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Abstract

The extraordinary diversity of viruses infecting bacteria and archaea is now primarily studied through
metagenomics. While metagenomes enable high-throughput exploration of the viral sequence space,
metagenome-derived genomes lack key information compared to isolated viruses, in particular host
association. Different computational approaches are available to predict the host(s) of uncultivated
viruses based on their genome sequences, but thus far individual approaches are limited either in
precision or in recall, i.e. for a number of viruses they yield erroneous predictions or no prediction at
all. Here we describe iPHoP, a two-step framework that integrates multiple methods to provide host
predictions for a broad range of viruses while retaining a low (<10%) false-discovery rate. Based on a
large database of metagenome-derived virus genomes, we illustrate how iPHoP can provide extensive
host prediction and guide further characterization of uncultivated viruses. iPHoP is available at
https://bitbucket.org/srouxjgi/iphop, through a Bioconda recipe, and a Docker container.
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Introduction

Viruses are widespread and influential throughout all ecosystems. In microbial communities,
viral infections can shift community composition and structure via viral lysis, and alter biogeochemical
processes and metabolic outputs through reprogramming of host cells during infection'. Given current
challenges for cultivating many environmental microbes and their viruses, the extensive viral diversity
is now primarily explored via metagenomics, i.e., by assembling genomes of uncultivated viruses
directly from whole community shotgun sequencing data*®. Over the last decade, metagenomic studies
have been incredibly powerful in revealing viral diversity on Earth, investigating eco-evolutionary
drivers of viral biogeography, and connecting viruses to ecological and metabolic processes’. A major
limitation of these approaches is that metagenome-derived viral genomes have no inherent link with a
host, as is the case for isolates®. This lack of host association remains a critical hurdle when attempting
to study virus-host interactions and dynamics in natural communities, in particular for the highly
diverse bacteriophages (“phages™), viruses infecting bacteria®.

Given the importance of phage-host interactions in microbiome processes, computational
methods to predict the host(s) of a phage based on its genome sequence are highly desirable, and the
subject of active research'®!'. Existing host prediction tools leverage either various levels and patterns
of sequence similarity between phage and host genomes (“host-based” tools hereafter), or use a “guilt-
by-association” approach by comparing the query phage to a database of viruses with known host(s)
(“phage-based” tools).

In host-based tools, sequence similarity between phages and hosts can be based on sequence
alignment, reflecting for instance prophages integrated in the host genome or similarity between phage
genomes and host CRISPR spacers'®'?, or can rely on alignment-free approaches, e.g., comparison of
nucleotide k-mer frequencies, in which case these typically reflect the overall adaptation of virus
genomes to their host cell machinery'*'##!>22, Because they rely on different signals, these host-based
tools display varying levels of recall and specificity, and are likely to be each relevant for different
types of samples and viruses'’. In previous benchmarks, alignment-based methods could reach high
specificity when using strict cutoffs, for instance >75% of predictions correct at the species level, but
only for a limited subset of the input phages due to limitations of the host reference database'.
Meanwhile, in the same benchmark, alignment-free methods appeared to contain a genuine and strong
phage-host signal for a broader range of phages, but more complex to parse as the highest scoring host
was often (>50% of the time) yielding an incorrect prediction at the species, genus, and family level.

Complementarily, “phage-based” tools rely not on phage-host similarity, but extract information
from a database of reference phages and archaeoviruses with known host(s)***’. The most recent tools
in this category have been the most promising overall, with benchmarks suggesting both high recall and
high specificity. For instance, RaFAH achieved a 33% improvement in F1 score (combination of recall
and precision) at the genus level compared to host-based methods®. While phage-based approaches are
particularly suitable if related phages exist with known hosts, RaFAH also predicted hundreds of
archaeal viruses, i.e. domain-level host predictions, despite archaeoviruses being under-represented in
the database®. However, it remains unclear to what extent phage-based tools can provide reliable host
prediction at lower ranks such as genus or species for entirely novel phages, and how to best
complement these phage-based predictions with host-based signals''.

With multiple tools available for host prediction, several studies have attempted to integrate the
results from several approaches into a single prediction for each virus. This integration step was
originally performed via empirical “rule sets” prioritizing methods based on empirical accuracy or error
rate estimations®**. Recently, several automated tools were developed that instead leverage machine
learning to obtain an integrated host prediction. PhisDetector®® combines multiple host-based methods,
both alignment-based and alignment-free, and uses an ensemble of machine-learning approaches to
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evaluate the confidence of each potential phage-host pair. VirHostMatcherNet®' proposes to integrate
both virus-virus and virus-host signal in a modeled virus-host network, from which potential virus-host
pairs are evaluated using a logistic regression. While both tools showed potential improvements
compared to single methods, none of the benchmarks provided suggested that they could reach a low
(<10%) false-discovery rate (FDR) at the host genus level, even with the strictest cutoffs. In addition,
no benchmark was carried out across different degrees of phage “novelty”, i.e., different degrees of
similarity to the most closely related reference, so it remains unclear how these approaches perform on
“known” and “novel” phages.

Here we present iPHoP, a tool for integrated Phage-Host Prediction, enabling high recall and low
FDR at the host genus level for both known and novel phages. We first demonstrate the
complementarity of phage-based and host-based approaches, and describe a new modular machine-
learning framework that yields highly accurate predictions at the genus level. Using a diverse set of
216,015 metagenome-derived phage genomes, we further show that iPHoP enables high-confidence
host genus prediction (estimated <10% FDR) for phages across a broad range of ecosystems and
novelty compared to isolated references.

Results

To design an integrated framework for host prediction, we first evaluated the performance and
complementarity of 10 existing methods on a common benchmark dataset'®'*'*1%>*2" 'We especially
focused on comparing tool performances across a range of “novelty”, i.e., using a test set that included
both viruses closely related to references and viruses entirely novel.

Limitations and complementarity of individual host prediction methods

A set of published alignment-based and alignment-free methods, either phage-based or host-
based, was selected for benchmarking (Table S1). These tools were evaluated on a common test dataset
including bacteriophage and archaeovirus genomes available in NCBI GenBank but not included in
NCBI RefSeq®, and thus typically not used to train any of these tools (see Methods and Table S2). This
test dataset contained 1,870 genomes, spanning across 170 host genera, including both temperate and
virulent phages, and with both “known” and “novel” genomes (>90% and <5% genome-wide average
amino acid identity, or AAI*, to the closest reference, respectively, see Supplementary Fig. S1). As
host references, we opted to use all genomes included in the GTDB database*, supplemented by
additional publicly available genomes from the IMG isolate database® and the GEM catalog®. For each
tool, we assessed host predictions at the host genus rank based on a naive “best hit” approach and using
relaxed cutoffs (see Methods).

First, we evaluated the recall of each tool, i.e., the total number of correct predictions obtained
(Fig. 1A). The recall differed across the tool categories, with the lowest observed for host-based
alignment-based tools such as blast and CRISPR, and the highest observed for phage-based tools. The
only exception was a very high recall observed for blast-based predictions of temperate phages, which
is due to the detection of integrated copies of these phages, or closely related ones, in host genomes. A
similar trend, i.e., a higher recall for temperate phages compared to virulent phages, was observed for
most approaches albeit to a much lower degree (Supplementary Fig. S2). For CRISPR-based
predictions, the low recall compared to other approaches is likely due to limitations of the host database
as CRISPR arrays can be absent from large clades of bacteria® and, when present, CRISPR spacers are
typically highly variable even between closely related strains'®,

Next, we evaluated the precision of each tool, i.e., its ability to distinguish correct from incorrect
hosts among all its predictions. As previously noted', host-based alignment-free tools struggled to
achieve a high Positive Predictive Value (PPV), i.e., a low False-Discovery Rate (FDR), even when
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Figure 1. Comparison of different host prediction approaches on a single test dataset. A. Total number of predictions and number of
correct predictions (y-axis) obtained for each tool (x-axis) using a “best hit” approach and relaxed cutoffs (see Methods) on sequences
from the test dataset (Table S2). For each tool, the number of correct predictions is indicated by the colored bar, while the total number
of predictions is indicated by the gray bar. Similar plots including the whole test dataset, virulent phages only, and temperate phages
only are available in Fig. S2. B. Precision-Recall curves for the different tools, using the same color code as in panels A and C. Two
standard thresholds, 5% and 10% false discovery rates, are indicate by horizontal dashed lines. C. Relationship between “novelty” of
input virus, represented as AAI (Average Amino Acid Identity) percentage to the closest reference on the x-axis, and the number of
correct host predictions obtained with each tool. To evenly represent both “known” and “novel” input viruses, 300 sequences were
randomly subsampled from each AAI percentage category (x-axis).

using strict cutoffs (Fig. 1B). In contrast, alignment-based tools, both phage-based and host-based,
were able to reach high (>80%) PPV when filtering hits based on score(s). Pragmatically, this means
that the scores provided by alignment-based tools are able to distinguish correct from incorrect
predictions, while the scores provided by alignment-free tools are usually not sufficient to identify
correct predictions.

Phage-based tools thus seemingly present an ideal combination of high recall and high precision,
with RaFAH? in particular able to maintain a very low FDR (<5%) while providing the highest recall
of all tools (Fig. 1, Supplementary Figure S2). However, phage-based tools depend on the availability
of a related phage with a known host in the reference database. Specifically, phage-based tools mostly
provide predictions for phages that are related to reference sequences, and much less frequently for
“novel” phages (<5% AALI to closest reference, Fig. 1C). A similar trend, although less pronounced,
can be observed for host-based tools relying on sequence alignment. Meanwhile, alignment-free host-
based tools show little to no bias for phages with closely related references, suggesting that these
methods would be well suited for dealing with the most “novel” phages. This bias is important to
consider because the vast majority (57-80%) of viral genomes identified from metagenomes have <5%
AAI to their closest reference (Supplementary Fig. S3), so that phage-based approaches alone would
thus not yield reliable host predictions.

Ultimately, these simplified benchmarks suggest that to tackle diverse “known” and “novel”
phages, as typically obtained through metagenomics, host prediction tools will need to combine phage-
based and host-based approaches. For instance, based on the benchmark in Fig. 1A, the tool with the
highest recall (RaFAH) provided host prediction for 52% of phages, while 83% of phages overall were
associated with a correct host prediction across all tools. For phage-based approaches, several tools
such as RaFAH already provide both high recall and high precision. Conversely, all current host-based
methods suffer from either limited recall (alignment-based methods) or limited specificity (alignment-
free methods), at least when used individually and in a simple “best hit” approach. In addition, the
predictions from different host-based methods partially overlap, suggesting that multiple methods could
be considered together to either reinforce or correct each other (Supplementary Fig. S4). For our
integrated host prediction tool, we thus decided to first optimize host-based predictions by integrating
multiple hits per method and several methods together, and then combine these host-based predictions
with an established phage-based method to derive a single host prediction.
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Increasing host prediction accuracy by robustly integrating multiple hits for each virus

Elevated false discovery rates with host-based methods have been highlighted previously'®'**,
Traditionally, these have been addressed by applying relatively strict cutoffs on the prediction score,
and by considering an arbitrary number of hits passing these cutoffs, e.g., the 5 or 10 best hits. These
hits might be further integrated using a lowest common ancestor (LCA) approach. Intuitively, this will
allow to distinguish reliable cases, where the top hits all point to the same host taxon, from unreliable
cases where the top hits correspond to different taxa. Alternatives to LCA approaches have been
proposed including the taxonomy-aware sequence similarity ranking framework from PHIRBO®. Here,
we explored whether machine learning approaches could help improve these predictions by integrating
all hits obtained for a virus using a given method.

To consider an ensemble of hits in a taxonomy-aware context, we opted to treat each hit as a
separate classification problem, i.e., “is this host hit reliable or not considering the context of other hits
obtained for this same virus with the same approach?”. For a given input genome, each hit is thus
considered as a candidate host, and an ensemble of hits for a virus is provided as input to different
classifiers with information on the hits quality as well as phylogenetic distances between each hit and
the candidate host based on the GTDB* framework (Fig. 2A, Supplementary Fig. S5). The task asked
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Figure 2. Overview of the single-tool classifiers used in iPHoP. A. Schematic representation of the process used to score individual hits
from host-based tools. Briefly, each hit was scored by a neural network or random forest classifier, which also considered other top hits
for the same virus and the same tool. This process was applied to the 5 host-based tools selected (“Blast”, “CRISPR”, “WIsH”,
“VHM?”, “PHP”), except for the random forest classifiers (highlighted with a *) which were only used for “Blast” and “CRISPR”.
When considering multiple hits, their similarity or difference in terms of host prediction was estimated from the GTDB phylogenies®* B.
Illustration of how multiple hits are represented in neural networks input matrices (top) or random forest classifier inputs (bottom). Two
examples are provided, one “reliable” in which the hits with high scores are all consistent and at a small distance to the candidate host
considered (left), and the other “unreliable” in which a few hits with medium-to-high scores are scattered across hosts with variable
distance to the candidate host considered. C. Estimated improvement in classification provided by the automated classifiers compared to
“naive” raw scores. These estimations are based on smoothed ROC curves obtained from the test dataset (see Supplementary Fig. S6)
and calculated as the average decrease in false-discovery rate for 17 true positive rates ranging from 10 to 90%. Random forest
classifiers were only evaluated for Blast and CRISPR approaches. D. Precision Recall curves for the two classifiers selected for each
host-based tool (see Supplementary Table S3). VHM: “VirHostMatcher”. Conv: “Convolutional Neural Network”. “RF”: “Random
Forest classifier”.
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of the classifiers is to predict whether the candidate host belongs to the correct host genus, and the
underlying assumption is that classifiers would learn to recognize reliable series of hits, e.g., cases
where most of the top hits are close to the candidate host, from unreliable series of hits, e.g., cases
where hits are distributed across diverse hosts and/or distant from the candidate host, without having to
resort to arbitrary cutoffs (Fig. 2B).

To evaluate this approach, we applied it separately to 5 host-based methods (Blast, CRISPR,
WIsH", VirHostMatcher'**!, PHP'®, see Supplementary Table S1), used RefSeq Virus sequences to
train and optimize 3 types of classifier, namely dense neural networks, convolutional neural networks,
and random forest classifiers, and compared the results obtained on the test dataset (see above) to a
standard best hit approach (Supplementary Fig. S5). Overall, considering multiple hits with automated
classifiers reduced the error rate (average FDR) for all methods and all types of classifiers, with the
highest reductions obtained with convolutional neural networks (Fig. 2C, Supplementary Fig. S6). This
reduction in average error rate was especially important for WIsH and CRISPR-based predictions
(>40%), and smaller for BLAST, for which standard scores already seem to perform well.

Finally, we verified whether different variants of each classifier could be complementary, i.e.,
provide reliable scores for different types of sequence. In all cases, a set of two variants appeared to be
the best combination to maximize the number of correct predictions while minimizing the false-
discovery rate (see Methods). The 10 classifiers that were ultimately selected (2 for each of the 5 host-
based methods) showed improved positive predictive value, often >75%, at most true positive rates,
confirming their improved ability to distinguish likely and unlikely candidate hosts compared to the
raw score of each method (Fig. 2D).

Integrating host- and phage-based predictions for a comprehensive coverage of phage diversity

After optimizing scoring systems for each host-based method, the next step was to integrate
predictions across different methods to obtain a single prediction score taking into account all different
approaches for each potential phage-host pair. Traditionally, this has been done using fixed “rule sets”
informed by estimation of false-discovery rate for each approach, e.g., prioritizing alignment-based
approaches over alignment-free approaches®®**. Here, we instead used a 2-step integration process to
robustly consider all hits for each input sequence.

First, to leverage the high sensitivity of alignment-free approaches but reduce their error rate, we
trained and optimized a random forest classifier based on the scores from the 10 individual host-based
classifiers described in the previous section (“iPHoP-RF classifier”, Fig. 3A). This iPHoP-RF score
yielded low FDR (<10%) even at high TPR (=75%), and was comparable in that regard to the scores
obtained from the phage-based tool RaFAH?®, as well as host-based aligment-based tools (Blast and
CRISPR, Fig. 3B).

Next, we designed a composite confidence score for each phage-host pair to summarize results
from both phage- and host-based methods (Fig. 3A, see Methods). Because blast- and CRISPR-based
predictions can also be reliable on their own without the need for any other approach (Fig. 2D), we
included the best score for each of these approaches along with the iPHoP-RF score and the score from
RaFAH?, the most reliable phage-based tool in our benchmark (Fig. 1A & B). As expected based on
our initial benchmarks (Fig. 1C), different methods provided correct host predictions for different input
phages, and combining them led to high rates of phages with correct predictions (>50%) for both
“known” and “novel” phages (Supplementary Fig. S7).
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To illustrate the unique features and performance improvements provided by iPHoP, we
compared it to other automated tools integrating multiple approaches for host prediction, namely
VirMatcher®, PhisDetector®, and VirHostMatcher-Net*. Based on Receiver Operating Characteristic
and Precision Recall curves, iPHoP performed as well as, or better than all other integrated tools
(Supplementary Fig. S8). However, the major improvement of iPHoP comes from the number of
phages with a host prediction: for a given FDR, iPHoP typically provides ~3 to 5 times more
predictions than the next best tool, especially for “novel” phages (Fig. 3C). This is likely due to the fact
that (i) iPHoP uniquely leverages both phage-based and host-based approaches, (ii) iPHoP integrates
more approaches than any other tool, (iii) the iPHoP host database is larger and more diverse than those
used by other tools, and (iv) iPHoP was specifically optimized for predictions at the host genus rank. In
contrast, VirHostMatcher-Net relies on a network architecture to represent virus-host interactions and
derive host predictions at multiple taxonomic ranks, while PhisDetector was designed to provide host
predictions down to the species rank®**',

Expanding host predictions in a large database of metagenome-derived viruses

To further evaluate the improvements provided by iPHoP and the remaining challenges when
analyzing diverse metagenome-derived phage genomes, we applied iPHoP to 216,015 high-quality
(i.e., predicted to be >90% complete by CheckV) IMG/VR sequences (Supplementary Fig. S3). We
then compared the iPHoP predictions to the current host predictions available in the IMG/VR database,
which were primarily based on blast hits to host genomes and CRISPR spacers® (Fig. 4A). Overall,
iPHoOP predictions at an estimated FDR <10%, i.e., score >90, represented a 1.5- to 13-fold increase
compared to the original number of host prediction in the IMG/VR v3 database, however these
numbers vary greatly depending on the ecosystem (Fig. 4A). For human-associated microbiomes, about
89% of the high-quality genomes had a host predicted using iPHoP, including 57% with very high
confidence predictions (iPHoP score >95). For all other ecosystems, the total number of phages with
predictions was lower, ranging from ~40-50%, including ~15-22% with medium or high confidence
(score >90). Across ecosystems, host predictions originated primarily from host-based methods,
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Figure 4. Overview of iPHoP Host prediction for high-quality IMG/VR v3 genomes. A. Distribution of the best score provided by
iPHoP for high-quality genomes from the IMG/VR v3 database by ecosystem. For each IMG/VR vOTU, the best score from iPHoP was
considered if > 75, or the vOTU was considered as not having a predicted host. The proportion of sequences for which a host prediction
was available in the original IMG/VR database is indicated with a dashed red line. B. Distribution of the type of signal used to achieve
host prediction with a score > 90 in iPHoP. “Host-based” includes all 5 host-based tools, while “Phage-based” includes predictions
obtained with RaFAH. “Both” includes consistent predictions obtained with RaFAH and at least one host-based tool. C. Percentage of
hits from isolated or uncultivated host genomes used in host-based predictions with final scores > 90. These are based on the individual
genome hits underlying iPHoP genus-level predictions. D. Origin of the uncultivated host genomes used in host-based predictions with
final scores > 90. The original dataset and study ID for the query virus and the uncultivated host genome were obtained from the Gold
database, and when both were available, these were compared to evaluate whether the uncultivated host genome originated from the
same dataset, a different dataset from the same study, or another study from the query virus.

consistent with the high number of metagenome-derived sequences unrelated to those in the reference
databases (Fig. 4B, Fig. S3, Supplementary Fig. S9). Human microbiomes again stand out with >25%
of host predictions confirmed by both phage- and host-based methods, which explains the high number
of high-confidence predictions (Fig. 4A). For all ecosystems, iPHoP provided host prediction for both
temperate and virulent phages, although a higher percentage of predictions was obtained for temperate
ones (Supplementary Fig. S10). While these results reflect the inherent bias in current microbial and
phage reference databases, they suggest that iPHoP is already useful across different biomes and for
different virus types, and may be expected to improve as more of the global microbial and viral
diversity is characterized.

Within host-based approaches, nearly half (mean: 45%) of the predictions were based on
genomes of uncultivated bacteria and archaea, highlighting the value of using large databases including
single-cell amplified genomes (SAGs) and/or metagenome-assembled genomes (MAGs)**® (Fig. 4C).
These genomes from uncultivated microbes were particularly important for predicting hosts of
environmental phages, especially freshwater and marine phages (Fig. 4C). We next wondered what
proportion of these hosts were “local”, i.e., assembled from the same sample as the query phage or
another sample in the same study. Overall, in several ecosystems, a substantial (>25%) proportion of
MAGs used for host predictions were obtained from metagenomes generated in the same study from
which the input phage was derived (Fig. 4D). Hence, for comprehensive host prediction of a new phage
dataset, it may be valuable to also integrate into the host genome database additional bacterial and
archaeal MAGs obtained from the same sample or experiment, if available. To facilitate this, we
included an automated database building module in iPHoP, enabling users to add their own MAGs in a
host database based on phylogenies and taxonomies generated through GTDB-tk®.

Estimating host diversity coverage by metagenome-derived viruses

Finally, we evaluated these IMG/VR host predictions from the host perspective, specifically
assessing which host taxa were most frequently associated with viruses, and how much of the bacterial
and archaeal diversity remained without any known or predicted virus. Overall, across the 5,711
bacteria and archaea genera with at least 2 genomes in the host database, 205 (3.6%) were associated
with at least one reference virus in NCBI RefSeqVirus, while 1,700 (31.5%) were exclusively
associated with metagenome-derived virus(es) through iPHoP (score >90, Fig. 5A). These host genera
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Figure 5. Taxonomic and environmental distribution of hosts predicted using iPHoP from the IMG/VR v3 genomes. A. Archaeal (top
left) and bacterial (bottom right) genome diversity from the GTDB database r202*. The GTDB phylogenetic trees were collapsed at the
phylum level. The status of virus association, i.e., isolated virus, predicted virus only at score > 95 or > 90, or no prediction, was
evaluated for each host genus, and the phyla shapes are colored according to the number of genera in each category within this phylum.
B. For each major biome type, the 10 host genera with the highest number of predicted IMG/VR high-quality virus genomes are
included in the plot. Each host genus was also determined to be mainly detected in a biome type or detected across multiple biomes
based on the distribution of MAGs assigned to this genus across ecosystems in the GEM catalog (see Methods).

only associated with viruses through iPHoP predictions were found across various bacterial and
archaeal phyla, from Firmicutes and Bacteroidota to Methanobacteriota (31-48% of genera with host
prediction only; Fig. 5A), and were not systematically associated with the largest genera, i.e. the ones
with the highest number of species (Supplementary Fig. S11). Meanwhile, other phyla such as
Patescibacteria, Planctomycetota, Acidobacteriota, and Chloroflexota, still displayed a majority of
genera without any associated virus, either isolated or predicted (79-83%), highlighting the large
diversity of viruses likely still to be identified and characterized.

We also evaluated which host taxa were associated with the largest number of predicted viruses
for each biome reasoning that, if the predictions were mostly correct, these should correspond to taxa
that are frequently observed in these ecosystems. Overall, the 10 genera most frequently predicted as
hosts in each ecosystem did indeed correspond to taxa primarily detected in these same biomes, e.g.,
Bacteroides and Faecalibacterium for human microbiome, Vibrio and Pseudoaltermomonas for marine
samples, and Streptomyces and Mycobacterium for terrestrial samples (Fig. 5B). The main exception to
this pattern was the unexpectedly high number of host predictions to the Bacteroides genus for marine,
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freshwater, and terrestrial viruses. As the Bacteroides-infecting Crassvirales phages* have been used
as markers for fecal contamination***, these predictions might reflect pervasive contamination of these
environments, although these may also reflect a bias in the current phage and host isolate databases,
skewing predictions towards this host genus. Overall, while these results illustrate how in silico host
predictions must always be considered critically and in light of the current limitations of databases and
tools, increasing the diversity of isolated phage-host pairs from various environments will likely help
refine these predictions in the future.

Discussion

Viral metagenomics has profoundly transformed our understanding of global viral diversity and
viral impacts on microbial communities. One critical piece of information missing compared to isolated
viruses is the host connection, which significantly limits the inference and biological knowledge
extracted from viromics data®. Accordingly, different methods have been developed to address this
critical challenge, each with their specific limitation. Here, we present the iPHoP framework as a way
to automatically integrate results from multiple host prediction approaches, which enables reliable
prediction of host genus for a larger diversity of phages than any previous tool. The iPHoP tool and
database are available as a stand-alone tool (bitbucket.org/srouxjgi/iphop/), a Bioconda recipe
(https://bioconda.github.io/recipes/iphop/README.html), and a Docker container
(https://hub.docker.com/r/simroux/iphop).

While iPHoP substantially improved host predictions on viruses from real metagenomic datasets,
several limitations remain. First, because it relies on a suite of different tools, iPHoP remains relatively
slow compared to other tools: a full iPHoP host prediction takes ~12 minutes for a test set of 5
complete phage genomes using the Sept_2021_pub database and 6 CPUs. This running time may not
be problematic for viromics studies which typically run host prediction only once on a large set of
metagenome-derived virus genomes, but it makes iPHoP suboptimal for time-sensitive analyses.
Second, while iPHoP scores are designed to reflect false-discovery rates, these estimations depend on
the composition of the test dataset used. Even though we tried to use a balanced set as much as possible
by ensuring that we included viruses with a broad range of relatedness to reference sequences, iPHoP
scores should only be interpreted as approximated FDRs at best. Third, since iPHoP was designed with
a viral ecology framework in mind, our goal was to provide reliable host predictions at the genus rank,
i.e., with FDRs ideally <10%, from diverse input phages. Arguably, in other contexts such as phage
therapy applications, host predictions will need to be more specific and reach the host species or strain
level. Such a high-resolution host prediction will likely require the reconstruction of detailed virus-host
networks, as attempted by VirHostMatcher-Net*', or detailed analysis of receptor-binding proteins'®. In
the near future however, we anticipate that genus-level approaches like iPHoP will be broadly
applicable and provide host predictions for a large range of viruses, while higher resolution approaches
such as VirHostMatcher-Net will likely be more limited in scope, so that both types of tools will be
useful for different applications. Fourth, several potential improvements to iPHoP can already be
envisioned, including for instance the addition of complementary approaches such as the detection of
shared tRNA between phages and hosts, or the consideration of additional features such as whether the
input virus is temperate or virulent. Finally, iPHoP remains limited by host, virus, and host-virus
databases, as illustrated by the difference in the number of phages with host prediction between the
human microbiome and other ecosystems. Achieving similar performance across all biomes will
require in particular expanding the catalog of potential host genomes, with a particular attention paid to
CRISPR arrays which are often not fully assembled from metagenomes***°, and expanding the diversity
of viruses associated with a host, either from isolation or using in vitro host linkage* . In that context,
to accommodate future expansions of the tool set and databases, iPHoP was intentionally designed as a
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modular framework, and we envision the current tool as only the first step towards a comprehensive
automated in silico host prediction toolkit.
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Online Methods

Virus-host training sets and host databases

To evaluate different host prediction approaches and train new classifiers, a curated dataset of
known virus genomes with corresponding host taxonomy was established based on genomes available
in the NCBI databases up to January 2021. For training new classifiers, sequences from bacteriophages
and archaeoviruses were obtained from NCBI RefSeq release 201 (released in July 2020), and the host
genus of each virus was obtained from the corresponding genome annotation and/or publication®'. This
dataset was used to train new classifiers (see below), but not to evaluate any tool since these virus-host
pairs were likely to have been used for training in previously published tools as well.

To complement this training set, a distinct test set was established based on NCBI GenBank.
Specifically, INPHARED?** was used to download a collection of bacteriophages and archaeoviruses
from NCBI in January 2021, and all genomes already present in NCBI RefSeq release 201 were
removed. For the remaining ones, host taxonomic information was obtained from the corresponding
annotation and/or publication, and genomes for which host taxonomy was uncertain were removed,
leading to a final dataset of 1,870 viruses with host taxonomy (Table S2). These genomes were
compared to the NCBI RefSeq references (see above) as well as the phage reference database used in
RaFAH v0.1* using diamond blastp v0.9.24 (default parameters, *?) after de novo prediction of cds
using Prodigal v2.6.3 (option “-p meta”, **), and the AAI estimation script provided with the

Metagenomic Gut Virus catalogue (https:/github.com/snayfach/MGV/blob/master/aai cluster/
README.md, *). Temperate phages were identified in the test set based on the annotation provided

with each genome by searching for the keywords “prophage”, “provirus”, “lysogen”, and “integrated”,
and based on BACPHLIP v0.9.6>* with a minimum score of >0.8. When annotation and BACPHLIP
prediction were conflicting, the information from the genome annotation was prioritized. Virulent

phages were identified based on BACPHLIP v0.9.6>* with a minimum score of >0.8.

Host database consolidation

The host genome database currently used in iPHoP, named “iPHoP_db_Sept21”, was built from
three publicly available genome sets, namely the GTDB database (release 202, **), published genomes
from the IMG database (as of July 7, 2021, *), and the Genomes from Earth’s Microbiomes (GEM)
catalog™®, as follows. First, the 47,894 representative genomes from each GTDB species cluster were
obtained from the GTDB database itself. Next, bacteria and archaea genomes from the IMG database
that were not already included in GTDB release 202 and with a total length >100kb (n = 22,188), and
medium- and high-quality metagenome-assembled genomes from the GEM catalogue (n = 52,515),
were compared to the GTDB species representatives using the ani_rep function from GTDB-tk v1.5.0
(default parameters, *°), based on Mash version 2.3>> and FastANI v1.32%°. All genomes with a
similarity of >99% ANI over >99% AF were considered as identical to one of the GTDB
representatives and discarded (n = 1,724). Non-identical genomes with a similarity of >95% ANI to
one of the GTDB representatives were retained in the database as members of the corresponding
species cluster (n = 32,735). Finally, the remaining genomes (n = 27,279) were considered as potential
representatives of additional species clusters. To include these in a GTDB-compatible phylogenomic
framework, these genomes were first checked for quality using CheckM v1.1.3¥, discarding all
genomes with <50% completeness or >10% contamination, and then dereplicated with dRep
v3.2.2%® with cutoffs of 90% ANI and 60% coverage. The non-redundant genomes (n = 13,658) were
then integrated in updated bacteria and archaea phylogenomic trees using the function de_novo_wf
from GTDB-tk v1.5.0 (default parameters, *°). The resulting trees are then used in iPHoP for taxonomic
assignation of and phylogenetic distance estimation between all representatives.
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The representative genomes included in the GTDB-tk-generated trees are used in iPHoP for all
prediction methods (n = 60,000, i.e. 47,894 existing GTDB representatives and 12,106 additional ones
from IMG and GEM). For blast-based prediction, these representative genomes are supplemented with
additional genomes clustered into one of these species clusters, after removing duplicate genomes (n =
43,022, for a total of 103,022 genomes used). Finally, for CRISPR-based predictions, CRISPR spacers
were predicted de novo in all 121,781 genomes (i.e., representatives, clustered, and duplicates), with
CRT 1.2% and PilerCR® using custom python scripts from
https://github.com/snayfach/MGV/tree/master/crispr_spacers *. All spacer sequences from arrays with
>3 spacers were collected and dereplicated (100% identity), and spacers with a sequence length <10 or
>100 were excluded. Ultimately, the spacer collection used in the iPHoP_db_Sept21 database includes
1,398,130 spacers from 40,036 distinct genomes.

Evaluation and benchmarking of selected host prediction methods

A set of published tools performing host predictions based on a single approach were selected for
benchmarking and potential inclusion in the iPHoP integrated framework (Table S1). All these tools
were benchmarked against the same test dataset (see above) established from virus sequences from
NCBI GenBank (January 2021). Blast-based predictions were based on a blastn comparison (v2.12.0+,
maximum e-value le-3, minimum identity percentage 80, maximum target sequence 25,000, minimum
hit length 500nt, ®') between the input virus genomes and the iPHoP_db_Sept21 blast database (see
above). Metrics considered for each pair of input virus and host contigs were total number of matches
and average identity percentage. CRISPR-based predictions were based on a blastn comparison
(v2.12.0+, word size 7, no filtering of hits based on low complexity, i.e., “~-dust no”, maximum target
sequence 10,000,000, ®') between the input virus genomes and the iPHoP_db_Sept21 spacer database
(see above), considering only hits to spacers 25 nucleotides or longer, with less than 8 mismatches
overall, and with a custom complexity score <0.6. The custom spacer complexity score was calculated
based on sequence AT skew content and the complexity estimation by Wootton—Federhen (CWF)® as
follow: the complexity score is set as (CWF score — 2 ) * 2, except if (AT skew) > 0.65, in which case
the complexity score is set to (AT skew) + 0.1. For Fig. 1A and Fig. S2, only hits with 2 or less
mismatches over the entire spacer were considered. The metric considered to rank hits for individual
input virus genomes was the total number of mismatches when considering the entire spacer.
SpacePHARER predictions were based on the predictmatch function from SpacePHARER
v2.fc5e668" applied to the input virus genomes with a sensitivity of 7.5 (“-s 7.5”) and a maximum
number of results per query sequence of 10,000, using the IMG/VR v3 CRISPR database®.
SpacePHARER “Combined score” metric was used to rank predicted hosts for each input, with a
minimum score cutoff of 20 applied for Fig. 1A and Fig. S2.

For WIsH predictions, input virus genomes were compared to the iPHoP_db_Sept21 WIsH
database with WIsH v1.0" and a maximum p-value of 0.2. The WIsH p-value was also used to rank
predictions for each input virus. For predictions based on the s,* similarity, the corresponding code
from VirHostMatcher-Net (July 2021 version®') was used to compare input virus genomes to the
VirHostMatcher database in iPHoP_db_Sept21 (see above). The s,* similarity score is the only metrics
considered for each hit. For PHP, input virus genomes were compared to the iPHoP_db_Sept21 PHP
database (see above) using PHP (July 2021 version'®), and the PHP score was used as a metric for each
hit. The upset plot comparing the predictions obtained for different host-based tools was generated with
the UpSetR package®.

RaFAH?® predictions were obtained by running the “predict” function from RaFAH v0.3 on the
input virus genomes with default parameters, and using the Predicted_Host_Score as metric.
VHULK?® predictions were obtained by running vHULK v1.0.0 with default parameters, and using
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score_genus_relu as the metric. VPF-Class predictions were obtained by running the vpf-class function
from the vpf-tools 0.1.0.0 toolkit?” with default parameters, using the host taxon with the highest
membership_ratio as the prediction for each input virus and the confidence_score as the metric. Finally,
HostPhinder predictions were obtained by running the “latest” version of HostPhinder docker container
(December 2015) with default parameters, and the main reported score as metric.

For all the tools, the best prediction was taken for each input virus based on the relevant metric,
and considered as correct if the genus of the predicted host genome or the predicted genus for tools
predicting host taxonomy was consistent with the information collected from the reference database
(Table S2).

Establishment of balanced training sets for single-tool iPHoP classifiers

For the 5 host-based approaches selected to be included in the iPHoP framework (“Blast”,
“CRISPR”, “WIsH”, “VirHostMatcher”, and “PHP”), individual machine-learning classifiers taking
into consideration multiple top hits for each input virus were optimized as follows. A training set was
built from the hits obtained from NCBI Virus RefSeq release 201°' against the iPHoP_db_Sept21
database, using similar cutoffs as for the benchmarks (see above) but considering for each input virus
the 50 best hits (blast) or 30 best hits (all other methods). All hits were associated with the
corresponding host genome representative (see “Virus-host training sets and host databases” above),
and for each input virus, all host genome representatives with one hit were considered as a candidate
host.

For each pair of input virus-candidate host, the different hits obtained for this virus were gathered
as follows. First, the phylogenetic distance between the host genome representative of each hit and the
candidate host was obtained from the GTDB-tk-generated trees (see above), so that hits can be ordered
by distance to the candidate host. Next, depending on the tools, one to three scores were used to
describe the strength of the hit, and all the hits for a given input virus are tallied, i.e., the number of hits
observed for a given distance and set of scores is tabulated. The resulting matrices then serve as input
to either neural network or random forest classifiers. For more detailed information about the cutoffs,
score selection, and transformation used for each tool, please see Supplementary Fig. S5.

For classifier training, a subset of 20,000 to 60,000 virus-host instances were randomly selected
for each tool, with the following constraints: (i) between 60 to 85% of incorrect virus-host pairs, i.e.,
instances where the candidate host was assigned to a genus different from the host genus listed for this
virus in the database, and (ii) between 45 to 70% of instances with a “known” virus, i.e., for which the
virus had an AAI percentage of 70% or higher to the closest reference. These constraints were included
to ensure that the training set was not too unbalanced in favor of (i) incorrect predictions, since most
hits are to genomes from a different genus than the host, and (ii) “known” viruses, which typically
represent the majority of databases and could bias the classifiers. A subset (10%) of these training data
were set aside and used as a common validation set when comparing different versions of each
classifier (see below). Further, for each instance, 3 different sets of hits were used: one including all the
hits obtained for the virus, one including only a random subset (from 0 to 100%) of hits, and one
including only one randomly selected hit with a distance <4 to the candidate host (if any) and all hits
with a distance >4, or one randomly selected hit among all hits if all display a distance >4. This random
subsampling of hits was included to simulate different levels of representation of host diversity in the
database, since current bacteria and archaea genome databases do not provide an even coverage of the
global diversity, and isolated viruses used here for training are likely to be biased towards well-
represented hosts.

Optimization and evaluation of single-tool classifiers for iPHoP
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All dense and convolution networks were built using TensorFlow 2.7.0%, and all random forest
classifiers were built with the TensorFlow Decision Forests v0.2.1, both within the Keras 2.7.0 Python
library®. Classifiers were trained on the corresponding training set, using 80% of the data for training
and 20% for validation (“validation_split=0.2” for the neural networks). The Adam optimizer was used
to train all the neural networks. Classifier parameters including the number of layers, kernel size, and
dilation rate for convolution networks, number of dense layers for dense networks, and number of trees
and maximum tree depth for random forest classifiers, were optimized for each individual classifier
using the Optuna v2.5.0 framework®, by running 100 training trials (see Supplementary Fig. S5). For
each type of classifier (convolution network, dense network, random forest classifier), the 5 best
versions based on minimum Binary Cross Entropy loss (for networks) or maximum accuracy (for
random forests) on the common validation set (see above) were selected as potential candidates.

To select the optimal combination of classifiers, these candidates were then applied to the test set,
and the results obtained on the non-ambiguous cases were observed (i.e.: blast hit >10kb, CRISPR
match with 0 mismatches, WIsH p-value <1E-05, VHM score >0.8, PHP score >1450). For each
classifier, the tenth percentile of scores for these non-ambiguous cases where the classifier prediction
was correct was used as an estimate of a “high-confidence” score for this classifier, and the number of
incorrect predictions with a score higher than this cutoff was used as an estimate of the error rate, i.e.,
incorrect prediction with a score comparable to non-ambiguous correct predictions. This error rate was
then used to iteratively select classifiers by first selecting the one with the lower error rate, then
selecting additional classifiers if they provided >5% additional correct prediction among non-
ambiguous cases, or if they “corrected” >10% of the previous false-positive errors. If no classifier
fulfilled these conditions, the selection process was stopped. Ultimately, all selected classifiers (See
Table S3) were run on the full test set to derive Precision-Recall curves and False Discovery Rate
estimations.

Training, optimization, and evaluation of iPHoP main Random Forest classifier (iPHoP-RF)

To integrate signal from multiple approaches, a random forest classifier (“iPHoP-RF”) was
trained to obtain a single confidence score for a given virus-candidate host pair based on the score
obtained for all individual classifiers selected (see Supplementary Table S3). Specifically, for each
virus-candidate host pair used in the training set (see above), the following information were included
for each selected classifier: the score obtained for the virus-candidate host pair, the rank of this pair
among all candidate hosts considered for this given virus, and the difference between the score of the
pair and the highest score obtained for the given virus. This led to a final input matrix with 30 columns,
i.e., 3 features (score, rank, distance to best score) for each of the 10 selected classifiers. A balanced
training set was built from the training sets created for each individual classifier (see above), including
700 randomly sampled viruses with at least 1 blast hit and 1 CRISPR hit, 700 each from viruses with
either at least 1 blast hit or 1 CRISPR hit, and 700 viruses with neither blast or CRISPR hits. For each
selected virus, up to 10 correct and up to 5 incorrect predictions (i.e., candidate virus-host pairs) were
randomly selected. Eventually, the balanced training set included 17,105 correct and 13,960 incorrect
virus-candidate host pairs.

Random Forest Classifiers were built using the TensorFlow Decision Forests v0.2.1% package
within the Keras 2.7.0 python library®, with parameters optimized with the Optuna v2.5.0 framework®.
Parameters to be optimized included maximum tree depth (between 4 and 32), minimum number of
examples in a node (between 2 and 10) and number of trees (between 100 and 1,000). A total of 100
trials were performed, each was evaluated on the test dataset, the 5 classifiers with the highest accuracy
were selected as the best candidates, and the candidate with the highest recall at 5% FDR was then
selected as the final iPHoP-RF classifier.
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Integrating iPHoP classifiers and RaFAH into a final host prediction

In order to rank host predictions for individual viruses obtained with different methods, and since
the scores from different classifiers are not directly comparable, the test dataset was used to transform
raw scores into empirical false-discovery rates (FDRs). Specifically, the positive predictive value
(PPV), i.e., the number of correct predictions divided by the total number of predictions, which
corresponds to 1 minus the false-discovery rate, was computed on sliding windows of each tool score
from 0 to 1, with window size 0.05 (for Blast Conv_87, Blast RF_39, CRISPR Conv_85, CRISPR
Dense_15) or 0.01 (for iPHoP-RF, and RaFAH). For each tool, a generalized linear model was then
fitted on these values using the mgcv v1.8-36 library® in R v 4.0.5% with REML estimation, and an
empirical PPV and FDR was then calculated for scores ranging from 0 to 1 by steps of 0.001.

These empirical positive predictive values are then used in the iPHoP framework to derive a
single composite score for each virus-candidate host genus pair as follows. For each pair, all methods
with PPV <0.5 are first discarded. Next, the method with the highest PPV, i.e., the lowest FDR, for this
pair is selected as the source of the main FDR. To take into account prediction from other methods
which passed the PPV threshold, i.e. were >0.5, the FDR from these additional predictions are then
multiplied by 2 (to rescale between 0 and 1), and the final composite score is then calculated as 1 minus
the product of the main FDR and the additional “rescaled” FDRs, if any. This means that additional
methods pointing to the same virus-host genus pair can only improve the composite score, as they will
multiply the main FDR by factors always <1. Finally, a similar empirical approach based on the test
dataset was used to transform these composite scores in PPVs (see above), and these empirically
estimated PPVs are provided to iPHoP users as “Confidence score” in the result files. By default, only
predictions with a confidence score >90, i.e. an estimated FDR <10%, are included in the summary
output file, however users can select any confidence score ranging from 75 to 100.

To enable this integration of results from host-based tools and RaFAH, the predictions from
RaFAH had to be converted into GTDB-compatible taxa. To this end, each genus listed in the RaFAH
output file was searched for in the GTDB metadata files, and the list of genomes associated with this
RaFAH genus along with their GTDB genus-level taxon was tallied. Each RaFAH genus was then
associated to all GTDB genus-level taxa representing >50% of the genome list if the list included <10
genomes, >20% of the genome list if the list included 10 to 100 genomes, or >10% if the list included
>100 genomes. This approach provided GTDB genus-level taxa for 595 RaFAH genera, with 492
linked to a single taxa, and 90 linked to 2 taxa, often closely related (e.g., “Thioalkalivibrio” and
“Thioalkalivibrio_B”, “Pseudothermotoga_A” and “Pseudothermotoga_B”, etc).

Comparison to other integrated host prediction approaches

Three other tools providing host prediction based on multiple approaches were benchmarked on
the same test dataset (see above) as iPHoP. VirHostMatcher-Net (July 2021 version®') was run on the
test dataset with default parameters, requesting the top 100 predictions to be included in the output
files, and using the default host database provided with the tool. PhisDetector (February 2021 version™)
was run on the test dataset with the following parameters: “--min_mis_crispr 2 --min_cov_crispr 70 --
min_per_prophage 30 --min_id_prophage 70 --min_cov_prophage 30 --min_PPI 1 --min_DDI 5 --
min_per_blast 10 --min_id_blast 70 --min_cov_blast 10”, and using the default database provided with
the tool. Finally, VirMatcher v0.3.2* was run on the test dataset via it KBase App®. Since no host
database was provided with VirMatcher, a custom host genome database was built based on the RefSeq
genomes that displayed at least one hit to any of the test dataset virus with blast, CRISPR, or WIsH.

For each tool, the prediction with the highest score was considered as the host genus predicted for
a given virus, excluding predictions to hosts with unknown genera. These “best hit” predictions were
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then used to evaluate the recall of each tool, i.e., the number of correct host genus predictions, at
different false discovery rates level, either on the complete test dataset or when restricting to specific
ranges of “novelty”, i.e. AAI to the closest reference ranging from 0 to 5%, 5 to 10%, 10 to 30%, 30 to
60%, or 60 to 100%.

Evaluation of iPHoP host predictions on high-quality genomes from the IMG/VR database

To evaluate iPHoP on real metagenome-derived virus genomes, 216,015 high-quality genomes
from the IMG/VR v3 database®, i.e. metagenome-derived viral genomes estimated to be >90%
complete based on CheckV v0.4.0”, were processed with iPHoP v1.0, using the iPHoP_db_Sept21
database. Host genus prediction was based on the host genus with the best iPHoP composite score for
each input sequence, with a minimum score cutoff of 75. Metadata for IMG/VR sequences, including
corresponding study and dataset if available, were obtained from the IMG/VR database (2020-10-
12_5.1 version)®. Temperate and virulent phages were identified based on BACPHLIP v0.9.6>* with a
minimum score of >0.8. Metadata for the host genome, including the corresponding study and dataset if
available, were obtained from the IMG and Gold databases (information downloaded in Jan. 20227,

To represent the diversity of hosts included in these IMG/VR-derived host predictions, the
GTDB bacteria and archaea trees were plotted using the ggtree v2.4.1 package’, with clades collapsed
at the phylum level. Each phylum was then colored according to the status of its member genera, i.e.,
whether each host genus is associated with an isolated virus in RefSeq, a host prediction with a score
>95, a host prediction with a score >90, or no isolate or host prediction. To verify whether iPHoP host
predictions linked viruses from each main biome to host taxa consistently found in the same biomes,
the GEM dataset® was used to evaluate the biome distribution of individual host genera. Specifically,
each GEM MAG was associated to its corresponding genus and original sample biome, if this
information was available (n = 38,556). Each genus was then associated with a given biome if >50% of
the corresponding MAGs originated from a sample of this biome (n = 3,500 genera), or was considered
as “Detected across multiple biomes” if the majority biome represented <50% of the genus MAGs (n =
90 genera).
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Supplementary Figure

Supplementary Figure S1. Characteristics of the test dataset. A. Distribution of the host genera for
the test dataset. Note: only genera associated with >5 viruses are included, another 125 host genera
were associated with <5 viruses and are not displayed. B. Distribution of AAI to the closest reference
in NCBI RefSeq for the test dataset. The corresponding list of viral genomes included in the test dataset
is provided in Table S2.

Supplementary Figure S2. Comparison of different host prediction approaches on different
subsets of the test dataset. Total number of predictions and number of correct predictions (y-axis)
obtained at any rank for each tool (x-axis) on sequences from the test dataset (Table S2). For each tool,
the number of correct predictions is indicated by the colored bar, while the total number of predictions
is indicated by the gray bar. The top panel displays the results obtained on the entire test dataset (n =
1,870). The middle panel includes results obtained for all phages predicted as temperate, either via
BacPhlip or based on the genome annotation (n = 949). The middle panel includes results obtained for
all phages predicted as virulent by BacPhlip (n = 663).

Supplementary Figure S3. Characteristics of the high-quality IMG/VR genomes. A. Number of
high-quality viral genomes from IMG/VR v3 identified across the 5 major biomes in the database.
Genomes sampled from other biomes of lacking a biome information are gathered in the “Other”
category. B. Distribution of the average amino-acid identity between IMG/VR v3 viral genomes and
the NCBI Viral RefSeq v203.

Supplementary Figure S4. Overlap between host-based tools for individual viruses. For each host-
based tool included in the benchmark (see Fig. 1), the overlap in terms of input sequence for which a
correct prediction was obtained is presented here as an upset plot. The intersection size represents the
number of phages with correct prediction using the combination of methods indicated at the bottom.
This number is also indicated above each bar, and the bar color indicates the number of tools included
in the combination.

Supplementary Figure S5. Schematic of the data transformation and classifier architectures used
in iPHoP. A. Summary of the cutoff and metrics used for each host-based tool considered in iPHoP
(see Table S1). B. Overview of the three different types of classifiers evaluated in iPHoP. The different
parameters optimized using the Optuna framework are highlighted in blue. For varying numbers of
layers, the same parameters were optimized for each layer, but each was optimized separately, i.e., the
parameters values were independent between the different layers.

Supplementary Figure S6. ROC and Precision-Recall curves for single-tool classifiers. For each
host-based tool the ROC curves (left) and Precision-Recall curves (right) based on the test dataset are
presented for the 5 best classifiers of each type, and compared to the “naive” approach, i.e. best hit
based on the raw score. TPR: True Positive Rate. FPR: False Positive Rate. PPV: Positive Predictive
Value. The 1-to-1 line is indicated as a dashed black line on the ROC curves. Random Forest
Classifiers were only evaluated for Blast and CRISPR approaches.

Supplementary Figure S7. Percentage of correct host predictions obtained for viruses with

different degrees of “novelty”. The number of correct host predictions was evaluated for 3 different
score cutoffs corresponding to 20%, 10%, and 5% estimated FDR (False Discovery Rate). Input viruses
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were classified into 5 categories (x-axis) based on their AAI (Average Amino Acid Identity) to the
closest reference phage genome. The number of correct host predictions is indicated for each iPHoP
classifier (see Fig. 3A), and for the composite score considering all classifiers (“combined”).

Supplementary Figure S8. Comparison of different integrated host prediction tools, including
iPHoP, on the test dataset. Standard Receiver Operating Characteristic (left) and Precision Recall
(middle) curves for the 4 integrated host prediction approaches compared. To take into account the
number of predictions provided by each tool, a third plot (right panel) indicates the positive predictive
value (y-axis) when considering an increasing number of predictions (x-axis). To obtain this, cutoffs
were progressively lowered to include an increasing number of predictions for each tool, and prioritize
the highest confidence ones, i.e. starting with the highest PPV possible. For the ROC curve, a 1-to-1
line is indicated with a dashed black line. For the Precision Recall and PPV curves (middle and right
panels), the red and purple dashed lines indicate 5% and 10% False Discovery rates, respectively.

Supplementary Figure S9. Type of host prediction obtained for high-quality IMG/VR v3
genomes with different degrees of “novelty”. High-quality genomes from the IMG/VR v3 database
for which a host prediction was obtained with iPHoP (score >90) were binned based on the average
amino acid identity (AAI) to the closest reference in NCBI RefSeq Virus 1203 (x-axis). Predictions
entirely based on host-based tools are indicated as “Host only”, predictions exclusively based on
RaFAH are indicated as “Phage only”, and predictions where both types of tools were consistent and
with score >90 are listed as “Both”.

Supplementary Figure S10. Breakdown of iPHoP host predictions for high-quality IMG/VR v3
genomes assigned as virulent (top) or temperate (bottom). Similar as Fig. 4A and 4B, the left panel
shows the distribution of the best score provided by iPHoP for the corresponding subset of IMG/VR v3
quality genome (top: virulent, bottom: temperate), organized by ecosystem. For each IMG/VR vOTU,
the best score from iPHoP was considered if >75, or the vOTU was considered as not having a
predicted host. The right panel shows the the type of signal used to achieve host prediction with a score
>90. “Host-based” includes all 5 host-based tools, while “Phage-based” includes predictions obtained
with RaFAH. “Both” includes consistent predictions obtained with RaFAH and at least one host-based
tool. Temperate and virulent phages were identified via BACPHLIP* with a minimum score of 0.8
and based on genome annotation (see Methods).

Supplementary Figure S11. Number of species and iPHoP prediction per host genus. Each dot
represents a host genus with at least 2 species, with the x-axis reflecting the total number of species in
the genus, and the y-axis reflecting the total number of IMG/VR v3 HQ sequences predicted to infect
this host genus with a score > 90. Host genera and species were obtained from the GTDB database™.
The right panel presents a zoomed-in version of the area highlighted with dashed black lines in the left
panel.

Supplementary Tables

Supplementary Table S1. List of individual tools benchmarked, included in, and/or compared to
iPHoP.

Supplementary Table S2. List of viral genomes included in the test dataset, obtained from NCBI
GenBank, and used to evaluate the performance of individual and integrated tools.
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Supplementary Table S3. Characteristics of the single-tool classifiers considered for inclusion in

iPHoP. The classifiers eventually included in iPHoP v1.0 are indicated with a “x” symbol in the
column “Classifiers selected for inclusion in iPHoP”.
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