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Abstract
The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through

metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space,

metagenome-derived genomes lack key information compared to isolated viruses, in particular host

association.  Different  computational  approaches  are available  to  predict  the host(s)  of  uncultivated

viruses  based on their  genome sequences,  but  thus  far  individual  approaches  are  limited  either  in

precision or in recall, i.e. for a number of viruses they yield erroneous predictions or no prediction at

all. Here we describe iPHoP, a two-step framework that integrates multiple methods to provide host

predictions for a broad range of viruses while retaining a low (<10%) false-discovery rate. Based on a

large database of metagenome-derived virus genomes, we illustrate how iPHoP can provide extensive

host  prediction  and  guide  further  characterization  of  uncultivated  viruses.  iPHoP  is  available  at

https://bitbucket.org/srouxjgi/iphop  ,   through a Bioconda recipe, and a Docker container.
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Introduction
Viruses  are  widespread and influential  throughout  all  ecosystems.  In microbial  communities,

viral infections can shift community composition and structure via viral lysis, and alter biogeochemical

processes and metabolic outputs through reprogramming of host cells during infection1–3. Given current

challenges for cultivating many environmental microbes and their viruses, the extensive viral diversity

is  now primarily  explored  via  metagenomics,  i.e.,  by assembling  genomes  of  uncultivated  viruses

directly from whole community shotgun sequencing data4–6. Over the last decade, metagenomic studies

have been incredibly  powerful  in revealing  viral  diversity  on Earth,  investigating  eco-evolutionary

drivers of viral biogeography, and connecting viruses to ecological and metabolic processes7–9. A major

limitation of these approaches is that metagenome-derived viral genomes have no inherent link with a

host, as is the case for isolates4. This lack of host association remains a critical hurdle when attempting

to  study virus-host  interactions  and dynamics  in  natural  communities,  in  particular  for  the  highly

diverse bacteriophages (“phages”), viruses infecting bacteria4.

Given  the  importance  of  phage-host  interactions  in  microbiome  processes,  computational

methods to predict the host(s) of a phage based on its genome sequence are highly desirable, and the

subject of active research10,11. Existing host prediction tools leverage either various levels and patterns

of sequence similarity between phage and host genomes (“host-based” tools hereafter), or use a “guilt-

by-association” approach by comparing the query phage to a database of viruses with known host(s)

(“phage-based” tools). 

In host-based tools, sequence similarity  between phages and hosts can be based on sequence

alignment, reflecting for instance prophages integrated in the host genome or similarity between phage

genomes and host CRISPR spacers10,12, or can rely on alignment-free approaches, e.g., comparison of

nucleotide  k-mer  frequencies,  in  which  case  these  typically  reflect  the  overall  adaptation  of  virus

genomes to their host cell machinery13,14,23,15–22. Because they rely on different signals, these host-based

tools display varying levels of recall and specificity, and are likely to be each relevant for different

types of samples and viruses10. In previous benchmarks, alignment-based methods could reach high

specificity when using strict cutoffs, for instance >75% of predictions correct at the species level, but

only  for  a  limited  subset  of  the  input  phages  due  to  limitations  of  the  host  reference  database10.

Meanwhile, in the same benchmark, alignment-free methods appeared to contain a genuine and strong

phage-host signal for a broader range of phages, but more complex to parse as the highest scoring host

was often (>50% of the time) yielding an incorrect prediction at the species, genus, and family level.

Complementarily, “phage-based” tools rely not on phage-host similarity, but extract information

from a database of reference phages and archaeoviruses with known host(s)24–27. The most recent tools

in this category have been the most promising overall, with benchmarks suggesting both high recall and

high specificity. For instance, RaFAH achieved a 33% improvement in F1 score (combination of recall

and precision) at the genus level compared to host-based methods25. While phage-based approaches are

particularly  suitable  if  related  phages  exist  with  known hosts,  RaFAH also  predicted  hundreds  of

archaeal viruses, i.e. domain-level host predictions, despite archaeoviruses being under-represented in

the database25. However, it remains unclear to what extent phage-based tools can provide reliable host

prediction  at  lower  ranks  such  as  genus  or  species  for  entirely  novel  phages,  and  how  to  best

complement these phage-based predictions with host-based signals11. 

With multiple tools available for host prediction, several studies have attempted to integrate the

results  from several  approaches  into  a  single  prediction  for  each  virus.  This  integration  step  was

originally performed via empirical “rule sets” prioritizing methods based on empirical accuracy or error

rate estimations28,29. Recently, several automated tools were developed that instead leverage machine

learning to obtain an integrated host prediction. PhisDetector30 combines multiple host-based methods,

both alignment-based and alignment-free,  and uses an ensemble of machine-learning approaches to

2

30

35

40

45

50

55

60

65

70

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.28.501908doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501908
http://creativecommons.org/licenses/by-nc/4.0/


evaluate the confidence of each potential phage-host pair. VirHostMatcherNet31 proposes to integrate

both virus-virus and virus-host signal in a modeled virus-host network, from which potential virus-host

pairs  are  evaluated  using  a  logistic  regression.  While  both  tools  showed  potential  improvements

compared to single methods, none of the benchmarks provided suggested that they could reach a low

(<10%) false-discovery rate (FDR) at the host genus level, even with the strictest cutoffs. In addition,

no benchmark was carried out across different degrees of phage “novelty”, i.e., different degrees of

similarity to the most closely related reference, so it remains unclear how these approaches perform on

“known” and “novel” phages. 

Here we present iPHoP, a tool for integrated Phage-Host Prediction, enabling high recall and low

FDR  at  the  host  genus  level  for  both  known  and  novel  phages.  We  first  demonstrate  the

complementarity of phage-based and host-based approaches,  and describe a new modular machine-

learning framework that yields highly accurate predictions at the genus level. Using a diverse set of

216,015 metagenome-derived phage genomes, we further show that iPHoP enables high-confidence

host  genus prediction  (estimated  <10% FDR) for  phages  across  a  broad range of  ecosystems and

novelty compared to isolated references.

Results
To design an integrated framework for host prediction, we first evaluated the performance and

complementarity of 10 existing methods on a common benchmark dataset10,12–14,16,24–27. We especially

focused on comparing tool performances across a range of “novelty”, i.e., using a test set that included

both viruses closely related to references and viruses entirely novel.

Limitations and complementarity of individual host prediction methods
A set  of published alignment-based and alignment-free methods,  either  phage-based or  host-

based, was selected for benchmarking (Table S1). These tools were evaluated on a common test dataset

including bacteriophage and archaeovirus genomes available in NCBI GenBank but not included in

NCBI RefSeq32, and thus typically not used to train any of these tools (see Methods and Table S2). This

test dataset contained 1,870 genomes, spanning across 170 host genera, including both temperate and

virulent phages, and with both “known” and “novel” genomes (>90% and <5% genome-wide average

amino acid identity, or AAI33, to the closest reference, respectively, see Supplementary Fig. S1). As

host  references,  we opted  to  use all  genomes  included  in the  GTDB database34,  supplemented  by

additional publicly available genomes from the IMG isolate database35 and the GEM catalog36. For each

tool, we assessed host predictions at the host genus rank based on a naive “best hit” approach and using

relaxed cutoffs (see Methods).

First, we evaluated the recall of each tool, i.e., the total number of correct predictions obtained

(Fig.  1A).  The  recall  differed  across  the  tool  categories,  with  the  lowest  observed  for  host-based

alignment-based tools such as blast and CRISPR, and the highest observed for phage-based tools. The

only exception was a very high recall observed for blast-based predictions of temperate phages, which

is due to the detection of integrated copies of these phages, or closely related ones, in host genomes. A

similar trend, i.e., a higher recall for temperate phages compared to virulent phages, was observed for

most  approaches  albeit  to  a  much  lower  degree  (Supplementary  Fig.  S2).  For  CRISPR-based

predictions, the low recall compared to other approaches is likely due to limitations of the host database

as CRISPR arrays can be absent from large clades of bacteria37 and, when present, CRISPR spacers are

typically highly variable even between closely related strains10,38. 

Next, we evaluated the precision of each tool, i.e., its ability to distinguish correct from incorrect

hosts among all  its  predictions.  As previously noted10,  host-based alignment-free tools struggled to

achieve a high Positive Predictive Value (PPV), i.e., a low False-Discovery Rate (FDR), even when
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using strict  cutoffs (Fig.  1B).  In contrast,  alignment-based tools,  both phage-based and host-based,

were able to reach high (>80%) PPV when filtering hits based on score(s). Pragmatically, this means

that  the  scores  provided  by  alignment-based  tools  are  able  to  distinguish  correct  from  incorrect

predictions,  while the scores provided by alignment-free tools are usually not sufficient to identify

correct predictions.

Phage-based tools thus seemingly present an ideal combination of high recall and high precision,

with RaFAH25 in particular able to maintain a very low FDR (<5%) while providing the highest recall

of all tools (Fig. 1, Supplementary Figure S2). However, phage-based tools depend on the availability

of a related phage with a known host in the reference database. Specifically, phage-based tools mostly

provide predictions for phages that are related to reference sequences, and much less frequently for

“novel” phages (<5% AAI to closest reference, Fig. 1C). A similar trend, although less pronounced,

can be observed for host-based tools relying on sequence alignment. Meanwhile, alignment-free host-

based tools show little  to no bias for phages with closely related  references,  suggesting that  these

methods would be well suited for dealing with the most “novel” phages. This bias is important  to

consider because the vast majority (57-80%) of viral genomes identified from metagenomes have <5%

AAI to their closest reference (Supplementary Fig. S3),  so that phage-based approaches alone would

thus not yield reliable host predictions.

Ultimately,  these simplified  benchmarks  suggest  that  to  tackle  diverse “known” and “novel”

phages, as typically obtained through metagenomics, host prediction tools will need to combine phage-

based and host-based approaches. For instance, based on the benchmark in Fig. 1A, the tool with the

highest recall (RaFAH) provided host prediction for 52% of phages, while 83% of phages overall were

associated with a correct host prediction across all tools. For phage-based approaches, several tools

such as RaFAH already provide both high recall and high precision. Conversely, all current host-based

methods suffer from either limited recall (alignment-based methods) or limited specificity (alignment-

free methods), at least when used individually and in a simple “best hit” approach. In addition, the

predictions from different host-based methods partially overlap, suggesting that multiple methods could

be considered  together  to  either  reinforce  or  correct  each  other  (Supplementary  Fig.  S4).  For  our

integrated host prediction tool, we thus decided to first optimize host-based predictions by integrating

multiple hits per method and several methods together, and then combine these host-based predictions

with an established phage-based method to derive a single host prediction.

4

Figure 1. Comparison of different host prediction approaches on a single test dataset.  A. Total number of predictions and number of

correct predictions (y-axis) obtained for each tool (x-axis) using a “best hit” approach and relaxed cutoffs (see Methods) on sequences
from the test dataset (Table S2). For each tool, the number of correct predictions is indicated by the colored bar, while the total number

of predictions is indicated by the gray bar. Similar plots including the whole test dataset, virulent phages only, and temperate phages
only are available in Fig. S2. B. Precision-Recall curves for the different tools, using the same color code as in panels A and C. Two

standard thresholds, 5% and 10% false discovery rates, are indicate by horizontal dashed lines. C. Relationship between “novelty” of
input virus, represented as AAI (Average Amino Acid Identity) percentage to the closest reference on the x-axis, and the number of

correct host predictions obtained with each tool. To evenly represent both “known” and “novel” input viruses, 300 sequences were
randomly subsampled from each AAI percentage category (x-axis).
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Increasing host prediction accuracy by robustly integrating multiple hits for each virus
Elevated false discovery rates with host-based methods have been highlighted previously10,13,14.

Traditionally, these have been addressed by applying relatively strict cutoffs on the prediction score,

and by considering an arbitrary number of hits passing these cutoffs, e.g., the 5 or 10 best hits. These

hits might be further integrated using a lowest common ancestor (LCA) approach. Intuitively, this will

allow to distinguish reliable cases, where the top hits all point to the same host taxon, from unreliable

cases  where  the  top  hits  correspond to  different  taxa.  Alternatives  to  LCA approaches  have  been

proposed including the taxonomy-aware sequence similarity ranking framework from PHIRBO39. Here,

we explored whether machine learning approaches could help improve these predictions by integrating

all hits obtained for a virus using a given method.

To consider an ensemble of hits in a taxonomy-aware context, we opted to treat each hit as a

separate classification problem, i.e., “is this host hit reliable or not considering the context of other hits

obtained for this same virus with the same approach?”. For a given input genome, each hit is thus

considered as a candidate host, and an ensemble of hits for a virus is provided as input to different

classifiers with information on the hits quality as well as phylogenetic distances between each hit and

the candidate host based on the GTDB34 framework (Fig. 2A, Supplementary Fig. S5). The task asked

5

Figure 2. Overview of the single-tool classifiers used in iPHoP. A. Schematic representation of the process used to score individual hits
from host-based tools. Briefly, each hit was scored by a neural network or random forest classifier, which also considered other top hits

for the same virus and the same tool.  This process was applied to the 5 host-based tools selected (“Blast”,  “CRISPR”, “WIsH”,
“VHM”, “PHP”), except for the random forest classifiers (highlighted with a *) which were only used for “Blast” and “CRISPR”.

When considering multiple hits, their similarity or difference in terms of host prediction was estimated from the GTDB phylogenies 34 B.
Illustration of how multiple hits are represented in neural networks input matrices (top) or random forest classifier inputs (bottom). Two

examples are provided, one “reliable” in which the hits with high scores are all consistent and at a small distance to the candidate host
considered (left), and the other “unreliable” in which a few hits with medium-to-high scores are scattered across hosts with variable

distance to the candidate host considered. C. Estimated improvement in classification provided by the automated classifiers compared to
“naive” raw scores. These estimations are based on smoothed ROC curves obtained from the test dataset (see Supplementary Fig. S6)

and calculated as the average decrease in false-discovery rate for 17 true positive rates ranging from 10 to 90%. Random forest
classifiers were only evaluated for Blast and CRISPR approaches. D. Precision Recall curves for the two classifiers selected for each

host-based tool (see Supplementary Table S3). VHM: “VirHostMatcher”. Conv: “Convolutional Neural Network”. “RF”: “Random
Forest classifier”.
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of the classifiers is to predict whether the candidate host belongs to the correct host genus, and the

underlying assumption is that classifiers would learn to recognize reliable series of hits, e.g., cases

where most of the top hits are close to the candidate host, from unreliable series of hits, e.g., cases

where hits are distributed across diverse hosts and/or distant from the candidate host, without having to

resort to arbitrary cutoffs (Fig. 2B).

To evaluate this approach, we applied it separately to 5 host-based methods (Blast,  CRISPR,

WIsH13, VirHostMatcher14,31, PHP16,  see  Supplementary  Table S1), used RefSeq Virus sequences to

train and optimize 3 types of classifier, namely dense neural networks, convolutional neural networks,

and random forest classifiers, and compared the results obtained on the test dataset (see above) to a

standard best hit approach (Supplementary Fig. S5). Overall, considering multiple hits with automated

classifiers reduced the error rate (average FDR) for all methods and all types of classifiers, with the

highest reductions obtained with convolutional neural networks (Fig. 2C, Supplementary Fig. S6). This

reduction  in  average  error  rate  was especially  important  for  WIsH and CRISPR-based predictions

(>40%), and smaller for BLAST, for which standard scores already seem to perform well.

Finally, we verified whether different variants of each classifier could be complementary, i.e.,

provide reliable scores for different types of sequence. In all cases, a set of two variants appeared to be

the  best  combination  to  maximize  the  number  of  correct  predictions  while  minimizing  the  false-

discovery rate (see Methods). The 10 classifiers that were ultimately selected (2 for each of the 5 host-

based methods) showed improved positive predictive value, often >75%, at most true positive rates,

confirming their improved ability to distinguish likely and unlikely candidate hosts compared to the

raw score of each method (Fig. 2D). 

Integrating host- and phage-based predictions for a comprehensive coverage of phage diversity
After  optimizing scoring systems for each host-based method, the next  step was to integrate

predictions across different methods to obtain a single prediction score taking into account all different

approaches for each potential phage-host pair. Traditionally, this has been done using fixed “rule sets”

informed by estimation of false-discovery rate for each approach, e.g.,  prioritizing alignment-based

approaches over alignment-free approaches28,29. Here, we instead used a 2-step integration process to

robustly consider all hits for each input sequence. 

First, to leverage the high sensitivity of alignment-free approaches but reduce their error rate, we

trained and optimized a random forest classifier based on the scores from the 10 individual host-based

classifiers described in the previous section (“iPHoP-RF classifier”, Fig. 3A). This iPHoP-RF score

yielded low FDR (≤10%) even at high TPR (≥75%), and was comparable in that regard to the scores

obtained from the phage-based tool RaFAH25, as well as host-based aligment-based tools (Blast and

CRISPR, Fig. 3B).

Next, we designed a composite confidence score for each phage-host pair to summarize results

from both phage- and host-based methods (Fig. 3A, see Methods). Because blast- and CRISPR-based

predictions can also be reliable on their own without the need for any other approach (Fig. 2D), we

included the best score for each of these approaches along with the iPHoP-RF score and the score from

RaFAH25, the most reliable phage-based tool in our benchmark (Fig. 1A & B). As expected based on

our initial benchmarks (Fig. 1C), different methods provided correct host predictions for different input

phages,  and combining them led to high rates of phages with correct  predictions  (≥50%) for both

“known” and “novel” phages (Supplementary Fig. S7).
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To  illustrate  the  unique  features  and  performance  improvements  provided  by  iPHoP,  we

compared  it  to  other  automated  tools  integrating  multiple  approaches  for  host  prediction,  namely

VirMatcher29, PhisDetector30, and VirHostMatcher-Net31. Based on Receiver Operating Characteristic

and Precision  Recall  curves,  iPHoP performed as  well  as,  or  better  than all  other  integrated  tools

(Supplementary  Fig.  S8).  However,  the  major  improvement  of  iPHoP comes  from the  number  of

phages  with  a  host  prediction:  for  a  given  FDR,  iPHoP  typically  provides  ~3  to  5  times  more

predictions than the next best tool, especially for “novel” phages (Fig. 3C). This is likely due to the fact

that (i) iPHoP uniquely leverages both phage-based and host-based approaches, (ii) iPHoP integrates

more approaches than any other tool, (iii) the iPHoP host database is larger and more diverse than those

used by other tools, and (iv) iPHoP was specifically optimized for predictions at the host genus rank. In

contrast, VirHostMatcher-Net relies on a network architecture to represent virus-host interactions and

derive host predictions at multiple taxonomic ranks, while PhisDetector was designed to provide host

predictions down to the species rank30,31. 

Expanding host predictions in a large database of metagenome-derived viruses
To further evaluate the improvements provided by iPHoP and the remaining challenges when

analyzing diverse  metagenome-derived phage genomes,  we applied  iPHoP to 216,015 high-quality

(i.e., predicted to be ≥90% complete by CheckV) IMG/VR sequences (Supplementary Fig. S3). We

then compared the iPHoP predictions to the current host predictions available in the IMG/VR database,

which were primarily based on blast hits to host genomes and CRISPR spacers8 (Fig. 4A). Overall,

iPHoP predictions at an estimated FDR ≤10%, i.e., score ≥90, represented a 1.5- to 13-fold increase

compared  to  the  original  number  of  host  prediction  in  the  IMG/VR v3  database,  however  these

numbers vary greatly depending on the ecosystem (Fig. 4A). For human-associated microbiomes, about

89% of the high-quality genomes had a host predicted using iPHoP, including 57% with very high

confidence predictions (iPHoP score ≥95). For all other ecosystems, the total number of phages with

predictions was lower, ranging from ~40–50%, including ~15–22% with medium or high confidence

(score  ≥90).  Across  ecosystems,  host  predictions  originated  primarily  from  host-based  methods,

7

Figure 3. Schematic and performance

of  iPHoP  host  genus  predictions. A.
Schematic  representation  of  the

integration  process.  “Individual
classifiers” refer to single-tools scores

calculated for each virus-candidate host
pair (see Fig.  2).   B.  Precision Recall

curve  for  each  of  the  four  scores
considered  in  iPHoP composite  score,

based  on  the  test  dataset.  C.
Comparison of the percentage of input

sequences  from  the  test  dataset  for
which  a  correct  host  genus  prediction

was  obtained,  when  using  cutoffs
limiting  false-discovery  rate  to  20%

maximum. This percentage is given for
all sequences in the test dataset (“All”),

and  for  subsets  of  sequences  defined
based on their amino-acid similarity to

the  closest  reference  phage  genome.
RF:  Random  Forest.  FDR:  False-

Discovery  Rate.  AAI:  Amino  Acid
Identity.
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consistent with the high number of metagenome-derived sequences unrelated to those in the reference

databases (Fig. 4B, Fig. S3, Supplementary Fig. S9). Human microbiomes again stand out with >25%

of host predictions confirmed by both phage- and host-based methods, which explains the high number

of high-confidence predictions (Fig. 4A). For all ecosystems, iPHoP provided host prediction for both

temperate and virulent phages, although a higher percentage of predictions was obtained for temperate

ones (Supplementary Fig. S10). While these results reflect the inherent bias in current microbial and

phage reference databases, they suggest that iPHoP is already useful across different biomes and for

different  virus  types,  and may  be expected  to  improve as  more  of  the  global  microbial  and viral

diversity is characterized.

Within  host-based  approaches,  nearly  half  (mean:  45%)  of  the  predictions  were  based  on

genomes of uncultivated bacteria and archaea, highlighting the value of using large databases including

single-cell amplified genomes (SAGs) and/or metagenome-assembled genomes (MAGs)34,36 (Fig. 4C).

These  genomes  from  uncultivated  microbes  were  particularly  important  for  predicting  hosts  of

environmental phages, especially freshwater and marine phages (Fig. 4C). We next wondered what

proportion of these hosts were “local”, i.e., assembled from the same sample as the query phage or

another sample in the same study. Overall, in several ecosystems, a substantial (>25%) proportion of

MAGs used for host predictions were obtained from metagenomes generated in the same study from

which the input phage was derived (Fig. 4D). Hence, for comprehensive host prediction of a new phage

dataset, it may be valuable to also integrate into the host genome database additional bacterial and

archaeal  MAGs obtained  from the  same sample  or  experiment,  if  available.  To facilitate  this,  we

included an automated database building module in iPHoP, enabling users to add their own MAGs in a

host database based on phylogenies and taxonomies generated through GTDB-tk40.

Estimating host diversity coverage by metagenome-derived viruses
Finally,  we evaluated  these  IMG/VR host  predictions  from the  host  perspective,  specifically

assessing which host taxa were most frequently associated with viruses, and how much of the bacterial

and  archaeal  diversity  remained  without  any  known or  predicted  virus.  Overall,  across  the  5,711

bacteria and archaea genera with at least 2 genomes in the host database, 205 (3.6%) were associated

with  at  least  one  reference  virus  in  NCBI  RefSeqVirus,  while  1,700  (31.5%)  were  exclusively

associated with metagenome-derived virus(es) through iPHoP (score ≥90, Fig. 5A). These host genera

8

Figure 4. Overview of iPHoP Host prediction for high-quality IMG/VR v3 genomes. A. Distribution of the best score provided by

iPHoP for high-quality genomes from the IMG/VR v3 database by ecosystem. For each IMG/VR vOTU, the best score from iPHoP was
considered if ≥ 75, or the vOTU was considered as not having a predicted host. The proportion of sequences for which a host prediction

was available in the original IMG/VR database is indicated with a dashed red line. B. Distribution of the type of signal used to achieve
host prediction with a score ≥ 90 in iPHoP. “Host-based” includes all 5 host-based tools, while “Phage-based” includes predictions

obtained with RaFAH. “Both” includes consistent predictions obtained with RaFAH and at least one host-based tool. C. Percentage of
hits from isolated or uncultivated host genomes used in host-based predictions with final scores ≥ 90. These are based on the individual

genome hits underlying iPHoP genus-level predictions. D. Origin of the uncultivated host genomes used in host-based predictions with
final scores ≥ 90. The original dataset and study ID for the query virus and the uncultivated host genome were obtained from the Gold

database, and when both were available, these were compared to evaluate whether the uncultivated host genome originated from the
same dataset, a different dataset from the same study, or another study from the query virus.
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only  associated  with  viruses  through  iPHoP  predictions  were  found  across  various  bacterial  and

archaeal phyla, from Firmicutes and Bacteroidota to Methanobacteriota (31-48% of genera with host

prediction only; Fig. 5A), and were not systematically associated with the largest genera, i.e. the ones

with  the  highest  number  of  species  (Supplementary  Fig.  S11).  Meanwhile,  other  phyla  such  as

Patescibacteria,  Planctomycetota,  Acidobacteriota,  and  Chloroflexota,  still  displayed a majority  of

genera  without  any  associated  virus,  either  isolated  or  predicted (79-83%),  highlighting  the  large

diversity of viruses likely still to be identified and characterized.

We also evaluated which host taxa were associated with the largest number of predicted viruses

for each biome reasoning that, if the predictions were mostly correct, these should correspond to taxa

that are frequently observed in these ecosystems. Overall, the 10 genera most frequently predicted as

hosts in each ecosystem did indeed correspond to taxa primarily detected in these same biomes, e.g.,

Bacteroides and Faecalibacterium for human microbiome, Vibrio and Pseudoaltermomonas for marine

samples, and Streptomyces and Mycobacterium for terrestrial samples (Fig. 5B). The main exception to

this pattern was the unexpectedly high number of host predictions to the Bacteroides genus for marine,

9

Figure 5. Taxonomic and environmental distribution of hosts predicted using iPHoP from the IMG/VR v3 genomes.  A. Archaeal (top
left) and bacterial (bottom right) genome diversity from the GTDB database r20234. The GTDB phylogenetic trees were collapsed at the

phylum level. The status of virus association, i.e., isolated virus, predicted virus only at score ≥ 95 or ≥ 90, or no prediction, was
evaluated for each host genus, and the phyla shapes are colored according to the number of genera in each category within this phylum.

B. For each major biome type, the 10 host genera with the highest number of predicted IMG/VR high-quality virus genomes are
included in the plot. Each host genus was also determined to be mainly detected in a biome type or detected across multiple biomes

based on the distribution of MAGs assigned to this genus across ecosystems in the GEM catalog (see Methods).
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freshwater, and terrestrial viruses. As the Bacteroides-infecting Crassvirales phages41–43 have been used

as markers for fecal contamination44,45, these predictions might reflect pervasive contamination of these

environments, although these may also reflect a bias in the current phage and host isolate databases,

skewing predictions towards this host genus. Overall, while these results illustrate how in silico  host

predictions must always be considered critically and in light of the current limitations of databases and

tools, increasing the diversity of isolated phage-host pairs from various environments will likely help

refine these predictions in the future.

Discussion
Viral metagenomics has profoundly transformed our understanding of global viral diversity and

viral impacts on microbial communities. One critical piece of information missing compared to isolated

viruses  is  the  host  connection,  which significantly  limits the  inference  and  biological  knowledge

extracted from viromics data4.  Accordingly,  different methods have been developed to address this

critical challenge, each with their specific limitation. Here, we present the iPHoP framework as a way

to automatically  integrate  results  from multiple  host  prediction  approaches,  which  enables  reliable

prediction of host genus for a larger diversity of phages than any previous tool. The iPHoP tool and

database  are  available  as  a  stand-alone  tool  (bitbucket.org/srouxjgi/iphop/),  a  Bioconda  recipe

(https://bioconda.github.io/recipes/iphop/README.html),  and  a  Docker  container

(https://hub.docker.com/r/simroux/iphop).

While iPHoP substantially improved host predictions on viruses from real metagenomic datasets,

several limitations remain. First, because it relies on a suite of different tools, iPHoP remains relatively

slow compared  to  other  tools:  a  full  iPHoP host  prediction  takes  ~12 minutes  for  a  test  set  of  5

complete phage genomes using the Sept_2021_pub database and 6 CPUs. This running time may not

be problematic for viromics studies which typically run host prediction  only  once on  a  large set of

metagenome-derived  virus  genomes,  but  it  makes  iPHoP  suboptimal  for  time-sensitive  analyses.

Second, while iPHoP scores are designed to reflect false-discovery rates, these estimations depend on

the composition of the test dataset used. Even though we tried to use a balanced set as much as possible

by ensuring that we included viruses with a broad range of relatedness to reference sequences, iPHoP

scores should only be interpreted as approximated FDRs at best. Third, since iPHoP was designed with

a viral ecology framework in mind, our goal was to provide reliable host predictions at the genus rank,

i.e., with FDRs ideally <10%, from diverse input phages. Arguably, in other contexts such as phage

therapy applications, host predictions will need to be more specific and reach the host species or strain

level. Such a high-resolution host prediction will likely require the reconstruction of detailed virus-host

networks, as attempted by VirHostMatcher-Net31, or detailed analysis of receptor-binding proteins18. In

the  near  future  however,  we  anticipate  that  genus-level  approaches  like  iPHoP  will  be  broadly

applicable and provide host predictions for a large range of viruses, while higher resolution approaches

such as VirHostMatcher-Net will likely be more limited in scope, so that both types of tools will be

useful  for  different  applications.  Fourth,  several  potential  improvements  to  iPHoP can  already  be

envisioned, including for instance the addition of complementary approaches such as the detection of

shared tRNA between phages and hosts, or the consideration of additional features such as whether the

input  virus  is  temperate  or  virulent. Finally,  iPHoP remains  limited  by host,  virus,  and host-virus

databases, as illustrated by the difference in the number of phages with host prediction between the

human  microbiome  and  other  ecosystems.  Achieving  similar  performance  across  all  biomes  will

require in particular expanding the catalog of potential host genomes, with a particular attention paid to

CRISPR arrays which are often not fully assembled from metagenomes28,46, and expanding the diversity

of viruses associated with a host, either from isolation or using in vitro host linkage47–50. In that context,

to accommodate future expansions of the tool set and databases, iPHoP was intentionally designed as a
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modular framework, and we envision the current tool as only the first step towards a comprehensive

automated in silico host prediction toolkit. 
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Online Methods

Virus-host training sets and host databases
To evaluate different host prediction approaches and train new classifiers, a curated dataset of

known virus genomes with corresponding host taxonomy was established based on genomes available

in the NCBI databases up to January 2021. For training new classifiers, sequences from bacteriophages

and archaeoviruses were obtained from NCBI RefSeq release 201 (released in July 2020), and the host

genus of each virus was obtained from the corresponding genome annotation and/or publication51. This

dataset was used to train new classifiers (see below), but not to evaluate any tool since these virus-host

pairs were likely to have been used for training in previously published tools as well. 

To complement this training set, a distinct test set was established based on NCBI GenBank.

Specifically, INPHARED32 was used to download a collection of bacteriophages and archaeoviruses

from NCBI in  January  2021,  and all  genomes  already  present  in  NCBI RefSeq  release  201 were

removed. For the remaining ones, host taxonomic information was obtained from the corresponding

annotation and/or publication, and genomes for which host taxonomy was uncertain were removed,

leading  to  a  final  dataset  of  1,870 viruses  with  host  taxonomy (Table  S2).  These  genomes  were

compared to the NCBI RefSeq references (see above) as well as the phage reference database used in

RaFAH v0.125 using diamond blastp v0.9.24 (default parameters,  52) after de novo prediction of cds

using  Prodigal  v2.6.3  (option  “-p  meta”,  53),  and  the  AAI  estimation  script  provided  with  the

Metagenomic  Gut  Virus  catalogue  (https://github.com/snayfach/MGV/blob/master/aai_cluster/

README  .md  ,  33). Temperate phages were identified in the test set based on the annotation provided

with each genome by searching for the keywords “prophage”, “provirus”, “lysogen”, and “integrated”,

and based on BACPHLIP v0.9.654 with a minimum score of  ≥0.8. When annotation and BACPHLIP

prediction  were  conflicting,  the  information  from the  genome annotation  was  prioritized.  Virulent

phages were identified based on BACPHLIP v0.9.654 with a minimum score of ≥0.8.

Host database consolidation
The host genome database currently used in iPHoP, named “iPHoP_db_Sept21”, was built from

three publicly available genome sets, namely the GTDB database (release 202, 34), published genomes

from the IMG database (as of July 7, 2021,  35), and the Genomes from Earth’s Microbiomes (GEM)

catalog36, as follows. First, the 47,894 representative genomes from each GTDB species cluster were

obtained from the GTDB database itself. Next, bacteria and archaea genomes from the IMG database

that were not already included in GTDB release 202 and with a total length ≥100kb (n = 22,188), and

medium- and high-quality metagenome-assembled genomes from the GEM catalogue (n = 52,515),

were compared to the GTDB species representatives using the ani_rep function from GTDB-tk v1.5.0

(default  parameters,  40),  based  on  Mash  version  2.355 and  FastANI  v1.3256.  All  genomes  with  a

similarity  of  ≥99%  ANI  over  ≥99%  AF  were  considered  as  identical  to  one  of  the  GTDB

representatives and discarded (n = 1,724). Non-identical genomes with a similarity of  ≥95% ANI to

one of  the  GTDB representatives  were  retained  in  the  database  as  members  of  the  corresponding

species cluster (n = 32,735). Finally, the remaining genomes (n = 27,279) were considered as potential

representatives of additional species clusters. To include these in a GTDB-compatible phylogenomic

framework,  these  genomes  were  first  checked  for  quality  using  CheckM  v1.1.357,  discarding  all

genomes  with  <50%  completeness  or  >10%  contamination,  and  then  dereplicated  with  dRep

v3.2.258 with cutoffs of 90% ANI and 60% coverage. The non-redundant genomes (n = 13,658) were

then integrated in updated bacteria and archaea phylogenomic trees using the function de_novo_wf

from GTDB-tk v1.5.0 (default parameters, 40). The resulting trees are then used in iPHoP for taxonomic

assignation of and phylogenetic distance estimation between all representatives. 
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The representative genomes included in the GTDB-tk-generated trees are used in iPHoP for all

prediction methods (n = 60,000, i.e. 47,894 existing GTDB representatives and 12,106 additional ones

from IMG and GEM). For blast-based prediction, these representative genomes are supplemented with

additional genomes clustered into one of these species clusters, after removing duplicate genomes (n =

43,022, for a total of 103,022 genomes used). Finally, for CRISPR-based predictions, CRISPR spacers

were predicted  de novo in all 121,781 genomes (i.e., representatives, clustered, and duplicates), with

CRT  1.259 and  PilerCR60 using  custom  python  scripts  from

https://github.com/snayfach/MGV/tree/master/crispr_spacers 33. All spacer sequences from arrays with

≥3 spacers were collected and dereplicated (100% identity), and spacers with a sequence length <10 or

>100 were excluded. Ultimately, the spacer collection used in the iPHoP_db_Sept21 database includes

1,398,130 spacers from 40,036 distinct genomes.

Evaluation and benchmarking of selected host prediction methods
A set of published tools performing host predictions based on a single approach were selected for

benchmarking and potential inclusion in the iPHoP integrated framework (Table S1). All these tools

were benchmarked against the same test dataset (see above) established from virus sequences from

NCBI GenBank (January 2021). Blast-based predictions were based on a blastn comparison (v2.12.0+,

maximum e-value 1e-3, minimum identity percentage 80, maximum target sequence 25,000, minimum

hit length 500nt,  61) between the input virus genomes and the iPHoP_db_Sept21 blast database (see

above). Metrics considered for each pair of input virus and host contigs were total number of matches

and  average  identity  percentage.  CRISPR-based  predictions  were  based  on  a  blastn  comparison

(v2.12.0+, word size 7, no filtering of hits based on low complexity, i.e., “-dust no”, maximum target

sequence 10,000,000, 61) between the input virus genomes and the iPHoP_db_Sept21 spacer database

(see above), considering only hits to spacers 25 nucleotides or longer, with less than 8 mismatches

overall, and with a custom complexity score <0.6. The custom spacer complexity score was calculated

based on sequence AT skew content and the complexity estimation by Wootton–Federhen (CWF)62 as

follow: the complexity score is set as (CWF score – 2 ) * 2, except if (AT skew) > 0.65, in which case

the complexity score is set to (AT skew) + 0.1. For Fig. 1A and Fig. S2, only hits with 2 or less

mismatches over the entire spacer were considered. The metric considered to rank hits for individual

input  virus  genomes  was  the  total  number  of  mismatches  when  considering  the  entire  spacer.

SpacePHARER  predictions  were  based  on  the  predictmatch  function  from  SpacePHARER

v2.fc5e66812 applied to the input virus genomes with a sensitivity of 7.5 (“-s 7.5”) and a maximum

number  of  results  per  query  sequence  of  10,000,  using  the  IMG/VR  v3  CRISPR  database8.

SpacePHARER “Combined score” metric  was used to  rank predicted  hosts  for each input,  with a

minimum score cutoff of 20 applied for Fig. 1A and Fig. S2.

For  WIsH  predictions,  input  virus  genomes  were  compared  to  the  iPHoP_db_Sept21  WIsH

database with WIsH v1.013 and a maximum p-value of 0.2. The WIsH p-value was also used to rank

predictions for each input virus. For predictions based on the s2* similarity, the corresponding code

from VirHostMatcher-Net  (July  2021 version31)  was  used  to  compare  input  virus  genomes  to  the

VirHostMatcher database in iPHoP_db_Sept21 (see above). The s2* similarity score is the only metrics

considered for each hit. For PHP, input virus genomes were compared to the iPHoP_db_Sept21 PHP

database (see above) using PHP (July 2021 version16), and the PHP score was used as a metric for each

hit. The upset plot comparing the predictions obtained for different host-based tools was generated with

the UpSetR package63.

RaFAH25 predictions were obtained by running the “predict” function from RaFAH v0.3 on the

input  virus  genomes  with  default  parameters,  and  using  the  Predicted_Host_Score  as  metric.

vHULK26 predictions  were obtained by running vHULK v1.0.0 with default  parameters,  and using
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score_genus_relu as the metric. VPF-Class predictions were obtained by running the vpf-class function

from the  vpf-tools  0.1.0.0 toolkit27 with  default  parameters,  using  the  host taxon with  the  highest

membership_ratio as the prediction for each input virus and the confidence_score as the metric. Finally,

HostPhinder predictions were obtained by running the “latest” version of HostPhinder docker container

(December 2015) with default parameters, and the main reported score as metric.

For all the tools, the best prediction was taken for each input virus based on the relevant metric,

and considered as correct if the genus of the predicted host genome or the predicted genus for tools

predicting host taxonomy was consistent with the information collected from the reference database

(Table S2). 

Establishment of balanced training sets for single-tool iPHoP classifiers
For  the  5  host-based  approaches  selected  to  be  included  in  the  iPHoP framework  (“Blast”,

“CRISPR”, “WIsH”, “VirHostMatcher”,  and “PHP”),  individual  machine-learning classifiers  taking

into consideration multiple top hits for each input virus were optimized as follows. A training set was

built  from the  hits  obtained from NCBI Virus  RefSeq release  20151 against  the  iPHoP_db_Sept21

database, using similar cutoffs as for the benchmarks (see above) but considering for each input virus

the  50  best  hits  (blast)  or  30  best  hits  (all  other  methods).  All  hits  were  associated  with  the

corresponding host genome representative (see “Virus-host training sets and host databases” above),

and for each input virus, all host genome representatives with one hit were considered as a candidate

host.

For each pair of input virus-candidate host, the different hits obtained for this virus were gathered

as follows. First, the phylogenetic distance between the host genome representative of each hit and the

candidate host was obtained from the GTDB-tk-generated trees (see above), so that hits can be ordered

by distance to the candidate host.  Next,  depending on the tools,  one to three scores were used to

describe the strength of the hit, and all the hits for a given input virus are tallied, i.e., the number of hits

observed for a given distance and set of scores is tabulated. The resulting matrices then serve as input

to either neural network or random forest classifiers. For more detailed information about the cutoffs,

score selection, and transformation used for each tool, please see Supplementary Fig. S5.

For classifier training, a subset of 20,000 to 60,000 virus-host instances were randomly selected

for each tool, with the following constraints: (i) between 60 to 85% of incorrect virus-host pairs, i.e.,

instances where the candidate host was assigned to a genus different from the host genus listed for this

virus in the database, and (ii) between 45 to 70% of instances with a “known” virus, i.e., for which the

virus had an AAI percentage of 70% or higher to the closest reference. These constraints were included

to ensure that the training set was not too unbalanced in favor of (i) incorrect predictions, since most

hits are to genomes from a different genus than the host, and (ii) “known” viruses, which typically

represent the majority of databases and could bias the classifiers. A subset (10%) of these training data

were  set  aside  and  used  as  a  common  validation  set  when  comparing  different  versions  of  each

classifier (see below). Further, for each instance, 3 different sets of hits were used: one including all the

hits obtained for the virus, one including only a random subset (from 0 to 100%) of hits, and one

including only one randomly selected hit with a distance ≤4 to the candidate host (if any) and all hits

with a distance >4, or one randomly selected hit among all hits if all display a distance >4. This random

subsampling of hits was included to simulate different levels of representation of host diversity in the

database, since current bacteria and archaea genome databases do not provide an even coverage of the

global  diversity,  and isolated  viruses  used  here  for  training  are  likely  to  be  biased  towards  well-

represented hosts.

Optimization and evaluation of single-tool classifiers for iPHoP
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All dense and convolution networks were built using TensorFlow 2.7.064, and all random forest

classifiers were built with the TensorFlow Decision Forests v0.2.1, both within the Keras 2.7.0 Python

library65. Classifiers were trained on the corresponding training set, using 80% of the data for training

and 20% for validation (“validation_split=0.2” for the neural networks). The Adam optimizer was used

to train all the neural networks. Classifier parameters including the number of layers, kernel size, and

dilation rate for convolution networks, number of dense layers for dense networks, and number of trees

and maximum tree depth for random forest classifiers, were optimized for each individual classifier

using the Optuna v2.5.0 framework66, by running 100 training trials (see Supplementary Fig. S5). For

each  type  of  classifier  (convolution  network,  dense  network,  random forest  classifier),  the  5  best

versions based on minimum Binary Cross Entropy  loss  (for  networks) or  maximum accuracy (for

random forests) on the common validation set (see above) were selected as potential candidates. 

To select the optimal combination of classifiers, these candidates were then applied to the test set,

and the results obtained on the non-ambiguous cases were observed (i.e.: blast hit  ≥10kb, CRISPR

match with  0  mismatches,  WIsH p-value  ≤1E-05,  VHM score  ≥0.8,  PHP score  ≥1450).  For  each

classifier, the tenth percentile of scores for these non-ambiguous cases where the classifier prediction

was correct was used as an estimate of a “high-confidence” score for this classifier, and the number of

incorrect predictions with a score higher than this cutoff was used as an estimate of the error rate, i.e.,

incorrect prediction with a score comparable to non-ambiguous correct predictions. This error rate was

then used  to  iteratively  select  classifiers  by first  selecting  the  one with  the  lower  error  rate,  then

selecting  additional  classifiers  if  they  provided  ≥5%  additional  correct  prediction  among  non-

ambiguous cases, or if they “corrected”  ≥10% of the previous false-positive errors. If no classifier

fulfilled these conditions, the selection process was stopped. Ultimately, all selected classifiers (See

Table S3) were run on the full test set to derive Precision-Recall  curves and False Discovery Rate

estimations.

Training, optimization, and evaluation of iPHoP main Random Forest classifier (iPHoP-RF)
To  integrate  signal  from multiple  approaches,  a  random forest  classifier  (“iPHoP-RF”)  was

trained to obtain a single confidence score for a given virus-candidate host pair based on the score

obtained for all  individual  classifiers selected (see  Supplementary  Table S3). Specifically,  for each

virus-candidate host pair used in the training set (see above), the following information were included

for each selected classifier: the score obtained for the virus-candidate host pair, the rank of this pair

among all candidate hosts considered for this given virus, and the difference between the score of the

pair and the highest score obtained for the given virus. This led to a final input matrix with 30 columns,

i.e., 3 features (score, rank, distance to best score) for each of the 10 selected classifiers. A balanced

training set was built from the training sets created for each individual classifier (see above), including

700 randomly sampled viruses with at least 1 blast hit and 1 CRISPR hit, 700 each from viruses with

either at least 1 blast hit or 1 CRISPR hit, and 700 viruses with neither blast or CRISPR hits. For each

selected virus, up to 10 correct and up to 5 incorrect predictions (i.e., candidate virus-host pairs) were

randomly selected. Eventually, the balanced training set included 17,105 correct and 13,960 incorrect

virus-candidate host pairs. 

Random Forest Classifiers were built using the TensorFlow Decision Forests v0.2.164 package

within the Keras 2.7.0 python library65, with parameters optimized with the Optuna v2.5.0 framework66.

Parameters to be optimized included maximum tree depth (between 4 and 32), minimum number of

examples in a node (between 2 and 10) and number of trees (between 100 and 1,000). A total of 100

trials were performed, each was evaluated on the test dataset, the 5 classifiers with the highest accuracy

were selected as the best candidates, and the candidate with the highest recall at 5% FDR was then

selected as the final iPHoP-RF classifier.
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Integrating iPHoP classifiers and RaFAH into a final host prediction
In order to rank host predictions for individual viruses obtained with different methods, and since

the scores from different classifiers are not directly comparable, the test dataset was used to transform

raw scores  into  empirical  false-discovery  rates  (FDRs).  Specifically,  the  positive  predictive  value

(PPV),  i.e.,  the  number  of  correct  predictions  divided  by  the  total  number  of  predictions,  which

corresponds to 1 minus the false-discovery rate, was computed on sliding windows of each tool score

from 0 to 1, with window size 0.05 (for Blast Conv_87, Blast RF_39, CRISPR Conv_85, CRISPR

Dense_15) or 0.01 (for iPHoP-RF, and RaFAH). For each tool, a generalized linear model was then

fitted on these values using the mgcv v1.8-36 library67 in R v 4.0.568 with REML estimation, and an

empirical PPV and FDR was then calculated for scores ranging from 0 to 1 by steps of 0.001.

These empirical positive predictive values are then used in the iPHoP framework to derive a

single composite score for each virus-candidate host genus pair as follows. For each pair, all methods

with PPV <0.5 are first discarded. Next, the method with the highest PPV, i.e., the lowest FDR, for this

pair is selected as the source of the main FDR. To take into account prediction from other methods

which passed the PPV threshold,  i.e. were ≥0.5, the FDR from these additional predictions are then

multiplied by 2 (to rescale between 0 and 1), and the final composite score is then calculated as 1 minus

the product of the main FDR and the additional “rescaled” FDRs, if any. This means that additional

methods pointing to the same virus-host genus pair can only improve the composite score, as they will

multiply the main FDR by factors always ≤1. Finally, a similar empirical approach based on the test

dataset  was  used  to  transform these  composite  scores  in  PPVs (see  above),  and these  empirically

estimated PPVs are provided to iPHoP users as “Confidence score” in the result files. By default, only

predictions with a confidence score  ≥90, i.e. an estimated FDR <10%, are included in the summary

output file, however users can select any confidence score ranging from 75 to 100.

To enable this  integration of results  from host-based tools and RaFAH, the predictions  from

RaFAH had to be converted into GTDB-compatible taxa. To this end, each genus listed in the RaFAH

output file was searched for in the GTDB metadata files, and the list of genomes associated with this

RaFAH genus along with their GTDB genus-level taxon was tallied. Each RaFAH genus was then

associated to all GTDB genus-level taxa representing ≥50% of the genome list if the list included <10

genomes, ≥20% of the genome list if the list included 10 to 100 genomes, or ≥10% if the list included

≥100 genomes.  This  approach provided GTDB genus-level  taxa for 595 RaFAH genera,  with 492

linked to a single taxa,  and 90 linked to 2 taxa,  often closely related (e.g.,  “Thioalkalivibrio” and

“Thioalkalivibrio_B”, “Pseudothermotoga_A” and “Pseudothermotoga_B”, etc).

Comparison to other integrated host prediction approaches
Three other tools providing host prediction based on multiple approaches were benchmarked on

the same test dataset (see above) as iPHoP. VirHostMatcher-Net (July 2021 version31) was run on the

test dataset with default parameters, requesting the top 100 predictions to be included in the output

files, and using the default host database provided with the tool. PhisDetector (February 2021 version30)

was run on the test dataset with the following parameters: “--min_mis_crispr 2 --min_cov_crispr 70 --

min_per_prophage 30 --min_id_prophage  70 --min_cov_prophage 30 --min_PPI 1 --min_DDI 5 --

min_per_blast 10 --min_id_blast 70 --min_cov_blast 10”, and using the default database provided with

the tool. Finally, VirMatcher v0.3.229 was run on the test dataset via it KBase App69.  Since no host

database was provided with VirMatcher, a custom host genome database was built based on the RefSeq

genomes that displayed at least one hit to any of the test dataset virus with blast, CRISPR, or WIsH.

For each tool, the prediction with the highest score was considered as the host genus predicted for

a given virus, excluding predictions to hosts with unknown genera. These “best hit” predictions were

16

520

525

530

535

540

545

550

555

560

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.28.501908doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501908
http://creativecommons.org/licenses/by-nc/4.0/


then used to evaluate the recall  of each tool,  i.e.,  the number of correct host genus predictions,  at

different false discovery rates level, either on the complete test dataset or when restricting to specific

ranges of “novelty”, i.e. AAI to the closest reference ranging from 0 to 5%, 5 to 10%, 10 to 30%, 30 to

60%, or 60 to 100%.

Evaluation of iPHoP host predictions on high-quality genomes from the IMG/VR database
To evaluate iPHoP on real metagenome-derived virus genomes, 216,015 high-quality genomes

from  the  IMG/VR  v3  database8,  i.e.  metagenome-derived  viral  genomes  estimated  to  be ≥90%

complete based on CheckV v0.4.070,  were processed with iPHoP v1.0, using the iPHoP_db_Sept21

database. Host genus prediction was based on the host genus with the best iPHoP composite score for

each input sequence, with a minimum score cutoff of 75. Metadata for IMG/VR sequences, including

corresponding study and dataset  if  available,  were obtained from the IMG/VR database  (2020-10-

12_5.1 version)8. Temperate and virulent phages were identified based on BACPHLIP v0.9.654 with a

minimum score of ≥0.8. Metadata for the host genome, including the corresponding study and dataset if

available, were obtained from the IMG and Gold databases (information downloaded in Jan. 202235,71).

To  represent  the  diversity  of  hosts  included  in  these  IMG/VR-derived  host  predictions,  the

GTDB bacteria and archaea trees were plotted using the ggtree v2.4.1 package72, with clades collapsed

at the phylum level. Each phylum was then colored according to the status of its member genera, i.e.,

whether each host genus is associated with an isolated virus in RefSeq, a host prediction with a score

≥95, a host prediction with a score ≥90, or no isolate or host prediction. To verify whether iPHoP host

predictions linked viruses from each main biome to host taxa consistently found in the same biomes,

the GEM dataset36 was used to evaluate the biome distribution of individual host genera. Specifically,

each  GEM  MAG  was  associated  to  its  corresponding  genus  and  original  sample  biome,  if  this

information was available (n = 38,556). Each genus was then associated with a given biome if ≥50% of

the corresponding MAGs originated from a sample of this biome (n = 3,500 genera), or was considered

as “Detected across multiple biomes” if the majority biome represented <50% of the genus MAGs (n =

90 genera).
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Supplementary Figure

Supplementary Figure S1. Characteristics of the test dataset. A. Distribution of the host genera for

the test dataset. Note: only genera associated with ≥5 viruses are included, another 125 host genera

were associated with <5 viruses and are not displayed. B. Distribution of AAI to the closest reference

in NCBI RefSeq for the test dataset. The corresponding list of viral genomes included in the test dataset

is provided in Table S2.

Supplementary  Figure  S2.  Comparison  of  different  host  prediction  approaches  on  different
subsets of the test dataset. Total number of predictions and number of correct predictions (y-axis)

obtained at any rank for each tool (x-axis) on sequences from the test dataset (Table S2). For each tool,

the number of correct predictions is indicated by the colored bar, while the total number of predictions

is indicated by the gray bar. The top panel displays the results obtained on the entire test dataset (n =

1,870). The middle panel includes results obtained for all phages predicted as temperate, either via

BacPhlip or based on the genome annotation (n = 949). The middle panel includes results obtained for

all phages predicted as virulent by BacPhlip (n = 663).

Supplementary Figure S3. Characteristics of the high-quality IMG/VR genomes. A. Number of

high-quality viral  genomes from IMG/VR v3 identified across the 5 major biomes in the database.

Genomes sampled from other  biomes of lacking a biome information  are gathered  in  the “Other”

category. B. Distribution of the average amino-acid identity between IMG/VR v3 viral genomes and

the NCBI Viral RefSeq v203.

Supplementary Figure S4. Overlap between host-based tools for individual viruses. For each host-

based tool included in the benchmark (see Fig. 1), the overlap in terms of input sequence for which a

correct prediction was obtained is presented here as an upset plot. The intersection size represents the

number of phages with correct prediction using the combination of methods indicated at the bottom.

This number is also indicated above each bar, and the bar color indicates the number of tools included

in the combination.

Supplementary Figure S5. Schematic of the data transformation and classifier architectures used
in iPHoP. A. Summary of the cutoff and metrics used for each host-based tool considered in iPHoP

(see Table S1). B. Overview of the three different types of classifiers evaluated in iPHoP. The different

parameters optimized using the Optuna framework are highlighted in blue. For  varying numbers of

layers, the same parameters were optimized for each layer, but each was optimized separately, i.e., the

parameters values were independent between the different layers. 

Supplementary Figure S6. ROC and Precision-Recall curves for single-tool classifiers. For each

host-based tool the ROC curves (left) and Precision-Recall curves (right) based on the test dataset are

presented for the 5 best classifiers of each type, and compared to the “naive” approach, i.e. best hit

based on the raw score. TPR: True Positive Rate. FPR: False Positive Rate. PPV: Positive Predictive

Value.  The  1-to-1  line  is  indicated  as  a  dashed  black  line  on  the  ROC  curves.  Random  Forest

Classifiers were only evaluated for Blast and CRISPR approaches.

Supplementary  Figure  S7. Percentage  of  correct  host  predictions  obtained  for  viruses  with
different degrees of “novelty”. The number of correct host predictions was evaluated for 3 different

score cutoffs corresponding to 20%, 10%, and 5% estimated FDR (False Discovery Rate). Input viruses
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were classified into 5 categories (x-axis) based on their AAI (Average Amino Acid Identity) to the

closest reference phage genome. The number of correct host predictions is indicated for each iPHoP

classifier (see Fig. 3A), and for the composite score considering all classifiers (“combined”).

Supplementary Figure S8. Comparison of different integrated host prediction tools, including
iPHoP, on the test dataset. Standard Receiver Operating Characteristic (left) and Precision Recall

(middle) curves for the 4 integrated host prediction approaches compared. To take into account the

number of predictions provided by each tool, a third plot (right panel) indicates the positive predictive

value (y-axis) when considering an increasing number of predictions (x-axis). To obtain this, cutoffs

were progressively lowered to include an increasing number of predictions for each tool, and prioritize

the highest confidence ones, i.e. starting with the highest PPV possible. For the ROC curve, a 1-to-1

line is indicated with a dashed black line. For the Precision Recall and PPV curves (middle and right

panels), the red and purple dashed lines indicate 5% and 10% False Discovery rates, respectively.

Supplementary  Figure  S9.  Type  of  host  prediction  obtained  for  high-quality  IMG/VR  v3
genomes with different degrees of “novelty”. High-quality genomes from the IMG/VR v3 database

for which a host prediction was obtained with iPHoP (score  ≥90) were binned based on the average

amino acid identity (AAI) to the closest reference in NCBI RefSeq Virus r203 (x-axis). Predictions

entirely  based  on  host-based  tools  are  indicated  as  “Host  only”,  predictions  exclusively  based  on

RaFAH are indicated as “Phage only”, and predictions where both types of tools were consistent and

with score ≥90 are listed as “Both”.

Supplementary Figure S10. Breakdown of iPHoP host predictions for high-quality IMG/VR v3
genomes assigned as virulent (top) or temperate (bottom). Similar as Fig. 4A and 4B, the left panel

shows the distribution of the best score provided by iPHoP for the corresponding subset of IMG/VR v3

quality genome (top: virulent, bottom: temperate), organized by ecosystem. For each IMG/VR vOTU,

the  best  score  from iPHoP was  considered  if  ≥75,  or  the  vOTU was  considered  as  not  having a

predicted host. The right panel shows the the type of signal used to achieve host prediction with a score

≥90. “Host-based” includes all 5 host-based tools, while “Phage-based” includes predictions obtained

with RaFAH. “Both” includes consistent predictions obtained with RaFAH and at least one host-based

tool. Temperate and virulent phages were identified via BACPHLIP54 with a minimum score of 0.8

and based on genome annotation (see Methods).

Supplementary Figure S11.  Number of species and iPHoP prediction per host genus. Each dot

represents a host genus with at least 2 species, with the x-axis reflecting the total number of species in

the genus, and the y-axis reflecting the total number of IMG/VR v3 HQ sequences predicted to infect

this host genus with a score ≥ 90. Host genera and species were obtained from the GTDB database34.

The right panel presents a zoomed-in version of the area highlighted with dashed black lines in the left

panel.

Supplementary Tables

Supplementary Table S1. List  of  individual  tools  benchmarked,  included in,  and/or  compared to

iPHoP. 

Supplementary Table S2. List of viral  genomes included in the test  dataset,  obtained from NCBI

GenBank, and used to evaluate the performance of individual and integrated tools.
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Supplementary Table S3. Characteristics  of  the single-tool  classifiers  considered  for  inclusion in

iPHoP.  The classifiers  eventually  included  in  iPHoP v1.0 are  indicated  with a  “x”  symbol  in  the

column “Classifiers selected for inclusion in iPHoP”. 
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