hACE2 mice were immunized with 0.25 µg of control mRNA or
396 mRNA-1273 vaccine and then boosted 31 weeks later with PBS, 0.25 µg of control mRNA, or
397 0.25 µg of clinically representative versions of mRNA-1273, mRNA-1273.214, or mRNA-
398 1273.222 vaccines. **A.** Scheme of immunizations, blood draws and virus challenge. **B-C.** Serum
399 neutralizing antibody responses immediately before (**B**, pre-boost) and four weeks after (**C**, post-
400 boost) receiving the indicated mRNA boosters or PBS as judged by focus reduction neutralization
401 test (FRNT) with authentic WA1/2020 D614G, B.1.617.2, BA.1, and BA.5 viruses (n = 9-10, two
402 experiments, boxes illustrate geometric mean values, GMT values are indicated at the top of the
403 graphs, dotted lines show the LOD). Statistical analysis. **C:** Kruskal-Wallis with Dunn's post-test,
404 ns, not significant; * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001).

405 **Figure 4. Protection of K18-hACE2 mice from BA.5 challenge after boosting with
406 clinically representative versions of mRNA-1273, mRNA-1273.214, and mRNA-1273.222.**

407 Seven-week-old female K18-hACE2 mice were immunized with 0.25 µg of control mRNA or

408 mRNA-1273, boosted 31 weeks later with PBS, 0.25 µg of control mRNA, or 0.25 µg of clinically
409 representative versions of mRNA-1273, mRNA-1273.214, or mRNA-1273.222 vaccines, and then
410 one month later challenged via intranasal route with 10^4 focus-forming units (FFU) of BA.5. **A.**
411 Viral RNA levels at 4 dpi in the nasal washes, nasal turbinates, and lungs (n = 8-10 per group, two
412 experiments, boxes illustrate mean values, dotted lines show LOD; One-way ANOVA with
413 Dunnett's post-test: * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$). **B.** Infectious viral
414 load at 4 dpi in the lungs after BA.5 challenge of vaccinated and boosted mice as determined by
415 plaque assay (n = 8-10 per group, two experiments, boxes illustrate mean values, dotted lines show
416 LOD; Kruskal Wallis with Dunn's post-test: ns, $P > 0.05$; **** $P < 0.0001$). **C.** Cytokine and
417 chemokine levels in lung homogenates at 4 dpi. Data are expressed as fold-change relative to naïve
418 mice, and \log_2 values are plotted (n = 8-10 per group except naïve where n = 4, two experiments,
419 lines illustrate median values, dotted lines indicate LOD for each respective analyte based on
420 standard curves; one-way Kruskal Wallis ANOVA with Dunn's post-test: ns, $P > 0.05$; * $P < 0.05$;
421 ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$). The absolute values are shown in **Supplementary**
422 **Table S1.**

423

424 **EXTENDED DATA FIGURE LEGENDS**

425 **Extended Data Figure 1. Comparison of serum neutralization using VSV**
426 **pseudoviruses expressing Wuhan-1 D614G, BA.1, BA.2.75, or BA.4/5 spike proteins, Related**
427 **to Figure 1.** BALB/c mice were immunized with two 1 µg doses of preclinical versions of mRNA-
428 1273, mRNA-1273.529, mRNA-1273.045, mRNA-1273.214 or mRNA-1273.222 vaccines.
429 Serum neutralizing antibody responses against Wuhan-1 D614G, BA.1, and BA.4/5 were assessed

430 two weeks after the second dose using VSV pseudoviruses. Representative neutralization curves
431 (n = 2) corresponding to individual mice are shown for the indicated vaccines.

432 **Extended Data Figure 2. Comparison of serum neutralization using pseudotyped
433 lentiviruses expressing Wuhan-1, BA.1, or BA.4/5 spike proteins, Related to Figure 1.**

434 BALB/c mice were immunized with two 1 µg doses of preclinical versions of mRNA-1273,
435 mRNA-1273.529, mRNA-1273.045, mRNA-1273.214 or mRNA-1273.222 vaccines. Serum
436 neutralizing antibody responses against Wuhan-1, BA.1, and BA.4/5 were assessed two weeks
437 after the second dose using pseudotyped lentiviruses. Average neutralization curves (n = 2)
438 corresponding to individual mice are shown for the indicated vaccines.

439 **Extended Data Figure 3. Comparison of serum neutralization using VSV
440 pseudoviruses expressing Wuhan-1 D614G, BA.1, BA.2.75, or BA.4/5 spike proteins, Related
441 to Fig 2ure.** BALB/c mice were immunized with two 1 µg doses of clinically representative
442 versions of mRNA-1273, mRNA-1273.214 or mRNA-1273.222 vaccines. Serum neutralizing
443 antibody responses against Wuhan-1 D614G, BA.1, BA.2.75, and BA.4/5 were assessed two
444 weeks after the second dose using VSV pseudoviruses. Representative neutralization curves (n =
445 2) corresponding to individual mice are shown for the indicated vaccines.

446 **Extended Data Figure 4. Comparison of serum neutralization of authentic WA1/2020
447 D614G, B.1.617.2, BA.1, and BA.5 viruses before and after boosting, Related to Figure 3.**

448 Seven-week-old female K18-hACE2 mice were immunized with two sequential 0.25 µg doses of
449 control mRNA or mRNA-1273 and then boosted 31 weeks later with PBS, 0.25 µg of control
450 mRNA, or 0.25 µg mRNA-1273, mRNA-1273.214, or mRNA-1273.222. Paired analysis of pre-
451 and post-boost serum neutralizing titers against WA1/2020 D614G, B.1.617.2, BA.1 and BA.5
452 from samples obtained from animals (data from **Figure 3**) (n = 9-10, two experiments). GMT

453 values are indicated at the top of the graphs. Statistical analysis: Wilcoxon signed-rank test (ns,
454 not significant; ** $P < 0.01$).

455 **Extended Data Figure 5. Pre-boost serum neutralization of authentic WA1/2020**
456 **D614G, B.1.617.2, BA.1, and BA.5 viruses, Related to Figure 3.** Seven-week-old female K18-
457 hACE2 mice were immunized with two sequential 0.25 μ g doses of control mRNA or mRNA-
458 1273 and then boosted 31 weeks later with PBS, 0.25 μ g of control mRNA, or 0.25 μ g mRNA-
459 1273, mRNA-1273.214, or mRNA-1273.222. Neutralizing antibody responses against WA1/2020
460 D614G, B.1.617.2, BA.1, and BA.5 from serum immediately before boosting with the indicated
461 vaccines. Neutralization curves (FRNT analysis) corresponding to individual mice are shown for
462 the indicated immunizations. Serum are from two independent experiments, and each point
463 represents the mean of two technical replicates.

464 **Extended Data Figure 6. Post-boost serum neutralization of authentic WA1/2020**
465 **D614G, B.1.617.2, BA.1, and BA.5 viruses, Related to Figure 3.** Seven-week-old female K18-
466 hACE2 mice were immunized with two sequential 0.25 μ g doses of control mRNA or mRNA-
467 1273 and then boosted 31 weeks later with PBS, 0.25 μ g of control mRNA, or 0.25 μ g mRNA-
468 1273, mRNA-1273.214, or mRNA-1273.222. Neutralizing antibody responses against WA1/2020
469 D614G, B.1.617.2, BA.1, and BA.5 from serum one month after boosting with the indicated
470 vaccines. Neutralization curves (FRNT analysis) corresponding to individual mice are shown for
471 the indicated immunizations. Serum are from two independent experiments, and each point
472 represents the mean of two technical replicates.

473

474 **SUPPLEMENTAL TABLE**

475 **Supplemental Table S1. Cytokine and chemokine concentrations in the lungs of**
476 **immunized K18-hACE2 mice challenged with BA.5, Related to Figure 4.**
477

478 **METHODS**

479 **Cells.** African green monkey Vero-TMPRSS2³⁶ and Vero-hACE2-TMPRSS2³⁷ cells were
480 cultured at 37°C in Dulbecco's Modified Eagle medium (DMEM) supplemented with 10% fetal
481 bovine serum (FBS), 10 mM HEPES pH 7.3, 1 mM sodium pyruvate, 1× non-essential amino
482 acids, and 100 U/mL of penicillin–streptomycin. Vero-TMPRSS2 cells were supplemented with 5
483 µg/mL of blasticidin. Vero-hACE2-TMPRSS2 cells were supplemented with 10 µg/mL of
484 puromycin. All cells routinely tested negative for mycoplasma using a PCR-based assay.

485 **Viruses.** The WA1/2020 D614G and B.1.617.2 strains were described previously^{19,38}. The
486 BA.1 isolate (hCoV-19/USA/WI-WSLH-221686/2021) was obtained from an individual in
487 Wisconsin as a mid-turbinate nasal swab³⁹. The BA.5 isolate was isolated in California (hCoV-
488 19/USA/CA-Stanford-79_S31/2022) and a gift of M. Suthar (Emory University). All viruses were
489 passaged once on Vero-TMPRSS2 cells and subjected to next-generation sequencing³⁷ to confirm
490 the introduction and stability of substitutions. All virus experiments were performed in an
491 approved biosafety level 3 (BSL-3) facility.

492 **Mice.** Animal studies were carried out in accordance with the recommendations in the
493 Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. For studies
494 (K18-hACE2 mice) at Washington University School of Medicine, the protocols were approved
495 by the Institutional Animal Care and Use Committee at the Washington University School of
496 Medicine (assurance number A3381–01). Virus inoculations were performed under anesthesia that
497 was induced and maintained with ketamine hydrochloride and xylazine, and all efforts were made
498 to minimize animal suffering. For studies with BALB/c mice, animal experiments were carried out
499 in compliance with approval from the Animal Care and Use Committee of Moderna, Inc. Sample

500 size for animal experiments was determined on the basis of criteria set by the institutional Animal
501 Care and Use Committee. Experiments were neither randomized nor blinded.

502 Heterozygous K18-hACE2 C57BL/6J mice (strain: 2B6.Cg-Tg(K18-ACE2)2Prlmn/J, Cat
503 # 34860) were obtained from The Jackson Laboratory. BALB/c mice (strain: BALB/cAnNCrl, Cat
504 # 028) were obtained from Charles River Laboratories. Animals were housed in groups and fed
505 standard chow diets.

506 **mRNA vaccine and lipid nanoparticle production process.** A sequence-optimized
507 mRNA encoding prefusion-stabilized Wuhan-Hu-1 (mRNA-1273), BA.1 (mRNA-1273.529, the
508 Omicron gene component in mRNA-1273.214), and BA.5 (mRNA-1273.045, the Omicron gene
509 component in mRNA-1273.222) The genes of SARS-CoV-2 S2P proteins were synthesized *in*
510 *vitro* using an optimized T7 RNA polymerase-mediated transcription reaction with complete
511 replacement of uridine by N1m-pseudouridine⁴⁰. In addition to the two proline substitution, the
512 BA.1 spike gene in the mRNA-1273.529 and mRNA-1273.214 vaccines encoded the following
513 substitutions: A67V, Δ69-70, T95I, G142D, Δ143-145, Δ211, L212I, ins214EPE, G339D, S371L,
514 S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y,
515 Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and
516 L981F. The BA.5 gene in mRNA-1273.045 and mRNA-222 vaccines encoded the following
517 substitutions: T19I, Δ24-26, A27S, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F,
518 T376A, D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R,
519 N501Y, Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K.

520 A non-translating control mRNA was synthesized and formulated into lipid nanoparticles
521 as previously described⁴¹. The reaction included a DNA template containing the immunogen open-
522 reading frame flanked by 5' untranslated region (UTR) and 3' UTR sequences and was terminated

523 by an encoded polyA tail. After RNA transcription, the cap-1 structure was added using
524 the vaccinia virus capping enzyme and 2'-O-methyltransferase (New England Biolabs). The
525 mRNA was purified by oligo-dT affinity purification, buffer exchanged by tangential flow
526 filtration into sodium acetate, pH 5.0, sterile filtered, and kept frozen at -20°C until further use.

527 The mRNA was encapsulated in a lipid nanoparticle through a modified ethanol-drop
528 nanoprecipitation process described previously⁴². Ionizable, structural, helper, and polyethylene
529 glycol lipids were briefly mixed with mRNA in an acetate buffer, pH 5.0, at a ratio of 2.5:1
530 (lipid:mRNA). The mixture was neutralized with Tris-HCl, pH 7.5, sucrose was added as a
531 cryoprotectant, and the final solution was sterile-filtered. Vials were filled with formulated lipid
532 nanoparticle and stored frozen at -20°C until further use. The vaccine product underwent
533 analytical characterization, which included the determination of particle size and polydispersity,
534 encapsulation, mRNA purity, double-stranded RNA content, osmolality, pH, endotoxin, and
535 bioburden, and the material was deemed acceptable for *in vivo* study. The preclinical material used
536 in this study were: (1) monovalent mRNA-1273 vaccine that contains a single mRNA encoding
537 the SARS-CoV-2 S2P antigen; (2) monovalent mRNA-1273.529 vaccine that contains a single
538 mRNA encoding the SARS-CoV-2 S2P antigen for BA.1; (3) monovalent mRNA-1273.045
539 vaccine that contains a single mRNA encoding the SARS-CoV-2 S2P antigen of the BA.4/BA.5
540 subvariants of Omicron; (4) research-grade bivalent mRNA-1273.214 vaccine, which is a 1:1
541 bench side mix of separately formulated mRNA-1273 and mRNA-1273.529 vaccines; and (5)
542 research grade bivalent mRNA-1273.222 vaccine, which is a 1:1 bench side mix of separately
543 formulated mRNA-1273 and mRNA-1273.045 vaccines; (6) clinically representative bivalent
544 mRNA-1273.214 vaccine, which is a 1:1 mix in the vial of separately formulated mRNA-1273
545 and mRNA-1273.529; and (7) clinically representative bivalent mRNA-1273.222 vaccine, which

546 is a 1:1 mix in the vial of separately formulated mRNA-1273 and mRNA-1273.045. All mRNAs
547 are formulated into a mixture of 4 lipids: SM-102, cholesterol, DSPC, and PEG2000-DMG.
548 Preclinical mRNA vaccines were prepared with the same method as the Good Manufacturing
549 Practice for clinical vaccines. In some experiments, clinically representative mRNA-1273.214 and
550 mRNA-1273.222 were used.

551 **Viral antigens.** Recombinant soluble S and RBD proteins from Wuhan-1, BA.1, and BA.5
552 SARS-CoV-2 strains were expressed as described^{43,44}. Recombinant proteins were produced in
553 Expi293F cells (ThermoFisher) by transfection of DNA using the ExpiFectamine 293 Transfection
554 Kit (ThermoFisher). Supernatants were harvested 3 days post-transfection, and recombinant
555 proteins were purified using Ni-NTA agarose (ThermoFisher), then buffer exchanged into PBS
556 and concentrated using Amicon Ultracel centrifugal filters (EMD Millipore). SARS-CoV-2
557 B.1.617.2 RBD protein was purchased from Sino Biological (Cat. # 40592-V08H90).

558 **ELISA.** Assays were performed in 96-well microtiter plates (ThermoFisher Scientific)
559 coated with 100 µL of recombinant Wuhan-Hu-1 spike (S-2P), BA.1 spike (S-2P.529), or
560 BA.4/BA.5 spike (S-2P.045) proteins. Plates were incubated at 4°C overnight and then blocked
561 for 1 hour at 37°C using SuperBlock (ThermoFisher Scientific, Cat. # 37516), and then washed
562 four times with PBS 0.05% Tween-20 (PBST). Serum samples were serially diluted in 5% bovine
563 serum albumin in TBS (Boston BioProducts, Cat. # IBB-187), added to plates, incubated for 1 h
564 at 37°C, and then washed four times with PBST. Goat anti-mouse IgG-HRP (Southern Biotech
565 Cat. #1030-05) was diluted in 5% bovine serum albumin in TBS before adding to the wells and
566 incubating for 1 h at 37°C. Plates were washed four times with PBST before the addition of TMB
567 substrate (ThermoFisher Scientific, Cat. # 34029). Reactions were stopped by the addition of TMB
568 stop solution (Invitrogen, Cat. # SS04). The optical density (OD) measurements were taken at

569 450 nm, and titers were determined using a 4-parameter logistic curve fit in Prism Version 9
570 (GraphPad 112 Software, Inc.) and defined as the reciprocal dilution at an OD of approximately
571 450 of 1 (normalized to a mouse standard on each plate).

572 **Focus reduction neutralization test.** Serial dilutions of sera were incubated with 10²
573 focus-forming units (FFU) of WA1/2020 D614G, B.1.617.2, BA.1, or BA.5 for 1 h at 37°C.
574 Antibody-virus complexes were added to Vero-TMPRSS2 cell monolayers in 96-well plates and
575 incubated at 37°C for 1 h. Subsequently, cells were overlaid with 1% (w/v) methylcellulose in
576 MEM. Plates were harvested 30 h (WA1/2020 D614G and B.1.617.2) or 70 h (BA.1 and BA.5)
577 later by removing overlays and fixed with 4% PFA in PBS for 20 min at room temperature. Plates
578 were washed and sequentially incubated with a pool (SARS2-02, -08, -09, -10, -11, -13, -14, -17,
579 -20, -26, -27, -28, -31, -38, -41, -42, -44, -49, , -57, -62, -64, -65, -67, and -71⁴⁵) of anti-S murine
580 antibodies (including cross-reactive mAbs to SARS-CoV) and HRP-conjugated goat anti-mouse
581 IgG (Sigma Cat # A8924, RRID: AB_258426) in PBS supplemented with 0.1% saponin and 0.1%
582 bovine serum albumin. SARS-CoV-2-infected cell foci were visualized using TrueBlue peroxidase
583 substrate (KPL) and quantitated on an ImmunoSpot microanalyzer (Cellular Technologies).

584 **VSV pseudovirus neutralization assay.** Codon-optimized full-length spike genes
585 (Wuhan-1 with D614G, BA.2.75, BA.1, and BA.5) were cloned into a pCAGGS vector. Spike
586 genes contained the following mutations: (a) BA.2.75; T19I, Δ24-26, A27S, G142D, K147E,
587 W152R, F157L, I210V, V213G, G257S, G339H, S371F, S373P, S375F, T376A, D405N, R408S,
588 K417N, N440K, G446S, N460K, S477N, T478K, E484A, Q498R, N501Y, Y505H, D614G,
589 H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K (b) BA.1: A67V, Δ69-70, T95I,
590 G142D/ΔVYY143-145, ΔN211/L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N,
591 N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K,

592 D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F; and (c)
593 BA.4/5: T19I, Δ24-26, A27S, Δ69-70, G142D, V213G, G339D, S371F, S373P, S375F, T376A,
594 D405N, R408S, K417N, N440K, L452R, S477N, T478K, E484A, F486V, Q498R, N501Y,
595 Y505H, D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K. To generate VSVΔG-
596 based SARS-CoV-2 pseudovirus, BHK-21/WI-2 cells were transfected with the spike expression
597 plasmid and infected by VSVΔG-firefly-luciferase as previously described⁴⁶. Vero E6 cells were
598 used as target cells for the neutralization assay and maintained in DMEM supplemented with 10%
599 fetal bovine serum. To perform neutralization assay, mouse serum samples were heat-inactivated
600 for 45 min at 56°C, and serial dilutions were made in DMEM supplemented with 10% FBS. The
601 diluted serum samples or culture medium (serving as virus only control) were mixed with VSVΔG-
602 based SARS-CoV-2 pseudovirus and incubated at 37°C for 45 min. The inoculum virus or virus-
603 serum mix was subsequently used to infect Vero E6 cells (ATCC, CRL-1586) for 18 h at 37°C. At
604 18 h post infection, an equal volume of One-Glo reagent (Promega; E6120) was added to culture
605 medium for readout using BMG PHERastar-FSX plate reader. The percentage of neutralization
606 was calculated based on relative light units of the virus control, and subsequently analyzed using
607 four parameter logistic curve (Prism 8,0).

608 **Lentivirus-based pseudovirus neutralization assay.** Neutralization of SARS-CoV-2 also
609 was measured in a single-round-of-infection assay with lentivirus-based pseudovirus assay as
610 previously described⁴⁷. To produce SARS-CoV-2 pseudoviruses, an expression plasmid bearing
611 codon-optimized SARS-CoV-2 full-length spike plasmid was co-transfected into HEK293T/17
612 cells (ATCC#CRL-11268) cells with packaging plasmid pCMVDR8.2, luciferase reporter plasmid
613 pHRCMV-Luc and a TMPRSS2 plasmid. Mutant spike plasmids were produced by Genscript.
614 Pseudoviruses were mixed with 8 serial 4-fold dilutions of sera or antibodies in triplicate and then

615 added to monolayers of 293T-hACE2 cells in triplicate. Three days after infection, cells were
616 lysed, luciferase was activated with the Luciferase Assay System (Promega), and RLU were
617 measured at 570 nm on a Spectramax L luminometer (Molecular Devices). After subtraction of
618 background RLU (uninfected cells), % neutralization was calculated as $100 \times ([\text{virus only}]$
619 $[\text{control}]-[\text{virus + antibody}])/[\text{virus only control}]$). Dose-response curves were generated with a
620 5-parameter nonlinear function, and titers reported as the serum dilution or antibody concentration
621 required to achieve ID₅₀ neutralization. The input dilution of serum was 1:50, thus, 20 was the
622 lower limit of detection. Samples that did not neutralize at the limit of detection at 50% were
623 plotted at 25, and that value was used for geometric mean calculations. Each assay included
624 duplicates. In addition, the reported values were the geometric mean of 2 independent assays.

625 **Mouse experiments.** (a) K18hACE2 transgenic mice. Seven-week-old female K18-
626 hACE2 mice were immunized three weeks apart with 0.25 of mRNA vaccines (control or mRNA-
627 1273) in 50 μ l of PBS via intramuscular injection in the hind leg. Animals were bled 31 weeks
628 after the second vaccine dose for immunogenicity analysis and then boosted with PBS (no vaccine)
629 or 0.25 μ g of mRNA-1273, mRNA-1273.214, or mRNA-1273.222 vaccines. Four weeks later,
630 K18-hACE2 mice were challenged with 10⁴ FFU of BA.5 by the intranasal route. Animals were
631 euthanized at 4 dpi, and tissues were harvested for virological analyses.

632 (b) BALB/c mice. 6 to 8-week-old female BALB/c mice were immunized three weeks
633 apart with 1 μ g of mRNA vaccines (mRNA-1273, mRNA-1273.529, mRNA-1273.045, mRNA-
634 1273.214, or mRNA-1273.222) or PBS (in 50 μ L) via intramuscular injection in the quadriceps
635 muscle of the hind leg under isoflurane anesthesia. Blood was sampled three weeks after the first
636 immunization and two weeks after the second immunization, and anti-spike and neutralizing

637 antibody levels were measured by ELISA, and VSV-based or lentivirus-based pseudovirus
638 neutralization assays.

639 **Measurement of viral burden.** Tissues were weighed and homogenized with zirconia
640 beads in a MagNA Lyser instrument (Roche Life Science) in 1 ml of DMEM medium
641 supplemented with 2% heat-inactivated FBS. Tissue homogenates were clarified by centrifugation
642 at 10,000 rpm for 5 min and stored at -80°C.

643 **Viral RNA measurement.** RNA was extracted using the MagMax mirVana Total RNA
644 isolation kit (Thermo Fisher Scientific) on the Kingfisher Flex extraction robot (Thermo Fisher
645 Scientific). RNA was reverse transcribed and amplified using the TaqMan RNA-to-CT 1-Step Kit
646 (Thermo Fisher Scientific). Reverse transcription was carried out at 48°C for 15 min followed by
647 2 min at 95°C. Amplification was accomplished over 50 cycles as follows: 95°C for 15 sec and
648 60°C for 1 min. Copies of SARS-CoV-2 *N* gene RNA in samples were determined using a
649 published assay⁴⁸.

650 **Viral plaque assay.** Vero-TMPRSS2-hACE2 cells were seeded at a density of 1×10^5 cells
651 per well in 24-well tissue culture plates. The following day, medium was removed and replaced
652 with 200 μ L of clarified lung homogenate that was diluted serially in DMEM supplemented with
653 2% FBS. One hour later, 1 mL of methylcellulose overlay was added. Plates were incubated for
654 96 h, then fixed with 4% paraformaldehyde (final concentration) in PBS for 20 min. Plates were
655 stained with 0.05% (w/v) crystal violet in 20% methanol and washed twice with distilled,
656 deionized water.

657 **Cytokine and chemokine protein measurements.** Lung homogenates were incubated
658 with Triton-X-100 (1% final concentration) for 1 h at room temperature to inactivate SARS-CoV-
659 2. Homogenates were analyzed for cytokines and chemokines by Eve Technologies Corporation

660 (Calgary, AB, Canada) using their Mouse Cytokine Array/Chemokine Array 31-Plex (MD31)
661 platform.

662 **Materials availability.** All requests for resources and reagents should be directed to the
663 corresponding authors. This includes viruses, vaccines, and primer-probe sets. All reagents will be
664 made available on request after completion of a Materials Transfer Agreement (MTA). All mRNA
665 vaccines can be obtained under an MTA with Moderna (contact: Darin Edwards,
666 Darin.Edwards@modernatx.com).

667 **Data and code availability.** All data supporting the findings of this study are available
668 within the paper and are available from the corresponding author upon request. Any additional
669 information required to reanalyze the data reported in this paper is available from the lead contact
670 upon request.

671 **Code availability.** No code was used in the course of the data acquisition or analysis.

672 **Statistical analysis.** Significance was assigned when *P* values were < 0.05 using GraphPad
673 Prism version 9.3. Tests, number of animals, median values, and statistical comparison groups are
674 indicated in the Figure legends. Changes in infectious virus titer, viral RNA levels, or serum
675 antibody responses were compared to unvaccinated or mRNA-control immunized animals and
676 were analyzed by Kruskal-Wallis or one-way ANOVA with multiple comparisons tests, or
677 Wilcoxon signed-rank test depending on the type of results, number of comparisons, and
678 distribution of the data.

679 REFERENCES

680 1. Krause, P.R., *et al.* SARS-CoV-2 Variants and Vaccines. *N Engl J Med* **385**, 179-186
681 (2021).

682 2. Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage
683 for SARS-CoV-2 and other lineage B betacoronaviruses. *Nature microbiology* **5**, 562-569
684 (2020).

685 3. Rathe, J.A., *et al.* SARS-CoV-2 Serologic Assays in Control and Unknown Populations
686 Demonstrate the Necessity of Virus Neutralization Testing. *J Infect Dis* (2020).

687 4. Errico, J.M., Adams, L.J. & Fremont, D.H. Antibody-mediated immunity to SARS-CoV-
688 2 spike. *Adv Immunol* **154**, 1-69 (2022).

689 5. Qi, H., Liu, B., Wang, X. & Zhang, L. The humoral response and antibodies against SARS-
690 CoV-2 infection. *Nat Immunol* **23**, 1008-1020 (2022).

691 6. Wang, Q., *et al.* Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4
692 and BA.5. *Nature* **608**, 603-608 (2022).

693 7. Iketani, S., *et al.* Antibody evasion properties of SARS-CoV-2 Omicron sublineages.
694 *Nature* **604**, 553-556 (2022).

695 8. Andrews, N., *et al.* Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529)
696 Variant. *N Engl J Med* (2022).

697 9. Tseng, H.F., *et al.* Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta
698 variants. *Nat Med* **28**, 1063-1071 (2022).

699 10. Elliott, P., *et al.* Rapid increase in Omicron infections in England during December 2021:
700 REACT-1 study. *Science* **375**, 1406-1411 (2022).

701 11. Pajon, R., *et al.* SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster
702 Vaccination. *N Engl J Med* (2022).

703 12. Ying, B., *et al.* Boosting with variant-matched or historical mRNA vaccines protects
704 against Omicron infection in mice. *Cell* **185**, 1572-1587.e1511 (2022).

705 13. Gagne, M., *et al.* mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits
706 similar B cell expansion, neutralizing responses, and protection from Omicron. *Cell* **185**,
707 1556-1571.e1518 (2022).

708 14. Chalkias, S., *et al.* A Bivalent Omicron-containing Booster Vaccine Against Covid-19.
709 *medRxiv : the preprint server for health sciences*, 2022.2006.2024.22276703 (2022).

710 15. Caserta, L.C., *et al.* White-tailed deer (*Odocoileus virginianus*) may serve as
711 a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern. *bioRxiv*,
712 2022.2009.2002.506368 (2022).

713 16. Choi, A., *et al.* Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine
714 boosters in healthy adults: an interim analysis. *Nat Med* **27**, 2025-2031 (2021).

715 17. Chalkias, S., *et al.* Safety, Immunogenicity and Antibody Persistence of a Bivalent Beta-
716 Containing Booster Vaccine. *Research square* (2022).

717 18. Branche, A.R., *et al.* SARS-CoV-2 Variant Vaccine Boosters Trial: Preliminary Analyses.
718 *medRxiv : the preprint server for health sciences*, 2022.2007.2012.22277336 (2022).

719 19. Ying, B., *et al.* Protective activity of mRNA vaccines against ancestral and variant SARS-
720 CoV-2 strains. *Sci Transl Med*, eabm3302 (2021).

721 20. Khoury, D.S., *et al.* Neutralizing antibody levels are highly predictive of immune
722 protection from symptomatic SARS-CoV-2 infection. *Nat Med* **27**, 1205-1211 (2021).

723 21. Halfmann, P.J., *et al.* SARS-CoV-2 Omicron virus causes attenuated disease in mice and
724 hamsters. *Nature* (2022).

725 22. Uraki, R., *et al.* Characterization and antiviral susceptibility of SARS-CoV-2 Omicron
726 BA.2. *Nature* **607**, 119-127 (2022).

727 23. Lee, I.-J., *et al.* Omicron-specific mRNA vaccine induced potent neutralizing antibody
728 against Omicron but not other SARS-CoV-2 variants. *bioRxiv*, 2022.2001.2031.478406
729 (2022).

730 24. Rössler, A., Knabl, L., Laer, D.v. & Kimpel, J. Neutralization profile of Omicron variant
731 convalescent individuals. *medRxiv : the preprint server for health sciences*,
732 2022.2002.2001.22270263 (2022).

733 25. Zhang, Z., *et al.* A Heterologous V-01 or Variant-Matched Bivalent V-01D-351 Booster
734 following Primary Series of Inactivated Vaccine Enhances the Neutralizing Capacity
735 against SARS-CoV-2 Delta and Omicron Strains. *Journal of clinical medicine* **11**(2022).

736 26. Deng, W., *et al.* Sequential immunizations confer cross-protection against variants of
737 SARS-CoV-2, including Omicron in Rhesus macaques. *Signal transduction and targeted
738 therapy* **7**, 124 (2022).

739 27. Ding, C., *et al.* Evaluation of humoral immune responses induced by different SARS-CoV-
740 2 spike trimers from wild-type and emerging variants with individual, sequential, and
741 combinational delivered strategies. *J Med Virol* (2022).

742 28. Du, P., *et al.* A bivalent vaccine containing D614G and BA.1 spike trimer proteins or a
743 BA.1 spike trimer protein booster shows broad neutralizing immunity. *J Med Virol* **94**,
744 4287-4293 (2022).

745 29. Pavot, V., *et al.* Protein-based SARS-CoV-2 spike vaccine booster increases cross-
746 neutralization against SARS-CoV-2 variants of concern in non-human primates. *Nat
747 Commun* **13**, 1699 (2022).

748 30. Khoury, D.S., *et al.* Predicting the efficacy of variant-modified COVID-19 vaccine
749 boosters. *medRxiv : the preprint server for health sciences*, 2022.2008.2025.22279237
750 (2022).

751 31. Kaplonek, P., *et al.* mRNA-1273 vaccine-induced antibodies maintain Fc effector
752 functions across SARS-CoV-2 variants of concern. *Immunity* **55**, 355-365.e354 (2022).

753 32. Gorman, M.J., *et al.* Fab and Fc contribute to maximal protection against SARS-CoV-2
754 following NVX-CoV2373 subunit vaccine with Matrix-M vaccination. *Cell reports. Medicine* **2**, 100405 (2021).

755 33. Flemming, A. Cross reactive T cells hold up against Omicron. *Nat Rev Immunol* **22**, 146
756 (2022).

757 34. Tarke, A., *et al.* SARS-CoV-2 vaccination induces immunological T cell memory able to
758 cross-recognize variants from Alpha to Omicron. *Cell* **185**, 847-859.e811 (2022).

759 35. Cobb, R.R., *et al.* A combination of two human neutralizing antibodies prevents SARS-
760 CoV-2 infection in cynomolgus macaques. *Med (New York, N.Y.)* **3**, 188-203.e184 (2022).

761 36. Zang, R., *et al.* TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small
762 intestinal enterocytes. *Sci Immunol* **5**(2020).

763 37. Chen, R.E., *et al.* Resistance of SARS-CoV-2 variants to neutralization by monoclonal and
764 serum-derived polyclonal antibodies. *Nat Med* (2021).

765 38. Plante, J.A., *et al.* Spike mutation D614G alters SARS-CoV-2 fitness. *Nature* (2020).

766 39. Imai, M., *et al.* Syrian hamsters as a small animal model for SARS-CoV-2 infection and
767 countermeasure development. *Proc Natl Acad Sci U S A* **117**, 16587-16595 (2020).

768

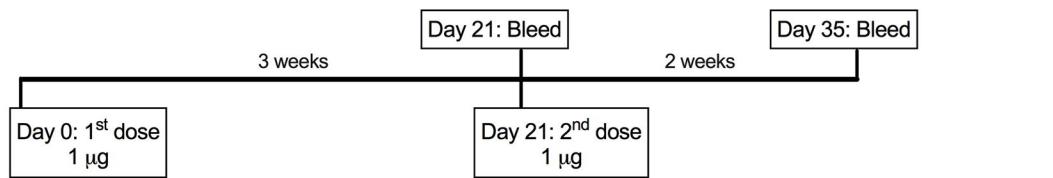
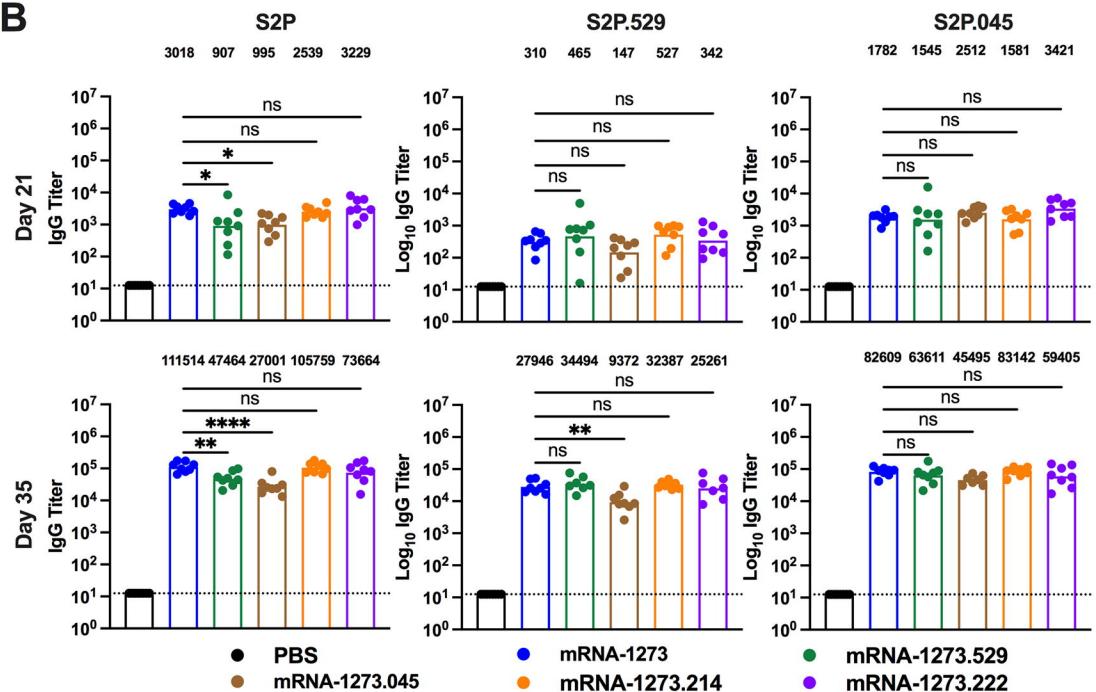
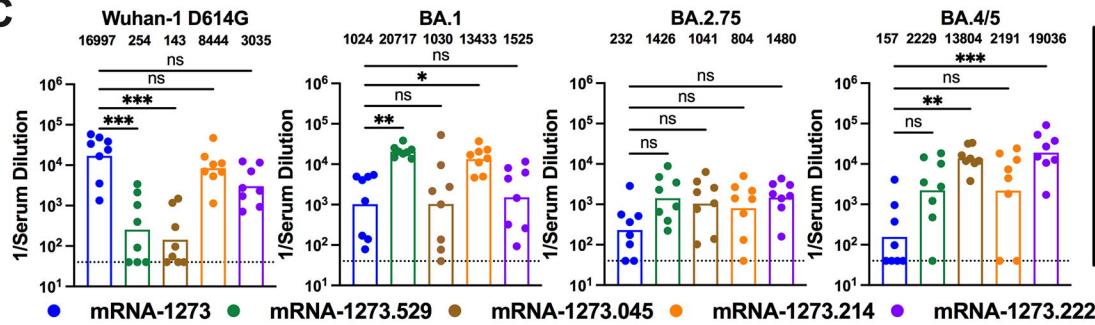
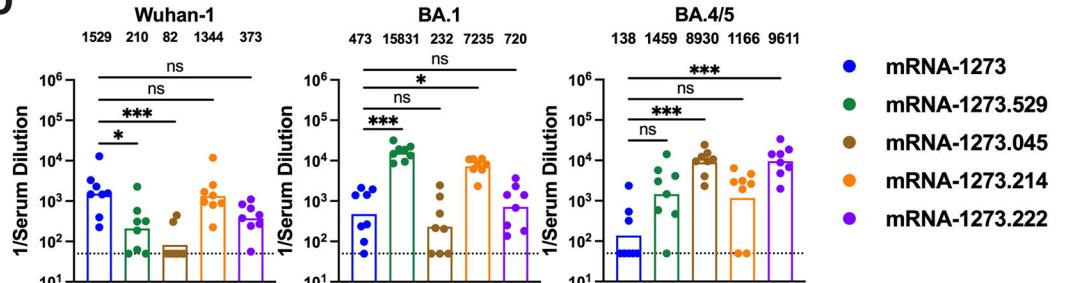
769 40. Nelson, J., *et al.* Impact of mRNA chemistry and manufacturing process on innate immune
770 activation. *Science advances* **6**, eaaz6893 (2020).

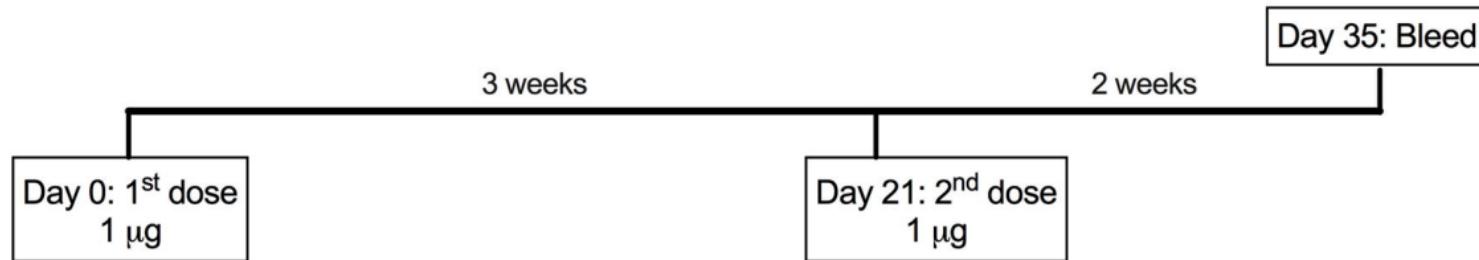
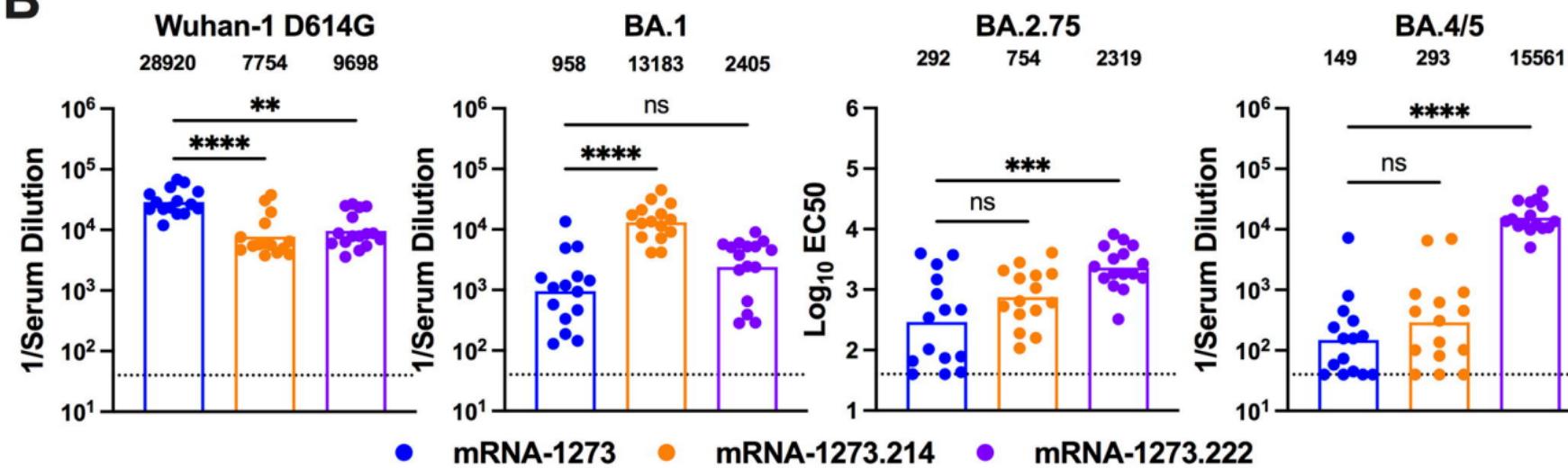
771 41. Corbett, K.S., *et al.* SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen
772 preparedness. *Nature* **586**, 567-571 (2020).

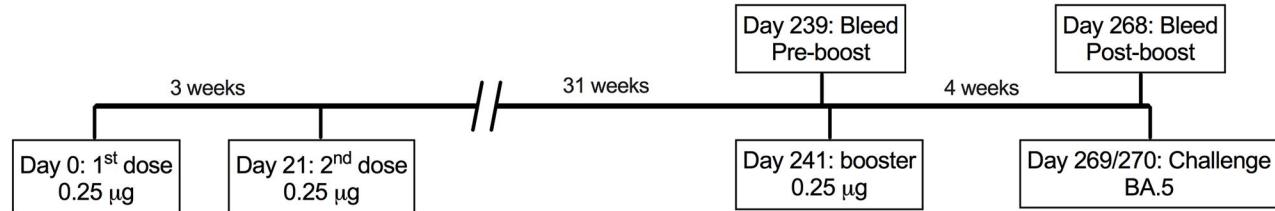
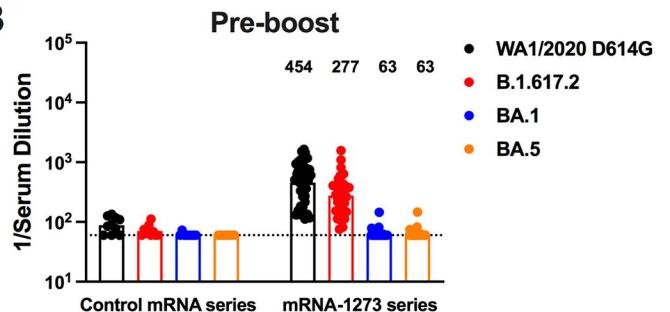
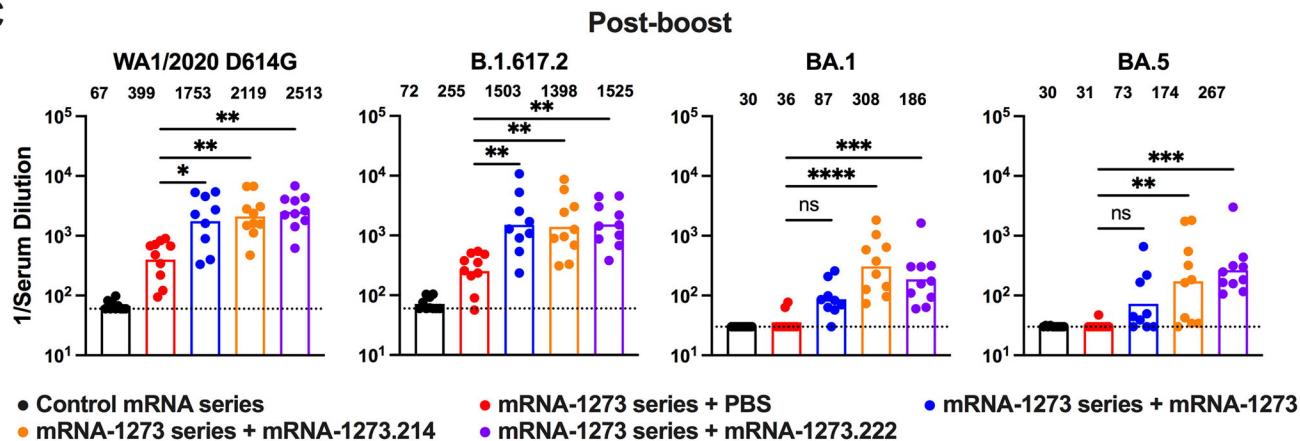
773 42. Hassett, K.J., *et al.* Optimization of Lipid Nanoparticles for Intramuscular Administration
774 of mRNA Vaccines. *Molecular therapy. Nucleic acids* **15**, 1-11 (2019).

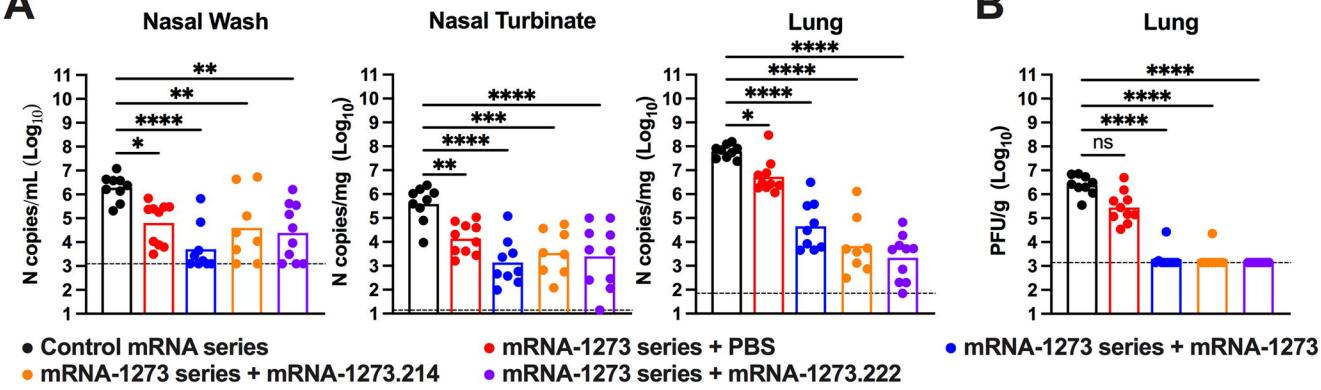
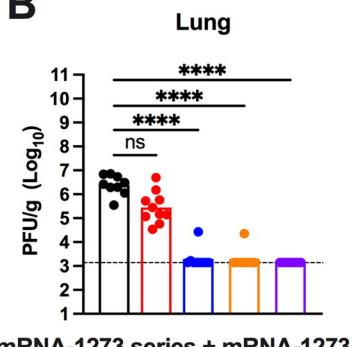
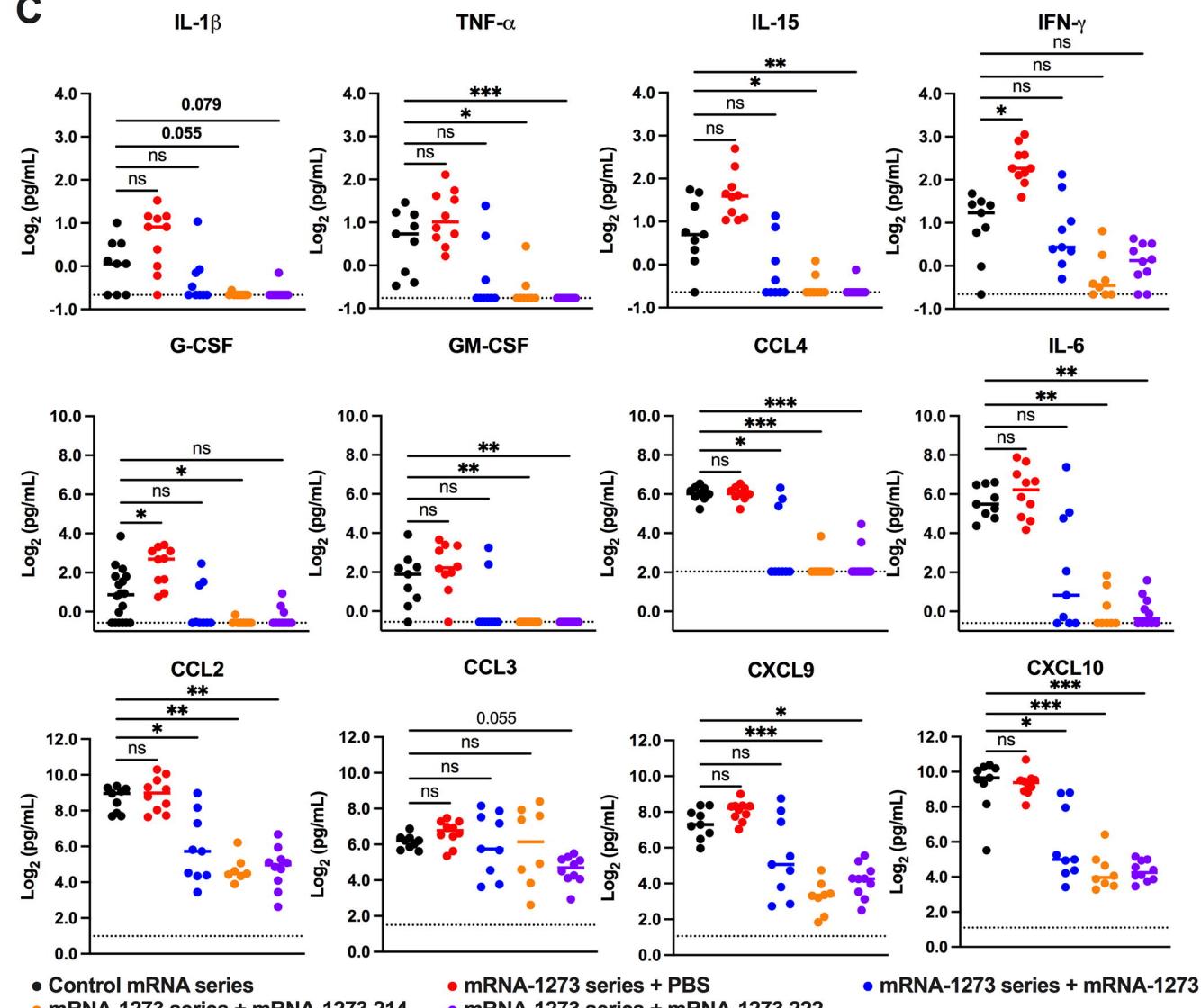
775 43. Stadlbauer, D., *et al.* SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a
776 Serological Assay, Antigen Production, and Test Setup. *Curr Protoc Microbiol* **57**, e100
777 (2020).

778 44. Amanat, F., *et al.* SARS-CoV-2 mRNA vaccination induces functionally diverse
779 antibodies to NTD, RBD, and S2. *Cell* **184**, 3936-3948.e3910 (2021).





780 45. VanBlargan, L.A., *et al.* A potently neutralizing SARS-CoV-2 antibody inhibits variants
781 of concern by utilizing unique binding residues in a highly conserved epitope. *Immunity*
782 (2021).



783 46. Whitt, M.A. Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on
784 virus entry, identification of entry inhibitors, and immune responses to vaccines. *J Virol
785 Methods* **169**, 365-374 (2010).




786 47. Jackson, L.A., *et al.* An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. *N
787 Engl J Med* **383**, 1920-1931 (2020).




788 48. Case, J.B., Bailey, A.L., Kim, A.S., Chen, R.E. & Diamond, M.S. Growth, detection,
789 quantification, and inactivation of SARS-CoV-2. *Virology* **548**, 39-48 (2020).

790

A**B****C****D****Figure 1**

A**B****Figure 2**

A**B****C****Figure 3**

A**B****C****Figure 4**