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ABSTRACT

Single-cell multiomics can provide comprehensive insights into gene regulatory
networks, cellular diversity, and temporal dynamics. While tools for co-profiling the single-cell
genome, transcriptome, and epigenome are available, accessing the proteome in parallel is
more challenging. To overcome this limitation, we developed nanoSPLITS (nanodroplet
SPIlitting for Linked-multimodal Investigations of Trace Samples), a platform that enables
unbiased measurement of the transcriptome and proteome from same single cells using RNA
sequencing and mass spectrometry-based proteomics, respectively. We demonstrated the
nanoSPLITS can robustly profile > 5000 genes and > 2000 proteins per single cell, and identify

cell-type-specific markers from both modalities.
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MAIN

Multicellular organisms contain a variety of cell populations and subpopulations, which
are well-organized in defined patterns to implement critical biological functions. The
development and rapid dissemination of single-cell omic technologies have dramatically
advanced our knowledge on cellular heterogeneity,*2 cell lineages,* and rare cell types.®
However, most existing technologies only capture single modalities of molecular information.
Such measurement provides only a partial picture of a cell's phenotype, which is determined by
the interplay between genome, epigenome, transcriptome, proteome, and metabolome. Indeed,
proteins are of particular interest in establishing cellular identities because they are the
downstream effectors and their abundance cannot be easily inferred from other modalities,
including mMRNA®. While the simultaneous acquisition of multiple modalities such as
transcriptome-genome’ and transcriptome-epigenome® have demonstrated great depth and
sensitivity, multimodal transcriptome-proteome®!2 measurements are restricted to at most a few
hundred protein targets. These measurements also require intermediate antibodies to recognize

epitopes, which can be limited by availability and specificity?*3.

A route for overcoming these limitations is through the adoption of a mass spectrometry-
based proteomics approach. With the advance of microfluidic sample preparation!* and isobaric
labeling!®, single-cell proteomics (scProteomics) is now capable of measuring thousands of
proteins from single cells in an unbiased manner.'® Encouraged by these developments, we
sought to acquire multimodal transcriptome-proteome measurements from the same single cell
by integrating single-cell RNA sequencing (scRNAseq) with scProteomics. To enable efficient
integration, we developed nanoSPLITS (nanodroplet SPlitting for Linked-multimodal
Investigations of Trace Samples), a method capable of equally dividing nanoliter-scale cell
lysates via two droplet microarrays and separately measuring them with RNA sequencing and

mass spectrometry. NanoSPLITS builds on the nanoPOTS platform that allows for high-
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efficiency proteomic preparation of single cells by miniaturizing the assay volumes to nanoliter

scale volumes!®'’. We have previously demonstrated reaction miniaturization not only reduces

non-specific adsorption-related sample losses, but also enhances enzymatic digestion

kinetics.1® Similarly, we reason the use of nanoliter droplets can improve overall sample

recovery of both mRNA transcripts and proteins for sensitive single-cell multiomics.
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Fig.1: Overview of the nanoSPLITS-based single-cell multiomics platform. Schematic illustration showing
the workflow including cell sorting, lysis, droplet merging/mixing, and droplet separation for downstream

The overall workflow of the nanoSPLITS-based single-cell multiomics platform is

illustrated in Fig. 1. Briefly, we employed an image-based single-cell isolation system to directly

sort single cells into our optimized lysis buffer, followed by a freeze-thaw cycle to achieve cell

lysis. Next, the microchip containing single-cell lysate was manually aligned with a separate chip

containing only cell lysis buffer. The droplet arrays in the two chips were merged and separated

for three rounds to achieve complete mixing (Supplementary Movie 1). One chip containing

approximately half of the cell lysate can then be transferred into 384-well plate for sScRNAseq

based on Smart-seq 2. For scProteomics, the remaining ~50% lysate is digested with a DDM-
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based sample preparation protocol and directly analyzed with an ion-mobility-based MS data
acquisition method?!®. Notably, when the same droplet volume (200 nL) was used in an
evaluation experiment with a model fluorescent dye, the nanoSPLITS procedure can achieve

splitting ratios between 46% to 47%, with 50% representing an equal split (Supplementary Fig.

S1 and Supplementary Table S1).

We first determined the optimal cell lysis buffer that is compatible with both
scProteomics and scRNAseq workflows. Typically, scProteomics utilizes a buffer containing
0.1% n-dodecyl-B-D-maltoside (DDM) to reduce non-specific binding of proteins to surfaces?!4,
while scRNAseq includes recombinant protein-based RNase inhibitors to reduce mRNA
degradation. To evaluate their impacts on both methods, we tested these additives in a
moderately buffered hypotonic solution (10 mM Tris, pH 8) with 20 mouse alveolar epithelial
cells (C10) (Supplementary Fig. S2). In short, we found the inclusion of 1 x RNase inhibitor
suppressed proteomic identifications while 0.1% DDM had no significant impact on
transcriptomic identifications. Furthermore, the removal of RNase inhibitor from RNAseq
analysis had minimal effect on transcriptomic identifications. Therefore, we decided on a 10 mM

Tris solution with 0.1% DDM as the cell lysis buffer for nanoSPLITS.

To evaluate the nanoSPLITS method, we sorted several quantities (11, 3, and 1) of C10
cells and measured them using the multiomics workflow (Fig. 2). Considering a 5 read minimum

per gene for transcriptome identification and 1% FDR cutoff for protein identification, robust
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coverage of both genes and proteins could be achieved across all tested conditions (Fig. 2a).
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Fig. 2: Quantitative and qualitative assessment of transcriptome and proteome measurements after
nanoSPLITS.

(a) Average numbers of detected genes and proteins. Error bars indicate standard deviations (zs.d.). (b)
Distributions of the coefficients of variation (CV) for all proteins and genes with at least 2 observations. Indicated
values represent median CV, which is also indicated at the center point within each distribution. (c) The ratios of
protein abundance were calculated for comparisons between the different pooled cell samples (11 vs 1, 11 vs 3,
and 3 vs 1). Experimental median is indicated at the black crossbar while the theoretical ratio for each
comparison is shown at the red dotted line within each boxplot. (d) Pearson correlation heatmap with clustering of
transcriptomics and proteomics results. (e) Cellular component gene ontologies were determined for each gene
(scRNAseq) and protein (scProteomics) found in the single -cell data.

As expected, coverage was reduced with the decreasing cell numbers. Single-cell
transcriptome and proteome measurements provided 5,848 and 2,934 identifications on
average, respectively. We next evaluated the quantitative reproducibility for each modality by
calculating the coefficients of variations (CVs) of transcriptome and proteome abundances.
Median transcriptome CVs ranged from 0.49 for 11 cells to 0.68 for single cells, while proteome

median CVs ranged from 0.17 for 11 cells to 0.34 for single cells (Fig. 2b). The modestly higher
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CVs for single cells were expected, as the mixed cell populations represent averages of the
underlying biological variations. Notably, we observed significantly higher CVs for the
transcriptome compared to proteome, in agreement with recent reports®2°. Presumably, these
higher CVs reflect the dynamic nature of mRNA relative to their protein counterparts, which
have longer half-lives on average?'. We next compared the ratios of the measured protein
abundances between the different cell populations. Encouragingly, the experimental fold
differences between the median intensities for 11, 3, and 1 C10 cell are very close to the
expected theoretical values (Fig. 2¢). For example, the median protein abundance ratio for 3
cells compared to single cells was 3.34, within 12% of the theoretical 3-fold difference. Taken
together, these results provide strong evidence that nanoSPLITS-based single-cell multiomics
platform can provide sensitive and reproducible measurement of both the transcriptome and

proteome of the same single cells.

We next determined the Pearson correlation coefficients (r) across and within modalities
using conceptually-similar normalized transformations for each modality (Fig. 2d; TPM,
transcripts per million for transcriptomics, and riBAQ, relative intensity-based absolute
quantification for proteomics). In line with the CV distributions (Fig. 2b), proteomics data had a
better agreement between samples compared with transcriptomics data, once again highlighting
the dynamic nature of transcriptome where many genes are often expressed in short
transcriptional “bursts” 1. To ensure nanoSPLITS did not introduce a bias toward different
cellular components due to the nanodroplet splitting process, we also investigated the
distribution of gene and protein identifications in single cells across several gene ontologies
(GO).We found scProteomics and scRNAseq had corresponding identifications within cellular
components that encompassed all major organelles (Fig. 2e). Furthermore, 1,521 proteins from
the scProteomics analyses have GO localizations to the nucleus, 219 of which of have known

roles in transcription. This is notable as nuclear proteins are typically drivers in gene regulation
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Fig.3: Underlying cell phenotype signatures are maintained after nanoSPLITS. (a). Pearson correlation
heatmap with clustering of transcriptomics and proteomics results for both single C10 and SVEC cells. (b)
Distributions of Pearson correlations, separated by cell type and modality (scProteomics and scRNAseq). (¢) The
overlap in gene and protein identifications were determined for each modality separately, as well as across the
modalities. (d) Top 5 gene markers from scRNAseq data and protein markers from scProteomics data were
determined for each cell type. Candidate marker features were determined using a Wilcoxon Rank Sum test
(FDR corrected p-values <0.001). (e) Weighted-nearest neighbor (WNN) UMAP generated using Seurat in order
to integrate the scRNAseq and scProteomic data. Middle and right panels are colored based on H2-K71 gene
(purple) and protein (red) expression, respectively. (f) UMAP generated for C10 cells based on cell-cycle features
measured in the scRNAseq data. Middle and right panels are colored based on Cdk1 gene (purple) and protein
(red) expression, respectively. All expression values shown in d, e, and f are derived from Z-scores after scaling
and centering of data.
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and transcription, and current multimodal technologies have been limited in the ability to directly

measure nuclear protein abundances.

Having established baseline characteristics of multimodal data, we then applied
nanoSPLITS to a larger single-cell multimodal analysis encompassing two cell types, mouse
epithelial (C10) and endothelial cells (SVEC). Because the nanoSPLITS approach uses only
half the mRNA or protein contents, we sought to determine whether the multimodal
measurements could precisely distinguish the two cell types and detect gene or protein
markers. As shown in Fig. 3a, both cell types and modalities could easily be clustered based on
correlations alone. In line with our pilot experiment, within-modality correlations were higher in
scProteomics than scRNAseq for both cell types (Fig. 3b). Cross-modality correlation analysis
between scRNAseq and scProteomics produced rranging from 0.31 to as high as 0.56, which
fell in the range of previously reported mRNA-protein correlations?!. We also compared the
cross-modality correlations between the same single cells (intracell) and the correlations
between different single cells (intercell). As shown in Fig. 3b, no significant difference was
observed. This is not entirely unsurprising, considering most of the variation between different
cells can be attributed to only a small number of genes driving cell cycle progression. These low
numbers of genes would not have a significant impact on global correlations. Overall, SVEC
cells had slightly lower correlations across the board, presumably due to their smaller cell size
and corresponding reduced measurement depth and precision (Supplementary Fig. S3). The
protein/ gene overlap analysis demonstrates how measurement depth is strongly linked to cell
size (Fig. 3c). On average, C10 cells had ~1,800 overlapping identifications while SVEC cells
had ~900 overlapping identifications across modalities. Next, we evaluated if the multiomics
data could be used to identify cell-type-specific marker genes and proteins. Fig. 3d shows the

top-5 significant enriched genes and proteins for each cell type. Interestingly, the overlap of
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these significant markers was relatively low. Despite this, the previously established SVEC-cell

marker H2-K1 was identified here at both the protein and mRNA level (Fig. 3d)?2.

Dimensionality reduction with principal component analysis (PCA) showed delineation of
both cell types for scRNAseq and scProteomics despite only having half the cell contents

(Supplementary Fig. S4). The integration of both modalities through an unsupervised weighted

nearest neighbor (WNN)?® analysis provided robust clustering in the two-dimensional space
(Fig. 3e). This also provided us the ability to visualize both protein and mRNA abundances,
confirming H2-K1 to be a marker that is differentially expressed at the protein and gene level
(Fig. 3¢). Using canonical cell cycle markers?* we could also identify sub-populations
constituting specific cell cycle phases, demonstrating that even subtle cell to cell variation was
retained after the droplet splitting process (Fig. 3d) . For example, the well-established marker
cyclin-dependent kinase 1 (Cdk1) is upregulated at the transcriptional and translational level in

S and G2M phase C10 cells (Fig. 3f, Supplementary Fig. S5, and Supplementary Fig. S6).

Taken together, we demonstrate how the nanoSPLITS approach can enable multimodal
profiling of thousands of mMRNA transcripts and proteins from the same single cells. The
multiomics data allowed us to precisely quantify the abundances of both mRNA transcripts and
proteins and identify marker genes and proteins from both modalities. Compared with previous
technologies that utilize antibodies to infer protein abundances, the nanoSPLITS platform
employs mass spectrometry to unbiasedly detect proteins, which is highly valuable for
uncovering rare cell populations that lack reliable protein markers. We expect nanoSPLITS
could become a powerful discovery tool for biomedical applications, such as characterizing
tissue heterogeneity and circulating tumor cells. Notably, nanoSPLITS is not restricted to the
two modalities (transcriptomics and proteomics); other modalities such as metabolomics,
genomics, and epigenomics can conceptually be integrated into the workflow. As more

analytical frameworks for integrating multimodal data are created, we anticipate nanoSPLITS
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will enable greater insight into how different modalities interact with each other to control single-

cell phenotypes in various contexts such as perturbations, mitosis/meiosis, and differentiation.

Although a low throughput approach was employed in this study, high-throughput
multiplexing approaches such as CEL-Seg?® for transcriptomics and SCoPE-MS*® for
proteomics can be readily integrated into the nanoSPLITS workflow. The integration of
multiplexing approaches to nanoSPLITS would enable analysis of thousands of single cells with
reasonable instrument time and overall cost?. Finally, recent advances in multimodal single-cell
data analysis have enabled new avenues for harmonization across modalities by means of
multi-omic datasets as molecular bridges?’. The generation of proteome and transcriptome
bridge datasets could readily be accomplished using nanoSPLITS, opening the proteome to

reference mapping.

METHODS

Reagents and chemicals

Deionized water (18.2 MQ) was purified using a Barnstead Nanopure Infinity system (Los
Angeles, CA, USA). n-dodecyl-B-D-maltoside (DDM), iodoacetamide (IAA), ammonium
bicarbonate (ABC), and formic acid (FA) were obtained from Sigma (St. Louis, MO, USA).
Nuclease-free water (not DEPC-treated) ,Trypsin (Promega, Madison, WI, USA) and Lys-C
(Wako, Japan) were dissolved in 50 mM ABC before usage. Dithiothreitol (DTT, No-Weigh
format), acetonitrile (ACN) with 0.1% FA, and water with 0.1% FA (MS grade) were purchased
from Thermo Fisher Scientific (Waltham, MA, USA). SMART-Seq V4 Plus kit (Cat# R400753)

was purchased from Takara Bio USA.

Design, fabrication, and assembly of the nanoSPLITS chips

The nanoSPLITS chips were fabricated using standard photolithography, wet etching, and

silanization as described previously'828. Two different chips were designed and used in this
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study. Both contained 48 (4 x12) nanowells with a well diameter of 1.2 mm. The inter-well
distance for the first chip was 2.5 mm while the second was 4.5 mm. Chip fabrication utilized a
25 mm x 75 mm glass slide pre-coated with chromium and photoresist (Telic Company,
Valencia, USA). After photoresist exposure, development, and chromium etching (Transene),
select areas of the chip were protected using Kapton tape before etching to a depth of ~5 um
with buffered hydrofluoric acid. The freshly etched slide was dried by heating it at 120 °C for 1 h
and then treated with oxygen plasma for 3 min (AP-300, Nordson March, Concord, USA). 2%
(v/v) heptadecafluoro-1,1,2,2-tetrahydrodecyl-dimethylchlorosilane (PFDS, Gelest, Germany) in
2,2,4-trimethylpentane was applied onto the chip surface and incubated for 30 min to allow for
silanization. The remaining chromium covering the wells was removed with etchant, leaving
elevated hydrophilic nanowells surrounded by a hydrophobic background. To prevent retention
of mMRNA via interaction with free silanols on the hydrophilic surface of the nanowells, freshly
etched chips were exposed to chlorotrimethylsilane under vacuum overnight to passivate the
glass surface. A glass frame was epoxied to a standard glass cover slide so that it could be
easily removed from the 2.5 mm inter-well distance chips for droplet splitting. For the 4.5 mm
inter-well distance chips, PEEK chip covers were machined to fit the chip. Chips were wrapped
in parafilm and aluminum foil for long-term storage and intermediate steps during sample

preparation.

Cell culture

Two murine cell lines (NAL1A clone C1C10 is referred to as C10 and is a hon-transformed
alveolar type Il epithelial cell line derived from normal BALB/c mouse lungs; SVEC4-10, an
endothelial cell line derived from axillary lymph node vessels) were cultured at 37°C and 5%
CO2 in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum and 1x
penicillin-streptomycin (Sigma, St. Louis, MO, USA). The cultured cell lines were collected in a

15 ml tube and centrifuged at 1,000 x g for 3 min to remove the medium. Cell pellets were
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washed three times by PBS, then counted to obtain cell concentration. PBS was then added to
achieve a concentration of 200 x 10° cells/mL. Immediately before cell sorting, the cell-
containing PBS solution was passed through a 40 um cell strainer (Falcon™ Round-Bottom
Polystyrene Test Tubes with Cell Strainer Snap Cap, FisherScientific) in order to remove

aggregated cells.

CellenONE cell sorting

Before cell sorting, nanoSPLITS chips were prepared by the addition of 200-nL hypotonic
solution consisting of 0.1% DDM in 10 mM Tris to each nanowell. A CellenONE instrument
equipped with a glass piezo capillary (P-20-CM) for dispensing and aspiration was utilized for
single-cell isolation. Sorting parameters included a pulse length of 50 us, a nozzle voltage of 80
V, a frequency of 500 Hz, a LED delay of 200 us, and a LED pulse of 3 uys. The slide stage was
operated at dew-point control mode to reduce droplet evaporation. Cells were isolated based on
their size, circularity, and elongation in order to exclude apoptotic cells, doublets, or cell debris.
For C10 cells, this corresponded to 25 to 40 pum in diameter, maximum circularity of 1.15, and
maximum elongation of 2, while SVEC cells were 24 to 32 um in diameter, maximum circularity
of 1.15, and maximum elongation of 2. All cells were sorted based on brightfield images in real
time. The pooled C10 experiment had 11, 3, and 1 C10 cells sorted into each nanowell on a
single 2.5 mm inter-well distance chip. For the SVEC and C10 comparison experiment, a single
48 well chip with 4.5 mm inter-well distance was used for each cell type and had a single cell
sorted into each well. To perform the transferring identifications based on FAIMS filtering (TIFF)
methodology for scProteomics?®, a library chip was also prepared containing 20 cells per
nanowell, with each cell type sorted separately on the same chip to reduce technical variation.
After sorting, all chips were wrapped in parafilm and aluminum foil before being snap-frozen and

stored at -80°C, which partially served to induce cell lysis via freeze-thaw. All associated
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settings, single-cell images, and metadata can be accessed at the GitHub repository provided

(https://github.com/Cajun-data/nanoSPLITS).

NanoSPLITS process

To accomplish splitting of the cell lysate, chips were first allowed to thaw briefly on ice. For each
split, a complementary chip was prepared that contained the same 200 nL of 0.1% DDM in 10
mM Tris on each nanowell. The bottom chip containing the cell lysate was placed on an
aluminum chip holder that was pre-cooled to 4°C within a PCR workstation (AirClean Systems
AC600). Precut 1/32” thick polyurethane foam was placed around wells on the exterior of this

bottom chip while the top chip was slowly lowered onto the polyurethane foam (Supplementary

Movie 1). Wells were manually aligned for each chip before manual pressure was applied
equally across the chip in order to merge the droplets for each chip. Pressure was held for 15
seconds before releasing. The droplets were merged twice more following this process. For
consistency, the top chip which received 50% of the lysate was used for scRNAseq in all
experiments while the bottom chip that initially contained the cell lysate was utilized in
scProteomics. After merging, the top chip was immediately transferred into a 96-well or 384-well
UV-treated plate containing RT-PCR reagents. For the pooled C10 (11, 3, and 1 cell)
experiment, the transfer was performed by adding 1uL of RT-PCR buffer to each nanowell
before withdrawing the entire volume and adding it to a 96-well plate. For the C10 and SVEC
comparison experiment, the transfer was accomplished by laying the 4.5 mm inter-well distance
chip onto a 384-well plate containing wells with the RT-PCR mix, sealed with a PCR plate seal,

and then centrifuged at 3,500 x g for 1 minute.

Sample preparation and LC-MS/MS analysis for scProteomics

All post-split chips were first allowed to dry out before placing them into the humidified

nanoPOTS platform for sample processing. Protein extraction was accomplished by dispensing
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150 nL of extraction buffer containing 50 mM ABC, 0.1% DDM, 0.3X diluted PBS, and 2 mM
DTT, and incubating the chip at 60°C for 60 min. Denatured and reduced proteins were
alkylated through the addition of 50 nL 15 mM IAA before incubation for 30 min in darkness at
room temperature. Alkylated proteins were then digested by adding 50 nL 50 mM ABC with 0.1
ng/nL of Lys-C and 0.4 ng/nL of trypsin and incubating at 37°C overnight. The digestion reaction
was then quenched by adding 50 nL of 5% formic acid before drying the chip under vacuum at

room temperature. All chips were stored in a -20°C until LC-MS analysis.

We employed the in-house assembled nanoPOTS autosampler for LC-MS analysis. The
autosampler contains a custom packed SPE column (100 ymi.d., 4 cm, 5 ym patrticle size, 300
A pore size C18 material, Phenomenex) and analytical LC column (50 um i.d., 25 cm long, 1.7
um particle size, 190 A pore size C18 material, Waters) with a self-pack picofrit (cat. no. PF360-
50-10-N-5, New Obijective, Littleton, MA). The analytical column was heated to 50 °C using
AgileSleeve column heater (Analytical Sales and services, Inc., Flanders, NJ). Briefly, samples
were dissolved with Buffer A (0.1% formic acid in water) on the chip, then trapped on the SPE
column for 5 min. After washing the peptides, samples were eluted at 100 nL/min and separated

using a 60 min gradient from 8% to 35% Buffer B (0.1% formic acid in acetonitrile).

An Orbitrap Eclipse Tribrid MS (Thermo Scientific) with FAIMSpro, operated in data-dependent
acquisition mode, was used for all analyses. Source settings included a spray voltage of 2,400
V, ion transfer tube temperature of 200°C, and carrier gas flow of 4.6 L/min. For the TIFF test
samples?®, ionized peptides were fractionated by the FAIMS interface using internal CV
stepping (-45, -60, and -75 V) with a total cycle time of 0.8 s per CV. Fractionated ions within a
mass range 350-1600 m/z were acquired at 120,000 resolution with a max injection time of 500
ms, AGC target of 1E6, RF lens of 30%. Tandem mass spectra were collected from the ion trap
with an AGC target of 20,000, a “rapid” ion trap scan rate, an isolation window of 1.4 m/z, a

maximum injection time of 120 ms, and a HCD collision energy of 30%. For the TIFF library
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samples, a single CV was used for each LC-MS run with slight modifications to the above
method where cycle time was increased to 2 s and maximum injection time was set to 118 ms.
Precursor ions with a minimum intensity of 1E4 were selected for fragmentation by 30% HCD

and scanned in an ion trap with an AGC of 2E4 and an IT of 150 ms.

RT-PCR, sequencing, and read mapping for scRNAseq

Following the transfer of samples into a 384-well plate containing RT-PCR buffer with 3’
SMART-Seq CDS Primer IIA (SMART-Seq® v4 PLUS Kit, TaKaRa, cat# R400753); the
samples were immediately denatured at 72°C for 3 min and chilled on ice for at least 2 min. Full
length cDNA was generated by adding RT mix to each tube and incubating at 42°C for 90 min;
followed by heat inactivation at 70°C for 10 min. 18 cycles of cDNA amplification were done to
generate enough cDNA for template library according to SMART-Seq® v4 PLUS Kit instruction.
The SMART-Seq Library Prep Kit and Unique Dual Index Kit (TaKaRa, cat# R400745) were
used to generate barcoded template library for sequencing. Single-read sequencing of the
cDNA libraries with a read length of 150 was performed on NextSeq 550 Sequencing System
using NextSeq 500/550 High Output v2 kit (150 cycles, lllumina, cat#20024907). Data quality
was assessed with fastgc and read-trimming was conducted using bbduk. Reads were aligned
to the mouse genome (Genome Reference Consortium Mouse Build 39) using STAR
(https://github.com/alexdobin/STAR). BAM file outputs were mapped to genes using htseq-
count?® with default settings. TPM counts were derived using an R script based on TPM

procedure°,

Database searching and data analysis

All proteomic data raw files were processed by FragPipe3! version 17.1 and searched against
the Mus musculus UniProt protein sequence database with decoy sequences (Proteome ID:

UP000000589 containing 17,201 forward entries, accessed 12/02/21). Search settings included
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a precursor mass tolerance of +/- 20 ppm, fragment mass tolerance of +/- 0.5 Da, deisotoping,
strict trypsin as the enzyme, carbamidomethylation as a fixed modification, and several variable
modifications, including oxidation of methione, and N-terminal acetylation. Protein and peptide
identifications were filtered to a false discovery rate of less than 0.01 within FragPipe. For the
TIFF method, lonQuant®? match-between-runs (MBR) and MaxLFQ were set to “TRUE” and
library MS datasets were assigned as such during the data import step. An MBR FDR of 0.05 at
ion level was used to reduce false matching. FragPipe result files were then imported into
RStudio (Build 461) for downstream analysis in the R environment (version 4.1.3). All of the
figures generated and associated code are included in R markdown files at the nanoSPLITS

GitHub repository (https://github.com/Cajun-data/nanoSPLITS).

DATA AVAILABILITY

The mass spectrometry raw data have been deposited to the ProteomeXchange Consortium via
the MassIVE partner repository with dataset identifier MSVY000089280 (FTP Password:
Nano4108). The raw RNA-seq data has been deposited to the Gene Expression Omnibus

(GEO) under the identifier GSE201575.

CODE AVAILABILITY

All scripts, tables, single-cell images, and metadata used for figure generation are available at

the nanoSPLITS GitHub repository (https://github.com/Cajun-data/nanoSPLITS).
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