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Network models of communication, e.g. shortest paths, diffusion, navigation, have become use-
ful tools for studying structure-function relationships in the brain. These models generate esti-
mates of communication efficiency between all pairs of brain regions, which can then be linked to
the correlation structure of recorded activity, i.e. functional connectivity (FC). At present, how-
ever, communication models have a number of limitations, including difficulty adjudicating between
models and the absence of a generic framework for modeling multiple interacting communication
policies at the regional level. Here, we present a framework that allows us to incorporate multi-
ple region-specific policies and fit them to empirical estimates of FC. Briefly, we show that many
communication policies, including shortest paths and greedy navigation, can be modeled as biased
random walks, enabling these policies to be incorporated into the same multi-policy communica-
tion model alongside unbiased processes, e.g. diffusion. We show that these multi-policy models
outperform existing communication measures while yielding neurobiologically interpretable regional
preferences. Further, we show that these models explain the majority of variance in time-varying
patterns of FC. Collectively, our framework represents an advance in network-based communication
models and establishes a strong link between these patterns and FC. Our findings open up many new
avenues for future inquiries and present a flexible framework for modeling anatomically-constrained

communication.

INTRODUCTION

Connectomes are network models of the brain’s struc-
tural connectivity (SC) and are fundamentally commu-
nication networks, shaping the flow of activity across the
brain and facilitating communication events between dis-
tant neural elements [IH5]. The correlation structure
of recorded brain activity — i.e. functional connectiv-
ity (FC) — reflects the time-averaged outcome of these
processes [0].

While SC and FC can both be estimated from obser-
vation, e.g. non-invasively using functional and diffusion
MRI, communication dynamics — the policies by which
pairs of brain regions signal one another — are not directly
observable [4]. One powerful approach for investigating
communication policies is to simulate them in silico, and
compare the outcome of those simulations with empirical
observation [4, [7]. Most commonly, this means calculat-
ing a measure that denotes the ease of communication
between pairs of brain regions and comparing these val-
ues with FC [8H20].

This framework has proven especially useful. While
biophysical models offer biological plausible and dynamic
perspectives on communication, they entail high com-
putational costs and make specific assumptions about
underlying biophysics that are not always empirically
validated [2IH24]. In contrast, communication models
are computationally tractable (and are often analytically
solvable) and generally do a better job explaining varia-
tion in FC [25].
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However, there are a number of drawbacks to net-
work communication models. First, adjudicating be-
tween models is, in general, not straightforward. Model
fitness is typically defined ad hoc and the differences in
performances between models — if model comparison is
even performed — is often small [26]. Second, until re-
cently [26] [27], communication models have been applied
exclusively at the whole-brain level, i.e. the modeling
framework assumes that every pair of brain regions com-
municates using the same policy. Finally, the incorpora-
tion of multiple competing policies within the same model
has proven elusive. At present, the “state-of-the-art”
is to generate non-interacting communication measures
corresponding to different policies and combine them as
explanatory terms in a multi-linear model [25] 2§].

Here, we address these limitations directly by propos-
ing a framework for modeling multiple, region-defined
communication policies within the same framework. The
policies we model exist along a continuum. On one
extreme are decentralized and unbiased communication
policies, e.g. random walks. On the opposite extreme
are centralized and biased policies, e.g. shortest paths
routing, in which knowledge about the network’s global
topology is required to deliver a signal along the short-
est path from a source to a target. Using this ap-
proach, we show that communication models in which
policies are combined can outperform existing, single-
policy models. Specifically, the best-performing mod-
els combine unbiased diffusive processes with directed
and target-specific policies. We show that brain regions
in the high-performing models all exhibit similar pref-
erences — regions that comprise higher-order association
systems favor communication by directed policies, while
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FIG. 1. Mapping shortest paths routing onto random walks. Schematic illustrating how to map shortest paths routing
models of communication onto a target-dependent random walk process. (a) Example network. (b) In an unbiased random
walk, a particle “hops” from one node to another following outgoing connections. (¢) In contrast, delivering a particle to the
target node wvia shortest paths requires global knowledge of the network. Here, we show three example shortest paths (for a
binary network). (d) For a given target node, however, we can construct a reduced network of directed connections so that,
starting with any of the nodes in the network, a random walk would evolve towards the correct target. This is accomplished
by retaining for every node a single outgoing connection (to the next node on the shortest path to the target). Note that this
transformation of the network’s topology is dynamically equivalent to introducing a target-specific bias so that, under random
walk dynamics, certain transitions are rendered impossible. (e) To ensure that once the node reaches the target it never
leaves, we set the target node to be an absorbing state, i.e. has a self-connection. (f) Thus, we can construct two transition
matrices — one describing a random walk over the full network and another describing a random walk over the reduced network.
Given these two matrices, we can model a joint random walk process and construct a combined transition matrix as the linear
combination of the these two under the condition that the sum of the weights is unity. (g) Examples of the joint transition
matrix.

unimodal sensorimotor systems favor unbiased diffusion. RESULTS

Next, we apply the same framework to explain dynamic

co-fluctuation patterns. We show that joint communi- Biased random walks for jointly modeling pairs of
cation models explain, in some cases, nearly 60% of the communication policies

variance in whole-brain network states. Finally, we show
that preferences for unbiased, diffusive policies support
the transient co-fluctuation between pairs of regions. The
general modeling framework is flexible and can be easily
extended to include triplets or quartets of communication
policies, including policies not explicitly studied here.

Communication models aim to uncover the policies
used by the brain to deliver signals from source to target
regions. Under a given policy, it is often possible to cal-
culate a measure of communication efficiency — the ease
with which the signal gets delivered. For example, if the
brain were to use shortest paths for communication, then
path length could serve as a measure of communication
efficiency. Presently, it is not possible to jointly model
multiple interacting policies. In this and the next section,
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FIG. 2. Linking joint communication models to FC. Here, we use the joint communication models to explain variance in
FC. We do so by fitting region-specific preference parameters to pairs of communication processes. Here, we show an example
using shortest paths routing and unbiased random walks as the two processes. (a) For the shortest paths process, we construct
a reduced network and corresponding transition matrix for each possible target node. (b) In parallel, we construct a single
transition matrix for the unbiased random walk using the full network. (¢) To construct a joint transition matrix, we allow
each node, i, to have its own preference for using random walks, m; € [0,1]. The corresponding preference for the shortest path
is 1 —m;. (d). Consider a single target node, the set of preference parameters, and the corresponding joint transition matrices.
(e) For each node, we can estimate the stationary distribution under this random walk, i.e. the expected configuration of
random walkers over the network as the number of steps gets sufficiently large. (f) Repeating this process for every target
node yields a different stationary distribution. The complete set of distribution vectors can be assembled into a N x N matrix.
(g9) We can then compare the elements of this matrix with that of the empirical FC matrix, e.g. as a Spearman correlation.
We use this correlation magnitude as an objective function that we seek to optimize by selecting the appropriate values for

II={m,...,7n}

we outline a procedure for doing so and compare the
fitness of joint communication models with traditional,
single-policy models.

Briefly, our approach involves mapping commonly used
communication policies onto biased and target-specific
random walks. This allows us to parametrically combine
multiple policies into a joint random walk in which the
probability of a signal being delivered from one node to
another is governed by two interacting policies. As an
example, consider diffusion and shortest paths commu-
nication policies (Fig. [1). Diffusion can be modeled as
an unbiased random walk in which a particle on a source
node selects, at random, one of the source’s outgoing con-
nections and hops to another node. This process repeats
itself until, after a certain number of steps, the particle
reaches its intended target (Fig. [Ip).

In contrast, a particle delivered using shortest paths
routing selectively follows one route through the net-
work, proceeding to its target in the fewest possible steps
(Fig. [lk). However, it is possible to construct a reduced
network by removing connections from the original, in-
tact network such that, if one were to simulate a random
walk on the network, the shortest paths to a target node
are always accessed (Fig. [Id). This is accomplished by
forcing node, 7, to have a single outgoing connection that
leads to the next node on the shortest path from i to the
target node, 7, which we treat as an absorbing state (its
outgoing connection is redirected back to itself; Fig. )
Effectively, the reduced network is equivalent to realizing
a biased random walk on the original network, in which
the only traversable edges are those that participate in
shortest paths to the target.

Both the unbiased and biased random walks can be

summarized by their transitions matrices, whose rows
sum to unity and whose entries give the probability of
transitioning from a node at step t to any other node at
step t + 1 (Fig. ) To combine these two policies, we
generate a joint transition matrix as a weighted combina-
tion of both. Provided that the weight, 7, is bounded to
the interval [0, 1], its specific value can be modulated to
emphasize one or the other policy, leading to a continuum
of possible random walks (Fig. [Ijg).

Note that when we generate transition matrices for the
shortest paths policy (or any other target-dependent pro-
cess), the corresponding transition matrix also varies as
a function of target node. That is, because the shortest
paths are variable across possible targets, we must gen-
erate a different biased transition matrix for each case
(Fig. h). In contrast, the transition matrix for the un-
biased random walk is identical, irrespective of target
(Fig. ) Here, rather than generate a joint transition
matrix using a globally defined weight [I1], we introduce
regional weights or “preferences” (Fig. ) Intuitively,
the preference of region 7, denoted as 7; € [0,1] indicates
the likelihood that, should a particle arrive at node 1,
this node elects to use policy A (with probability ;) or
policy B (with probability 1 — ;). We use the same set
of preferences across all targets.

For a given target and set of preferences (Fig. ),
we can calculate the stationary distribution of particles
(Fig. ) That is, the probabilistic concentration of par-
ticles on each node as t — oo. If we repeat this process
for all targets, we generate a matrix of stationary dis-
tributions (Fig. |2f). Like traditional single-policy com-
munication models, the elements of this matrix can be
linked statistically to the elements of the empirical FC
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matrix (Fig. ) Importantly, we also have the ability
to modify the regional preferences so as to strengthen the
statistical correspondence between the matrix of station-
ary distributions and FC.

Comparing joint communication models with
traditional communication measures

In the previous section we described a framework for
jointly modeling multiple communication policies simul-
taneously. Here, we systematically evaluate the perfor-
mance of multi-policy models and compare it against 46
parameterizations of 10 distinct communication measures
that appear in the extant literature.

As part of this approach, we pursue two distinct anal-
ysis pipelines, both aimed at linking structural and func-
tional connectivity (Fig. [3p). First, following [26], we
generate fully-weighted predictor matrices correspond-
ing to 46 parameterizations of 10 distinct communica-
tion policies that. For each predictor, we calculated the
correlation (Spearman) of its elements with those in the
static FC matrix (Fig. [3p). In effect, this first approach
tests existing methods and establishes a clear baseline for
performance.

In parallel, we used the framework described in the pre-
vious section to model 21 multi-policy processes (based
on seven individual policies). In general, these policies
came from one of three families: unbiased random walks,
shortest paths routing, and greedy navigation. More
specifically, we considered the following set of seven poli-
cies (and their 5 = 21 combinations):

1. SP.wei: we calculate the shortest path from node
1 to the target, 7, based on a reciprocal transfor-
mation of weight to cost, i.e. Cj; = WLJ We then
write the biased random walk as T;; = 1 if j is the
next node on the shortest path from ¢ to 7 and 0
otherwise.

2. SP.log: we calculate the shortest path from node
1 to the target, 7, based on a log transformation
of weight to cost, i.e. Cj; = —log % We then
write the biased random walk as T;; = 1 if j is the
next node on the shortest path from i to 7 and 0
otherwise.

3. SP.info: we calculate the shortest path from node
i to the target, 7, based on a log transforma-
tion of weight to information theoretic cost in bits,
ie. Cj = —log, VZJ, where s; = Zj Wi; is the
weighted degree of node i. We then write the bi-
ased random walk as Tj; = 1 if j is the next node
on the shortest path from ¢ to 7 and 0 otherwise.

4. Nav.det: navigation is a decentralized and
greedy heuristic for delivering a particle from
node ¢ to a target node 7 with spatial co-
ordinates {z,,yr,zr}. Specifically, this policy

4

considers the neighbors of i, T; = {j,...,k}
and their respective straight-line distances from
the target, A; = {djr,...,dkr}, where d;j; =
V(@ — )2+ (yr — yj)% + (2r — 2j)2. The parti-
cle is then delivered to the node nearest the target.

5. RW.wei: an unbiased random walk over the network
in which transition probability is given by, T;; =

Si

6. RW.dist: an unbiased random walk over the net-
work in which transition probability is given by,
T,: = %, where D;; is the Euclidean distance
of the connection between regions ¢ and j and
di =3 ;Dijis a normalization factor equal to the
total length of all connections incident upon node 1.
If no connection exists then D;; = 0. Note that this
random walk leads to a preference for the walker to
select long range connections.

7. RW.rec: an unbiased random walk over the net-
work in which transition probability is given by,
T,: = Ii—i", where R;; is the correlation similar-
ity (Terl) between neurotransmitter receptor pro-
files of regions ¢ and j with entries zeroed out if no
structural connection exists [29]. The denominator
r = Zj R;; is the weighted degree of this matrix.

These seven policies can be divided, roughly into two
groups. SP.wei, SP.log, SP.info, and Nav.det repre-
sent target-specific policies and, in order to be modeled
as a Markov chain, require that we bias the transition
probabilities. For this reason, we refer to this subset of
policies as the “biased” group. The remaining policies,
RW.wei, RW.dist, and RW.rec, are fully decentralized,
target-agnostic, and require no biases to be modeled as
Markov Chains. For this reason, we refer to this second
subset of policies as “unbiased”.

For every unique pair of policies, we fit local prefer-
ences, IT = {my,...,m, }, S0 as to maximize the Spearman
correlation between the stationary distribution of walk-
ers and the static FC. Note that while other studies have
focused on predicting FC for only mono-synaptically cou-
pled pairs of brain regions [6], we predict FC for all pairs
of brain regions irrespective of whether their connections
are mono- or poly-synaptic. This is the case for both the
traditional communication models as well as the multi-
policy models.

We found that, of the traditional communication mod-
els, Euclidean distance (p = 0.38), navigation (p = 0.34),
search information (p = 0.31), and communicability
(p = 0.31) were among the top performers (Fig. Bp).
These results are broadly in line with other recent stud-
ies [0, [10] 26].

In comparison, we found that, of the 21 fitted multi-
policy models, eleven (52.4%) outperformed the best
communication model. The top performers included
Nav.det-RW.wei (p = 0.50), SP.info-RW.wei (p = 0.49),
SP.log-RW.wei (p = 0.48), and SP.wei-RW.wei (p =
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0.47). As an example, we show the empirical and pre-
dicted FC for the top-ranked model in Fig. [3c,d.

Notably, we also compared the observed fitness val-
ues against those obtained under two network null mod-
els, i.e. identical model-fitting procedures but with ran-
domized SC. Both null models exactly preserved nodes’
degrees and approximately preserved nodes’ strengths.
Additionally, one of the models also approximately pre-
served the total wiring cost of the network. In general, we
found that high-performing models predicted static FC
above and beyond both null models (p < 0.01; Fig. .

Collectively, these results suggest that multi-policy and
regionally-heterogeneous communication models outper-
form existing measures in terms of their ability to pre-
dict the organization of FC. This improvement in perfor-
mance is reduced when the underlying anatomical con-
nectivity is perturbed by random and space-constrained
rewiring algorithms. Nonetheless, our findings suggest
that multi-policy models do not, in all cases, outperform
existing measures; many combinations of policies lead to
performance that is comparable to or worse than tradi-
tional communication models, suggesting that the speci-
ficity and synergy among policies is largely responsible
for the improvement.

Pairing decentralized and target-specific policies
yields improved fit to static FC

In the previous section, we demonstrated that joint
models yielded stronger structure-function correlations
than traditional communication measures. In this sec-
tion, we focus specifically on the joint models and seek
to identify principles that explain the heterogeneity in
model performance.

Of the 21 joint models, we divided them into three cat-
egories: those that combine two unbiased diffusive pro-
cesses, those that combine two biased, target-dependent
processes, and those that combine unbiased and biased
policies in the same model (Fig. ) Interestingly, we
find that combining biased and unbiased policies yield
improved performance relative to the other categories (t-
test, t(19) = 14.15, p = 1.5 x 10~'%; Fig. [3f).

These results suggest that, although the joint models
include more parameters than traditional communication
models, there is considerable heterogeneity in terms of
performance from one model to another. In fact, many
of the multi-policy models perform poorly relative to tra-
ditional communication models. These observations sug-
gest that the complexity of the fitted multi-policy poli-
cies alone does not fully explain why subsets of these
models as well as they do. Further, our findings suggest
that much of this heterogeneity can be parsimoniously
explained based on the kind of communication policies
paired together in the same model. Finally, these ob-
servations motivate exploring the spatial structure of the
regional preferences for one communication policy versus
another.

Regional preferences divide along task
positive/negative divisions of cerebral cortex

To this point, we have demonstrated that joint models
outperform traditional communication measures in terms
of explaining variance in FC. Further, we showed that the
best-fitting models tended to pair unbiased diffusion poli-
cies with target-dependent policies. However, we have
not explicitly examined the regional preferences for one
policy or the other, i.e. the vectors II = {my,...,7x}. In
this section, we examine the stability of these patterns
over multiple runs and characterize their spatial distri-
bution across the cerebral cortex.

First, we assessed whether repeated runs of optimiza-
tion algorithm yielded similar regional preferences. To do
this, we repeated the optimization algorithm 10 times for
each joint model and calculated the Spearman rank corre-
lation between all 10 sets of preference vectors (Fig. [4h).
In general, we found that models were highly dissocia-
ble from one another (mean similarity between runs of
the same and different model were ps = 0.74 £ 0.20 and
pa = 0.25 £ 0.25; t-test ¢(21943) = 57.5, p < 1071%;
Fig. ) We also found that models combining unbiased
and biased diffusion policies converged to more similar
solutions than other models (£(943) = 31.3, p < 10719).

Next, we examined the spatial patterning of the mod-
els. Initially, we focused on the top-performing model
— Nav.det-RW.wei (Fig. [lt,d). We found that the opti-
mal preferences were largely bilaterally symmetric, and
were characterized by a pattern in which higher-order
association areas, including control, default mode, and
salience/ventral attention networks favored the navi-
gation policy. In contrast, preferences for the unbi-
ased, weight-based diffusion policy favored primary sen-
sory (visual and somatomotor), dorsal attention, and
temporo-parietal networks (Fig. [if,g).

Finally, we noted that, although not identical, joint
models combining unbiased and biased diffusion policies
tended form a “block” (see the green block in the similar-
ity matrix depicted in Fig. [4h), indicating that, although
preferences were distinct for each model, all models of
this type were mutually similar with one another. Ac-
cordingly, we pooled preferences from these models and
performed a principal components analysis, yielding a
first component (PC1) that explained 66.7% of variance.
When we examined the spatial structure of this com-
ponent, we found that it defined a mode of variation
in which higher-order association cortices (and the con-
trol network in particular) favored the biased diffusion
policies, whereas sensorimotor systems favored the un-
biased policy (Fig. 7h), mirroring the results shown in
Fig. k,d,f.g.

Importantly, we found that the regional preference
values were not clearly linked to low-level features of
structural connectivity. Specifically, we focused on re-
gional degree and strength. The mean Spearman corre-
lation of those measures with regional preferences were
Pstrength = 0.25 £ 0.15 and pgegree = 0.17 £ 0.10 (see


https://doi.org/10.1101/2022.05.08.490752
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.08.490752; this version posted May 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

b Joint models Communication measures
T 1 I 1
£ g 0.8
2206 0.8
S s =
_‘g g_ 0.4 best communication model =
& 20
2802 S
QO = .Q
Ok o o=
3E = © 3
=35 5 =0
it <}
EEos gonne g S
05.25: 033 T c0 55 -
T IO I o009 T POTT (=
e 0
Tr Seryoh=2" I‘T—J‘—r’ ! T e
Ll S Euc. | Communicability| Search Info. TMFPT Flow graphs
Path length e Path transitivity Navigation
d o5 f
m 0.5
RW-dist £T £¢c
- @ RW-rec = g 2 g 0.4
53 =N RW-wei s o c £ e
== =1 ©l 2 S © o ® 03
o3 S £ Nav-det [ os o =) = 0
=3 =] J T o T2 55
o= S 2 SP-info [ s o ) o0 O
S s - E = =
= o> O SP-log | o o | 0w | SO o0 0.1
8 ; : - . S SP-wei [+ so oo s s [ou] oL ow g
1 R £3%888%00 2 oo
. vOLG XeE r
1 FCempirical ™M 2=z 5ad%a el or i
» n mn o
crxrz® 35

(ranked)

FIG. 3. Connectivity matrices and comparison of joint models with communication measures. (a) We analyzed
structural and functional connectivity (SC; FC) data at the group level. The SC matrix (left) was sparse; existing edge weights
corresponded to fiber densities. The FC matrix (right) was fully weighted and signed; edge weights correspond to inter-
regional correlations. (b) We fit regional preference values for 21 joint models (combinations of two communication policies) by
optimizing the correspondence (Spearman rank correlation) between the stationary distributions of random walkers and the FC
matrix (points represent model fitness over multiple repetitions of the optimization algorithm using different initial conditions).
In parallel, we calculated 46 communication measures based on 10 parameterized families of policies. (c¢) Rank-transformed
empirical FC (left) and FC predicted by the best two-policy communication model. (d) Two-dimensional histogram depicting
the correlation of empirical and predicted FC following the rank transformation. (e) Mean fitness of the 21 joint-policy models
ordered into 7 X 7 matrix (rows and columns correspond to individual communication policies). Purple, blue, and green blocks
correspond to joint models that pair shortest path policies with other shortest path policies, random walk policies with other
random walk policies, and shortest path with random walk policies. Note that we group the navigation policy with the shortest
paths policies as both are target-dependent, i.e. the transition matrix varies depending on target node. (f) The upper triangle
elements of the performance matrix grouped by model category.

Fig. . oped approach for tracking moment-to-moment changes

Collectively, these results suggest high-performing  in co-fluctuations [30, [31]. Briefly, this approach “un-
models discover similar preference patterns. Specifically, wraps” functional connections across time, yielding a
to match static FC patterns, regions in sensorimotor and framewise account of an edge’s magnitude. Previous
dorsal attention networks exhibit a preference for unbi- studies using this approach demonstrated that the col-
ased diffusive communication policies, while regions in lective behavior of these “edge time series” across the en-
higher-order association cortices, namely the control sys-  tire cerebral cortex results in “events” — brief instances
tem, prefer biased and target-dependent policies. in time when many edges simultaneously exhibit high-

amplitude co-fluctuations [30, B2]. Although short-lived
and infrequent, the mean co-fluctuation over these brief

Linking joint communication policies to dynamic periods of time closely approximates the pattern of static
cofluctuations FC. More recently, it was shown that these can be divided
into a number of approximately repeating clusters.

To this point, we have focused on using joint com- Here, we calculate edge time series for 70 individuals,
munication models to predict static, time-averaged FC. estimated events on a per-subject basis, pool the event
However, there is increasing evidence that connectiv- co-fluctuation patterns together, and, following [33] B34],
ity patterns estimated with fMRI BOLD fluctuate on apply a data-driven clustering algorithm to these matri-
timescale of 10’s of seconds. Here, we shift our tar- ces, yielding three large states. The first pattern is typ-

get away from static FC to dynamic network states and  ified by the collective co-fluctuations of visual, somato-
assess whether joint communication models can predict ~ motor, and dorsal attention networks with one another.
spontaneous cofluctuation patterns. The second cluster involves co-fluctuations of control, de-

To address this question, we leveraged a recently devel- fault mode,and salience/ventral attention networks. Fi-


https://doi.org/10.1101/2022.05.08.490752
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.08.490752; this version posted May 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

B-UB B-B uUB-UB

a

Nav-det. RW-wei DHH DDDDDD Dan

RW-wei.SP-info P 1
RW-wei.SP-log =

RW-wei SP-wel

Nav-det. RW-rec
RW-rec.SP-info
RW-rec.SP-log
RW-rec.SP-wel

RW-dist.SP-log I
RW-dist. SP-wel 11

Nav-det.SP-wei [ it
SP-info.SP-wei N i

RW-dist. RW-wei B
Nav-det.SP-log 3 i

P-log.SP-wel § N

Nav-det.SP-info

RW-rec. RW-wei H
RW-dist. RW-rec g
SP-info.SP-log

b Same

Diff.

Pref. similarity

o

Pref. RW (wei)

Cont

DMN

DAN

Lim
SalVentAttn
Som

02 04 06 08 1
Similarity of patterns

0

P

O[T 1.0

Vis

0 .0

Cont
DMN
DAN
Lim
SalVentAttn
Som
™
Vis
Som
TP
Vis

SalVentAttn —E—

FIG. 4. Stability and comparison of regional preference patterns. (a) We repeated the optimization algorithm ten
times for every joint model, each time obtaining an estimate of regional preferences. (a) Here, we compare the similarity of
those preference vectors (Spearman correlation) within repeated runs of the same model and between different models. (b)
We partition models into three groups and show that joint models in which one of the policies is unbiased and diffusive and
the other is biased and target-dependent converge to more stable solutions with less variability across successive runs. Panels
¢, d, f, and g regional preferences for a weight-based random walk (red colors) and navigation (blue colors) projected onto
the cortical surface and aggregated by brain systems. Rather than focusing on a single model, we also aggregated regional
preference vectors for all models that paired biased with unbiased policies and performed a principal components analysis on
these patterns. Panel e shows the first principal component projected onto the brain surface and aggregated by brain systems.

nally, the third cluster, which was more diffuse and less
selective, involved co-fluctuations of all brain areas other
than the visual network, but especially components in the
salience ventral attention network with sub-components
of the control, default mode, and somatomotor networks.

Following the same procedure we applied to static FC,
we fit 21 joint models to predict the centroids for each
of the three clusters. We made three important observa-
tions. First, we found that joint communication models
provided better explanations of individual centroid co-
fluctuation patterns than of static FC. The top model
for states 1, 2, and 3 achieved correlations of p = 0.58,
p = 0.67, and p = 0.77 (Fig. , respectively (in com-
parison, the best model for static FC achieved a corre-
lation of p = 0.50). Second, we found that best-fitting
model for the three states was dissimilar from the one
that best-predicted static FC. Specifically, we found that
the best-fitting state models for states 1, 2, and 3 were
RW.wei-SP.info, RW.rec-Nav.det, and RW.wei-SP.wei;
see Fig. g and Fig. |§|a,b,f,g7k,l).

Finally, we found that the preference vectors were also
dissimilar from that of those associated with static FC
and that the spatial structure of these preferences also
varied across the three states (Fig. |§[) As before, we also
assessed whether preference patterns were similar across
high-performing models (in this case, those with p > 0.4).
Of those models, we calculated the mean preference pat-
tern of all repetitions, concatenated these patterns into a
region-by-model matrix, and performed a principal com-
ponents analysis (the first PC accounting for 59%, 57%,

and 59% of total variance across preferences for states 1,
2, and 3, respectively; see Fig. [Bk,h,m for projections of
these components onto the cortical surface). We show
the preference vectors alongside the co-fluctuation ma-
trices in Fig. [6ld,i,n. Interestingly, we observed that the
extent to which a region favored unbiased random walk
as a communication policy was closely linked to the mean
co-fluctuation magnitude of the region. That is, two re-
gions that prefer unbiased and diffusive communication
tend to be strongly coupled to one another. In contrast,
region pairs that prefer biased policies or a combination
of biased and unbiased policies are not likely to exhibit
correlated activity with other regions (see Fig. . In
fact, the mean regional FC is strongly correlated with the
first principal component (across top-performing models)
of regional preferences for diffusive and unbiased policies

(Fig. ﬁe,j,o).

Exploratory analyses

In the supplement we explore, in narrow contexts, some
potential follow-up extensions of this work. For instance,
the framework presented here can be easily extended to
include more than two policies. In Fig. we examine
a specific combination of policies — an unbiased random
walk, shortest paths routing, and navigation (RW.wei,
SP.wei, and Nav.det) and find that, as expected, the
inclusion of three policies yields an improvement over
all two-policy models. However, the preference patterns
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FIG. 5. Predicting time-varying co-fluctuation patterns with joint communication policies. In addition to predicting
static FC, we used joint communication models to predict co-fluctuation patterns estimated using “edge time series”. Panels
a-c depict the co-fluctuation patterns for three states. On the left of each diamond plot is the empirical pattern estimated
from data. On the right side of each plot is the predicted co-fluctuation by the model. Note that all connection weights have
been transformed into ranks. Panels d-f show two-dimensional scatterplots of the rank-transformed empirical and predicted
co-fluctuation values. (g) Comparison of model fitness for static FC and for states 1, 2, and 3 estimated from edge time series.
Dashed lines represent the best-performing models along with the best-performing of the traditional communication models.

are not identical to any of the related two-policy mod-
els (those that pair at least two of the three policies to-
gether).

Throughout the main text we reported that high-
performing models tended to combine unbiased and bi-
ased policies. What happens if we gradually make the
biased policies more unbiased by incorporating some
stochasticity in their routing mechanisms? One way to
do this is to relax shortest path policies so that, rather
than considering communication along a single shortest
path, communication takes place along an ensemble com-
prised of the k-shortest paths between a source and target
node [12]. Here, we calculate the k = 128 shortest paths
between all pairs of nodes. Doing so impacts the target-
dependent transition matrices for shortest paths so that,
instead of every source node having a single outgoing
connection, they can have up to k (although note that it
may be the case that the first step in all k shortest paths

is through the same node, in which case the single out-
going connection is preserved). We find that increasing
the number of shortest paths, i.e. £ > 1, leads to reduc-
tions in performance (Fig. [S5h). We also tested whether
there was an effect of varying which of the k shortest
paths we retained. Again, we found clear decreases in
performance whenever we considered shortest paths be-
yond k = 1 Fig. ) Finally, rather than fixing k to
be equal for all pairs of regions, we thresholded shortest
paths to retain those whose costs were below a particular
cutoff, allowing for variability in the number of shortest
paths between pairs of regions. Consequently, if two re-
gions are connected by many paths, all of relative low
cost, they may have more shortest paths between them
than two regions connected by only a few low-cost paths.
Here, we found that the correlation with static FC was
relative poor compared to the other models, but followed
an inverted u-shaped curve (Fig. [S5k).
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FIG. 6. Regional preferences for time-varying co-fluctuation patterns. Each row in this figure depicts results associated
with a different co-fluctuation “state”. Panels a-e, f-j, and k-o correspond to states 1, 2, and 3, respectively. (a) Regional
preferences for the unbiased random walk term. (b) Regional preferences for the biased and target dependent policy. (¢) We
retained and concatenated preference vectors for high-performing joint policies (p > 0.4) and performed a principle components
analysis on those vectors. Panel ¢ depicts the first principal component. (d) The left-hand side of this diamond plot depicts the
rank-based co-fluctuation pattern for state 1. On the right-hand side, we assign edges one of three possible labels. Red edges link
nodes that both prefer the unbiased random walk. Blue edges link nodes that both prefer the biased, target-dependent random
walk. White edges link nodes that prefer different policies. Note that the red edges on the right-hand side closely overlap with
the strongest co-fluctuations in the cluster centroid map on the left. (e) Correlation of the first principal component (PC1)
with the mean co-fluctuation of empirical state-based FC matrix. Here, we rank-transform each vector before plotting. Points
are colored based on their system assignment.

Collectively, the results of these two exploratory anal- DISCUSSION
yses suggest, first, that the incorporation of additional
policies should be performed carefully. If the third pol-
icy performs similar to either of the first two, it may not
yield much improvements in performance. Secondly, the

Joint communication policies for predicting FC

inclusion of additional shortest paths (which introduces One of the longstanding questions in network neuro-
stochasticity in terms of where a particle gets delivered) science is how the brain’s anatomical connections shape
can be viewed as making the centralized routing mecha-  Patterns of correlated activity [35, B6]. While it is gen-
nism more diffusion-like. Our findings are directly in line ~ erally accepted that, over short timescales (on the order
with our previous analyses, which suggested that combin- of minutes) FC reflects the outcome of communication
ing two unbiased diffusion processes yields poor results. events unfolding over the largely static SC, the precise

policies that the brain uses to signal between regions re-
mains unclear [4].

This question has been investigated from a number
of angles, ranging from biophysically-plausible dynamical
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systems models [37] to amechanistic explanatory models
[38, B9]. Recently, a third category of model has gener-
ated a great deal of interest. Communication models use
simple processes, e.g. shortest paths routing or random
walks, to explore how the structure of anatomical net-
works facilitates or inhibits the communication between
pairs of brain regions. Communication models have a
number of advantages over existing methods, including
their computational tractability and ease of interpreta-
tion.

Nonetheless, communication models in their current
form have a number of limitations. First, adjudicating
between models has proven challenging. In most appli-
cations, model fitness (and by extension, plausibility) is
assessed by comparing the capacity of communication be-
tween pairs of brain regions with the corresponding FC
magnitude. Although a reasonable means of assessing
fitness, in practice, most models achieve comparable per-
formance, making it difficult to compare models to one
another. Additionally, other studies select policies a pri-
ori and therefore never actually compare different mod-
els.

Second, communication models are typically applied
at the whole-brain level. That is, it is assumed that
every pair of regions communicates using an identical
policy. Here, at least, some progress has been made,
as several recent studies have begun to assess the re-
gional heterogeneity in optimal communication policies
[26128]. Nonetheless, modeling communication policies
locally rather than globally is uncommon.

Finally, it has proven challenging to incorporate mul-
tiple policies within the same model. Presently, the state
of the art for modeling SC-FC coupling is to estimate
communication matrices for several different policies and
to include these matrices as predictors in a multi-linear
model [I3] 25]. Note that, while the models include con-
tributions from each policy, the predictor matrix for each
policy is estimated independently so that the communi-
cation policies never truly interact with one another and
their combined effect remains unknown.

Here, we address these limitations by modeling short-
est paths routing and greedy navigation as a target-
dependent biased random walk. This allows us to
seamlessly merge communication processes, tradition-
ally viewed as distinct, with familiar diffusion and un-
biased random walk dynamics. We parameterize these
joint communication models regionally, so that individual
nodes in the network can flexibly select the policy that,
across all possible target regions, maximizes the corre-
spondence of stationary distributions with static FC.

We show that, in combining different policies into the
same model, we achieve correlations with static FC that
outperform traditional communication models. On one
hand, this observation directly challenges existing litera-
ture that has, historically, focused on individual commu-
nication policies in isolation. Importantly, we find that
the tested models are tiered, such that when we combine
unbiased diffusive policies with heavily biased and tar-
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geted policies, the outcome (in terms of the stationary
distribution of random walkers) is correlated with static
FC. In contrast, when we pair unbiased with unbiased or
diffusive with diffusive, we observed a clear drop-off in
performance.

These observations are analogous to other proposed or-
ganizational and functional principles of brain networks.
For instance, it has long been argued that brain networks
architectural features that balance functional integration
and segregation, e.g. efficient processing paths wversus
modules [40H42]. In the present study we consider un-
biased and decentralized processes and pit them against
biased, target-dependent, and centralized processes — our
findings suggest that a balance of these two opposed poli-
cies is necessary to reproduce, even approximately, the
observed correlation structure of fMRI BOLD data, i.e.
static FC. Tuning communication policies too far in ei-
ther direction, e.g. pairing two centralized or decentral-
ized policies together, leads to a stark reduction in per-
formance.

This observation has important implications for our
understanding of interregional communication. With few
exceptions [23], 27], models of communication processes —
including biophysical and explanatory models — assume
that brain dynamics or communication policies are uni-
form across cortex. That is, the rules of communica-
tion are homogeneous across all neural elements. Our
results suggest that this assumption leads to long-term
outcomes, i.e. stationary distributions, that are inconsis-
tent with observed coupling patterns. Incorporating mul-
tiple diverging policies, on the other hand, yields massive
improvements in model fit.

On one hand, the improvements we see here could be
explained on the basis of increased model complexity;
the joint-policy models have more parameters than tra-
ditional communication measures and therefore should
perform better. On the other hand, we observe consid-
erable heterogeneity across joint-policy models. Specif-
ically, those that pair biased with biased and unbiased
with unbiased policies lead to poor performance, despite
the fact that they also include additional parameters.
These observations suggest that increases in model com-
plexity alone are not sufficient for the model to improve
its performance. Moreover, the results also depend heav-
ily on the underlying network topology. Holding model
complexity constant but rewiring the structural connec-
tivity data away from its empirical organization generally
leads to decrements in model performance.

Notably, we also find a clear system-level preference
for certain classes of policies. Specifically, we find that
sensorimotor and attentional systems exhibit preferences
for unbiased diffusive processes, whereas higher-order as-
sociation cortices prefer target-specific and biased poli-
cies. On one hand, these preferences may reflect under-
lying features of the anatomical and functional networks
themselves. One of the hallmarks of both is that sensori-
motor systems appear highly modular [19, 27] and a dif-
fusive process initiated from within those modules could
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efficiently spread throughout the entire module, thereby
supporting high levels of system-specific coupling. On
the other hand, the preference for targeted and biased
policies in association cortices may reflect the more com-
plex computations thought to take place in these areas
[43, [44] or increasingly diverse connectional fingerprints
[45].

A possible criticism of this work is that the communi-
cation models are too stylized and sufficiently divorced
from the underlying biophysics [22]. We note, first, that
we model communication this way by design. In general,
biophysical models are not analytically tractable and in-
cur prohibitive computational costs, making exhaustive
parameter searches and model-fitting nearly impossible
[46, [47]. In contrast, simulating communication using
Markov chains requires relatively little computational
overhead. Second, we note that, microscopically, the role
of biophysics may dominate, but at coarser scales, the
collective behavior of the microscopic interactions can
be reasonably modeled as simpler processes. As a rel-
evant example, consider neural mass models, which in-
clude biophysical parameters for conductances, ion con-
centrations, and propagation velocities (among others)
and, as output, generate synthetic membrane potential
time series at sub-millisecond resolution. Despite the ef-
fort to maintain a relatively high level of neurobiological
plausibility, recent work has shown that the correlation
of activity simulated by these models is closely recapitu-
lated by the dynamics of a pure diffusive process evolving
over the connectome [48H50]. Nonetheless, there remains
a clear need to ground communication models in neuro-
biological reality. The framework proposed here, which
relaxes the necessity that interregional communication be
homogeneous across the entire brain, represents a small
step in that direction.

Neurocognitive implications

One of the interesting observations was that regions
with a preference for diffusive policies, i.e. the unbiased
random walks, tend to be strongly functionally connected
to one another. In contrast, regions that favor short-
est paths routing or navigation exhibit weaker functional
connections. These observations lead us to make two
speculative claims. On one hand, these findings suggest
that the key communication mechanism underlying func-
tional coupling of regions to one another is diffusive in
nature and not their ability to communicate selectively
along a shortest path. This observation is in line with
previous studies demonstrating that shortest paths ma-
trices are relatively poor predictors of static resting FC
compared to matrices based on diffusion or other decen-
tralized processes, e.g. communicability [T3HI5, [25] 26].

These observations lead us to our second speculative
claim. One of the more consistent findings in the analysis
of task-evoked FC is that, compared to rest, it is charac-
terized by a loss of system-level segregation [42] [5T] 52].
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The interpretation is that during a task specific subsets
of brain regions or systems that are uncoupled and func-
tionally autonomous at rest need to communicate with
one another in order to satisfy task constraints. These
inter-system connectivity increases, along with reduced
intra-system connection weights [53], result in an overall
reduction to system-level segregation.

Here, we find that low-levels of coupling reflect re-
gional preferences for biased and centralized communi-
cation process, e.g. shortest paths routing or naviga-
tion. Therefore, a possible explanation for task-related
increases and decreases in FC is a shift in communica-
tion preferences. Specifically, we predict that pairs of
regions whose FC increases during tasks may be shifting
their preferences towards unbiased policies, whereas re-
gion that exhibit task-related reductions in FC tend to
favor biased policies.

More generally, our multi-policy framework makes it
possible to examine changes in regional communication
policies both dynamically, by applying this approach to
time-varying network data, and across tasks, by fitting
the multi-policy models to task FC rather than rest. No-
tably, we find that the organization of time-varying co-
fluctuation matrices can be well-approximated by multi-
policy models. Because the summation across time of co-
fluctuation matrices is precisely the static FC matrix, and
because the co-fluctuation cluster centroids are predicted
by different communication policies, we might speculate
that the static FC matrix is, in fact, the superposition of
many distinct communication events, each of which was
driven by a different communication policy [34]. The
topic of time-varying structure-function coupling is, in
general, understudied and has not been fully explored
using communication models (but see [28] [54]).

Future directions

A key contribution of this present work is the mapping
of communication processes, e.g. shortest paths routing
and greedy navigation, onto target-dependent and biased
random walks, making it possible to incorporate these
processes into a multi-policy Markov chain. Here, we
explore a representative but far from exhaustive set of
models. Future work should be directed to investigate
other possible communication policies or reparameteri-
zations of those explored here. For instance, to estimate
shortest paths, we used a reciprocal weight-to-cost trans-
formation, which is equivalent to C;; = ng This trans-

formation can be parameterized as Cj; = W;;”, which
can dramatically change the shortest paths structure of
a network and, potentially, impact the performance of a
joint communication model [55].

Relatedly, this work focuses exclusively on human net-
work data at the group level. Because the aim, here, is to
prove that this general framework has some broad utility,
this is sufficient. Future studies, however, should extend

this work from the group level to individual subjects and
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to network data reconstructed using other methodologies,
e.g. tract-tracing for anatomical networks [56H58].

While our work provides a framework for integrating
multiple interacting communication policies within the
same model, like traditional uni-policy models, it does
not offer an explanation for where the policy prefer-
ences originate and why particular regions and system
prefer the policies they do (other than the fact that
this distribution of preferences leads to stronger corre-
lations between predicted and observed FC). In general,
a first principles theory of interregional communication
is presently absent; new modeling approaches begin to
fill this gap, but fully addressing this area likely requires
cooperation between currently separate sub-fields within
neuroscience.

Limitations

This study has several notable limitations. One of the
inadvertent issues it faces is the use of correlated fMRI
BOLD data (functional connectivity) as a target to which
the models will be fit. Although there is a broad cor-
respondence between the BOLD signal and population-
level activity [59], the recorded signal is indirect measure
of that activity and its correlation structure can be in-
fluenced by non-neural sources [60]. So while we follow
other studies in selecting to use fMRI BOLD FC as the
target of our model, there exist alternative possibilities.
Future studies should investigate alternatives, e.g. in-
terregional transcriptomic similarity [61] and other non-
MRI markers.

In this study we focus on anatomical networks recon-
structed from diffusion MRI using tractography. Al-
though we take care in ensuring that this procedure re-
sults in connectomes that are as unbiased as possible,
networks reconstructed in this way have known limita-
tions [62H64]. Reconstructing fiber tracts with high lev-
els of accuracy and fidelity remains an ongoing challenge
for the network neuroscience community [65HGS)].

MATERIALS AND METHODS

Connectome dataset

In this study we examined network-based models of
interregional communication. We carried out these com-
parisons using diffusion spectrum MRI data parcellated
networks at a single organizational scale (N = 114
nodes). Here, we describe those processing steps in
greater detail.

MRI acquistion

70 healthy participants (age 28.8 &+ 9.1yo, 43 males)
were scanned on a 3T scanner with a 32-channel head coil
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(Magnetom TrioTim, Magnetom Prisma, Siemens Medi-
cal, Germany). The session included (1) a magnetization-
prepared rapid acquisition gradient echo (MPRAGE) se-
quence (1 x1x 1.2 mm resolution, 240 x 257 x 160 voxels;
TR = 2300 ms, TE = 2.98 ms, TI = 900 ms); (2) a diffu-
sion spectrum imaging (DSI) sequence (2.2 X 2.2 x 3 mm
resolution; 96 x 96 x 34 voxels; TR = 6100 ms, TE =
144 ms; g4half acquisition with maximum b-value 8000
s/mm?, one b0 volume). Informed written consent was
in accordance with institutional guidelines and the pro-
tocol was approved by the Ethics Committee of Clinical
Research of the Faculty of Biology and Medicine, Uni-
versity of Lausanne, Switzerland.

MRI preprocessing

The individual connection matrices where computed
using the open aggregation software Connectome Map-
per (https://connectome-mapper-3.readthedocs.
io/en/latest/) [69] which calls different tools at
different processing steps using the parameters described
in the sequelae.

MPRAGE volumes were segmented into white matter,
grey matter and cerebrospinal fluid using FreeSurfer soft-
ware version 5.0.0 [70]. Cortical volumes were segmented
into five progressively finer parcellations, with 68, 114,
219, 448 and 1000 approximately equally-sized parcels
[(1]. Here, we analyze the 114-parcel division. DSI data
were reconstructed following the protocol described by
Wedeen and colleagues [72], thus estimating an orien-
tation distribution function (ODF) in each voxel. Up
to three main streamline orientations were idenntified in
each voxel as the maxima of the ODF (DiffusionToolkit
software, http://www.trackvis.org/dtk).

Structural connectivity matrices were estimated for
individual participants using deterministic streamline
tractography on reconstructed DSI data, initiating 32
streamline propagations per diffusion direction per white
matter voxel [73]. The MPRAGE and the brain parcella-
tion were linearly registered to the subject diffusion space
(b0) using a boundary-based cost function (FreeSurfer
software) [74]. For each starting point, streamlines were
grown in two opposite directions with a fixed step size
equal to 1 mm. As the streamline entered new voxels,
growth contributed along the ODF maximum direction
that produced the least curvature. Streamlines were ter-
minated if changes in direction were greater than 60 de-
grees/mm. Tractography completed when both ends of
the streamline left the white matter mask. Structural
connectivity between pairs of parcels was estimated in
terms of streamline density, defined as the number of
streamlines between two parcels normalized by the mean
length of the streamlines and the mean surface area of
the parcels.
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Receptor density maps

Normative receptor density maps were take from
[29]. In this study, the authors aggregated PET images
(1239 participants in total) from 19 neurotransmitter
receptors and transporters, reflecting nine distinct
systems: dopamine, norepinephrine, serotonin, acetyl-
choline, glutamate, GABA, histamine, cannabinoid, and
opioid. Parcellated data were accessed from https:
//github.com/justinehansen/hansen_receptors-1/
tree/main/data/PET_parcellated/scale060 and
further processed by excluding subcortical regions,
averaging map types across different data sources,
and z-scoring the maps across cortical regions. This
procedure results in a matrix of [114 x 19]. We treated
rows of this matrix, which represent individual cortical
regions/parcels, as feature vectors and computed their
pairwise similarity as a bivariate correlation.

We used these data to weight edges in an unbiased
random walk. To do this, we needed to remap the cor-
relation coefficients from the interval [—1,1] to [0,1]. To
do this, we used the transform s = (r + 1)/2, where 7 is
the bivariate correlation coefficient and s is the remapped
value. We calculate this measure for all pairs of regions
and reweight existing structural connections with the cor-
responding receptor map similarity value.

Modeling joint communication policies
Unbiased random walks on networks

Here, we present a framework for jointly modeling pairs
of communication policies. Specifically, we present a
method for mapping certain classes of deterministic com-
munication policies onto a random walk. In general, a
random walk on a network can be modeled as a discrete
time Markov chain in which a walker or particle traverses
a network, moving from node i to j following i’s outgoing
connections. In an unbiased random walk, the probabil-
ity of transitioning from node ¢ to j is given by:

Wy
Ti(jJ'B = 7ja (1)

8i

where W;; is the weight of connection between nodes ¢
and j and s; = Zj Wi; is the weighted degree of node 1.

Rather than model trajectories of individual particles
performing a random walk, we can equivalently model
their probabilistic flow. Let x;(t) correspond to the den-
sity of particles or random walkers concentrated on node
i at time t. We can calculate the density of walkers on
node i at time ¢t + 1 as @;(t + 1) = >, TJ»({ij(t).

We can also estimate the density of random walkers
as t — 00, a quantity known as the stationary distribu-
tion. This value can be estimated spectrally based on the
eigenvectors of T', or using the power method, whereby T'
is raised to some large power. For a large enough power,
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the rows of the exponentiated matrix are identical and
are equal to the stationary distribution.

Biased random walks on networks

However, random walks can be biased, so that certain
transitions are selectively suppressed (made less likely)
or enhanced (made more likely). Here, we show that for
some communication policies, e.g. shortest paths routing
and greedy navigation, we can model these processes as
a biased random walk.

As an example, consider shortest paths communica-
tion, in which a signal is selectively delivered from source
node, s, to a target node, 7, along the shortest path
Ds—t = S,1,4,...,k, [, 7. For a given target node, 7, we
can think of the n— 1 shortest paths (one per source) as a
biased random walk. Specifically, the transition probabil-
ity from node i to j is 1 if, in the shortest path p;_.;, node
j is visited immediately after . Otherwise, p;—, = 0.
We also set 7 to be an absorbing state by giving it a
self-transition probability of 1. The set of shortest path
transitions — or the transitions for other target-dependent
and biased communication policies — can be encoded in a
square transition matrix 7'(7)? whose rows sum to unity.
Notably, each row contains only one nonzero entry — all
other entries are zero.

Modeling shortest paths using the language of ran-
dom walks opens up a number of interesting possibilities.
Most notably, we can combine the biased and unbiased
random walks in a joint Markov chain by introducing
the global preference parameter, 7. Here, m governs the
probability that a particle moving over the network will
choose its next step based on the biased random walk
(with probability ) or the unbiased walk (with proba-
bility 1 — 7). We can write this joint random walk as:

Ty(r) =7 Ty(r)'P +(1=m)- T (2

In this expression, the parameter 7 acts globally. That
is, brain regions have equal preference for one or the other
policy. However, we could extend this model to include
regionally specific biases by allowing 7 to vary for each
region, i.e. m; # m;. In this case, we would modify the
above expression to read:

Ty(r) =m Ty(?8+ (1-m) - TE. ()

Intuitively, this expression corresponds to a random
walk over the network where, when a walker arrives at
node i, it chooses (with probability ;) to deliver the
node to whichever of its neighbors is next on the shortest
path to the target node, 7. With probability 1 — m;, the
node delivers the particle to one of its neighbors in an
unbiased way. Note that the neighbor on the shortest
path to the target is included in both policies. We can
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then calculate the stationary distribution of this Markov
chain in the usual ways.

Before moving to the next section, we draw the reader’s
attention to a few important points. Note that the joint
transition matrix is dependent upon the target node, 7.
This is because, in general, the shortest path from node
i to 7 is not the same as i to 7 # 7. Consequently,
different target nodes have different transition matrices.
If we consider all possible targets, we end up with N
matrices in total.

Linking joint communication policies with FC

In the previous subsection, we described a framework
for jointly modeling pairs of communication processes as
random walks (Markov chains). We motivated this proce-
dure by considering a joint model in which the two poli-
cies were an unbiased random walk and shortest paths
routing. The proposed framework, however, is very gen-
eral and can accommodate other policies, e.g. naviga-
tion. In fact, the framework could even accommodate
more than two policies. Irrespective of which policies are
being considered, how do we link the outcomes of this
simulation to FC?

In short, our strategy for doing so is to compare FC to
the stationary distribution of random walkers, i.e. under
a given joint policy, the spatial pattern of where walkers
end up after many steps. More specifically, we do the
following. For a given target node, 7, a set of regionally
defined preferences IT = {my,...,mn}, and a pair of poli-
cies u and v, we calculate the corresponding transition
probabilities, T;;(7) = m; - T}3(7) + (1 — ;) - T}Y;. Doing so
for all {7, j} yields a full matrix, which we raise to a large
power (t = 500 steps). Any row of the exponentiated ma-
trix would yield an estimate of the stationary distribution
(as t — oo every row should be identical). We calculate
the stationary distribution as the average over all rows to
further reduce any numerical imprecision. The result of
this procedure is the vector: z(7)* = [z(7)1,...,2(T)N].
We repeat this procedure for every target node, 7, and
arrange these vectors into the columns of a N x N ma-
trix and symmetrize it. Finally, ignoring the diagonal
elements, we extract all of the upper and lower triangle
weights and calculate their Spearman correlation with
upper triangle elements of the static FC matrix.

Simulated annealing

To fit the regional preference values of a joint model
to observed FC, we use a simulated annealing algorithm.
In this algorithm, we start with a set of policies and a
random set of preferences. We then estimate stationary
distributions for all targets and compare the results with
the FC matrix using the procedure outlined above. We
then select a node at random and add a small amount
of Gaussian noise to its preference (clipping the value
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to the interval [0,1]). We run the simulation again and
estimate a new correlation between the stationary dis-
tribution and FC. If this number represents an improve-
ment, then we retain the solution. If no, we retain the

solution with probability equal to e~ temr where o s
the new correlation and p is the previous. Here, temp
is a temperature parameter that gets reduced from an
initial value of 1 according to the following equation
temp(step + 1) = 0.999 - temp(step). This annealing
schedule ensures that for large temperature values a wide
range of solutions can be explored; as the temperature de-
creases, the algorithm is less likely to explore sub-optimal
solutions, retaining on those that improve the correlation.
We perform this procedure for 20000 steps and repeat the
algorithm 10 times with different random preferences.

Communication models

Previously, we described the procedure for jointly mod-
eling pairs of communication policies. In previous work,
however, we and others have considered models that in-
clude only a single communication policy applied uni-
formly over the entire brain. In this section, we describe
(briefly) some of these measures. Note that this particu-
lar list is taken directly from [26] and is not intended to
be exhaustive.

Flow graphs

A flow graph is a transformation of a network’s (pos-
sibly sparse) connectivity matrix, W;;, into a fully-
weighted matrix in which the dynamics of a Markov pro-
cess are embedded into edge weights [75]. Flow graphs
have been applied in neuroscience for the purposes of
community detection [76] and for tracking the propaga-
tion of tau deposition [77]. For a continuous time ran-
dom walk with dynamics p; = —Zj Li;p;, the corre-
sponding flow graph is given by W'(t);; = (e7*);;s;. In
these expressions, the matrix L is the normalized Lapla-
cian whose elements are given by L;; = D — W/s, where
S; = Zj Wi;; is a node’s degree or weighted degree and
D is the degree diagonal matrix (a square matrix with
the elements of s along its diagonal). The variable p;
represents the probability of finding a random walker on
vertex 1.

The element W'(t);; represents the probabilistic flow
of random walkers between nodes ¢ and j at time t. Here,
we generated flow graphs using both binary and weighted
structural connectivity matrices at evaluated them at
different Markov times, ¢. Specifically, we focused on
t =1,2.5,5, and 10. We refer to these variables as fgbin-
or fgwei- followed by Markov time, t.
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Navigation

The aim of many networks is to move something from
one point in the network to another in as few steps as
possible, i.e. to take advantage of shortest paths. How-
ever, doing so requires requires full knowledge of a net-
work’s shortest path structure, which may not be a re-
alistic assumption, especially for naturally-occurring bi-
ological systems like brains. However, it may be the case
that simple routing strategies — rules or heuristics for how
to move from one node to another — can sometimes un-
cover optimal or near-optimal shortest paths. One such
routing rule is, given a target node 7, to always move to-
wards the node nearest the target in some metric space,
e.g. Euclidean space.

Recently, this navigation approach was applied to
brain networks [9]. This study defined two novel mea-
sures based on navigation of connectome data. First,
they defined the number of hops in the shortest path
uncovered by the navigation process. We refer to this
variable as nav-num. Note that for some node pairs, the
navigation procedure leads to a dead end or a cycle —
in which case the number of hops is listed as co. For
the completed paths, the authors also defined their total
length in metric space (in this case Euclidean distance).
We refer to this variable as nav-ms and, like nav-num,
impute incomplete paths with values of co.

Communicability

Communicability [78] is a weighted sum of walks of all
lengths between pairs of nodes. For a binary network, it
is calculated as G = eV or 3.°0 W The contribution

p=0 pl
of direct links (1-step walks) is Ml/—!l, two-step walks is Vg—f,
3
three-step is %, and so on. In other words, longer walks

have larger denominators and, effectively, are penalized
more severely. We denote this measures as comm-bin.

For weighted networks, we follow [79] and first nor-
malize the weighted connectivity matrix as W' =
D~Y2WD=1/2 where D is the degree diagonal matrix.
As before, this normalized matrix is the exponentiated
to calculate the weighted communicability G,; = eV’

We denote this measures as comm-wei.

Matching Index

The matching index [80] is a measure of overlap be-
tween pairs of nodes based on their connectivity profiles.
Suppose I'; = j: W;; > 0 is the set of all nodes directly
connected to node i. We can calculate the matching in-
VIR
a5 |
[';\; refers to the neighbors of node i excluding node j.

dex between nodes i and j as M;; = Here,
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Shortest paths

In a network, each edge can be associated with a
cost. For binary networks, the cost is identical for
each edge; for weighted networks the cost can be ob-
tained by a monotonic transformation of edges’ weights
to length, e.g. by raising an edge’s weight to a nega-
tive power. The shortest path between a source node,
s, and a target node, 7, is the sequence of edges
Tsor = {Wsi,Wij, ..., Wg,} that minimizes the sum
Coi + Cij + ... + Ciy, where Cy; is the cost of traversing
the edge linking nodes s and i.

Here, we calculated shortest paths matrices for the bi-
nary network (where the cost is identical for all exist-
ing edges) and also for a parameterized affinity-to-cost
transformation evaluated at several different parameter
values. Specifically, we used the following transforma-
tion: Cj; = W;;7. We focused on the parameter values
v = 0.125,0.25,0.5,1.0,2.0, and 4.0. We refer to these
measures as pl-bin and pl-wei- followed by v value. Note
that for the multi-policy models, we only consider v = 1
transformations.

Cosine Similarity

The cosine similarity measures the angle between two
vectors, = [z1,...,2p], and & = [y1,...,yp]. Specifi-
cally, it measures Sg, = m Here, we treated regions’
connectivity profiles (the row of the connectivity matrix)
as vectors and computed the similarity between all pairs
of regions. We repeated this procedure for both the bi-
nary (cos-bin) and we weighted (cos-wei) connectivity
matrices.

Search Information

Search information measures the amount of informa-
tion (in bits) required to traverse shortest paths in a
network [25], RI]. If the shortest path between nodes s
and 7 is given by ms—, = {s,4,4,...,k,l,7}, then the
probability of taking that path is given by: P(ms_,) =
Psi X Dij X ...
formation required to take this path, then, is S(7s_,) =
logy [P(ms—7)]-

Here, we calculated search information based on bi-
nary shortest paths (si-bin) and based on shortest paths
obtained from each of the weight-to-cost transformations
(si-wei-y value).

X Pri X pir, where p;; = Z-‘Z’?f'j' The in-
Wi

Mean First Passage Time

The mean first passage time (MFPT) refers to the ex-
pected number of steps a random walk must evolve for
a random walked starting at node ¢ to end up at node
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7 [82, [83]. Here, we expressed the columns as z-scores
to remove nodal (column) biases and analyzed the re-
sulting matrices for the binary (mfpt-bin) and weighted
(mfpt-wei) connectivity matrices.

Fuclidean Distance

The final predictor that we considered was the Eu-
clidean distance between regional centers of mass (euc).

Null models

We compared our results against two distinct null
models. For the degree and strength preserving model,
null networks were generated using the standard edge-
swapping algorithm [84]. While these networks preserve
nodes’ degrees exactly, they do not preserve weighted de-
gree, i.e. strength. In general, preserving strength and
degree is not straightforward. Our strategy for doing
so was to first generate a binary network whose degree
sequence was identical to that of the observed network.
Next, we used a greedy algorithm to configure the original
weights over the randomized edges such that the degree
sequence was as similar as possible to that of the original
network.

For the degree, strength, and geometry preserving null
model, we adopted a nearly identical approach for net-
work generation. In this case, we used a class-specific im-
plementation of the edge-swapping algorithm, wherein we
only allowed edge swaps to occur between edges of similar
connection length (Euclidean distance). This constraint
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results in networks whose cost was similar to that of the
original network.

Edge time series and cluster analysis

Recent studies have shown that static FC can be
temporally unwrapped into its framewise contributions
[B0, BI]. The procedure for doing so is straightfor-
ward. Note that the correlation between two variables,
xz=[z(1),...,z(T)] and y = [y(1),...,y(T)] can be writ-
ten as:

T

T(l‘, y) = ﬁ Z sz(t) : yz(t) (4)
t=1

where z,(t) = M and pu, and o, is the mean and
standard deviation of x.

In our previous work, we demonstrated frames
corresponding to high-amplitude co-fluctuations, i.e.
“events”, corresponded to co-fluctuation patterns that
were repeated across scans, were highly identifiable of in-
dividuals, and could explain large percentages of variance
in the static FC [30}[32,[33]. Here, we applied an event de-
tection algorithm to whole-brain edge time series from all
subjects, extracted the corresponding co-fluctuation pat-
terns, and clustered them using modularity maximiza-
tion. Note that this procedure is identical to the one
described in [34]. This algorithm resulted in three dis-
tinct clusters that were shared across many individuals.
We treated the centroids of these clusters — the average
across all co-fluctuation patterns assigned to each cluster
— as putative network states.
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FIG. S1. Comparing joint models fit to empirical networks to fits using randomized networks. In the main text,
we report the structure-function correlation after fitting joint models to static FC. Here, we repeat the same analysis using
randomized structural connectivity data. We explored two null models. Both models preserve nodes’ degrees exactly while
also approximately preserving nodes’ strengths. Additionally, one of the models also preserves (approximately) the total wiring
cost. In this figure, we denote the degree + strength + geometry preserving model with red squares and the degree + strength
model as blue circles. Asterisks indicate that the structure-function correlation using the observed network outperformed the
null networks (p < 0.01, uncorrected).
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FIG. S2. Comparing regional policy preferences with low-level features of structural connectivity. In the main text
we fit multi-policy models by varying regional preferences one policy or the other. Here, we show that these policy vectors are
largely uncorrelated with node degree and strength. (a) Correlation of regional preferences with node degree for the best-fitting
model fit to static FC (Nav.det-RW.wei).


https://doi.org/10.1101/2022.05.08.490752
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.08.490752; this version posted May 9, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license. o1

State 1 State 2 State 3
a 6000 d b 6000 ¢ 6000
= 1 = =
g 4000 ,. E 4000 ; § 4000
2000 ‘ 2000 2000 .
0 ’ 0  Zw W op = =
m m m o m o "o o o
2 o 2 =2 = = -
m m m m m m
=) = =)

FIG. S3. Linking dynamic fluctuation to edge categories. In the main text we described a procedure for categorizing
edges into three groups. Briefly, we considered joint models in which one policy was a diffusive and unbiased random walk and
another was based on a centralized and target-dependent process. Every region could have a preference for one policy or the
other. We considered a region i to prefer the unbiased policy if its preference was m; > 0.5. We labeled these regions as RW
regions. Otherwise, we labeled the region SP. We could then classify all region pairs based on their stub nodes’ assignments.
This results in three possible pairings: RW with RW, SP with SP, and RW with SP. Here, we show that the dynamic co-
fluctuations between RW+RW pairs tend to be stronger than for the other two edge pairings. We show this for states 1, 2, and
3 (panels q, b, and c¢).
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FIG. S4. Exploratory analysis of three-policy model. In the main text we examined two-policy models. Here, we
explore a three-policy model combining RW.wei, SP.wei, and Nav.det policies. (a) In general, we find that three-policy model
significantly outperforms the best two-policy model (p = 0.52 £ 0.001; t-test, p < 0.01). In panels b-g we show regional
preference vectors for the three policies. We find that the unbiased weight-based random walk favors sensorimotor, attentional,
and temporoparietal systems while the navigation policy favors the control and default mode networks. In contrast, the shortest
paths policy has no clear preference at the system level.
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FIG. S5. Exploratory analysis using k-shortest paths. In the main text we examined communication via shortest paths.
Here, rather than considering only one shortest path, we assess the effect of communication via the k-shortest paths. Specifically,
we considered two scenarios. First, rather than forcing a node to pass a particle to the target node along its shortest path, we
allow it to pass the particle along any of its k shortest paths, selecting where to deliver the node probabilistically. In this way,
the addition of paths makes the shortest path mechanism more diffusion-like. We show the results of this analysis in panel a.
Next, rather than use the shortest overall path, we forced routing to occur along the k-th path, in descending order of cost
(panel b). Finally, we include all paths of cost ¢ or less.
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