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Abstract
In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence
microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications
have been proven, including clustering chemical and genetic perturbations based on their similar morphological impact,
identifying disease phenotypes by observing differences in profiles between healthy and diseased cells, and predicting assay
outcomes using machine learning, among many others. Here we provide an updated protocol for the most popular assay for
image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse
components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, golgi apparatus, plasma membrane, endoplasmic reticulum,
and mitochondria. The original protocol was updated in 2016 based on several years’ experience running it at two sites, after
optimizing it by visual stain quality. Here we describe the work of the Joint Undertaking for Morphological Profiling (JUMP) Cell
Painting Consortium, aiming to improve upon the assay via quantitative optimization, based on the measured ability of the
assay to detect morphological phenotypes and group similar perturbations together. We find that the assay gives very robust
outputs despite a variety of changes to the protocol and that two vendors’ dyes work equivalently well. We present Cell
Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell
culture and image acquisition take 1–2 weeks for a typically sized batch of 20 or fewer plates; feature extraction and data
analysis take an additional 1–2 weeks.

Introduction
Since the advent of the digital camera, computationally-minded biologists and biologically-minded computationalists have

realized that microscopy images represent an incredibly rich source of data; a camera that produces images that are 1,000
pixels on each side produces a million quantitative data points with every acquisition. The idea that scientific answers could be
extracted from those pixels underlies the field of image-based profiling (also known as morphological profiling): its premise is
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that this pixel information, the details of which are often invisible to the human eye, are sufficient to cluster samples to draw
meaningful conclusions.1,2

The Cell Painting assay (Figure 1) is a major driver of this field's success - the creation of an assay that could be done
simply and inexpensively on commonly available lab equipment provided researchers in both academia and industry the ability
to try morphological profiling on their own data and an opportunity to standardize feature sets across laboratories. The two
initial papers 3,4 describing the assay have been cited more than 500 times combined. Cell Painting has been used to profile
mutations in lung cancer 5, find treatments for COVID-19 6, and help explore the toxicity of environmental chemicals 7 among
dozens of other applications1. Scientists have also started creating their own variants, swapping out stains for lysosomes rather
than mitochondria 8 or lipid droplets rather than the endoplasmic reticulum 9. We therefore believe that new stain combinations
can be powerful for particular biological areas of interest, but we also recognize the value of a standardized assay performed in
many laboratories and on many biological questions across the community in order to share data.

We recently became interested in creating a very large public Cell Painting data set due to the success of multiple
approaches where image data can be used to predict not just particular phenotypes about the parts of the cell that were
stained, but entirely orthogonal data such as gene expression data or the outcome of a biochemical assay 10,11. Such a
database could also allow queries for compounds that match genes 12 and vice versa. It stands to reason that a large, well
constructed set of image-based phenotypic screen data could not only inspire new computational tools to mine such data, but
also serve as a resource for researchers to compare their own data against, accelerating discovery for thousands of scientists
globally. The Joint Undertaking for Morphological Profiling (JUMP) Cell Painting Consortium was formed in 2019 to create such
a dataset, with a goal to optimize and select a single set of staining conditions prior to creating more than 150,000 perturbation
profiles across a dozen sites around the world.

With these goals in mind, in this work we describe the optimizations done over more than a year to select optimal conditions
for the JUMP Consortium’s production data set. More than two dozen different parameters were optimized, often testing
several options per parameter and in the context of multiple combinations, yielding 299 staining-plate-imaging-runs or "logical
plates"; a full matrix of every parameter would be greater than 50 million logical plates and as such was not attempted.
Logistical constraints, and the fact that all parameters are deeply interconnected, prevented a fully iterative parameter testing
strategy. A table describing all conditions tested is available as supplementary file 1.

Here, we present our updated recommendations, as well as our major finding: Cell Painting is remarkably robust. While most
of our attempted optimizations admittedly did not dramatically change any parameter, the vast majority of conditions led to
consistently similar results. In nearly all conditions, for our control compound plate, we observed a percent replicating (how
often the profile similarity between two individual wells of Treatment X have pairwise similarity greater than expected; see
below) of 70% +/- 15%. Similarly, across nearly all conditions we observed a percent matching (if Treatment X and Treatment
Y are thought to work via the same mechanism of action, how often are the profile similarities of a well of Treatment X and
Treatment Y greater than expected; see below) of 20% +/- 10%. This robustness did not yield an exciting optimization process,
but speaks well of the stability of the assay and how likely it is to work across a variety of laboratories worldwide, even if a
given laboratory may need to adjust some parameters for their local conditions. Here, we describe our optimization findings
and decisions so that a new researcher can consider these questions when setting up their own Cell Painting experiments.

The major changes between our previous protocol and the current recommendations are as follows (presented in order of the
protocol steps):

1. No media removal before addition of MitoTracker, to simplify the protocol and minimize the loss of cells
2. Our recommendation for MitoTracker staining concentration remains at 500nM, but previous versions of the protocol used

instructions that unintentionally led to a lower final concentration (375nM). The current protocol ensures a 500nM
concentration after dilution.

3. Combining permeabilization and staining steps to make the process more automation friendly
4. Reduction of Phalloidin 4-fold, from 5µl/mL (33nM) to 1.25µl/mL (8.25nM), to save reagent costs
5. Reduction of Hoechst 5-fold, from 5µgmL to 1µg/mL, to save reagent costs
6. Increase of SYTO 14 2-fold, from 3µM to 6µM, to improve its signal
7. Reduction of Concanavalin A 20-fold, from 100µg/mL to 5µg/mL, to save reagent costs
8. Overall reduction of post-fixation staining volumes from 30µL/well to 20µL/well, to save reagent costs
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Figure 1- DMSO-treated U2OS cells treated with the Cell Painting assay; the six dyes in five channels stain eight cellular
compartments. Top Row (L-R): Mitochondrial staining; Actin, Golgi, and Plasma Membrane staining; Nucleolar and cytoplasmic
RNA staining. Bottom Row (L-R): Endoplasmic reticulum (ER) staining; DNA staining; a montage of all five channels.

Optimization setup

A conventional assay is optimized by assessing each variant of the protocol for the optimal separation between a particular
positive control and negative control. A profiling assay, by contrast, aims to measure hundreds to thousands of readouts,
creating a challenge for optimization. Our prior efforts at optimization relied on assessing signal quality by eye 3,4. By contrast,
here we aimed to make the first attempt at quantitative optimization. We evaluated each variant of the assay using 90
compounds, selected as detailed later, to cover a broad spectrum of biological activities.

We selected optimal parameter settings based on two metrics calculated on image-based profiles derived from Cell Painting
cells treated with those compounds: percent replicating and percent matching. Both describe how often a given pair of wells
that should be similar actually do look similar, specifically, how often is their pairwise correlation across features greater than
the 95th percentile of a null distribution of the similarities of 10,000 pairs of random (non-matching) wells13. In percent
replicating, the two wells that are compared are treated with the identical treatment and should perfectly correlate, if not for
technical variations. In percent matching, the two wells are treated with different treatments that are believed (due to outside
knowledge, i.e. ground truth) to produce similar biological impact. Percent replicating expects identical treatments to produce
positive correlations, so it is scored in one-tailed fashion (fraction of profile pairs above the 95th percentile of correlation
values); by contrast, pairs of treatments might be expected to correlate or anti-correlate, so percent matching can be calculated
as the fraction of treatments below the 5th percentile, the fraction above the 95th percentile, or both. These metrics have
limitations, as elaborated previously 14, but were sufficient at the time for the purposes here: selecting the optimal assay
conditions given the presence of replicates in different well positions on our compound control plate, and identical numbers of
replicates of each condition. When comparing conditions in a given experiment, percent replicating has the advantage of being
calculated for a higher number of conditions, because it is computed for each reagent individually; by contrast, percent
matching has the advantage of better approximating an application of image-based profiling: matching different samples with
each other, but because it can be calculated only for pairs of samples, there are fewer classes and thus less statistical power. It
is also a harder task because most compounds annotated as having a target in common do not in fact produce similar
morphological profiles, particularly due to polypharmacology 13 (see Supplemental Methods) and because ground truth
annotations are incomplete and imperfect; nevertheless, because samples that are supposed to match each other are in
different positions within our compound control plate layout, this metric is usually less influenced by plate position effects, such
as edge effects, which can unfairly improve percent replicating when replicates are in identical well positions within the plate
layout.

The percent replicating and percent matching of an entirely untreated or negative control plate would be expected to be 5%
(or 10%, if both tails of the distribution are assessed). Our first step was to select a set of standardized controls to determine
whether treated wells were matching more than would be expected by chance. For initial optimizations, a compound plate
known as the JUMP-MOA plate was created (Figure 2A); in 384 wells, it contains 24 DMSO wells and 90 compounds at four
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replicates each. The 90 compounds are from 47 diverse mechanism-of-action (MOA) classes, with 43 classes having two
compounds each and four classes having only a single compound. This allows for testing percent replicating for each of the 90
compounds and percent matching (for each of the 43 MOA classes) within a single plate, allowing each plate to serve as its
own "batch"; see Supplemental Methods for more information. This plate layout was used for most optimizations of staining
reagents and conditions, imaging conditions, and feature measurements; percent matching for these plates is calculated in a
one-tailed fashion (>95th percentile).

To assess whether conditions would differ across the different kinds of treatments planned for the JUMP consortium
(compound treatments, open reading frame (ORF) overexpression, and CRISPR knockout), a second set of plates known as
the JUMP-Target plates were produced (Figure 2B). These are described elsewhere13; briefly, they contain either compounds,
ORFs, or CRISPR knockdowns related to a set of >175 genes thought to have strong and/or diverse phenotypic effects.
Because this set of samples is so large, to reach the same four replicates per treatment found in JUMP-MOA, one must create
four identical treated plates of the JUMP-Target-Compound source plate (there are two versions of this plate with the same set
of 306 compounds but in different layouts: JUMP-Target-1-Compound and JUMP-Target-2-Compound, hereafter JUMP-Target1
and JUMP-Target2). The JUMP-Target-CRISPR source plate also requires four identical treated plates; it contains two guides
for most genes, arrayed in separate wells on each plate. By contrast, the JUMP-Target-ORF plate has 130 ORFs duplicated on
the plate (because typically only a single ORF is available per gene), and thus needs only two treatment plate copies of the
source plate in order to get a sufficient number of wells with four replicates. As JUMP-Target treatments may be expected to
increase or decrease the function of a target gene, percent matching is calculated in a two-tailed fraction (<5th percentile or
>95th percentile).
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Figure 2- A) The JUMP-MOA compound plate map: unlabeled wells are DMSO only, all other wells are labeled to show
distribution of MOA classes across the entire plate. B) The JUMP-Target plate maps. Black wells contain negative control
treatments, while grey wells are untreated; other sets of control treatments were selected to either provide sets of diverse pairs
of positive controls (purples), to provide a match between genes and compounds based on previous Cell Painting experiments
(teals) or to match genes and compounds based on external reports of strong correlations between pairs (yellows). These
controls are scattered among treatments hypothesized to affect other genes (reds).

Optimization of cell line selection, treatment and culture conditions

The furthest-upstream task that the consortium needed to consider was which cell line to use in data production, given our
desire to have all data in one cell line to maximize matching across treatments. In addition to typical imaging-assay concerns
such as flatness, we wanted specifically to know for each candidate line: 1) how many diverse phenotypes could we detect
using the Cell Painting Assay, 2) how well it overexpressed exogenously introduced genes, given our plans to analyze ORFs,
and 3) how well particular Cas9-expressing clonal lines could knock down genes, given our plans to analyze CRISPR
reagents. Especially when reproducibility across sites is critical, one additionally may wish to consider the availability of
Cas9-expressing clones (some lines carry restrictive licenses making them unavailable to the public).

Once a line was chosen, we also wanted to know the effects of several variables in the Cell Painting assay protocol: 4) how
long should a given treatment be applied to the cells, 5) how sensitive would the assay be to changes in plating density, 6) how
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if at all using Cas9-expressing clonal lines for CRISPR experiments and parental lines for compounds would affect our ability to
match treatments affecting the same mechanisms of action, 7) how if at all using drug selection in our CRISPR and ORF
conditions would affect their phenotypes and therefore our ability to match these conditions to compound treatment plates, and
8) whether or not cell conditions that some treatments would be exposed to (polybrene for improving lentiviral introduction of
ORF and CRISPR reagents) should be applied to even the cells that did not need to experience them (such as the
compound-treatment plates).

We focused on assessing the relative performance of A549 vs U2OS, because both are lines in which large public Cell
Painting data sets already exist 14,15; dozens of other cell lines have performed well for Cell Painting experiments and
researchers should choose a line that demonstrates phenotypes in which they are interested. We tested parental populations
and several Cas9-expressing clonal lines for each cell type (one polyclonal of each line, with one additional monoclonal line for
U2OS and three monoclonal lines for A549) using the JUMP-MOA plates to assess ability to detect multiple phenotypes
(Figure 3A); Cas9 editing efficiency of the Cas9 expressing lines was measured in parallel (Supplementary Table 1,
Supplementary Methods). In U2OS, the polyclonal line displayed much greater CRISPR efficiency as well as better percent
matching. In A549, any if not all of the lines could have been suitable based on efficiency and percent matching; we therefore
chose based on the line with the fewest restrictions on sharing between partners, which for the particular four clones in
question was the polyclonal line. Additional experiments quantified by cell count only helped decide final cell densities, viral
amounts, and other conditions (Supplementary Methods)

We next carried the parental and polyclonal lines forward to a single large experiment that we called CPJUMP113, using the
JUMP-Target plates to address questions 1-7 above; question 8 was assessed in a second, later experiment. While neither line
performed poorly in any of our experiments, on the whole U2OS displayed a slightly higher cross-modality matching (Figure
3B), and so U2OS was selected to be used for producing the JUMP-CP Consortium’s full dataset (questions 1-3). Based on
these results, we also decided that compound treatments would be run at 48 hours of treatment, ORF overexpression
experiments at 48 hours of treatment, and CRISPR knockdowns at 144 hours of treatment (question 4, Figure 3B).

We further analyzed the rest of CPJUMP1 to address questions 5-6; while these analyses were done in A549 rather than
U2OS, we believe the results are likely to hold in both types due to their generally similar behavior. We saw little effect of profile
sensitivity to plating density changes of +/- 20% (Supplementary Figure 1A). We also saw little difference on modality matching
performing when running compound experiments in the parental line vs the polyclonal Cas9 line (Supplementary Figure 1B),
and as such chose to have all partners running compound experiments do so in the commercially available parental U2OS
lines.

To answer question 7, we needed to assess for our ORF and CRISPR conditions how selection of the lentiviral reagents by
resistance markers in the viral backbones would affect our ability to match between those conditions and our larger compound
panel; selection could possibly alter the results in either direction, improving them by removing cells not expressing the
treatment and/or harming them by introducing a second "drug selection" signature that might perturb biological signals. Our
assessment of cross-modality percent matching suggests a potential small deleterious effect from drug selection, especially in
ORFs (Supplementary Figure 2A); this is understandable since in our case ORFs have a vector with a slower selectable
marker (blasticidin) than CRISPR (puromycin) and are also treated for a shorter period of time (96 hrs vs 144 hrs). We
therefore chose not to perform drug selection in our final protocol recommendations.

Finally, for question 8 we wanted to know whether we should include polybrene, which is used in aiding lentiviral
transduction in our ORF and CRISPR plates, in our compound treatment production plates; as with the question of drug
selection, one could a priori imagine it either helping or harming cross-modality matching. In this case we saw a strong
deleterious effect on profiling results from a 24 hour treatment with 4 µM polybrene, with cross-plate-replication between
polybrene-treated vs untreated plates dramatically lower than the intra-treatment cross-plate-replication of either treated or
untreated plates (Supplementary Figure 2B). Polybrene addition also did not improve the ability to match Target2 plates to a
previous batch of ORF overexpression plates (Supplementary Figure 2C), causing us to recommend against including it.
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Figure 3- A) Assessment of compound percent replicating and percent matching using JUMP-MOA plates in A549 and U2OS
parental, Cas9-polyclonal, and Cas9-monoclonal lines. In U2OS, the polyclonal line outperforms the single monoclonal line
tested; in A549, performance is more varied. B) U2OS has slightly worse compound-to-compound-across-time-point percent
matching than A549 but otherwise generally performs slightly better at percent matching when assessed via the JUMP-Target
plates.

Optimization of plates, staining reagents and conditions

Once a researcher has picked their cell line and treatment conditions, the next thing they must do is get their cells onto
imaging plates and stain them. We saw no consistent difference in percent replicating or percent matching between plates from
two manufacturers, one of which contained "barrier wells", aka reservoirs at the edges of the plates that hold liquid in them to
try to create even humidification of the whole plate surface (Supplementary Figure 3A). They may prove beneficial in other
experimental contexts or research environments, especially those new to running sensitive high content assays like Cell
Painting, but we decided against using them due to increased cost.

In order to try to minimize disruption to the cells and time and buffer spent washing plates, we have introduced two
washing-related changes in this protocol vs our 2016 recommendations. First is to not remove any media from the wells before
the addition of MitoTracker; this creates higher costs for this particular reagent, because staining is done in a larger volume, but
it omits a step (removing the medium) and decreases the likelihood of precious cells becoming detached before fixation.
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Second, the original protocol involved permeabilizing the cells, washing them twice, and then adding the other
(non-MitoTracker) dyes; now we recommend simply just performing the permeabilization and staining simultaneously. This
leads to a shorter and easier protocol, and with no apparent negative consequences to profile quality (Supplementary Figure
3B). While the total volume for the MitoTracker staining step has gone up from 30µL to 60µL, all other dyes are now added in a
smaller volume (20µL rather than 30µL).

The next thing a researcher setting up a Cell Painting assay must decide is exactly which stains to use and in which
concentrations. Although variations on Cell Painting can be powerful for investigating particular areas of biology 8,9, for
optimization of the canonical assay for this public dataset, the consortium only considered the original six dyes used in earlier
versions of the assay (with the exception of DAPI for Hoechst, see Supplementary Figure 4B). We did briefly qualitatively
assess if there were any benefits of moving WGA to an ultraviolet dye or MitoTracker to an orange dye, but quickly dismissed
them: no immediate large improvement was shown (data not shown) and it would require reoptimization of the entire stain
panel. A large number of stain concentration adjustments were tested; they are broken out comprehensively in Supplementary
Figure 4. We found that reducing Hoechst from its original 5µg/mL to 1µg/mL and diluting Phalloidin from 33nM to 8.25nM had
no ill effect and possibly even a positive one (Supplementary Figure 4B), so we adopted these changes to reduce reagent
costs and waste.

All of the changes in the preceding paragraphs form what we call the Cell Painting version 2.5 protocol; this protocol was
used for the CPJUMP1 experiment and represents an improvement in percent replicating and percent matching from the
version 2 protocol from 2016 3 (Figure 4A). However, some consortium members reported higher than optimal bleedthrough in
version 2.5, specifically that on their microscopes there was so much crosstalk between the ER (Concanavalin A) and RNA
(SYTO 14) stains that it affected detection of the RNA signal. We therefore did one additional round of optimization to yield the
version 3 (v3) protocol, incorporating all of the improvements from v2.5 plus reducing 20x the amount of Concanavalin A (the
most expensive dye in the panel) and doubling the amount of SYTO14 (Figure 4A). These changes brought the two channels
better into balance and became our final recommendation, version 3 (v3). There are two major sources for the complete set of
Cell Painting dyes- ThermoFisher and PerkinElmer. We tested both dye sets in a number of batches and across a variety of
conditions and found their performance to be equivalent (Figure 4B).

The Cell Painting assay uses fixed cells, reducing the need for precise timing of the image acquisition step. Because
microscopes occasionally break or are booked, we finally wanted to test the timescale of deterioration for a fixed and stained
Cell Painting plate, in terms of overall profile quality; we see no measurable degradation of profile percent replicating between
plates imaged on the day they were stained and plates imaged 14 days later. There appears to be a consistent decline
between week 2 and week 4, however, so if possible we recommend imaging is completed within 28 days after staining (Figure
4C).

Figure 4- A) Comparison of percent replicating and percent matching for 3 versions of Cell Painting - version 2 (Bray et al 2016
conditions) vs version 2.5 (Bray et al plus introduction changes 1-6) vs version 3 (this manuscript’s final recommendations).
The move from v2 to v2.5 seemed to improve both percent replicating and percent matching in the Stain 4 pilot experiment (red
dots); the move from v2.5 to v3 decreases reagent cost while maintaining comparable if not slightly improved percent matching
in the Stain5 pilot experiment (blue dots). Note that Stain 5 experiments (blue dots) were performed using only half of the
compound dose as Stain 4 experiments (red dots) B) Comparison of reagents from two different vendors across multiple stain
conditions and microscopes. Performance is extremely similar between vendors in all conditions tested. C) Assessment of
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persistence of Cell Painting plate quality over storage time. Percent replicating seems to be decreasing by Day 28 but is quite
similar to initial values at day 14.

Optimization of imaging conditions

Once the staining conditions are finalized, the next step is to optimize the image acquisition conditions. As in other areas of
optimization, we had a number of questions -
1) Which kind of scope should we use? 2) Should we take one Z plane or several? 3) Should the camera be set to 1x1 or 2x2
pixel binning? 4) How high should our exposures be? 5) How many fields of view do we need to take? and 6) If a researcher
needs to image a plate more than once (during optimization or due to a technical failure), how much deterioration of signal can
they expect?

In our testing, the answer to most of these questions was simply "probably anything will produce comparable results". We
saw no consistent difference between images taken in widefield vs confocal (Figure 5A), even when those modes were on two
entirely different microscopes (Supplementary Figure 5A); the only plate in which we saw decreased performance for confocal
was in a condition where the microscope could not create a filter set match that would separate the ER and RNA data and thus
captured them only as a single channel. To our surprise, there was essentially no profile quality loss by switching from
capturing images with 1x1 binning to 2x2 binning in our hands (Figure 5C), leading us to choose 2x2 binning, because it
reduces data storage price 4X and compute costs significantly. We also did not see any change between lower and higher
exposures for each of several staining conditions (Figure 5D, suggesting that as long as the exposure times are set reasonably
enough to maximize dynamic range while minimizing saturation, the exact values are less important and one can potentially
save some imaging time by using slightly shorter exposures.

A few parameters do seem to produce measurable results; we saw small increases in percent replicating (but not percent
matching) in two experiments where we tested imaging the same plate in one vs several fluorescent Z planes. The increase
was small enough (Supplementary Figure 5B) that we chose not to complicate our workflow but may be worth considering in
other circumstances, such as when using confocal imaging or when using cells that have varying Z heights such as neurons.
We also found that the number of fields of view acquired was important, with each additional field of view leading to an
increase in percent replicating out to at least 10 fields of view (Figure 5B). We saw a roughly 10% drop in percent replicating
signal when plates had been imaged twice versus a single time, and minor subsequent losses thereafter up to six (Figure 5E);
we therefore recommend that plates are imaged only once, though 10% loss may be acceptable in many contexts, relative to
the cost of repeating sample preparation for a given plate or batch, and as the initial percent replicating value was extremely
high, a 10% loss is likely a worst-case scenario.
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Figure 5- A) Cell Painting works similarly well with widefield and confocal microscopy. B) Relationship between fields of view
captured and percent replicating - increasing the number of fields of view increases percent replicating up until approximately
10 fields of view. C) Cell Painting performs well when images are captured with either 1x1 or 2x2 binning. D) Cell Painting
performs similarly when plates are imaged at a lower or 2-4X higher (but still below saturation) laser power and/or exposure
time.  E) Assessment of effect of re-imaging on percent replicating: a drop between first and second imaging is observed and a
potential small continued decrease thereafter.

Optimization of image analysis conditions

In our experience, creating accurate segmentations is crucial but difficult to optimize in a rule-driven way without substantial
effort to create ‘ground truth’ for evaluating changes in the pipeline’s parameters 16. We have described elsewhere 17 a number
of resources for learning to do so effectively, and the workflow described here includes steps for iterating on segmentation to
ensure it is optimal before feature extraction. As deep learning segmentation tools such as StarDist 18 and Cellpose 19 become
more popular, they may help solve many difficult segmentation issues; these tools may be used independently and then object
labels matrices can be brought into CellProfiler, used via their ImageJ implementations using the RunImageJMacro 20 or with
their CellProfiler plugins (https://github.com/CellProfiler/CellProfiler-plugins) if CellProfiler is installed from source. 16

Once objects are segmented, in general we recommend measuring as many image-based features as is practical in your
image analysis software, where "practical'' has a few considerations, such as a) the amount of time needed to generate these
measurements and b) limitation on your output size based on file constraints - SQLite unless manually compiled only allows
2000 columns in a given table, for example.
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An open question about Cell Painting is how much each stain contributes to the information content of the assay. Likewise,
the contributions of different measurement categories are unknown. Therefore we analyzed the relative contributions towards
percent replicating of different measurement types (Figure 6A), cell compartments (Figure 6B), and channels (Supplementary
Figure 6) in the context of the 90 compounds present in the JUMP-MOA plate, but note that these breakdowns describe only
the phenotypes present in these plates; any specific phenotype(s) of interest may crucially depend on compartments, stains, or
features that are less critical for the majority of these 47 mechanisms of action. As with the staining and imaging, for these
phenotypes the data we collect is extremely robust to changes in the measured features and channels - most subsamples of
channels and/or features and/or compartments (Figure 6A-B, Supplementary Figure 7, and Supplementary Figure 8) will still
lead to a high quality final analysis. In a similar vein, we saw only small differences when the scales of several CellProfiler
features were adjusted, indicating that there is at least a reasonable range of tolerances (Figure 6C).
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Figure 6- A) Mean percent replicating of eight JUMP-MOA plates stained with the final staining conditions after dropping out all
possible combinations of features from the seven major feature categories before performing feature selection and calculation
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of percent replicating. To create a sufficiently compact data representation, the 7 categories present were split 3 onto the X
(Correlation, Granularity, and Intensity) and 4 onto the Y (AreaShape, Neighbors, RadialDistribution, and Texture) axes; this
allows visualization of the 127 possible unique combinations. A channel-by-channel breakdown of the importance of the feature
categories is provided as Supplementary Figure 8. B) A parallel analysis of the same experiment as in part A, but with the 3
compartments present, 2 on the X axis (Cytoplasm and Nuclei) and Cells on the Y axis. C) Assessment of the effect of varying
the measurement scales in CellProfiler (ie measuring Texture at 3 and 5 pixel spacings vs 5 and 10 pixel spacings) on percent
replicating for two plates of the CPJUMP1 experiment. Using larger measurement scales in the MeasureGranularity,
MeasureTexture, and MeasureObjectNeighbors modules seemed to produce a very small decrease in percent replicating but
no major effect.

Materials

Reagents
● Cell line of interest—e.g., we have previously used U2OS cells (American Type Culture Collection (ATCC), cat. no. HTB-96)

or A549 cells (ATCC, cat. no. CCL-185) for the majority of our large screens. We are also aware of successful Cell Painting
experiments using MCF-7, 3T3, ES2, HCC44,  HTB-9, HeLa, HepG2, HEKTE, SH-SY5Y, HUVEC, HMVEC, Ocy454,
primary human fibroblasts, primary human hepatocytes, primary human adipose-derived mesenchymal stem cells, and
primary human hepatocyte/3T3-J2 fibroblast cocultures.

Caution Cell lines should be regularly checked to ensure that they are authentic and that they are not infected with
Mycoplasma.

● DMEM media (Corning, cat. no. 10-013-CV)
● McCoy’s 5A media (Life Technologies, cat. no. 16600108)
● FBS (Sigma-Aldrich Inc., cat. no. F2442-500ML)
● 0.25% Trypsin-EDTA (Corning, 25-053-CI)
● PBS (Sigma-Aldrich Inc., cat. no. D8537-6X500ML)
● Pen-strep (Life Technologies, cat. no. 15140163)
● Ethanol (Decon Labs, cat. no. V1401)
● Polybrene (Sigma-Aldrich Inc, cat. no. 28728-55-4)
● Blasticidin S HCl 10 mg/mL (Life Technologies. cat. no. A1113903)
● Puromycin (Sigma-Aldrich Inc., cat. no. P9620-10ML)
● (Optional) Small-molecule libraries, typically 10 mM stock in DMSO (e.g., Chembridge library or Maybridge library; the

compounds from the JUMP-Target-1 and JUMP-MOA plates are available as Pre-Plated Cell Painting libraries from Specs
https://www.specs.net/index.php?page=2019041215290210#preplatedsets )

● (Optional) 384w ORF lentivirus (recommended vector: pLX_304)
● (Optional) 384w CRISPR lentivirus (recommended vector: pXPR_003)
● (Optional) Compounds for spike in controls on viral plates:

○ AMG-900, 10 mM in DMSO (Selleckchem, cat. no. S2719)
○ LY2109761, 10 mM in DMSO (Selleckchem, cat. no. S2704)
○ Quinidine, 10 mM in DMSO (MedChemExpress, cat. no. HY-B1751)
○ TC-S 7004 (Tocris, cat. no. 5088/10)

● (Optional) CellTiter-Glo (Promega, cat. no. G7573)
● Dyes - either as a kit or individually; ThermoFisher reagents as in our prior version of the protocol 3 performed comparably

(Figure 4B)
○ PhenoVue™ Cell Painting Kit (PerkinElmer, cat. no. PING22)
○ Individual dyes:

○ MitoTracker Deep Red (Invitrogen, cat. no. M22426)  OR PhenoVue 641 Mitochondrial Stain (PerkinElmer, cat. no.
CP3D1)

○ Wheat-germ agglutinin/Alexa Fluor 555 conjugate (Invitrogen, cat. no. W32464) OR PhenoVue
Fluor 555 - WGA (PerkinElmer, cat. no. CP15551)

○ Phalloidin/Alexa Fluor 568 conjugate (Invitrogen, cat. no. A12380) OR PhenoVue Fluor 568 - Phalloidin
(PerkinElmer, cat. no. CP25681)

○ Concanavalin A/Alexa Fluor 488 conjugate (Invitrogen, cat. no. C11252) OR PhenoVue Fluor 488 Concanavalin A
(PerkinElmer, cat. no. CP94881)

○ Hoechst 33342 (Invitrogen, cat. no. H3570) OR PhenoVue Hoechst 33342 (PerkinElmer, cat. no. CP71)
○ SYTO 14 green fluorescent nucleic acid stain (Invitrogen, cat. no. S7576) OR PhenoVue 512 Nucleic Acid Stain

(PerkinElmer, cat. no. CP61)
○ PhenoVue Dye Diluent A 5x (PVDDA1)

● 32% (wt/vol) Paraformaldehyde (PFA), methanol free (Electron Microscopy Sciences, cat. no. 15740-S)
● HBSS (10×; Invitrogen, cat. no. 14065-056)
● Triton X-100 (Sigma-Aldrich, cat. no. T9284)
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● DMSO (Millipore Sigma, cat. no. D5879-100ML)

Additional Reagents Needed for Thermo Protocol
● Sodium bicarbonate (Sigma-Aldrich, cat. no. S571)
● Methanol (Honeywell, cat. no. 34966)
● BSA (Sigma-Aldrich, cat. no. 05470)

CRITICAL We have performed the Cell Painting assay using the specific catalog numbers listed here. If you are planning on
changing to a different product or vendor for a given reagent, reoptimization of that reagent for the protocol may be
necessary.

Equipment
● Microplates: PhenoPlate (previously Cell Carrier-384 Ultra) Microplates, tissue culture treated, black, 384-well with lid, Part

Number: 6057300. Other microplates that are compatible with the microscope will suffice, as long as they are validated for
use in high-content imaging (typically plates with minimal offset from the plate "skirt" to the well bottom surface (e.g. "Low
Base or "Ultra-Low Base").

CRITICAL step: order all 384w plates from same lot
● 384-well, tissue culture treated, white plate with clear flat bottom, with lid, with barcode label (Corning, cat. no. 8793BC)
● T-175 culture vessel (Greiner bio-one, cat. no. 661160)
● 50 mL Falcon centrifuge tubes (Corning, cat. no. 352070)
● 250 mL Polypropylene Centrifuge Tubes with Plug Seal Cap ( Corning, cat. no. 430776)
● Serological pipettes, various sizes (Greiner bio-one)
● Aluminum single-tab foil, standard size (USA Scientific, cat. no. 2938-4100)
● evaporation resistant microplate lids or gas permeable adhesive plate seals
● Tissue Culture Microscope (Olympus, model CKX41SF)
● Automated cell counter: Beckman Z1 Particle Counter (Beckman Coulter, Model Z1)
● Cytomat 5C tissue culture incubator at 37 °C, 5% CO2 (Thermo Fisher Scientific, cat. no. 50128822) or Liconic

Instruments: Liconic incubator, Model: STX-220 HR (with stacker and rotating plate carousel) or Thermo Heracell VIOS
160i CO2 Incubator at 37 °C, 5% CO2 (ThermoFisher Scientific, Model Vios 160i)

● Automated liquid handler: Multidrop Combi Reagent Dispenser (Thermo Fisher Scientific, cat. no. 5840300) or
Freedom EVO with 384-channel arm (Tecan, cat no. MCA384) or Janus (PerkinElmer, Model JANUSMPD).
Pressurized valve dispensing systems (GNF WDII & OTD) are more consistent than peristaltic (Combi/EL406).

● 30 uL Filter Tips, Sterile for Janus (custom request from Perkin Elmer)
● 235 uL Filter Tips, Sterile for Janus (Perkin Elmer, cat. no. 6001289)
● Plate washer: Biotek ELx405 HT
● Centrifuge: Allegra 6 (Beckman Coulter, cat. no. 366802) or PlateFuge (Benchmark Scientific, cat. no. C2000)
● Centrifuge microplate carriers: uPlate Carrier for Rotor SX4750 (Beckman Coulter)
● High content imager; see tables 1-3 for microscopes used by the JUMP Consortium. Our partners also report the Yokogawa

CV8000, Yokogawa CQ1, and Perkin Elmer Operetta CLS microscopes have also been used successfully for imaging cell
painting experiments. See Jamali et al (in preparation) for more information.

● Plate shaker: Multi-Purpose Rotator (Barnstead Lab-Line, Model 2314)
● Plate reader: EnVision Multilabel Plate Reader (Perkin Elmer, Model 21030010)

Computational Equipment
● Standard desktop computer. Access to a remote-host computing cluster or cloud-computing platform (optional; recommended

if planning to acquire >1,000 fields of view)
● CellProfiler biological image analysis software20. Available at http://www.cellprofiler.org
● CellProfiler pipelines: we describe four pipelines in this protocol for illumination correction, segmentation, QC (optional),

and feature extraction. The pipelines are available at
https://github.com/broadinstitute/imaging-platform-pipelines/tree/master/JUMP_production and were created using
CellProfiler 4.1.3. Please see the module notes within the pipelines for Cell Painting-specific documentation. Our Cell
Painting wiki (broad.io/CellPaintingWiki) contains a static copy of all files used in the protocol, as well as updates to
these files (e.g., to accommodate updated software versions or updated versions of the protocol).

● Raw image data stored in the Cell Painting Gallery on the Registry of Open Data on AWS
(https://registry.opendata.aws/cellpainting-gallery/) from chemical perturbations applied to U2OS cells. See download
information at https://github.com/carpenterlab/2022_Cimini_NatureProtocols/blob/main/README.md. Note that this plate of
images is much larger than we recommend running on a standard desktop computer. To use this data on a local computer  we
recommend filtering down the images in CellProfiler to a single row, for example. This can be done using the Images module.
Replace the rule criterion “Extension Is the extension of an image file”  with “File Does Contain r01”, for example.

● Illumination correction images produced by an illumination correction pipeline applied to the U2OS image data. See
download information at https://github.com/carpenterlab/2022_Cimini_NatureProtocols/blob/main/README.md.

● A listing of per-cell image features generated by CellProfiler using the analysis pipeline, available at
https://github.com/carpenterlab/2022_Cimini_NatureProtocols/blob/main/CellProfiler_features.csv.
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● A .csv of per-well profiles generated by running the profiling script, created from the provided sample images. See
download information at https://github.com/carpenterlab/2022_Cimini_NatureProtocols/blob/main/README.md.

● A Python21 or Conda installation.
● (Optional) KNIME data analytics software22 with HCS Tools extension23 and sample workflow (See Box 2 for details).
● (Optional) A GUI based SQLite reader, such as DB Browser for SQLite (https://sqlitebrowser.org/)
● (Optional) Plate reader software, such as PerkinElmer EnVision Manager
● (Optional) Data analysis software, such as PRISM from GraphPad Software, LLC

Reagent Setup (Using PhenoVue Cell Painting Jump Kit Ping 22)
● PhenoVue 641 Mitochondrial Stain The product from PerkinElmer (cat. no. PING22) contains 50 µg in each vial. Add 90

µl of DMSO to one vial to make a 1 mM solution. Spin down at 3,200g for 10 sec.  Store the solution at −20 °C, protected
from light, and use over 3 freeze/thaw cycles.

● PhenoVue Fluor 555 – WGA The product from PerkinElmer (cat. no. PING22) contains 0.2 mg in each vial. Add 1.3 ml of
dH2O to each to make a 0.15 mg/ml solution. Use a P1000 tip to break up any precipitates in the solution. Store the solution
at −20 °C, protected from light, and use it over 3 freeze/thaw cycles.

● PhenoVue Fluor 488 – Concanavalin A The product from PerkinElmer (cat. no. PING22) contains 1 mg in each vial. Add
0.5 ml of dH2O to each vial to make a 2 mg/ml solution. Use a P1000 tip to break up any precipitates in the solution.  Store
the solution at −20 °C, protected from light, and use it over 3 freeze/thaw cycles.

● PhenoVue Fluor 568 – Phalloidin The product from PerkinElmer (cat. no. PING22) contains 1 nmol in each vial.
Add 150 µL of DMSO to each vial to make a 6.6 µM stock solution. Spin down at 3,200g for 10 sec. Store the
solution at −20 °C, protected from light, and use it over 3 freeze/thaw cycles.

● PhenoVue 512 Nucleic Acid Stain The product from PerkinElmer (cat. no. PING22) contains 800 nmol/vial. It is a
5 mM solution in DMSO. Spin down at 3,200g for 10 sec. Store the solution at −20 °C, protected from light, and
use over 3 freeze/thaw cycles.

● PhenoVue Hoechst 33342 Nuclear Stain The product from PerkinElmer (cat. no. PING22) contains 140 µg/vial. It is a
1mg/mL solution in H2O. Spin down at 3,200g for 10 sec. Store the solution at −20 °C, protected from light, and use over 3
freeze/thaw cycles.

● PhenoVue Dye Diluent A (5x) The product from PerkinElmer (cat no. PING22) contains 80mL of a 5x stock solution. Dilute
5 times in dH2O to create a 1x HBSS solution with 1% BSA.

● Triton X-100 solution in HBSS Add 100 ul of Triton X-100 to 100 ml of HBSS solution to make a 0.1% (vol/vol) Triton
X-100 solution. Make fresh solution for each experiment.

● HBSS (1×) The product from Invitrogen (cat. no. 14065-056) is 10×. Add 100 ml of HBSS (1×) to 900 ml of water to make
HBSS (1×). The 1× solution should preferably be made freshly from the 10× stock solution, but it can also be stored at 4 °C
for up to 1 week. If storing, filter the HBSS (1×) with a 0.22-m filter

● Live-cell Mitochondrial staining solution Prepare Mitochondrial staining solution by adding 150 ul of PhenoVue
641 Mitochondrial 1mM stock solution to 100 ml of prewarmed cell culture medium (preferred method) or HBSS for
a working concentration of 1.5 µM to end with a final staining concentration of 500 nM. Make fresh solution for
each staining session. We recommend not increasing the concentration of the staining solution any further, to
avoid small changes in dispensing volume leading to high variability in final effective concentration. Keep the
solution wrapped in foil and away from light.

● Phalloidin, concanavalin A, Hoechst, WGA, and Nucleic Acid Stain 512 staining solution To make 100 ml of
stain solution, add 125 µL of 6.6 µM phalloidin stock solution, 250 µl of 2 mg/mL concanavalin A stock solution, 100
ul of 1 mg/mL Hoechst stock solution, 1 mL of 0.15 mg/mL WGA stock solution, and 120 ul of 5mM Nucleic Acid
Stain 512 stock solution in 1x HBSS (1% BSA and 0.1% Triton X-100). Keep the solution wrapped in foil and away
from light.

● Fixation Solution To create a 16% solution of PFA, dilute 32% PFA from Electron Microscopy Sciences (cat no.
15740-S) 1:1 with distilled water. Handle in fume hood.

● Compound library Dissolve the compounds in DMSO to yield the desired molarity. Do not exceed a final DMSO
concentration of 0.5% in the destination well. Seal and store it at −20 °C for long-term storage or at room
temperature (RT; 21 °C) for up to 6 months in a dessicator; other common compound management solutions may
also be used45.

REAGENT SETUP NEEDED FOR LENTIVIRAL TRANSDUCTION

● Growth media To 500 mL of DMEM or McCoy’s base media add 50 mL FBS and 5 mL pen/strep
● Polybrene solution Prepare growth media containing 16 ug/mL polybrene from a polybrene stock of 8 mg/mL based on

the total volume needed to seed 10 uL per 384w. Different cell types will require varying concentrations of polybrene for aid
in lentiviral transduction and varying concentrations should be assessed for cell toxicity, see Supplemental Materials.
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● Blasticidin solution For use with lentiviral expression vectors containing a blasticidin resistance cassette. Prepare cell
culture media containing a final concentration of 16 ug/mL blasticidin from a blasticidin stock of 10 mg/mL based on the
total volume needed to seed 50 uL per 384w. Different cell types will require varying concentrations of blasticidin for
complete antibiotic selection, see Supplemental Materials.

● Puromycin solution For use with lentiviral expression vectors containing a puromycin resistance cassette. Prepare cell
culture media containing a final concentration of 0.75 ug/mL puromycin from a puromycin stock of 10 mg/mL based on the
total volume needed to seed 50 uL per 384w. Different cell types will require varying concentrations of puromycin for
complete antibiotic selection, see Supplemental Materials.

● Control compound spike-ins Initially prepare 10 mM TC-S 7004 stock in DMSO from powder. Aliquot 5 uL of 10 mM
stocks of compounds into PCR strip tubes for single use to avoid freeze/thaw cycles, then store AMG-900, LY2109761, and
TC-S 7004 at -20C and Quinidine at -80C. For manual spike-in to ORF-treated 384w plates, add 1 uL of 10 mM DMSO
stock + 1 uL 8 mg/mL polybrene to 498 uL cell culture media and mix, final concentration 20 uM. Then add 10 uL of 20 uM
stock to each 384w seeded at 30 uL/well for a final concentration of 5 uM.

● (Optional) CellTiter-Glo Bring to room temperature the CellTiter-Glo reagents, including the CellTiter-Glo Substrate and
CellTiter-Glo Buffer. Once reagents have come to room temperature, aspirate the total volume of substrate present in the
tube, either 10, 100, or 500 mL depending on the size kit that was purchased. Dispense that volume into the container
containing the powered buffer. Mix by gently pipetting up and down until powder has thoroughly dissolved. It is
recommended to then cover the container or transfer to another container covered in foil, due to the reagents being
light-sensitive.

Equipment Setup

● Microscope selection The Cell Painting assay has been applied using both wide-field and confocal microscopy. Confocal
microscopes are able to achieve higher image contrast (and hence increased cellular feature definition and improved object
segmentation) by rejecting light originating from out-of-focus planes of field. However, as compared with wide-field
microscopes, confocal microscopes possess a limited number of excitation wavelengths available for use, have typically
higher purchase prices, which may be prohibitive for smaller research groups, and are traditionally of lower throughput.

We have used three High Content Imaging Systems: an ImageXpress Micro XLS (Molecular Devices), an Opera
Phenix (PerkinElmer) and Yokogawa CV8000. The images are captured in five fluorescent channels given in Table 1. Note
that while the Opera Phenix is capable of imaging in both wide-field and confocal modes, in confocal mode it cannot adjust
its emission filter such that SYTO14 can be captured separately from Alexa 488.

If multiple microscopes must be used, we recommend imaging one full replicate all on one microscope, as opposed to
arbitrarily assigning plates to different instruments as the experiment proceeds. The rationale is to avoid imager-induced
batch effects. If the differences between perturbations are marked, then post-acquisition normalization will probably be
effective (see ‘Normalization of morphological features across plates’ in the PROCEDURE section for more details).
However, if the morphological effects to be measured are subtle, normalization may not be sufficient, and the similarities in
the collected image features will more likely reflect the different image acquisition than the underlying biological
perturbations.

CRITICAL The same microscope should be used for imaging all microtiter plates during an experiment. We do not recommend
switching microscopes midstream because lamp intensities, filter patterns, and other subtleties can be quite different even
between supposedly identical microscope setups.

● Automated image acquisition settings Each channel should be captured as an individual grayscale image. No further
pre-processing should be performed on the images before analysis.

The choice of objective magnification is important as there is a trade-off between increased image feature resolution at
higher magnifications (therefore enabling more specific quantification of certain organelles) versus a smaller field of view and
hence fewer cells imaged (therefore decreasing throughput and statistical power for profile generation). Acquiring more fields
of view can mitigate the latter consideration, but at the cost of a substantial increase in image acquisition and computational
processing time, especially for those who do not have access to computing cluster resources. We have found that using a
20× water-immersion objective (NA 1.0) sufficiently balances all competing issues.

Typically, nine sites are collected per well in a 3 × 3 site layout, at 20× magnification and 2× binning. If time permits, more
sites can be imaged in order to increase well coverage and to improve sample statistics; it is best to capture as many cells as
possible.

If possible on your microscope, adjusting the relative acquisition heights of each channel may lead to optimal capture of
each channel's relevant cell structures. The JUMP ORF production data had 2µm total Z difference between channels
captured at the lowest Z position and channels captured at the highest Z position.

The order in which the channels are imaged may have an impact on the likelihood of photobleaching during the
experiment; photobleaching manifests as a decay in the fluorescence signal intensity over time with repeated illumination.
As the emission wavelengths for the chosen fluorophores are broad and in close proximity to each other, photobleaching
may occur for the low-intensity dyes as they are irradiated by the lower-wavelength light. To mitigate this effect, we
recommend imaging the five channels in order of decreasing excitation wavelength. For Opera Phenix instruments equipped
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with more than one camera, we recommend to separate all channels.

CRITICAL Be sure that the images are not saturated. Generally, set exposure times such that a typical image uses roughly
50% of the dynamic range. For example, because the pixel intensities will range from 0 to 65,535 for a 16-bit image, a rule of
thumb is for the typical sample to yield a maximum intensity of ~32,000. This guideline will prevent saturation (i.e., reaching
the value 65,535) from samples that are brighter because of a perturbation.

Do not use shading correction if you are using the recommended CellProfiler workflow for image analysis, as the
background illumination heterogeneities will be corrected post acquisition using the CellProfiler software.

Before beginning the complete imaging run, it is useful to capture images from three to five wells at a few different
locations across the plate, in order to confirm that the microscope is operating as expected and the acquisition settings are
optimal for the experiment and cell line at hand. See the Computational Equipment section for a link to an example image
data set.

We recommend including acquisition of at least one brightfield channel, which can be used in feature extraction but may
also be useful for downstream applications such as fluorescence channel prediction.  The JUMP ORF production captured 3
Z positions - one equal to the lowest fluorescence position (Brightfield), one 5µm above that position (BFHigh) and one  5µm
below that position (BFLow).
CRITICAL Avoid capturing the edges of the well in the images, particularly if a large number of sites per well are imaged.
Although it is feasible to remove the well edges from the images post acquisition using image processing approaches, such
methods are challenging and best avoided.

● Image processing software
CellProfiler biological image analysis software is used to extract per-cell morphology feature data from the Cell Painting

images, and can optionally be used to extract per-image QC metrics (see Box 2). The software and associated pipelines are
designed to handle both low- and high-throughput analysis, but we routinely run this software as part of this protocol on
thousands, even millions, of imaged fields of view.

To download and install the open-source CellProfiler software, go to http://www.cellprofiler.org, follow the download links
for CellProfiler, and follow the installation instructions. The current version at the time of writing is 4.2.1.

This protocol assumes basic knowledge of the CellProfiler image analysis software package. Extensive online
documentation and tutorials can be found at http://www.cellprofiler.org/. In addition, the ‘?’ buttons within CellProfiler’s
interface provide detailed help. The pipelines used here are compatible with CellProfiler version 4.1.3 and above.

This protocol uses three CellProfiler pipelines to perform the following tasks: illumination correction, segmentation, and
morphological feature extraction. Additionally, you can use an optional QC pipeline to quantify image quality. See the
Computational Equipment section for a link to the CellProfiler pipelines used in this protocol.

Each module of the pipelines is annotated with details about the purpose of the module and considerations in making
adjustments to the settings. The annotations may be found at the top of the settings, in the panel labeled ‘Module notes’.

The pipelines are configured on the assumption that the image files follow the nomenclature of the Perkin Elmer Opera
Phenix system, in which the plate/well/site metadata are encoded as part of the filename. The plate and well metadata in
particular are essential because CellProfiler uses the plate metadata in order to process the images on a per-plate basis, and
the plate and well metadata are needed for linking the plate layout information with the images for the downstream profiling
analysis. Therefore, images coming from a different acquisition system may require adjustments to the Metadata module to
capture this information; please refer to the help function for this module for more details or our video tutorial walkthrough of
the Input modules https://youtu.be/Z_pUWuOV06Q.

The QC and morphological feature extraction pipelines are set to write out cellular features to a .csv for each well and
site, respectively, using the ExportToSpreadsheet module. We provide Python scripts to generate per-well profiles from the
extracted features.

● Computing system
Small batches of images can be processed on most modern desktop computers. If the number of images to analyze is
sufficiently large (e.g., >∼1,000 images), processing time on a single computer becomes resource limiting. For large batches
of images, we recommend using a computing cluster if available, such as a high-performance server farm, or a
cloud-computing platform such as Amazon Web Services (AWS). Substantial setup effort is required for both cluster
computing and cloud-distributed computing, and will probably require enlisting the help of your IT department. Please refer to
our GitHub webpage (https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment) for more
details on cluster computing, and our Distributed CellProfiler GitHub repository wiki
(https://github.com/CellProfiler/Distributed-CellProfiler/wiki) for more details on cloud computing using AWS.

Procedure

Cell culture
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TIMING variable; 2–7 d

CRITICAL The following cell-plating procedure has been validated for many cell types; each step may need adjustment
depending on local conditions or alternative cell types. We have included recommended optional steps for experiments
involving small-molecule library treatment, ORF overexpression, and CRISPR knockdown.

CRITICAL Check the wiki at GitHub for any updates to the Cell Painting protocol: broad.io/CellPaintingWiki

Prepare cells for seeding according to known best practices for the cell type of choice. For most high-content applications, a
black plate with a clear, flat bottom for cell culture is appropriate. The following protocol has been validated for use on U2OS
cells in Corning 384-well 200-nm-thick glass-bottom plates. (Optional) White plates with a clear, flat bottom for cell culture are
also appropriate for any cell viability assay using CellTiter-Glo.

1. Grow cells to near confluence (~80%) in a T-175 tissue culture flask.
2. (Optional) If you are performing experiments that involve the addition of compounds (Step 8A), prepare the compound

library according to the instructions in the Reagent Setup.
3. Rinse the cells with PBS without Ca2+ or Mg2+.
4. Add 3 ml of Trypsin-EDTA solution and incubate the cells at 37 °C until the cells have detached. This should occur within

3–5 min.
5. Add 4 ml of growth medium to deactivate the trypsin, and collect the cell suspension into a conical tube.
6. Wash the tissue culture flask with an additional 5 ml growth media, add the wash to the same conical tube with the cell

suspension, and mix thoroughly but gently.
7. Determine the live-cell concentration using standard methods (hemocytometer or cell counter).
8. Dilute U2OS cells to 50,000 live cells per ml in media, and dispense 30 µl (2,000 live U2OS cells) into each well of the

384-well plates. For large-scale Cell Painting assays, we recommend the use of an automated liquid-handling system.
Different cell types and growth conditions will require variations in seeding density; typical ranges will vary from 1,500 to
3,000 cells per well. (Optional) Dispense cells into white plates if any assays are to be performed with CellTiter-Glo.

9. Keep cell plates at RT for about 1h before proceeding with the small molecule, viral ORF overexpression or viral CRISPR
knockdown or transfer them to the incubator.
CRITICAL STEP Adequately resuspend the cell mixture to ensure a homogeneous cell suspension before each
dispensation. It is not uncommon for cells to rapidly settle in their reservoir, resulting in plate-to-plate variation in cell
numbers. If you are using a liquid handler with a multi dispense function, be sure to adequately sterilize and prime the
dispensing cassette and/or dispense at least 10 µl of cell suspension back into the reservoir before dispensing the cells into
culture plates; the latter is helpful if cells or reagents are sticking to the tubing.
CRITICAL STEP When handling liquid for many plates with one set of tips, confirm that no residual bubbles within the tips
touch the head of the liquid handler during aspiration, in order to ensure accurate liquid dispensation.

Treatment with a small-molecule library, viral ORF overexpression library, or viral CRISPR knockdown
library

10. If you are performing treatments with a small-molecule library, please follow option A. If you are performing viral CRISPR
knockdown, please follow option B. If you are performing viral ORF overexpression, please follow option C. For instructions
on using siRNA transfection, please refer to the 2016 protocol. To facilitate alignment of data across batches, no matter
which modality you use for your own data we recommend in each batch of Cell Painting plates you prepare both an
additional negative control plate (using only DMSO as the treatment for cells) and an additional positive control plate (we
recommend a control compound plate such as the JUMP-Target-1 or JUMP-Target-2 plates. The ).
a. Addition of a small-molecule library
TIMING variable; ~2–3 d for one batch experiment of 384-well plates

i. Allow plates to sit on a flat, level surface at RT for 1–2 h after seeding to reduce plate edge effects46.
ii. Put the plates into the incubator (37 °C, 5% CO2, 90–95% humidity). To reduce plate edge effects produced by

incubator temperature variations and media evaporation, we recommend either spacing out the plates in the
incubator or using racks with ‘dummy’ plates filled with liquid placed on the top and bottom. We also recommend
rotating the plates/stacks within the incubator to avoid positional effects.

iii. Add compounds to cells using a pin tool or other liquid handler (e.g. the Agilent Bravo automated pipetting platform
or the Beckman Coulter Echo acoustic liquid handling system). Compounds may be added either 24 or 48 h before
staining and fixation, but this timing should be adjusted depending upon the growth rate of the cell types being
used and the biological processes under consideration. Recursion Pharmaceuticals typically adds compounds to
cells in an environment that is antibiotic-free (to avoid perturbations arising from complex antibiotic–drug
interactions) and low-serum (to synchronize cell state). To ensure adequate mixture of compounds in solution, we
recommend that compounds be mixed well in the culture medium before adding them to the cells.

CRITICAL STEP Plates should be stacked in the incubator no more than three-high with PBS 384-well plates on top and
bottom and rotated every 24 hours to help prevent edge effects.

CRITICAL STEP Ensure that the liquid handler aspiration and dispense speeds are set to the slowest possible setting to
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avoid distributing the cells after the initial seeding.
b. Addition of viral CRISPR knockdown constructs

TIMING variable; ~4–6 d for one batch experiment of 384-well plates
i. Allow plates to sit on a flat, level surface at RT for 1–2 h after seeding to reduce plate edge effects.
ii. CRISPR knockdown lentivirus is pre-prepared in 384-well plates at -80C. Let thaw on wet ice, then quickly pulse

spin plate to prevent any virus from clinging to plate seal. Place back on ice until needed.
iii. Using a liquid handler, add 10 uL/384-well of growth media containing polybrene as described in the Reagent

Setup.
iv. Immediately after polybrene addition, add the appropriate volume of CRISPR knockdown lentivirus per 384-well

using a liquid handler. Different cell types and lentiviral expression vectors will require variations in lentivirus
volume; typical ranges will vary from 0.5 to 4 uL per well.

v. Gently tap the plates to ensure an even distribution of cells across each well.
vi. After lentiviral transduction, centrifuge the 384-well plate(s) for 30 minutes at 1,178 g at 37°C.
vii. After centrifugation, place the cell plates in an incubator (37°C, 5% CO2).
viii. 24 hours post-lentiviral transduction, remove 50 uL of media and replace with 50 uL fresh growth media and return

to the incubator. (Optional) If assessing the efficiency of the lentiviral transduction as a quality control measure, for
two white cell plates, replace the growth media in one with 50 uL media and the other with 50 uL media containing
puromycin as described in the Reagent Setup.

ix. The timing post viral CRISPR knockdown transduction and prior to downstream assays may either be 96 or 144 h,
but this timing should be adjusted depending upon the growth rate of the cell types being used and the biological
processes under consideration.

x. If performing downstream assays after 144 h: At 96 h post-viral CRISPR knockdown transduction, remove 50 uL of
media and replace with 50 uL fresh growth media or (optional) 50 uL media containing puromycin to a white cell
plate and return to the incubator.

xi. After the predetermined number of hours, proceed with the appropriate subsequent steps for cell fixation, staining
and imaging or (optional) determining the lentiviral transduction efficiency.

xii. (Optional) The transduction efficiency is determined by adding 10 uL per 384-well room temperature CellTiter-Glo
to two white cells plates, one with puromycin treatment and one without puromycin treatment. Cover the plates
with aluminum foil and put on a shaker at low speed for 15 minutes. Then image the plates using a standard plate
reader such as Envision Multilabel Reader (Perkin Elmer).

CRITICAL STEP Plates should be stacked in the incubator no more than three-high with PBS 384-well plates on top and
bottom and rotated every 24 hours to help prevent edge effects.

CRITICAL STEP Ensure that the liquid handler aspiration and dispense speeds are set to the slowest possible setting to
avoid distributing the cells after the initial seeding.

c. Addition of viral overexpression constructs
TIMING variable; ~2–4 d for one batch experiment of 384-well plates

i. Allow plates to sit on a flat, level surface at RT for 1–2 h after seeding to reduce plate edge effects.
ii. ORF overexpression lentivirus is pre-prepared in 384-well plates at -80C. Let thaw on wet ice, then quickly pulse

spin plate to prevent any virus from clinging to plate seal. Place back on ice until needed.
iii. Using a liquid handler, add 10 uL/384-well of growth media containing polybrene as described in the Reagent

Setup.
iv. Immediately after polybrene addition, add the appropriate volume of ORF overexpression lentivirus per 384-well

using a liquid handler. Different cell types and lentiviral expression vectors will require variations in lentivirus
volume; typical ranges will vary from 0.5 to 4 uL per well.

v. (Optional) Control compounds can be spiked into well(s) that do not contain ORF overexpression perturbations if
desired. See the Reagent Setup.

vi. Gently tap the plates to ensure an even distribution of cells across each well.
vii. After lentiviral transduction, centrifuge the 384-well plate(s) for 30 minutes at 1,178 g at 37°C.
viii. After centrifugation, place the cell plates in an incubator (37°C, 5% CO2).
ix. 24 hours post-lentiviral transduction, remove 40 uL of media and replace with 40 uL fresh growth media and return

to the incubator. (Optional) If assessing the efficiency of the lentiviral transduction as a quality control measure, for
two white cell plates, replace the growth media in one with 50 uL media and the other with 50 uL media containing
blasticidin as described in the Reagent Setup.

x. The timing post viral ORF overexpression transduction and prior to downstream assays may either be 48 or 96 h,
but this timing should be adjusted depending upon the growth rate of the cell types being used and the biological
processes under consideration. After the predetermined number of hours, proceed with the appropriate
subsequent steps for cell fixation, staining and imaging or (optional) determining the lentiviral transduction
efficiency.

xi. (Optional) The transduction efficiency is determined by adding 10 uL per 384-well room temperature CellTiter-Glo
to two white cells plates, one with blasticidin treatment and one without blasticidin treatment. Cover the plates with
aluminum foil and put on a shaker at low speed for 15 minutes. Then image the plates using a standard plate
reader such as Envision Multilabel Reader (Perkin Elmer).
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CRITICAL STEP Plates should be stacked in the incubator no more than three-high with PBS 384-well plates on top and
bottom and rotated every 24 hours to help prevent edge effects.

CRITICAL STEP Ensure that the liquid handler aspiration and dispense speeds are set to the slowest possible setting to
avoid distributing the cells after the initial seeding.

Staining and fixation

TIMING variable; 2.5–3 h for one batch experiment of 384-well plates

11. Prepare the following for all plates in advance of initiating the staining process:
a. The live-cell PhenoVue 641 Mitochondrial staining solution in cell media or HBSS
b. The fixation solution containing 16% w/v PFA in distilled water
c. The staining & permeabilizing solution containing PerkinElmer PhenoVue dyes Hoechst 33342, Fluor 488

Concanavalin A, 512 Nucleic Acid Stain, Fluor 555 WGA, and Fluor 568 Phalloidin in 1X PhenoVue Dye Diluent A with
0.1% Triton

12. Leaving growth media in place to minimize disturbance to the live cells, add 20uL of the mitochondrial staining solution over
the top of each well to a final well volume of 60uL.
a. Place a stir bar in the source bottle to prevent dye from settling and causing adverse plate patterns.
b. We recommend using a metal tip cassette to prevent bubbling and allow for a more even dispense of dye.

TIP: if using a liquid handler such as a Combi multidrop, be aware that dye can settle in tubing if there is a significant lapse of
time between dispenses (>2min/plate). This may cause adverse plate patterns. We recommend introducing a repriming step to
clear the dyes from the tube and introduce fresh dye from the source bottle.
TIP: If plate patterns persist, the addition of an initial blank plate (no cells present) may alleviate the intensity of patterns.
13. If necessary, centrifuge the plate (500g at RT for 1 min) after adding stain solutions to ensure that there are no bubbles in

the bottoms of the wells.
14. Incubate the plates for 30 min in the dark at 37 °C.
TIP: Note, once mitochondrial staining solution is added, keep plates in dark for the rest of the experiment.
15. To fix the cells, add 20uL of 16% (w/v) methanol-free PFA on top of each well to bring each well to a final volume of 80uL

with final concentration of 4% PFA (v/v).
16. Incubate the plates in the dark at RT for 20 min.
17. Wash the plates four times with 80 uL of 1x HBSS. Include a final aspiration step.
18. To each well, add 20 µl of the staining & permeabilizing solution.

a. Place a stir bar in the source bottle to prevent dye from settling and causing adverse plate patterns.
b. If experiencing bubbling, we recommend using a metal tipped cassette.

19. Incubate the plates in the dark at RT for 30 min.
20. Wash the plates four times with 80uL of 1x HBSS. Leave a final volume of 80uL of 1x HBSS in each well.
21. Seal the plates with adhesive foil and store them at 4°C in the dark.
TIP: If plates are to be stored long-term, 0.05% sodium azide can be added to mitigate contamination.
CAUTION: Sodium azide may cause damage to organs through prolonged or repeated exposure and is fatal if swallowed, in
contact with skin or if inhaled.

Automated image acquisition

TIMING variable; 1–3.5 h per 384-well plate

22. Acquire images from the microtiter plates using the high content imager. For large-scale Cell Painting assays, we
recommend the use of an automated microplate handling system.

23. Set up the microscope acquisition settings as described in the Equipment Setup.
24. Start the automated imaging sequence according to the microscope manufacturer’s instructions. SEE ALSO

TROUBLESHOOTING

Morphological image feature extraction from microscopy data

TIMING variable; 20 h per batch of 384-well plates

Perform illumination correction to improve fluorescence intensity measurements:
25. Start CellProfiler.
26. Load the illumination correction pipeline into CellProfiler by selecting File > Import > Pipeline from File from the CellProfiler

main menu and then selecting illumination.cppipe or dragging and dropping the pipeline from your file browser into the
pipeline panel on the left of the interface.
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CRITICAL STEP Nonhomogeneous illumination introduced by microscopy optics can result in errors in cellular feature
identification and can degrade the accuracy of intensity-based measurements. This is an especially important problem in
light of the subtle phenotypic signatures that image-based profiling aims to capture. Nonhomogeneous illumination can
occur even when fiber-optic light sources are used and even if the automated microscope is set up to perform illumination
correction. The use of a uniformly fluorescent reference image (‘white-referencing’), although common, is not suitable for
high-throughput screening. A retrospective method to correct all acquired images on a per-channel, per-plate basis is
therefore recommended24; the illumination pipeline takes this approach.

27. Select the Images input module in the ‘Input modules’ panel to the top-left of the interface. From your file browser, drag and
drop the folder(s) containing your raw images into the ‘File list’ panel. See the Computational Equipment section for a link to
raw image files that can be used as an example in this protocol. Note that the

28. Click the ‘Output settings’ button at the bottom-left of the interface. Select an appropriate ‘Default Output Folder’ into which
the illumination correction images will be saved.

29. Save the current settings to a project (.cpproj) file containing the pipeline, the list of input images, and the output location by
selecting File > Save Project. Enter the desired project filename in the dialog box that appears. This is not necessary for the
running of this step, however it functions as a snapshot of your complete setup, allowing you to directly replicate your work
by loading this .cpproj instead of the .cppipe you started with.

30. Press the ‘Analyze Images’ button at the bottom-left of the interface. A progress bar in the bottom-right will indicate the
estimated time of completion. The end result of this step will be a collection of illumination correction images in the Default
Output Folder, one for each plate and channel. We have provided an example set of images for comparison on our Cell
Painting wiki (see Computational Equipment for details).

CRITICAL STEP This step assumes that you will be running the illumination correction pipeline locally on your computer. If your
institution has a shared high-performance computing cluster, such as a high-performance server farm, or a cloud-computing
platform such as Amazon Web Services (AWS), we recommend executing the pipeline on the cluster as a batch
process—i.e., a series of smaller processes entered at the command line; this will result in much more efficient processing.
Enlist the help of your institution’s IT department to find out whether this is an option and what resources are available. If
choosing this option, carry out the instructions in Box 1, describing modifications to the pipeline to run it as a batch process.

Configure the segmentation pipeline to optimize cell and nuclei segmentation:
31. Start CellProfiler, if you are not already running it.
32. Load the Segmentation pipeline into CellProfiler by selecting File > Import > Pipeline from File from the CellProfiler main

menu and selecting segmentation.cppipe or dragging and dropping the pipeline from your file browser into the pipeline
panel on the left of the interface.

CRITICAL STEP Because capturing subtle phenotypes is important for profiling, accurate nuclei and cell body identification is
essential for success. This pipeline enables troubleshooting of nuclei and cell segmentation across an entire batch by
outputting an image per well with nuclei and cell objects overlaid for visual inspection. The optimal parameters determined
in this pipeline must be manually transferred to the analysis pipeline.

33. Select the Images input module in the ‘Input modules’ panel to the top-left of the interface. From your file browser, drag and
drop the folder(s) containing your raw images into the ‘File list’ panel.

34. Enter CellProfiler’s Test mode using the Start Test Mode button. Examine the outputs of IdentifyPrimaryObjects and
IdentifySecondaryObjects for a few images to make sure that the boundaries generally match expectations. Under the ‘Test’
menu item, there are options for selecting sites for examination. We recommend either randomly sampling images for
inspection (via ‘Random Image set’) and/or selecting specific sites (via ‘Choose Image Set’) from both negative control wells
and specific treatment locations from the plates. The rationale is to check a wide variety of treatment-induced phenotypes to
ensure that the pipeline will generate accurate results. The CellProfiler website contains resources and tutorials on how to
optimize an image analysis pipeline. See also Table 4. Troubleshooting.

35. Press the ‘Analyze Images’ button at the bottom-left of the interface. A progress bar in the bottom-right will indicate the
estimated time of completion. The end result of this step will be a collection of images with nuclei and cell segmentations
overlaid on them in a ‘Segmentations’ folder in the Default Output Folder. We have provided an example set of images for
comparison on our Cell Painting wiki (see Computational Equipment for details).

CRITICAL STEP This step assumes that you will be running the segmentation pipeline locally on your computer. If your
institution has a shared high-performance computing cluster, such as a high-performance server farm, or a cloud-computing
platform such as Amazon Web Services (AWS), we recommend executing the pipeline on the cluster as a batch
process—i.e., a series of smaller processes entered at the command line; this will result in much more efficient processing.
Enlist the help of your institution’s IT department to find out whether this is an option and what resources are available. If
choosing this option, carry out the instructions in Box 1, describing modifications to the pipeline to run it as a batch process.

36. Visually inspect your output segmentation images. Open the segmented images in your preferred image viewer (we
recommend FIJI/ImageJ) and decide if the computationally determined Nuclei and Cell objects correspond to what you see
by your eye across your batch. Perfection is nigh impossible, but you should agree with the vast majority of segmentations.
A rule of thumb is that you should see roughly the same number of objects over-segmented (one object labeled as two or
more) as under-segmented (two or more objects labeled as one). If not satisfied with the segmentation, repeat the
segmentation pipeline workflow with different segmentation parameters. To simplify image visualization, particularly in larger
datasets, you may wish to create whole-plate montages of your images using methods described in Dobson et al 17. The
ANTICIPATED RESULTS section outlines the expected nuclei and cell identification quality.

Run quality control to extract image quality measurements: See Box 2 for this optional step.
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Run the final analysis pipeline to extract morphological features:
37. Start CellProfiler, if you are not already running it.
38. Load the analysis pipeline into CellProfiler by selecting File > Import > Pipeline from File from the CellProfiler main menu

and selecting analysis.cppipe or dragging and dropping the pipeline from your file browser into the pipeline panel on the left
of the interface.

39. Select the Images input module in the ‘Input modules’ panel to the top-left of the interface. From your file browser, drag and
drop the folder(s) containing your raw images into the ‘File list’ panel.

40. If you needed to change segmentation parameters in your Segmentation pipeline for accurate object identification, make
those same changes to the IdentifyPrimaryObjects and IdentifySecondaryObjects modules for the identification of
NucleiIncludingEdges and CellsIncludingEdges, respectively.

41. If you did not run a separate QC pipeline and would like to measure image-level quality metrics, check the two
MeasureImageQuality modules at the beginning of the pipeline to include those measurements in the analysis pipeline.

42. Click the ‘Output settings’ button at the bottom-left of the interface. Select an appropriate ‘Default Output Folder’ into which
the analysis data will be saved.

43. Save the current settings to a project (.cpproj) file containing the pipeline, the list of input images, and the output location by
selecting File > Save Project. Enter the desired project filename in the dialog box that appears. This is not necessary for the
running of this step, however it functions as a snapshot of your complete setup, allowing you to directly replicate your work
by loading this .cpproj instead of the .cppipe you started with.

44. CRITICAL STEP Press the ‘Analyze Images’ button at the bottom-left of the interface. A progress bar in the bottom-right will
indicate the estimated time of completion. The pipeline will identify the nuclei from the Hoechst-stained image (referred to
as ‘DNA’ in CellProfiler), then it will use the nuclei to guide identification of the cell boundaries using the SYTO 14–stained
image (‘RNA’ in CellProfiler), and then it will use both of these features to identify the cytoplasm. The pipeline then
measures the morphology, intensity, texture, and adjacency statistics of the nuclei, cell body, and cytoplasm, and it outputs
the results to a series of .csvs. See the Equipment section for a link to a listing of the image features measured for each
cell.

CRITICAL STEP This step assumes that you will be running the image analysis pipeline locally on your computer, which
generally is recommended only for experiments with <1,000 fields of view. If your institution has a shared high-performance
computing cluster, such as a high-performance server farm, or a cloud-computing platform such as Amazon Web Services
(AWS), we recommend executing the pipeline on the cluster as a batch process—i.e., a series of smaller processes entered
at the command line; this will result in much more efficient processing. Enlist the help of your institution’s IT department to
find out whether this is an option and what resources are available. If choosing this option, carry out the instructions in Box
1, which describes modifications to the pipeline to run it as a batch process.

Creation, normalization, and feature reduction of per-well profiles

All steps in this section are covered in more detail and are continuously updated in the profiling-handbook25

TIMING 8-16 h per 384-well plate

45. Set up a terminal for bash scripting as well as a language you are comfortable writing scientific code in; most of our tooling
is in Python21 since it has a large number of useful packages you can use to write 26–32 or execute33 code per our templates
but it is not mandatory.

46. Create per-well mean aggregated profiles using the pycytominer34 command `collate.py` If you have run your CellProfiler
pipeline in a cluster computing environment, you can also use this same script to aggregate multiple CSV files into a single
SQLite database before aggregation using the cytominer-database35 package. This step can take 8-16 hours per plate per
plate to run; if running multiple plates, it is strongly recommended to use parallel36 or a similar tool to parallelize profile
creation.

47. Create a metadata file describing the treatments on each plate of your experiment. Instructions for creating this file are
available as part of the profiling-recipe37 and profiling-handbook.

48. Follow the instructions in the profiling-template38 and profiling-handbook to create a new template analysis repository and
weld a copy of the profiling-recipe into it.

49. Follow the instructions in the profiling-recipe to set up your profiling configuration file for your current batch of data.
50. Execute the profiling-recipe script to create annotated, normalized, and/or feature reduced profiles. This step will take a few

minutes per plate.

Data analysis

TIMING variable

51. Use the per-well profiles to analyze patterns in the data. How to do so is an area of active research and is customized to the
biological question at hand. A typical profiling data analysis workflow begins with the per-well profiles; for most applications,
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a key step is measuring the similarity (or, equivalently, distance) between each sample’s profile and all other profiles in the
experiment. Methods often used for measuring similarity or distance are Pearson’s correlation, Spearman’s correlation,
Euclidean distance, and cosine distance. For QC purposes, it is customary to check that replicates of the same sample
yield small distances. If positive controls are available (that is, samples that are known to yield similar phenotypes), their
replicates can also be checked for producing small distances relative to random pairs of samples. Samples are often
clustered using hierarchical clustering, although other clustering methods may also be used. A discussion of best practices
in analyzing phenotypic profiling data (including Cell Painting) can be found in Caicedo et al 201739.

Troubleshooting
Troubleshooting advice can be found in Table 4.

Timing

Steps 1–9, cell culture: it typically takes ∼2–3 d for the cells to reach appropriate confluency, depending on cell type and
growth conditions. Harvesting the cells (Steps 3–7) takes 20 min, and seeding the cells (Step 8) takes 20 min. After seeding,
the cells should be cultured for 2–5 d before staining.

Step 10(A), addition of a small-molecule library (optional): variable; approximately 2–3 d for one batch experiment of
384-well plates. Addition of a compound library takes ∼1 h for one batch experiment of 384-well plates, including reagent
preparation and media change, and 1–2 d for compound incubation.

Step 10(B), CRISPR knockdown (optional): variable; approximately 4–6 d for one batch experiment of 384-well plates.
Addition of polybrene and lentiviral CRISPR library takes ∼2 h for one batch experiment of 384-well plates, including
centrifugation. Media change(s) take ~1 h for one batch experiment of 384-well plates, and an additional 3-5 d for incubation.

Step 10(C), ORF overexpression (optional): variable; approximately 2–4 d for one batch experiment of 384-well plates.
Addition of polybrene and lentiviral ORF library takes ∼2 h for one batch experiment of 384-well plates, including centrifugation.
Media change takes ~1 h for one batch experiment of 384-well plates, and an additional 1-2 d for incubation.

Steps 11–21, staining and fixation: ∼2.5–3 h including reagent preparation for one batch experiment of 384-well plates. The
total timing will vary depending on the number of plates in the experiment and the automation available. We have found that up
to 12 plates can be simultaneously fixed and stained as one batch in this span of time. We recommend having all staining and
fixation solutions be prepared before beginning mitotracker staining to allow for sufficient time to prepare equipment during
incubation steps.

Steps 22–24, automated image acquisition): variable; ∼1.5 h per 384-well plate, for nine fields of view per well and typical
exposure times (and as little as 1 h per plate for smaller numbers of fields of view). The total time varies depending on the
number of sites imaged per plate, the number of channels acquired per site, the number of Z planes each channel is imaged in,
and the exposure time for each channel.

Steps 25–44, morphological image feature extraction from microscopy data): variable, very dependent on computing
setup; 24 h - 1 week per 384-well plate. It takes ∼10 min per plate for CellProfiler to scan the images in the input folder(s) after
manually dragging/dropping them into the CellProfiler interface. Optimizing the segmentation pipeline before running it can take
from minutes to hours depending on the diversity of the input images and how different they are from the starting conditions.
The pipeline execution time will depend on the computing setup; run times on a single computing node of 20 s (illumination
correction), 20 s (segmentation), 30 s (QC), and 10 min (analysis) per field of view are typical; these equate to about 650
CPU-hours of processing per plate, most which can be fully parallelized. Handling of QC results, once a visualization tool like
the open-source KNIME is set up, takes 20 s per plate (see Box 2). A substantial time saving can be achieved if you run the
feature extraction, segmentation, and QC pipelines on a distributed computing cluster, which massively parallelizes the
processing as compared with running it on a single local computer, as well as removing slowdowns in CellProfiler that can
accumulate after several hundreds of images are processed in a single run.

Steps 45–50, Creation, normalization, and feature reduction of per-well profiles: variable; collation of CSVs (if CellProfiler
is run in parallel with ExportToSpreadsheet rather than on a single machine with ExportToDatabase) and aggregation into
per-well mean profiles can take 8-16 unattended hours per 384-well plate; plates may be run in parallel. Metadata CSV
creation and repository setup will take ~30 minutes for an experienced user and may take 2-3 hours for an inexperienced user.
Execution of the profiling recipe steps takes <5 min of processing time per 384-well plate.

Step 51, data analysis: variable; ∼1 h for basic analysis of replicate quality and signature strength. Time for additional analysis
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varies substantially depending on the problem at hand.

Anticipated Results
The automated imaging protocol will produce a large number of acquired single-channel images in 16-bit TIF format; each
resultant image will be ~1,000 × 1,000 pixels and ∼2.5 MB in size. The total number of images generated equals (number of
samples tested) × (number of sites imaged per well) × (channels imaged). In terms of data storage, a single 384-well
microplate will produce 3,456 fields of view, or 17,280 images total across all channels, for a total of ∼40 GB per microplate.
Each additional brightfield channel acquired adds another 3,456 images to the total image count and thus an additional ~8GB
of storage.

The illumination correction pipeline will yield an illumination correction image per plate and channel. Each image is ~4.5 MB so
one microplate's worth of illumination correction images with 5 fluorescent channels and 1 brightfield channel will occupy ∼26.5
MB of storage space.

The optional QC pipeline will produce a set of numerical measurements extracted at the image level, and will export them to a
series of .csv’s. These measurements can optionally be used for comparing quality between batches or for flagging images that
you may want to remove from downstream processing because of focal blur or saturation artifacts.

The segmentation pipeline outputs a single image for each well with segmented nuclei and cell objects overlaid onto the
images. The quality of the image features extracted by the analysis pipeline and downstream profiling will depend on accurate
nuclei and cell body segmentation determined in the segmentation pipeline. First, the nuclei are identified from the Hoechst
image because it is a high-contrast stain for a well-separated organelle; subsequently, the nucleus, along with an appropriate
channel, is used to delineate the cell body. We have found that the SYTO 14 image is the most amenable for finding cell
edges, as it has fairly distinct boundaries between touching cells. For help in optimizing the output, if needed, see the
TROUBLESHOOTING table (Table 4).

The image analysis pipeline produces the raw numerical features extracted from nuclei, cell, and cytoplasm objects identified in
the images. If run locally, these are saved as SQLite database files with one table per object. If run distributed, these are saved
into per-object .csvs (i.e. Cells.csv, Cytoplasm.csv, and Nuclei.csv) in a per site folder. The .csv’s contain one row for each
object in each image, and ∼2,000 columns containing the values for the different morphological features that have been
measured for that object. The pipeline also outputs Experiment.csv and Image.csv containing information about the experiment
and whole image measurements, respectively. The pipeline also saves cell and nuclei object outlines, though these can
optionally be toggled off. Generally, the pipeline is not configured to save any processed images (to conserve data storage
space), but additional SaveImages modules can be used for this purpose if desired. The combination of data tables and object
outlines from the feature extraction pipeline is typically ~5 MB per site.

After running the profiling scripts to create the per-well profiles, the output will be a number of  image-based profile files in CSV
format. Each row of this file represents a data vector for an individual plate and well, with each column containing a per-well
mean measurement of a given image feature. Initial profiles will contain 6,000 columns of raw features; normalized profile files
will contain the same number of columns but will have had each column independently normalized to the median and MAD of
the data distribution.
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Tables

Table 1 | Details of the ImageXpress Micro Confocal channels and stains imaged in the Cell Painting
assay

Dye

Filter
(excitation;
nm)

Filter
(emission;
nm)

Organelle or
cellular
component

CellProfiler
channel name

Hoechst 33342 377/54 447/60 Nucleus DNA

Concanavalin
A/Alexa Fluor 488
conjugate

475/34 536/40 Endoplasmic
reticulum

ER

SYTO 14 nucleic
acid stain

531/40 593/40 Nucleoli,
cytoplasmic RNA

RNA

Phalloidin/Alexa
Fluor 568
conjugate,
wheat-germ

560/32 624/40 F-actin cytoskeleton,
Golgi, plasma
membrane

AGP
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agglutinin/Alexa
Fluor 555 conjugate

MitoTracker Deep
Red

631/28 692/40 Mitochondria Mito

Table 2 | Details of the PerkinElmer Opera Phenix channels and stains imaged in the Cell Painting assay

Dye

Filter
(excitation;
nm)

Filter
(emission;
nm)

Organelle or
cellular
component

CellProfiler
channel name

Hoechst 33342 405 435-480 Nucleus DNA

Concanavalin
A/Alexa Fluor 488
conjugate

488 500-550 Endoplasmic
reticulum

ER

SYTO 14 nucleic
acid stain

488 570-630
(widefield)
, 515-550
(confocal)

Nucleoli,
cytoplasmic RNA

RNA

Phalloidin/Alexa
Fluor 568
conjugate,
wheat-germ
agglutinin/Alexa
Fluor 555 conjugate

561 570-630 F-actin cytoskeleton,
Golgi, plasma
membrane

AGP

MitoTracker Deep
Red

640 650-760 Mitochondria Mito

Table 3 | Details of the Yokogawa CV8000 channels and stains imaged in the Cell Painting assay

Dye

Filter
(excitation;
nm)

Filter
(emission
; nm)

Organelle or
cellular
component

Cellprofiler
channel name

Recommended
Channel
acquisition order

Hoechst 33342 405 445/45 Nucleus DNA 5

Concanavalin
A/Alexa Fluor
488 conjugate

488 525/50 Endoplasmic
reticulum

ER 4
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SYTO 14 nucleic
acid stain

488 600/37 Nucleoli,
cytoplasmic
RNA

RNA 3

Phalloidin/Alexa
Fluor 568
conjugate,
wheat-germ
agglutinin/Alexa
Fluor 555
conjugate

561 600/37 F-actin
cytoskeleton,
Golgi, plasma
membrane

AGP 2

MitoTracker
Deep Red

640 676/29 Mitochondria Mito 1

Table 4 | Troubleshooting table.

Step Problem Possible reason Solution

24 The images contain
bright, slender, or
punctate artifacts that
appear in multiple
wells, across multiple
channels. Too many of
these artifacts can
adversely affect nuclei
and cell body
identification and
measurement

The washing reagents are
contaminated with
fibers—e.g., from clothing
or dust

Filter the washing solutions and diluents
before use. Prepare plates in a clean,
dust-minimal environment.

While ideally fixed before acquisition, if your
images do have a significant amount of
debris, you may wish to add into your
pipelines additional IdentifyPrimaryObjects
module/s to detect the debris and then mask
the debris from your images using
MaskImage modules before identifying your
nuclei and cell objects.

34 The identified nuclei or
cell bodies do not
reflect the actual
boundaries of the
stained nuclei or cells
in the image

The settings in the
IdentifyPrimaryObjects or
IdentifySecondaryObjects
modules (for nuclei and
cell identification,
respectively) were
optimized for U2OS cells
imaged on a particular
microscope at a particular
magnification, and may
be inappropriate for
different experimental
conditions

Cell lines with different morphological
features may require additional optimization
of the pipeline identification modules. After
launching CellProfiler and loading the
feature extraction pipeline, see the Module
Notes in the main window of CellProfiler for
more details on relevant settings for each
module. Visual inspection is needed to
confirm that the settings conform to
expected results. If you encounter difficulties
in adjusting the pipeline settings for this
task, we recommend consulting the
moderated forum at http://forum.image.sc/
for assistance

Cell confluency can have
a profound impact on your
ability to determine cell
boundaries and thus
segment cells.
Segmentation algorithms
can struggle if there is no
background (i.e. blank

Experiment with plating your cells at
different concentrations to find an
appropriate balance between maximizing
data and leaving some background in your
images while avoiding cells growing on top
of each other.

While ideally fixed before acquisition, if your
images do have heavily confluent regions
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space) in an image and
particularly confluent cells
may grow on top of each
other making
segmentation impossible.

preventing accurate segmentation, you may
wish to add into your pipelines an additional
IdentifyPrimaryObjects module to detect the
confluent region and then mask the
confluent region from your images using
MaskImage modules before identifying your
nuclei and cell objects.

Boxes

Box 1 | Configuration of the pipelines for batch processing on a computer cluster
We recommend using a computing cluster, such as a high-performance server farm, or a cloud-computing platform such as
Amazon Web Services (AWS) for analyzing Cell Painting experiments to speed processing, especially for experiments with
>1,000 fields of view. The typical batch processing workflow is to distribute smaller subsets of the acquired images to run on
individual computing nodes. Each subset is run using CellProfiler in ‘headless’ mode—i.e., from the command line without the
user interface. The headless runs are executed in parallel, with a concomitant decrease in overall processing time.
Initial preparation to run on a cluster or cloud requires expert setup and will probably require enlisting the help of your IT
department or local cloud computing expert. Please refer to our Distributed CellProfiler GitHub repository wiki
(https://github.com/CellProfiler/Distributed-CellProfiler/wiki) for more details on cloud computing using AWS and our command
line startup guide https://github.com/CellProfiler/CellProfiler/wiki/Getting-started-using-CellProfiler-from-the-command-line
for more details on cluster computing. Additional information on batch processing on a cluster or in the cloud is available on our
video Headless CellProfiler/DistributedCellProfiler Tutorial (https://youtu.be/LuJxIGGhRek).

When running batch processes, we recommend exporting data to spreadsheets as it is easier to aggregate a large
number of spreadsheets than databases. Uncheck or remove any ExportToDatabase modules in your pipelines and add
instead ExportToSpreadsheet modules.
There are two ways to create batch information for CellProfiler: LoadData and CreateBatchFiles.
LoadData: LoadData is our preferred method, especially for use with Distributed CellProfiler and cloud computing. Detailed
instructions can be found at https://cytomining.github.io/profiling-handbook/

1. Insert the LoadData module into the pipeline by pressing the ‘+’ button and selecting the module from the ‘File
Processing’ category. Move this module to the beginning of the pipeline and configure it to find your file.
2. Create LoadData.csvs. If you are using a Perkin Elmer microscope you can use our pe2loaddata script, available at
https://github.com/broadinstitute/pe2loaddata, to create the LoadData.csv file. Alternatively, if you have loaded your images
into CellProfiler using the Input modules, you can export a file list from CellProfiler using File > Export > Image Set Listing.
3. The end result of this step will be a LoadData.csv file. This file, when used in conjunction with a CellProfiler pipeline
(.cppipe), contains the information needed to run in ‘headless’ mode on the cluster or in the cloud

CreateBatchFiles: If you have already created a CellProfiler project (.cpproj) with fully populated Input modules, you can
1. Insert the CreateBatchFiles module into the pipeline by pressing the ‘+’ button and selecting the module from the ‘File
Processing’ category. Move this module to the end of the pipeline.
2. Configure the CreateBatchFiles module by setting the ‘Local root path’ and ‘Cluster root path’ settings. If your computer
mounts the file system differently than the cluster computers, CreateBatchFiles can replace the necessary parts of the
paths to the image and output files. For instance, a Windows machine might access files images by mounting the file
system using a drive letter, e.g., C:\your_data\images and the cluster computers access the same file system using
/server_name/your_name/your_data/images . In this case, the local root path is C:\ and the cluster root path is
/server_name/your_name . You can press the ‘Check paths’ button to confirm that the path mapping is correct.
3. Press the ‘Analyze Images’ button at the bottom-left of the interface.
4. The end result of this step will be a ‘Batch_data.h5’ (HDF5 format) file. This file contains the pipeline plus all information
needed to run on the cluster.
5. This file will be used as input to CellProfiler on the command line, in order for CellProfiler to run in ‘headless’ mode on the
cluster or in the cloud. There are a number of command-line arguments to CellProfiler that allow customization of the input
and output folder locations, as well as which images are to be processed on a given computing node. Enlist an IT specialist
to specify the mechanism for sending out the individual CellProfiler processes to the computing cluster nodes. Please refer
to our GitHub webpage https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment for more
details.

Box 2 | Quantifying Quality Control with CellProfiler
Though quantifying the quality of your images is not strictly necessary to obtain profiles, you may find it critical to ensuring your
data is of high enough staining and imaging quality to measure your phenotypes of interest; running it alongside each batch of
data can help discover workflow issues that can be addressed before subsequent runs. You can integrate these quality

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.13.499171doi: bioRxiv preprint 

https://github.com/CellProfiler/CellProfiler/wiki/Getting-started-using-CellProfiler-from-the-command-line
https://youtu.be/LuJxIGGhRek
https://cytomining.github.io/profiling-handbook/
https://github.com/broadinstitute/pe2loaddata
https://github.com/CellProfiler/CellProfiler/wiki/Adapting-CellProfiler-to-a-LIMS-environment
https://doi.org/10.1101/2022.07.13.499171
http://creativecommons.org/licenses/by/4.0/


measurements into your analysis pipeline or you can run them as a separate pipeline before analysis, as we have in this
protocol.

1. Start CellProfiler.
2. Load the qc pipeline into CellProfiler by selecting File > Import > Pipeline from File from the CellProfiler main menu and

then selecting qc.cppipe or dragging and dropping the pipeline from your file browser into the pipeline panel on the left of
the interface.

3. Select the Images input module in the ‘Input modules’ panel to the top-left of the interface. From your file browser, drag and
drop the folder(s) containing your raw images into the ‘File list’ panel. See the Computational Equipment section for a link to
raw image files that can be used as an example in this protocol.

4. Click the ‘Output settings’ button at the bottom-left of the interface. Select an appropriate ‘Default Output Folder’ into which
the qc measurements will be saved.

5. Save the current settings to a project (.cpproj) file containing the pipeline, the list of input images, and the output location by
selecting File > Save Project. Enter the desired project filename in the dialog box that appears. This is not necessary for the
running of this step, however it functions as a snapshot of your complete setup, allowing you to directly replicate your work
by loading this .cpproj instead of the .cppipe you started with.

6. Press the ‘Analyze Images’ button at the bottom-left of the interface. A progress bar in the bottom-right will indicate the
estimated time of completion.

7. Visualize the output from the CellProfiler QC pipeline; our recommendation is to use KNIME, an open-source data analytics
tool.
a. Download and install the current version of KNIME (https://www.knime.com/downloads)
b. Within the KNIME client, install the HCS Tools extension (https://www.knime.com/community/hcs-tools)
c. Download the KNIME workflow JUMP_QC_Plate-CV_v1.knwf from

https://github.com/broadinstitute/imaging-platform-pipelines/tree/master/JUMP_production
8. Run KNIME and load KNIME workflow

a. Right-click the CSV Reader Node “Top Line Per-Image”, select “Configure…”, and set the File path to the
TopLineImage.csv output from the CellProfiler workflow

b. Right-click the CSV Reader Node “Top Line Per-Object”, select “Configure…”, and set the File path to the
TopLineCells.csv output from the CellProfiler workflow

c. Run the KNIME workflow (Green, double-arrow button in the menu bar)
d. Inspect the plots, and right-click the final nodes (right-click, select “View: …”
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