bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Deep SE(3)-Equivariant Model for Learning Inverse Protein Folding

Matt McPartlon* Ben Laif Jinbo Xu *

Abstract

In this work, we establish a framework to tackle the inverse protein design problem; the task of predicting
a protein’s primary sequence given its backbone conformation. To this end, we develop a generative SE(3)-
equivariant model which significantly improves upon existing autoregressive methods. Conditioned on backbone
structure, and trained with our novel partial masking scheme and side-chain conformation loss, we achieve state-
of-the-art native sequence recovery on structurally independent CASP13, CASP14, CATH4.2, and TS50 test
sets. On top of accurately recovering native sequences, we demonstrate that our model captures functional
aspects of the underlying protein by accurately predicting the effects of point mutations through testing on
Deep Mutational Scanning datasets. We further verify the efficacy of our approach by comparing with recently
proposed inverse protein folding methods and by rigorous ablation studies.

1 Introduction

Computational protein design (CPD) broadly attempts two goals: (i) inverse folding, also known as fized-backbone
design which aims to produce novel amino acid sequences conforming to a predefined protein backbone structure
and (ii) de novo design which seeks to develop sequences encoding proteins with some desired properties. Success in
these areas has led to the development of enhanced therapeutics (Chevalier et al. 2017), biosensors (Quijano-Rubio
et al. 2021), enzymes (Siegel et al. 2010) and more (Lucas and T. Kortemme 2020; Tinberg et al. 2013).

Owing to the conventional wisdom that a protein’s native state corresponds to its free energy minimum, CPD
tasks are traditionally framed as an energy minimization problem. In this setting, the energy function typically
consists of some combination of physics-based terms (J.H. et al. 2018; Alford et al. 2017; X. Huang et al. 2019;
Junmei Wang et al. 2004) and knowledge-based terms (Park et al. 2016; C. Zhang et al. 2004; Zhou et al. 2020;
Xiong et al. 2014), the latter of which are often derived from experimental data. During optimization, sequences
are sampled and mutated until an energy minima is reached. Although this approach has garnered some success,
it has a few major drawbacks. First, the size of the search space increases exponentially in the designed sequence
length. This presents considerable challenges for designing large proteins. Next, for computational efficiency, score
terms regularly approximate the total energy as the sum of weighted one and two-body terms. As a consequence,
more complicated many-body interactions are ignored. Moreover, the extent to which designed sequences reflect
their native analogs is limited by the accuracy of the underlying score function.

Over the past decade, computational biology has seen a spate in research replacing traditional physics and
knowledge-based approaches with machine learning (ML) methods. In terms of structural modelling, the recent
advent of rotation-invariant (Schiitt et al. 2018; Andrearczyk et al. 2020) and rotation-equivariant architectures
(Thomas et al. 2018; Fuchs et al. 2020; Satorras et al. 2021; Jing et al. 2021; Weiler et al. 2018) for learning
from 3D-coordinates has helped facilitate explicit representations of geometric information, which has in turn
led to improved performance in molecular modelling tasks. Most notably, AlphaFold2 (Jumper et al. 2021) and
RoseTTAFold (Baek et al. 2021) introduced two-stage architectures, relying on equivariant neural networks and
innovative attention mechanisms, which are capable of accurately predicting the structure of many novel proteins.
Given the success of these architectures, coupled with the inherent geometric nature of inverse protein folding, we
sought to develop a similar architecture for this task.

Parallel to the inverse folding task, we also sought to understand the extent to which protein function can be
captured from structural information alone. As protein function is jointly determined by its 3-dimensional confor-
mation and primary amino acid sequence (Mitchell et al. 2019; Dawson et al. 2017) this suggests that functional
effects of mutations should be modeled jointly as well. It has been shown that protein structure information can

*mmcpartlon@uchicago.edu
fhlaiettic.edu
ij inboxu@gmail.com

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

be used to predict its function (Gligorijevic et al. 2021; Lai and Xu 2022). Although the most successful existing
methods for protein mutation effect prediction rely on sequence and evolutionary information (Meier et al. 2021;
Hopf et al. 2017; Riesselman et al. 2018), we hypothesized that a generative model, conditioned solely on structure
and partial sequence, could be used as a zero-shot predictor for functional effects on single point mutations.

Here, we extend our recent work on side-chain coordinate prediction (McPartlon and Xu 2022) and introduce
a deep SE(3)-equivariant graph transformer architecture which simultaneously predicts each residue’s identity and
side-chain conformation. We compare to several existing inverse folding methods on CASP13, CASP14, CATH4.2,
and TS50 test sets and show that our method achieves significantly higher native sequence recovery (NSR) rates
across all datasets. In addition, we verify our models efficacy in capturing functional aspects of proteins by comparing
predicted likelihoods against Deep Mutational Scanning (DMS) experiments. This result sheds light on the use of
structure information in future studies on protein mutation effect prediction. To achieve these results, we explore
several novel training and loss strategies and demonstrate their effectiveness through careful ablation studies.

2 Related Work

Several DL-based approaches have been proposed for inverse protein folding. These methods almost invariably
employ convolutional neural networks (CNNs) or Graph Neural Networks (GNNs) as their underlying architecture.
For a given architecture, the primary differences between approaches mainly stems from their feature representations;
namely the representation of backbone geometry. We now give a brief overview CNN and GNN-based methods for
inverse folding. For a more detailed review of feature representations applied to CPD models, see (Defresne et al.
2021).

Several CNN-based architectures have been applied to computational protein design (Yi Zhang et al. 2019; Qi
and J. Z. H. Zhang 2020; Chen et al. 2020; Anishchenko et al. 2021; Shroff et al. 2019). In the fixed-backbone setting,
Chen et al. employ 2D-CNNs in SPROF (Chen et al. 2020), which incorporates two-dimensional pairwise distance
features to improve on the performance its predecessor SPIN2 (O’Connell et al. 2018). More recently, ProDCoNN
(Yi Zhang et al. 2019), and DenseCPD (Qi and J. Z. H. Zhang 2020) applied convolutions to 3D volumetric regions
of the input, allowing sequential features to be represented with rotation invariant voxel encodings of residue
microenvironments. This approach has the benefit of allowing the network to extract spatial and geometric features
without delegating to hand-crafted feature representations used in the 2D architectures.

In contrast to CNN architectures, GNN-based methods treat the input protein as an augmented graph, with
features attached to each node (residue) and pair of nodes (edge). Some examples include the GNN variant of
geometric vector perceptrons (GVP-GNN) (Jing et al. 2021), the Structure Transformer (Ingraham et al. 2019),
ABACUS-R (Liu et al. 2022), and ProteinSolver (Strokach, Becerra, et al. 2020). These methods parallel language
models, where each residue identity is iteratively predicted by conditioning on an encoded representation of the input
graph. With the exception of ProteinSolver, each of these methods attempts to explicitly model 3D coordinates.
The Structure Transformer, and Abacus-R accomplish this using relative orientation encodings of invariant local
coordinate systems. On the other hand, the SE(3)-equivariance of GVP’s enables GVP-GNN to operate directly
on backbone coordinates as input. To the best of the author’s knowledge, GVP-GNN is the first fully equivariant
architecture applied to inverse protein folding.

Akin to fixed-backbone design, several DL-based architectures have been applied to de novo design (Jue Wang
et al. 2021; Anishchenko et al. 2021; Lin et al. 2022; Jin et al. 2022). For general reviews and background on de
novo and fixed-backbone design, we refer the reader to (Castorina et al. 2021; Ovchinnikov and P.-S. Huang 2021;
Coluzza 2017; Pan and Tanja Kortemme 2021). For a more complete review of model classes applied to protein
design, see (Strokach and Kim 2022).

Alongside CPD, considerable progress has been made in predicting the effect of point mutations on protein
stability. These methods often rely on sequence evolutionary information such as EVmutation (Hopf et al. 2017),
DeepSequence (Riesselman et al. 2018), SIFT (Ng and Henikoff 2003)), and PolyPhen-2 (Adzhubei et al. 2013) or
large language models trained on massive sequence databases such as ESM-1v (Meier et al. 2021). While these
methods have considerable merit, they inherently rely on adequate evolutionary information to make predictions.
In contrast, our structure conditioned sequence model can be used as a zero-shot predictor for mutation effects
when evolutionary information is absent.

Aside from CPD-specific models, our architecture draws from recent advancements in DL-based methods for 3D-
modelling and protein structure prediction. Notably, we utilize memory efficient variants of triangle multiplication
and triangle attention introduced in AlphaFold2 along with a TFN-based SE(3)-equivariant transformer inspired by
the SE(3)-Transformer of Fuchs et al (Fuchs et al. 2020). Our work on side-chain coordinate prediction (McPartlon
and Xu 2022) details these modifications, which were used to construct a deep GNN for protein side-chain packing.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3 Methods

In this work, we model the inverse folding problem with an SE(3)-equivariant architecture operating directly on
features derived from backbone coordinates. Our architecture consists of two main sub-modules. The first is a
deep Locality-Aware Graph Transformer which utilizes the geometry of the input backbone to refine node and pair
features and restrict attention to spatially local residue pairs. The output of this component, along with the input
backbone coordinates, are passed to a deep TFN-transformer which produces side chain conformation and sequence
identity for each input residue. The details of these architectural component are fully described in (McPartlon and
Xu 2022), and a schematic overview is given in Figure 1.

KA) Input Masking Strategies (B) Main Network
Pairwi Backbone-
Unmasked Input Features Scalar Features| | ¢4 Ginates
— ! ‘
Locality Aware Graph Transformer Spatial
(12 blocks) — Attn.
A J
update‘d pair update::l scalar e
features features
(i) Linear Mask (.)
Structure Input Embedding ——
(TEN)
A J
structue pair structure scalar strucutre coord.
features features features
| v v
s ~\
TFN-Transformer «—
(8 blocks)
A J
(i) Random Mask (iv) Full Mask H scalar out coord. out
© 4
FeedForward FeedForward Linear
(2 layers) (2 layers) (no bias)
: ! ‘
predicted predicted predicted side-
pairwise dists. residue identities chain coords.

Figure 1: Approach Overview. (A) Our method employs several different strategies for masking input residue
identities. Our best performing model employs one of (i-iv), sampled uniformly at random during training. Further
details of each strategy can be found in Section 3.2. (B) Our deepest model consists of two main components: A
12-layer Locality Aware Graph Transformer, and 8-layer TFN-Transformer. Aside from predicting residue identities,
the network also predicts side-chain conformations and pairwise distances between 6 pairs of atom types (described
in Section S1.4).

3.1 Input Representation

We represent a protein as a graph G = (V, £) where each node v; € V represents a residue, and an edge {eij}i 2; € E
exists between each residue ¢ and it’s k nearest neighbors computed by pairwise C'«v distance. The number of nearest
neighbors differs for the two components of our network. We shoose k£ = 30 for our first submodule, and k = 16 for
the TFN-Transformer.

A brief description of scalar, coordinate, and pairwise input features is given below. We note that all input
features are derived directly from backbone coordinates. Our input embedding procedure, along with a more
detailed description of input features can be found in Figure S2, and Table S2.

Residue Features

Scalar residue features are comprised of sin and cosine encodings of backbone dihedral angles, and one-hot encodings
of each residue’s relative sequence position, and a one-hot encodings of residue identity (when applicable). A separate
<mask> token is used for masked residues whose identities are left to be determined.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Pair Features

Input pair features consist of one-hot encodings of one-hot encodings for pairwise distance between atom pairs
(Ca,Ca),(Ca, N),, sin and cosine encodings of dihedral and planar angles defined by Yang et al (Yang et al. 2020),
and a joint embedding of signed relative sequence separation i — j and pairwise residue-types (when applicable).
To produce pairwise orientation information, we impute a unit vector in the direction C'3; — C'r; before computing
the respective angles. The imputed vector is calculated as in (Jing et al. 2021) using

;<nxc>—\/§<n+c>

where (z) = z/||z||2, n = N; — Cay, and ¢ = C; — Cay.

Coordinate Features

For a given backbone conformation X, let X; denote the coordinate of atom X in residue ¢. Input coordinate
features for residue 7 consist of unit vectors N; — C«;, C; — Cay;, and O; — C'ay;. This input is passed through a TFN
to produce a hidden encoding of dimension 16. Note that only the TFN-Transformer component of our architecture
operates on coordinate features. Furthermore, we use the raw positions of backbone C'a coordinates to compute an
initial (equivariant) basis for our TEN-Transformer module.

3.2 Masking Strategies

While the ultimate goal of inverse folding is to predict sequence given structure alone, we hypothesized that
providing the model with partial sequence information during training could lead to improved results. This decision
was motivated by Ingraham et al., who demonstrate that unconditional language models struggle to assign high
likelihoods to sequences from out-of-training folds (Ingraham et al. 2019). On the other hand, the authors show that
conditional autoregressive modelling helps facilitate adaptation to specific and potentially novel parts of structure
space. In light of this, we developed several masking strategies, allowing our model to condition on partial sequence
information via input scalar and pair features during training (see Figure S2). The strategies are described below.
We use L to denote sequence length, and use the notation z ~p S to denote uniform random sampling from the
set S.

Spatial A random residue ¢ ~p [1..L] is chosen, and the identity of this residue, along with the k nearest
neighbors of this residue are masked. Nearest neighbors are computed by pairwise C'a distance. In
practice, we chose k = pL, where p ~r (0.1,0.5).

Linear = We first choose a length ¢ ~p [m..M] and then choosing an index ¢ ~g [1..L — ¢]. We then mask all
residue identities in the range i..i + ¢ — 1. In choosing the length ¢, we set m = 0.25L, and M = 0.75L.

Random A threshold probability p ~r (0,1), is sampled, and then each residue’s sequence identity is masked
independently with probability p.

Full All residue sequence identities are masked, and no sequence information is given to the model. This is
the typical strategy used for inverse protein folding.

To evaluate the effect of masking strategy on model performance, we train four separate models using each
strategy (independently), and an additional model which chooses one of the four strategies with equal probability
for each training sample. Detailed results are given in Section 5.1.

3.3 Zero-shot Protein Mutation Effect Prediction

To quantify our models ability to predict protein mutation effects, we use the log ratios of the wild-type amino acid
and the mutated amino acid at the mutated index i. Formally, for a protein sequence S = si,...s, and backbone
conformation C, we compare the log probability ratio of mutation ,,,ant appearing at sequence position i against
the wild-type Zwiid—type While conditioning on the backbone conformation C. and S_;; the identities of all amino
acids aside form s;. The calculation is shown in Equation (1).

Ing(Sz = Imutant|s—ia C) - IOgP(Sz - :Cwild—type|S—i7 C) (1)

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3.4 Architecture and Training Details

We briefly overview our model architecture, loss, and training details. Unless otherwise stated, all of our models were
trained and validated using chains from the publicly available BC40 dataset. Our training set contains roughly 37k
chains filtered to 40% nonredundancy. A more complete overview along with details of train and test set similarity,
optimization procedure, hyperparameters, and input embedding, can be found in Section S1.

We trained two main variants of our model which we refer to as small and large. For each variant, self-attention
and triangle updates are restricted to the same number of spatially-nearest neighbors. Our small architecture uses
a hidden dimension of 120 for residue and pair features, and a hidden dimension of 16 for coordinate features.
This variant consists of eight Locality-Aware Graph Transformer blocks stacked on six TFN-transformer blocks.
The large model uses the same dimensions for pair and coordinate features, but increases the hidden dimension of
residue features to 180. The submodule depths are increase to twelve and eight layers respectively.

The same training and loss strategies are employed for each variant. we randomly select one of the masking
strategies overviewed in Section 3.2 for each sample, and compute three separate loss terms, one for each output
feature, corresponding to predicted residue identity, pairwise distance between side-chain atoms, and predicted
side-chain conformation. The latter two terms are given weight 0.15 relative to the predicted identity loss term.
More details on the loss function can be found in Section S1.4.

4 Results

We begin by comparing our method to GVP-GNN (Jing et al. 2021), DenseCPD (Qi and J. Z. H. Zhang 2020),
ProDCoNN (Yi Zhang et al. 2019), ProteinSolver (Strokach, Becerra, et al. 2020), and Rosetta Design (Chaudhury
et al. 2010; J. K. Leman et al. 2020). Details on data collection for these five methods can be found in Section S2.
Computational protein design methods are notoriously difficult to benchmark, as some sequences may recapitulate
nearly identical structures, while some structures may have no conforming sequences. In line with Ingraham et al.,
we report (i) native sequence recovery (NSR) rate, and (ii) model perplexity (when applicable). The rationale is
that NSR assesses how closely a designed sequence matches the native sequence of an input backbone structure,
and perplexity tests the ability of the model to assign a high likelihood to the native sequence. Following Jing et
al. (Jing et al. 2021), NSR is reported as the median (over all structures) of the average percentage of residues
correctly recovered.

4.1 CASP13 and CASP14 Targets

Recovery and Perplexity

CASP13 CASP14
Recovery 1 Perplexity | Recovery 1 Perplexity |

Ours (Large) 50.6% 4.88 41.1% 6.17
Ours (Small) 48.9% 4.82 41.3% 6.17
DenseCPDNet! 48.1% 5.14 39.0% 7.18
GVP + BC40 43.3% 5.04 38.3% 5.58
GVP + CATH4.2 44.0% 5.12 36.4% 6.40
ProteinSolver 37.0% - 32.8% -

SPROF 37.4% 7.30 33.8% 8.02
Rosetta 34.2% - 27.1% -

Table 1: Results for CASP13 and CASP14 targets. We report median NSR (higher is better) and median
perplexity (lower is better) over target chains in CASP13 and CASP14 datasets. Perplexities are omitted for
ProteinSolver and Rosetta. The former calculates log probabilities only for the predicted residue type, and the
latter is energy-based. Methods GVP + BC40 and GVP + CATH4.2 use the same hyperparameters as reported in
(Jing et al. 2021), but differ on the training set used - CATH4.2, and BC40, respectively.

https://drug.ai.tencent.com/protein/bc40/download.html
https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

We chose to evaluate each method on CASP13 and CASP14 test sets (see Table S3 for full list of targets) as there
is no canonical training or validation sets for fixed-backbone design, and in most cases, these test sets have little
overlap with the training sets used for the methods in comparison. We empirically verify this claim by comparing
sequence and structural similarity of all training chains in CATH4.2 (curated by Ingraham et al. (Ingraham et al.
2019)) and BC40 against target chains for each test set in Section S2.1. Although no standardized test sets exist,
CATH4.2 and TS50 have emerged as de-facto benchmarks used by several methods. In light of this, we include a
comparison in our extended results (Figure S6, and Figure S5) (see Table S3 for a list of these targets).

Our method outperforms all competitors in terms of NSR accross both datasets. Interestingly, DenseCPD retains
the second highest recovery scores on the CASP14 dataset while having much higher perplexity than our method
and GVP-GNN. To better understand this, we further compare our method with GVP-GNN and DenseCPD in
terms of precision, recall, and F1-score for each amino acid type on these datasets.

Precision, Recall, and F1

(A) (B)

100%

— - - T -
os ([T e, o % residues .
= 0.6 Hgmm ours (cumulative)
b HE GVP-GNN
’ 80% | o
.2 | c I DenseCPD
2 EEl Ours
" QHRMWCNSDETTFIKYVAILGEP =
1.0 T T T — T —T— o o
& 60% |
g
S
o
5 s
> 40%}
“"KERQMHDNYTSAICWYVFLGEP B
1.0 T T T T T T T Q
[=}
0.8 1 &
Losl | 20%
0
QRHMEKWCNDSTYFAV I LGTP °T16 79 1012 1315 16-18 19-21 2224 2527 >=28

Amino Acid Number of Neighboring Ca Residues

Figure 2: Comparison of GVP-GNN, DenseCPD and Our method on CASP13 and CASP14 targets.
(A) Precision, Recall and F1-score for all 20 amino acid types; Fl-score is computed as 2pr/ (p + r) where p and r
denote precision and recall respectively. (B) Comparison of prediction accuracy conditioned on number of residues
in the target’s immediate microenvironment. The x-axis shows the number of residues whose C'a atom is within
10A of the target residue. The dotted-gray line shows the cumulative percentage of residues in the dataset with
(up to) the number of neighbors listed on the x-axis.

From Figure 2 we see that our method achieves top F1 scores for the majority of amino acids (13/20). DenseCPD
also performs well, achieving top F1-scores for the remaining seven residue types. Not surprisingly, all three methods
perform well in predicting glycine (G) and proline (P) which can be attributed to the unique structural features of
the two amino acids.

In terms recall, we see that DenseCPD outperforms GVP-GNN for most residue types (16/20), and exceeds
our method for 7/20 residue types. In contrast, we surpass DenseCPD in terms of precision for 5/7 residue types
where DenseCPD achieves higher recall. As precision measures the number of correct predictions normalized by
the number of predictions of a given type, and recall measures the proportion of correct predictions, this analysis
aids in understanding why DenseCPD achieves high perplexity while maintaining high prediction accuracy.

We also compare the accuracy of the three methods conditioned on residue degree centrality; the number of
neighboring Car atoms in the target amino acid’s immediate microenvironment. This measure correlates with
solvent accessible surface area, and acts as a proxy indicator of whether the corresponding amino acid is closer to
the protein surface (low centrality) or core (high centrality). Analogous to Zhang et al. (X. Huang et al. 2020)
we define core residues those amino acids with at least 20 C'ov atoms within a 10A radius of the target residue’s
Ca atom. Similarly, surface residues are defined as those amino acids with as most 15 C'a atoms within the same
region.

1Results obtained for DenseCPD have residue probabilities truncated to 3 significant digits. To compute perplexity, we replace
probabilities of 0 with 1073. Consequently, the perplexities obtained for DenseCPD in Table 1 serve as a lower bound on the true
perplexity.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

When conditioned on centrality, DenseCPD outperforms our method and GVP-GNN for surface residues residues,
but quickly falls behind for residues closer to the protein core. For surface and core residues, GVP-GNN and our
method improve their accuracy from 33% to 48% and 36% to 55% respectively. On the other hand, DenseCPD
does not obtain large accuracy improvements, improving from 40% to 45% when considering the same criteria.
This observation may stem from the difference in modelling approaches used by the two methods. Whereas our
method and GVP-GNN model the input as a graph and jointly update residue features via self-attention or message
passing, DenseCPD models joint interactions only at the input level; updating hidden features independently for
each residue.

4.2 Zero-shot mutation effect prediction

To better understand the extent to which our model’s designs capture functional aspects of the underlying protein,
we compare predicted log likelihoods assigned to point mutations using stability data gathered from several DMS
datasets.

Design BBaps afBBa aaq

ID 37 1498 1702 1716 779 223 726 872 134 138
Structure Trans. 0.47 0.45 0.12 0.47 0.57 036 0.11 0.21 0.24 0.33
Ours (given S_;, C) 0.74 043 0.28 0.58 0.58 0.51 0.33 0.42 0.51 0.58
Ours (given C) 070 039 0.26 0.52 048 049 0.33 0.42 0.51 0.52

Table 2: Predicted likelihoods correlate with mutation effects in de novo - designed mini proteins.
Pearson Correlation between high-throughput mutation effect data from a systematic design of miniproteins. Each
design (column) includes 775 experimentally tested mutant protein sequences. Results are split by fold topology (first
row) and design model (second row) as referenced in (Rocklin et al. 2017). Results for the Structure Transformer
are generated on rigid backbones, and taken from Table 5 of (Ingraham et al. 2019).

0.6 ¢ ¢ ours
X TAPE
05 ¢ ¢ @ UniRep
o 04 L) . s
€
g X
Eo3 [] ¢
g X
& ° []
0.2 X X
X X x X
X
0.1 x ° o
[] o x °
0.0 L L] o X
aS> RN 2o o e e A0 2™ o oS>
& o P\ o g R RO W o & N &
o o < < N N e
[e od‘j ot \)g\%“ > O & g S o \'\\“N}
«© ot s « < e W& L s N i
R N M < & RS B
2
(B) 1.0
0.90
0.8 0.85
>
= @ 0.80
3 S
= 0.6 A
) < 0.75
b= =)
g = 0.70
@ 0.4
0.65
0.2 0.60
0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Spearman's p Spearman's p

Figure 3: Zero-shot prediction performance (A) Per task performance of our model compare to two other
language models UniRep and TAPE on 12 DMS datasets measured by rank correlation. (B) Performance of our
model against the top-1 TMAlign score(top) and sequence identity(bottom) among the training protein and DMS
targets.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Following Ingraham et al. (Ingraham et al. 2019), we first assess our models performance on predicting protein
stability in response to single point mutations using deep mutational scanning data from (Rocklin et al. 2017). In
Table 2 we observe that conditioning on the partial input sequence (in addition to backbone conformation) leads
to improvements in stability prediction for eight of the ten de novo designed mini-proteins. Moreover, our model
improves over the Structure Transformer for nine of the ten targets.

Moreover, our model outperforms protein language models TAPE (Rao et al. 2019) UniRep (Alley et al. 2019)
trained on large sequence databases across 12 DMS datasets in zero-shot protein mutation effect prediction regardless
of sequence evolutionary information as shown in Figure 3(A). This result indicates that our method captures
the underlying functional interaction between 3-dimensional conformation and amino acid sequences and suggests
structure information may facilitate the characterization of protein mutation effects. We also noticed in Figure 3(B)
that the performance of our method correlates with the similarity between the DMS target structure and our training
set but independent of the sequence identity between the DMS target and our training set. This further confirms
that our zero-shot mutation effect prediction is structure-aware.

5 Ablation Studies

To validate the impact of our training strategy, and to understand the influence of particular architectural compo-
nents, we conducted ablation studies focused on our masking techniques, loss, two-stage architecture, and model
hyperparameters.

5.1 Mask Strategy Evaluation

In Section 3.2 we outlined four different masking strategies. We now evaluate the performance of five different models
Spatial, Linear, Random, Full, and All, each of which was trained using only input derived from the respective
strategy (all strategies were used for All).

Test Strategy

NSR 1 Perplexity |
Spatial Linear Random Full Spatial Linear Random Full
Spatial 45.6% 46.3% 46.3% 43.5% 5.26 5.10 5.12 5.80
Train Linear 46.4% 46.1% 45.0% 43.5% 5.25 5.05 5.25 5.69
Strat- Random 48.1% 46.2% 47.0% 44.5% 5.13 4.91 5.02 5.47
8y Full ; ; ; 16.6% ; ; ; 5.14
All 53.2% 49.9% 52.0% 48.9% 4.64 4.52 4.54 4.82

Table 3: Comparison of Masking Strategies on CASP13 targets. The Training Strategy (rows) refers to the
masking type used to train each model. The Test Strategy (columns) refers to the type of mask applied to the input
to obtain the results. The cell values indicate the median NSR rate and perplexity for the corresponding mask-type
pair. For a given test strategy, ten separate masks were applied to each test chain, and the recovery /NSR values for
the chain was taken as the average over the ten samples (with the exception of full-masking). The same masks were
used to evaluate each training strategy. For all results, recovery (NSR) and perplexity scores are evaluated only on
the masked region of the input chain. We performed a paired t-test to confirm that the combined masking strategy
(All) significantly outperformed the other four models in terms of NSR and perplexity and obtained p-values less
than 0.001 for all tests.

In Table 3 we see that both recovery (NSR) and perplexity are improved by training with an equal combination
of our four masking strategies. Most notably, the perplexity of the model trained with all mask types is significantly
lower than those trained with a single mask type across all test strategies. When evaluating on fully-masked input,
the corresponding training strategy produces second-best results for both NSR and perplexity. Of the other three
single-mask input strategies, the random masking strategy performs best overall for the testing criteria. Surprisingly,
the random strategy achieves similar results or outperforms spatial and linear masking on the corresponding test
input.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

% residues
(cumulative)
No Tri

No TFN
Baseline

(i) baseline

(ii) inc. hidden dim 80%

(iii) inc. hidden + inc. depth

60%
(iv) w/ dist-sim

(v) no Tri
40%

(vi) no TFN

Probability of Correct Prediction

(vii) no sidechain loss 20%

(viii) no sidechain + no dist. loss

— 0%
4% 45% 46% 47% 48% 49% 50% 51% : 1-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 >=28
Median NSR on CASP13 targets Number of Neighboring Ca Residues

42% 43%

Figure 4: Impact of architectural components on NSR for CASP13 targets. (A) Contribution of features
towards network performance; all ablations are taken with respect to the baseline small model model (). The bars
show the median NSR of the corresponding model on CASP13 targets. The gray dotted line shows the median
NSR of (). (ii) shows performance when increasing the residue hidden dimension from 120 to 180 and (éii) when
also increasing the depth from 14 to 20. (iv) shows the result of using distance vs. dot-product based coordinate
attention. (vi) and (vi) remove the Locality-Aware Graph Transformer and the TFN-Transformer submodules,
respectively. vii ablates side-chain coordinate loss and viii removes both side-chain and pairwise distance loss. (B)
Performance of the baseline model (¢) and models (v), (vi) where Triangle Updates or the TFN-Transformer are
ablated (respectively). The gray dotted shows the cumulative percentage of residues with respect to the number of
C,, neighbors (x-axis) in a 10A radius of the central residue being predicted.

We also consider the impact of architectural choices in terms of model loss, hidden dimension of residue features,
the use of transformer submodules, and model depth. In Figure 4(A), we see that removing side-chain RMSD (wvii)
and predicted pairwise distance between side-chain atoms (viii) from the loss function significantly degrades NSR
for CASP13 targets. With the default loss held constant, removing the TEN-Transformer has the largest impact on
NSR, which drops nearly five percentage points when this component is ablated. Surprisingly, our Locality-Aware
Graph Transformer module (77i) still slightly outperforms GVP-GNN for CASP13 targets (44.3% NSR vs. 44.0%
NSR).

We further compare the benefits of our two-stage architecture in Figure 4(B). From this, we observe that the
two stage architecture significantly outperforms each single component when conditioned on all nine levels of degree
centrality. These results suggest that the representations learned by each submodule are at least partially disjoint
- and there is a clear benefit to combining the two representations.

6 Conclusion

In this work, we developed and evaluated a framework for learning inverse protein folding. Our model uses features
derived solely from protein backbone coordinates and further leverages this information to restrict attention to
spatially-local residue pairs.Although our model does not make explicit use of evolutionary information, it is able to
capture functional aspects of the underlying protein demonstrated by correlation with stability data gathered from
deep mutational scanning studies and outperforms protein language models that trained on large sequence databases.
We hope our model can prompt other researchers to further integrate structure information for characterizing
protein mutation effects. On top of the model itself, we showed that our loss function and training strategy offer
performance enhancements when compared to traditional approaches. The former effectively exploits the properties
of SE(3)-equivariance and the latter facilitates generalization to novel parts of structure space.

7 Author Contributions

J.X. conceived and supervised the project, built the in-house training data and revised the manuscript. M.M.
developed and tested the algorithm, analyzed and collected the results, and wrote the manuscript. B.L. conducted
and analyzed the deep mutational scanning study and assisted in writing the manuscript.

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

8 Conflict of interest

The authors declare that they have no conflict of interest.

9 Code Availability

Code will be made publicly available upon formal publication.

References

Adzhubei, Ivan, Daniel M Jordan, and Shamil R Sunyaev (2013). “Predicting functional effect of human missense
mutations using PolyPhen-2”. In: Current protocols in human genetics 76.1, pp. 7-20.

Alford, Rebecca F. et al. (2017). “The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.”
In: Journal of chemical theory and computation 13 6, pp. 3031-3048.

Alley, Ethan C, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church (2019). “Uni-
fied rational protein engineering with sequence-based deep representation learning”. In: Nature methods 16.12,
pp. 1315-1322.

Andrearczyk, Vincent, Julien Fageot, Valentin Oreiller, Xavier Montet, and Adrien Depeursinge (2020). “Local
rotation invariance in 3D CNNs”. In: Medical Image Analysis 65, p. 101756.

Anishchenko, Ivan, Tamuka M. Chidyausiku, Sergey Ovchinnikov, Samuel J. Pellock, and David Baker (2021). “De
novo protein design by deep network hallucination”. In: Nature 600, pp. 547-552.

Bachlechner, Thomas, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W. Cottrell, and Julian
McAuley (2020). ReZero is All You Need: Fast Convergence at Large Depth.

Baek, Minkyung et al. (2021). “Accurate prediction of protein structures and interactions using a three-track neural
network”. In: Science 373.6557, pp. 871-876.

Castorina, Leonardo V., Rokas Petrenas, Kartic Subr, and Christopher W. Wood (2021). PDBench: Evaluating
Computational Methods for Protein Sequence Design.

Chaudhury, Sidhartha, Sergey Lyskov, and Jeffrey J. Gray (2010). “PyRosetta: a script-based interface for imple-
menting molecular modeling algorithms using Rosetta”. In: Bioinformatics 26 5, pp. 689-91.

Chen, Sheng et al. (2020). “To Improve Protein Sequence Profile Prediction through Image Captioning on Pairwise
Residue Distance Map”. In: Journal of Chemical Information and Modeling 60.1. PMID: 31800243, pp. 391-399.

Chevalier, Aaron et al. (Sept. 2017). “Massively parallel de novo protein design for targeted therapeutics”. In: Nature
(London) 550.10.

Coluzza, Ivan (Feb. 2017). “Computational protein design: a review”. In: Journal of Physics: Condensed Matter
29.14, p. 143001.

Dawson, Natalie L et al. (2017). “CATH: an expanded resource to predict protein function through structure and
sequence”. In: Nucleic acids research 45.D1, pp. D289-D295.

Defresne, M, S Barbe, and T. Schiex (2021). “Protein Design with Deep Learning.” In: Int J Mol Sci. 22.21, pp. 136—
144.

Fuchs, Fabian, Daniel Worrall, Volker Fischer, and Max Welling (2020). “SE(3)-Transformers: 3D Roto-Translation
Equivariant Attention Networks”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., pp. 1970-1981.

Gligorijevic, Vladimir et al. (2021). “Structure-based protein function prediction using graph convolutional net-
works”. In: Nature communications 12.1, pp. 1-14.

Hopf, Thomas A et al. (2017). “Mutation effects predicted from sequence co-variation”. In: Nature biotechnology
35.2, pp. 128-135.

Huang, Xiaogiang, Robin Pearce, and Yang Zhang (Oct. 2019). “EvoEF2: accurate and fast energy function for
computational protein design”. In: Bioinformatics 36.4, pp. 1135-1142.

— (Apr. 2020). “FASPR: an open-source tool for fast and accurate protein side-chain packing”. In: Bioinformatics
36.12, pp. 3758-3765.

Ingraham, John, Vikas Garg, Regina Barzilay, and Tommi Jaakkola (2019). “Generative Models for Graph-Based
Protein Design”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al. Vol. 32.
Curran Associates, Inc.

J.H., Lubin, Pacella M.S., and Gray J.J (2018). “A Parametric Rosetta Energy Function Analysis with LK Peptides
on SAM Surfaces.” In: Langmuir 34.18, pp. 5279-5289.

10

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Jin, Wengong, Jeremy Wohlwend, Regina Barzilay, and Tommi S. Jaakkola (2022). “Iterative Refinement Graph
Neural Network for Antibody Sequence-Structure Co-design”. In: International Conference on Learning Repre-
sentations.

Jing, Bowen, Stephan Eismann, Patricia Suriana, Raphael J. L. Townshend, and Ron Dror (2021). Learning from
Protein Structure with Geometric Vector Perceptrons.

Jumper, John et al. (Aug. 2021). “Highly accurate protein structure prediction with AlphaFold”. In: Nature 596.7873,
pp- 583-589.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization”. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun.

Lai, Bogiao and Jinbo Xu (2022). “Accurate protein function prediction via graph attention networks with predicted
structure information”. In: Briefings in Bioinformatics 23.1, bbab502.

Leman, J. K. et al. (July 2020). “Macromolecular modeling and design in Rosetta: recent methods and frameworks”.
In: Nat Methods 17.7, pp. 665-680.

Lin, Eugene, Chieh-Hsin Lin, and Hsien-Yuan Lane (2022). “De Novo Peptide and Protein Design Using Generative
Adversarial Networks: An Update”. In: Journal of Chemical Information and Modeling 62.4. PMID: 35128926,
pp. 761-774.

Liu, Yufeng et al. (2022). Rotamer-Free Protein Sequence Design Based on Deep Learning and Self-Consistency.

Lucas, JE. and T. Kortemme (Oct. 2020). “New Computational Protein Design Methods for De Novo Small Molecule
Binding Sites”. In: PLoS Comput Biol 16.10.

McPartlon, Matthew and Jinbo Xu (2022). “AttnPacker: An end-to-end deep learning method for rotamer-free
protein side-chain packing”. In: bioRziv.

Meier, Joshua et al. (2021). “Language models enable zero-shot prediction of the effects of mutations on protein
function”. In: Advances in Neural Information Processing Systems 34.

Mirdita, M, M Steinegger, F Breitwieser, J Soding, and E Levy Karin (Mar. 2021). “Fast and sensitive taxonomic
assignment to metagenomic contigs”. In: Bioinformatics 37.18, pp. 3029-3031.

Mitchell, Alex L et al. (2019). “InterPro in 2019: improving coverage, classification and access to protein sequence
annotations”. In: Nucleic acids research 47.D1, pp. D351-D360.

Ng, Pauline C and Steven Henikoff (2003). “SIFT: Predicting amino acid changes that affect protein function”. In:
Nucleic acids research 31.13, pp. 3812-3814.

O’Connell, J. et al. (June 2018). “SPIN2: Predicting sequence profiles from protein structures using deep neural
networks”. In: Proteins 86.6, pp. 629-633.

Ovchinnikov, Sergey and Po-Ssu Huang (2021). “Structure-based protein design with deep learning”. In: Current
Opinion in Chemical Biology 65. Mechanistic Biology * Machine Learning in Chemical Biology, pp. 136-144.

Pan, Xingjie and Tanja Kortemme (2021). “Recent advances in de novo protein design: Principles, methods, and
applications”. In: Journal of Biological Chemistry 296, p. 100558.

Park, Hahnbeom et al. (2016). “Simultaneous Optimization of Biomolecular Energy Functions on Features from
Small Molecules and Macromolecules”. In: Journal of Chemical Theory and Computation 12.12. PMID: 27766851,
pp. 6201-6212.

Qi, Yifei and John Z. H. Zhang (2020). “DenseCPD: Improving the Accuracy of Neural-Network-Based Computa-
tional Protein Sequence Design with DenseNet”. In: Journal of Chemical Information and Modeling 60.3. PMID:
32126171, pp. 1245-1252.

Quijano-Rubio, A. et al. (Mar. 2021). “De novo design of modular and tunable protein biosensors”. In: Nature
591.7850, pp. 482-487.

Rao, Roshan et al. (2019). “Evaluating protein transfer learning with TAPE”. In: Advances in neural information
processing systems 32.

Riesselman, Adam J, John B Ingraham, and Debora S Marks (2018). “Deep generative models of genetic variation
capture the effects of mutations”. In: Nature methods 15.10, pp. 816-822.

Rocklin, Gabriel J. et al. (2017). “Global analysis of protein folding using massively parallel design, synthesis, and
testing”. In: Science 357.6347, pp. 168-175.

Satorras, Victor Garcia, Emiel Hoogeboom, and Max Welling (2021). “E(n) Equivariant Graph Neural Networks”.
In: CoRR abs/2102.09844.

Schiitt, K. T., H. E. Sauceda, P.J. Kindermans, A. Tkatchenko, and K.R. MA(Eller (June 2018). “SchNet - A deep
learning architecture for molecules and materials”. In: The Journal of Chemical Physics 148.24, p. 241722.

Shroff, Raghav et al. (2019). A structure-based deep learning framework for protein engineering.

11

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Siegel, J. B. et al. (July 2010). “Computational design of an enzyme catalyst for a stereoselective bimolecular
Diels-Alder reaction”. In: Science 329.5989, pp. 309-313.

Strokach, Alexey, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M. Kim (2020). “Fast and
Flexible Protein Design Using Deep Graph Neural Networks”. In: Cell Systems 11.4, 402-411.e4.

Strokach, Alexey and Philip M. Kim (2022). “Deep generative modeling for protein design”. In: Current Opinion in
Structural Biology 72, pp. 226-236.

Thomas, Nathaniel et al. (2018). “Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks
for 3D Point Clouds”. In: CoRR abs/1802.08219.

Tinberg, Christine E. et al. (2013). “Computational design of ligand-binding proteins with high affinity and selec-
tivity”. In: Nature 501.7466, pp. 212-216.

Wang, Jue et al. (2021). “Deep learning methods for designing proteins scaffolding functional sites”. In: bioRxiv.

Wang, Junmei, Romain M Wolf, James W Caldwell, Peter A Kollman, and David A Case (July 2004). “Development
and testing of a general amber force field”. In: Journal of computational chemistry 25.9, pp. 1157-1174.

Weiler, Maurice, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen (2018). “3D Steerable CNNs:
Learning Rotationally Equivariant Features in Volumetric Data”. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. NIPS’18. Montréal, Canada: Curran Associates Inc.,
pp. 10402-10413.

Xiong, Peng et al. (2014). “Protein design with a comprehensive statistical energy function and boosted by experi-
mental selection for foldability.” In: Nature communications 5, p. 5330.

Yang, Jianyi et al. (2020). “Improved protein structure prediction using predicted interresidue orientations”. In:
Proceedings of the National Academy of Sciences 117.3, pp. 1496-1503.

Zhang, Chi, Song Liu, and Yaoqi Zhou (2004). “Accurate and efficient loop selections by the DFIRE-based all-atom
statistical potential”. In: Protein Sci. 13.2, pp. 391-399.

Zhang, Y. and J. Skolnick (2005). “TM-align: a protein structure alignment algorithm based on the TM-score”. In:
Nucleic Acids Res 33.7, pp. 2302-2309.

Zhang, Yi et al. (2019). “ProDCoNN: Protein design using a convolutional neural network”. In: Proteins: Structure
88, pp. 819-829.

Zhou, Jianfu, Alexandra E. Panaitiu, and Gevorg Grigoryan (2020). “A general-purpose protein design framework
based on mining sequence-structure relationships in known protein structures”. In: Proceedings of the National
Academy of Sciences 117.2, pp. 1059-1068.

12

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Information

S1 Training Details and Hyperparameter Overview
S1.1 Training

We trained and validated all models using the BC40 training dataset and validated on BC40 validation set (January
2020 release). The training and validation splits contain 37k, and 1.5k and chains (resp.), which are selected from
PDB database by 40% sequence identity cutoff. In addition, we also filtered our training and validation sets against
CASP13 targets, removing any chain with >40% sequence similarity as reported by MMSeqs (Mirdita et al. 2021).
There is some discrepancy between sequence identity returned by MMseq and those computed by TM-Align (Y.
Zhang and Skolnick 2005) shown in Figure S3 which is likely due to the (potentially) local alignment used by
TM-Align.

All of our models were trained using early stopping based on validation loss, and for a total of at most 10
epochs. Because of the memory overhead of TFNs and Triangle updates, we used a sequence crop size of 300 to
avoid running out of memory. Overall, each model was trained for roughly five days on a single nvidia RTX A6000

gpu.
S1.2 Input and Hyperparameters

In tuning our model, we mainly experimented with feature hidden dimensions and model depth. In the main text,
we present results for large and small variants of our model. The parameter values for each are shown in Table S1.

Graph TFN-Transformer
Transformer (scalar, coord.)
(residue, pair)

Depth Large: 12 Large: 8
Small: 8 Small: 6
Hidden Dim. Large : 180, 120 Large: 180, 20
Small: 120, 120 Small: 120, 16
Num. Attention 10, 4 10, 10
Heads
Head Dim. Large: 20, 32 20, 4
Small: 20, 28
Neighbor Distance 15, 15 15
Cutoff
Max. Nearest 30, 30 16
Neighbors

Table S1: Hyperparameters Model depth, and hidden dimensions for residue (scalar), coordinate, and pair
features used in the Locality-Aware Graph Transformer and TFN-Transformer submodules of our network. items
are listed separartely for small and large variants of our model when the values differ.

S1.3 Input Features

In Table S2 we briefly review our model’s input features and their respective shapes. We note that each feature
(aside from residue-type) can be derived entirely for protein backbone coordinates.

13

https://drug.ai.tencent.com/protein/bc40/download.html
https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Features Name & Description

Shape

res_type A number in the range 0..21 representing the

[L] corresponding amino acid type. The first 20 labels

bb_dihedral
L, 3]

seq_pos
[L]
centrality
L]

atom distance
[L,L,3]

tr _orientations

[L, L, 3]

correspond to the 20 standard amino acid types, and the
final label corresponds to a “missing” identity.

Backbone phi, psi, and omega dihedral angles.
The sequence index of the respective residue, from 1..L

The number of Cv atoms within 16Aof residue of the
respective residue’s Ca atom.

One-hot encoded binned distance between Ca — Ca,
Ca — N, and N — O atoms in each residue. Each bin
represents a distances from 2A-20A with two separate
bins used for distances falling outside of this range.

Dihedral and planar angles defined by Yang et al (Yang
et al. 2020).

Table S2: Input features and shapes Feature names and shapes are shown in the left column, and a description
of each feature (row) is given in the right column.

Our input features are embedded following the strategy proposed in (McPartlon and Xu 2022). The primary
difference is that we we remove one-hot encodings of angle-based features. add an extra token to the residue type
input representing a "masked" residue identity. The full procedure can be found in Figure S2. We note that the
extra "masked" residue token enables us to generate designs in the classical setting, from backbone information
alone.

Figure S1: Input Embedding
| centrality — (L) l—b[bin_centrality — (L)]—P[one-hot — (L, 6) }

flatten, dim=1
| bb_dihedral — (L, 3) encode_angle — (L, 3, 2) p e(z 6‘;“ BN
‘ seq_pos (L) ’—rﬂ bin_rel pos — (L)]—P[one-hot — (L, 10) }
res_type (L)
hot —s (L, 21
(masked) oneno ()
bin_rel sep — (L, L) |—>IEmbed — (L,dR,)
[[]Residue Features L
[[]Pair Features Bmbed 21 5 dp p— >

[“]Shared Features
[Dvearnable
(] Not Learnable

Embed 21 — dp

flatten, dim=2
(L,L,3-dp)

atom_dists — (L, L,3) |———{ bin_dist — (L,L,3,dp) |—>{ onehot — (L,L,3,dp) |—>

flatten, dim=2

ltr_orientations — (L, L, 3) (L, L,6)

encode_angle — (L, 3,2)

A 4

Figure S2: Input Embedding The input feature embedding concatenates and projects residue and pair features
directly to the hidden dimensions specified in Table S1. For one-hot encodings of distance, we use an encoding
dimension of dp = 32 for all models in the manuscript. For relative sequence separation and residue type encodings
we use an encoding dimension of dr, = 48.

14

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S1.4 Loss

Three separate loss functions are applied to the output - one for each of the predicted residue, pair, and coordinate
features. Cross entropy (NSR) loss is computed on predicted residue features after applying a shallow feed-forward
network to produce residue-type logits. Notably, we compute loss on the predicted residue feature even if the
corresponding amino acid type was included in the input. Pair features are treated similarly, the output is passed
through a shallow feed-forward network to obtain predicted pairwise distance logits between each C'av and side chain
atoms CB, Cvy, Cv; Cvys Ov;. Masked cross entropy loss is applied to this output based on the corresponding native
structure’s residue type. Side chain conformation loss is computed as in (McPartlon and Xu 2022). The pair and
side-chain conformation loss are given a weight of 0.15, and the NSR loss is given a weight of 1.

S1.5 Optimization

To optimize our models, we use Adam (Kingma and Ba 2015) with and an initial learning rate of 10~3and parameters
B1=0.9, By =0.999, and € = 1078, and use a minibatch size of 24. To stabilize training we apply gradient clipping
by global norm to clip the gradients of each example in a minibatch to have f5 norm at most 1. For every residual
connection in our transformer blocks we use ReZero (Bachlechner et al. 2020), initialized with ag = 0.1. To conserve
GPU memory, we also apply gradient checkpointing on the triangle attention logits and TFN kernel outputs.

S2 Data Collection

Results for ProteinSolver were generated following the instructions on the author’s github page. We ran the program
with pre-trained model 191f05de/e53-s1952148-d93703104.state, using the A* search strategy until 1k sequences
were designed, or 10k iterations of search were performed (whichever came first). The designed sequence with
the smallest cumulative log-probability was chosen as the design for comparison. Results for GVP-GNN-CATH4.2
were generated using the pretrained model available on the author’s github page (here). Results for GVP-GNN-
BC40 were gathered by retraining the model using the training loop from the same github repo with the default
hyperparameters described in (Jing et al. 2021). Results for DenseCPD were collected by correspondence with
the authors. All results for RosettaDesign were generated using Pyrosettad, running fixbb protocol with flags -ex!
-ex2 -ex8 -exq -multi_cool annealer 10 -minimize _sidechains -linmem_ig 1 -nstruct 10 using the ref2015 score
function. With these settings, ten designs are generated for each target, and we choose the design with the lowest
energy for comparison.

S2.1 Train and Test Similarity

No canonical training or test dataset exists for fixed backbone design. Still, recent ML-based fixed-backbone design
methods have been trained on CATH4.2 dataset. In light of this, we provide an assessment of sequence and
structural similarity (see Figure S3) between CATH4.2 and BC40 datasets to the CASP13 and CASP14 test sets
used in our results. Overall, the chains in each of the two training sets have comparable sequence and structural
similarity with the most top-1 most similar CASP target chains.

15

https://github.com/ostrokach/proteinsolver
https://github.com/drorlab/gvp
https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A) TM-Align Score and Seq. Similarity with CASP13 B) TM-Align Score and Seq. Similarity with CASP14

100 100 100 100
—tm —tm

075

o
-
w»

075 0.75

050 050 050

0.25

o
N
[T

proportion (BC40)
=]
w
(=]
proportion (CATH)

025 0.25

proportion (CATH)
proportion (BC40)

0.00

o
o
=]

0.00 T T T 0.00
5 50 s 100

o
N
n
8
~
U
=
=]
=)
=]
=]
N
n
g<
~
v

0 2‘5 Sb 7‘5 100 100

100

-
o
(=]

100 100

[seg-identity 3 seq-identity

075

o
~
v

075 0.75

050 0.50 0.50

025

o
N
v

proportion (BC40)
o
o
o
proportion (CATH)

025 0.25

proportion (CATH)
proportion (BC40)

0.00

[=d
o
(=]

0.00 4 T T T 0.00 T T T
5 50 s 100 0 25 50 s 100

5 0 75 100

o
N
w
g
A
—
o
o
(=]
=]

Figure S3: Cumulative frequency plot of top-1 TM-Align score and sequence identity from CASP13
and CASP14 test sets to CATH4.2 and BC40 training sets. For each plot, the x-axis shows similarity -
TM-score (red) or sequence identity (blue) - of test targets to the most similar training target in CATH4.2 or BC40
datasets. The y-axis shows the cumulative proportion of similar targets. For example, the upper left plot tells us
that roughly 20% of targets in CASP13 have TM-score greater than 75% to some target in CATH4.2. TM-scores
and sequence identity were computed using TM-Align. For each target in the test sets, the sequence identity and
TM-Align score of the most-similar model in the training set was added to the frequency plot.

We repeated this procedure for the 10 chains in our DMS test dataset used to evalute zero-shot mutation effect
prediction. The results are show in Figure S4.

TM-Align Score and Seq. Similarity with DMS Targets

100

-
o
o

—tm
0.75

(=]
~
wn

0.50

025

proportion (BC40)
e o
N w
v o

proportion (CATH)

0.00

1=
o
o

0 25 50 75 100 0 X S 75 100

100 _|—|_I:I seg-identity

075

-
=]
=]

(=]
)
wn

050

0.25

proportion (BC40)
e o
N w
(V] o

proportion (CATH)

0.00

=4
o
(=]

Figure S4: Cumulative frequency plot of top-1 TM-score and sequence identity from our DMS test
dataset to CATH4.2 and BC40 training sets. The same procedure as performed for Figure S3 was repeated
for the ten targets in our DMS test dataset.

We remark that, although our model out-performs GVP-GNN on the zero-shot mutation effect prediction task,
the CATHA4.2 training set has larger overlap with these targets in terms of both structural and sequence similarity.

S3 Extended Results

Although there is no canonical test set for fixed-backbone design, TS50 and CATH4.2 have emerged as de-facto
benchmarks for recent ML-based methods. We compare our model on the TS50 test set with several other ML-
based design methods and physics-based Rosetta fix _bb application using results reported from the respective
manuscripts. To obtain our results, we filter our BC40 training set to exclude all sequences with global similarity
greater than 40% as computed with MMseqs (denoted with "filtered").

16

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Results for TS50 Test Set

Method

Recovery 1 (%)

Ours (small)

Ours (small + filtered)

DenseCPD (Qi and J. Z. H. Zhang 2020)
GVP (Jing et al. 2021)

ProDCoNN (Yi Zhang et al. 2019)

SPROF (Chen et al. 2020)

SPIN2 (O’Connell et al. 2018)

ProteinSolver (Strokach, Becerra, et al. 2020)
Rosetta (J. K. Leman et al. 2020)

52.1
48.3
50.7
44.9
40.7
39.2
33.6
30.8
30.0

Figure S5: Results on TS50 Datasets. After filtering by sequence similarity, our small model achieves second

best performance in NSR, behind 3DCNN-based method DenseCPD.

Results for CATH4.2 Dataset

For evaluating our model on CATH4.2 test chains, we trained a separate model using CATHA4.2 chains for training
(denoted + CATH/.2 in Figure S6). We also report results for our model trained on BC40 and evaluated on
CATH4.2 test data. We note that there is potentially overlap between our training set and the CATH4.2 test

chains.
Method Recovery 1 (%) Perplexity |
Ours (small + BC40) 48.9 5.01
Ours (small + CATHA4.2) 43.8 5.22
GVP (Jing et al. 2021) 40.2 5.29
Structured GNN (Ingraham et al. 2019) 37.3 6.55

Figure S6: Results on CATH4.2 Dataset Our small model trained on CATHA4.2 data outperforms the structure
transformer and GVP-GNN on the corresponding test set. Our model trained on BC40 achieves significantly higher

recovery, but this may be caused by overlap between the train and test sets.

17

https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.15.488492; this version posted April 16, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

S4 PDB Lists for Test Datasets

Table S3: List of targets in each test dataset.

Dataset Targets

CASP13 T0949, T0950, T0951, T0953s1, T0953s2, T0954, T0955, T0957s1, T0957s2,
T0958, T0959, T0960, T0961, T0962, T0963, T0964, T0965, T0966, T0967,
T0968s1, T0968s2, T0969, T0970, T0971, T0973, T0974s1, T0974s2, TOI75,
T0976, T0977, TO978, T0979, T0980s1, T0980s2, T0981, T0982, T0983,
T0984, T0985, T0986s1, T0986s2, T0987, T0988, T0989, T0990, T0991,
T0992, T0993s1, T0993s2, T0994, T0995, T0996, T0997, T0998, T1000,
T1001, T1002, T1003, T1004, T1005, T1006, T1008, T1009, T1010, T1011,
T1013, T1014, T1015s1, T1015s2, T1016, T1016 A, T1017s1, T1017s2,
T1018, T1019s1, T1019s2, T1020, T1021s1, T1021s2, T1021s3, T1022s1,
T1022s2

CASP14 T1024, T1025, T1026, T1027, T1028, T1030, T1031, T1032, T1033, T1034,
T1035, T1036s1, T1037, T1038, T1039, T1040, T1042, T1043, T1045s1,
T1045s2, T1046s1, T1046s2, T1047s1, T1047s2, T1048, T1049, T1052, T1053,
T1054, T1055, T1056, T1057, T1058, T1060s2, T1060s3, T1062, T1064,
T1065s1, T1065s2, T1067, T1068, T1070, T1072s1, T1073, T1074, T1078,
T1079, T1080, T1082, T1083, T1084, T1087, T1088, T1089, T1090, T1091,
T1092, T1093, T1094, T1095, T1096, T1098, T1099, T1100

TS50 leteA 1v7mV 1yllA 3pivA lordA 2i39A 4genA 1bvyF 3on9A 3vjzA 3nbkA
3ldrA 3gwiA 4dkcA 3s06A 3lqcA 3gknA 3nngA 2j49A 3fhkA 2va0A 3hklA
2xr6A 3ii2A 2cayA 3t5gB 3ieyB 3aqgA 3q4oA 2qdlA 3ejfA 3gfsA lahsA
2fvvA 2a2lA 3nzmA 3e8mA 3k7pA 3nyT7A 2gu3A 1pdoA 1h4aX 1dx5I 1i8nA
2cviA 3adrA 1lpbA 1mrlC 2xcjA 2xdgA.

CATH4.2 See (Ingraham et al. 2019), available here

18

http://people.csail.mit.edu/ingraham/graph-protein-design/data/cath/
https://doi.org/10.1101/2022.04.15.488492
http://creativecommons.org/licenses/by-nc-nd/4.0/

	ㄵ㐠〠潢樊㰼 呩瑬攨﻿ㄵ㔠〠潢樊㰼 呩瑬攨﻿ㄵ㘠〠潢樊㰼 呩瑬攨﻿ㄵ㜠〠潢樊㰼 呩瑬攨﻿ㄵ㠠〠潢樊㰼 呩瑬攨﻿ㄵ㤠〠潢樊㰼 呩瑬攨﻿ㄶ〠〠潢樊㰼 呩瑬攨﻿ㄶㄠ〠潢樊㰼 呩瑬攨﻿ㄶ㈠〠潢樊㰼 呩瑬攨﻿ㄶ㌠〠潢樊㰼 呩瑬攨﻿ㄶ㐠〠潢樊㰼 呩瑬攨﻿ㄶ㔠〠潢樊㰼 呩瑬攨﻿ㄶ㘠〠潢樊㰼 呩瑬攨﻿ㄶ㜠〠潢樊㰼 呩瑬攨﻿ㄶ㠠〠潢樊㰼 呩瑬攨﻿ㄶ㤠〠潢樊㰼 呩瑬攨﻿ㄷ〠〠潢樊㰼 呩瑬攨﻿ㄷㄠ〠潢樊㰼 呩瑬攨﻿ㄷ㈠〠潢樊㰼 呩瑬攨﻿ㄷ㌠〠潢樊㰼 呩瑬攨﻿ㄷ㐠〠潢樊㰼 呩瑬攨﻿ㄷ㔠〠潢樊㰼 呩瑬攨﻿ㄷ㘠〠潢樊㰼 呩瑬攨﻿ㄷ㜠〠潢樊㰼 呩瑬攨﻿ㄷ㠠〠潢樊㰼 呩瑬攨﻿ㄷ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐰⸹㠳‴〰⸸㈴‴㌱⸶㌴‴ㄲ⸷㜷崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㌵㈮㤶㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐹〮㈶ㄠ㐰〮㠲㐠㔵㘮㌰㌠㐱㈮㜷㝝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㈳㌮㈴㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷″㠸⸸㘹‱〳⸰㘳‴〰⸸㈲崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′㌳⸲㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔴⸵㈴″㠸⸸㘹′㌰⸱ㄱ‴〰⸸㈲崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‷㌵⸳〷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠳⸴㠱″㠸⸸㘹‴ㄵ⸴㔴‴〰⸸㈲崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‵ㄹ⸶ㄷ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄹ⸵㐹″㠸⸸㘹‵〴⸵㜠㐰〮㠲㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㘳㤮ㄶ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㔮㜲㐠㌵㌮〰㐠㌶㘮㜷ㄠ㌶㐮㤵㙝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‸㤮㤵㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷ㄮ㤸㈠㌵㌮〰㐠㐵㈮㘰ㄠ㌶㐮㤵㙝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‵㠰⸱ㄲ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔷⸸ㄳ″㔳⸰〴‵㔳⸵㌷″㘴⸹㔶崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄷ㌮㘳㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷″㐱⸰㐸‱㘸⸵㈷″㔳⸰〱崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‶〳⸳〳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄸ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〲⸸㈵″㐱⸰㐸″㜵⸸㌶″㔳⸰〱崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰″〴⸹㜷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㠰⸷㜱″㐱⸰㐸‴㜴⸰㤷″㔳⸰〱崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴㠴⸳〴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜹⸰㌳″㐱⸰㐸‵㔳⸵㌷″㔳⸰〱崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴ㄲ⸵㜳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㌲㤮〹㌠ㄳ㌮㌱㈠㌴ㄮ〴㙝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㔳㈮ㄲ㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸ㔮㤵㈠㈲ㄮ㐹㜠㈶㜮㔱㘠㈳㌮㐴㥝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠ㄱ㌮ㄴ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈷㈮㤳㜠㈲ㄮ㐹㜠㌸ㄮ㌹㌠㈳㌮㐴㥝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‵㈰⸳㌷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㤮㔷′〹⸵㐲‱㐸⸷㠶′㈱⸴㤴崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‶㘳⸶㌲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄹ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔴⸶㠵′〹⸵㐲′㌳⸸〲′㈱⸴㤴崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㈵㤮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㤮㜰ㄠ㈰㤮㔴㈠㌳〮〷㤠㈲ㄮ㐹㑝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠ㄳ㜮㘰㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㔮㤷㠠㈰㤮㔴㈠㐰㠮㘷㘠㈲ㄮ㐹㑝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㜰ㄮ㐳㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐱㐮㔷㘠㈰㤮㔴㈠㐹㘮㔷′㈱⸴㤴崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‵㜹⸹㐶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐶⸴㔷‱㠵⸶㌱‵㌲⸳㔶‱㤷⸵㠴崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‶㜵⸵㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㈴⸳ㄳ‱㜳⸶㜶‱㤹⸰㐹‱㠵⸶㈹崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㐴㠮〵㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈴㔮㘱㔠㄰ㄮ㤴㔠㌳㌮㄰㔠ㄱ㌮㠹㡝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐲㐮㔲㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㜮㠹㐠㄰ㄮ㤴㔠㐲㌮㤱㠠ㄱ㌮㠹㡝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰″〵⸱㐴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㈰㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈰㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㘮㘵㐠㜲ㄮ㠵㠠㈹㠮㈰㐠㜳㌮㠱ㅝਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰′㈱⸴㔷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〲⸷㠱‷㈱⸸㔸″㜸⸶㐲‷㌳⸸ㄱ崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‶ㄵ⸸ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜶⸷㔴‷〹⸹〳‵㔳⸵㌷‷㈱⸸㔶崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‴㜲⸳㐹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㘹㜮㤴㠠ㄲ㘮㤲‷〹⸹〱崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄹ㜮㔴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄲ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄳ〮㤰㔠㘹㜮㤴㠠㈲㤮㐹㈠㜰㤮㤰ㅝਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠ㄸ㔮㐲㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㤮㜸㔠㘷㐮〳㜠㐸㜮㤸ㄠ㘸㔮㤹崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‴㤶⸲㘰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㤱⸱㔴‴㠷⸷㜠㔵㘮㌰㌠㐹㤮㜲㍝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰′㠱⸲㌳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㐷㔮㠱㔠㜷⸶ㄠ㐸㜮㜶㝝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰′㠱⸲㌳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐷⸲㐹‴㘳⸸㔹‵㌹⸴〴‴㜵⸸ㄲ崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴㌶⸴㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㐳⸷㤷‴㘳⸸㔹‵㔶⸳〳‴㜵⸸ㄲ崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′㘹⸱ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈱㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㐵ㄮ㤰㐠ㄶ〮〶㤠㐶㌮㠵㝝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㈶㤮ㄱ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ㌮㔹㈠㐵ㄮ㤰㐠㈳㐮㌹㠠㐶㌮㠵㝝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰″㜶⸸㜵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌷⸹㈱‴㔱⸹〴″㐰⸸㜷‴㘳⸸㔷崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㐹㘮㐲㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌴㐮㐠㐵ㄮ㤰㐠㐱㠮㈷㜠㐶㌮㠵㝝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㠹⸷㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㐰⸰㌠㐳㤮㤴㤠㌱㌮㈸‴㔱⸹〲崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㌷㘮㠷㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㐮㌱㈠㐲㜮㤹㐠㐲㤮〰ㄠ㐳㤮㤴㝝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㌷㘮㜰㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔹⸵㜠㐱㘮〳㤠ㄴ㤮㔶㜠㐲㜮㤹㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㐳㘮㐸㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳〮㘴㜠㐱㘮〳㤠㌵ㄮ〹‴㈷⸹㤲崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′㘹⸱ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔰⸹㘶″㐴⸳〸″㈲⸱㘶″㔶⸲㘱崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷〱⸴㌴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔵⸰㔷″㐴⸳〸‵㐹⸶㘳″㔶⸲㘱崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ㔮㌳″㌲⸳㔳‱㠰⸱㘱″㐴⸳〵崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‵㌲⸱㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜳⸱㠱″㌲⸳㔳‴〳⸰㌶″㐴⸳〵崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‷ㄱ⸴㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㄰⸹㌲′㐸⸶㘶‵㔶⸳〳′㘰⸶ㄹ崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‶ㄵ⸸ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㈳㘮㜱ㄠ㄰㌮㤴㈠㈴㠮㘶㑝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㘱㔮㠱㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㠮㘹㔠㈳㘮㜱ㄠ㈱㔮㔳㘠㈴㠮㘶㑝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‴㤶⸴㈶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈰⸲㠹′㌶⸷ㄱ′㠶⸸ㄹ′㐸⸶㘴崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‵㘷⸹㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㤱⸵㜱′㌶⸷ㄱ″㔶⸹㤴′㐸⸶㘴崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷㌵⸳〷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〱⸹㘠㈲㐮㜵㘠㌹㔮〰㠠㈳㘮㜰㥝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‴㈴⸶㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㤹⸲ㄴ′㈴⸷㔶‵㔳⸵㌷′㌶⸷〹崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰″㔲⸷㤸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㔮㘹㜠㈱㈮㠰ㄠㄱ㔮㠴㠠㈲㐮㜵㑝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰″㈸⸵〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㈰⸸㔹′ㄲ⸸〱′㘲⸱㌹′㈴⸷㔴崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰″㈸⸸㠷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〸⸹㈸′〰⸸㐶′ㄳ⸳ㄷ′ㄲ⸷㤹崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‶㠷⸵㐲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜷⸰ㄲ‱㜶⸹㌵‵㐹⸶㘳‱㠸⸸㠸崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄹ㜮㔴㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄲ㐮㔸㜠ㄶ㐮㤸′㈴⸰㜶‱㜶⸹㌳崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‱㠵⸴㈵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘲⸳㜱‱㘴⸹㠠㌵㤮ㄲ‱㜶⸹㌳崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‴〰⸶ㄸ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㐸⸰㐵‱㘴⸹㠠㔴〮〹㈠ㄷ㘮㤳㍝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‶〵⸹㘰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄲ⸷㠵‱㔳⸰㈵‴㤰⸶㐱‱㘴⸹㜸崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‴㜲⸳㐹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈱⸸㌶‶㤮㌳㤠㈹㘮㌴㐠㠱⸲㤲崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㈵㤮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㠮㈱㜠㘹⸳㌹‵㔶⸳〳‸ㄮ㈹㉝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐹㘮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷‵㜮㌸㐠ㄱ㈮㜱㠠㘹⸳㌷崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‴㤶⸲㘰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈴㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㈴㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈵ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈵〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔲‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略ਯ䍓⽄敶楣敒䝂㸾敮摯扪ਲ㔳‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪ਲ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐸㤮〲㜠㘴〮㈶㐠㔵㘮㌰㌠㘵㈮㈱㙝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐹㘮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷‶㈸⸳〹‹㌮㤳㌠㘴〮㈶ㅝਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐹㘮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈹㔮㌲㌠㘲㠮㌰㤠㌰㈮㈹㔠㘴〮㈶ㅝਯ䑥獴⁛㈠〠删⽘奚‱〰⸹ㄵ〠㌴㤮㔹㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈶㜮㌳″㄰⸲㐳′㠲⸰㔠㌲㈮ㄹ㙝ਯ䑥獴⁛㌠〠删⽘奚‵㘮㘹㌰‴㤴⸴ㄹ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱〲⸱㜸′㜴⸳㜸‱㈲⸴㌱′㠶⸳㌱崊⽄敳琠嬱〠〠删⽘奚‵㘮㘹㌰‷㌵⸳〷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈲⸴㘴‱㔴⸴㌷″㌴⸹㜠ㄶ㔮㈲㡝ਯ䑥獴⁛㌸‰⁒ 塙娠㄰㘮㌹㄰‱ㄵ⸸㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㠵⸸㈲‱㔴⸴㌷″㤸⸳㈸‱㘵⸲㈸崊⽄敳琠嬳㠠〠删⽘奚‱〱⸴㘲〠㐷ㄮㄹ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㈶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠′㘱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠′㘳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㈶㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜸⸹‶㤱⸵ㄵ‵㐹⸶㘳‷〳⸴㝝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㔰㠮㈱㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㜮㌸㤠㘵㔮㘵″㤶⸴㜵‶㘷⸶〲崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷〱⸴㌴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜶⸰ㄱ‴㈵⸲㈱″㘶⸴㜱‴㌷⸱㜴崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌷㤮㈱㐠㌸㤮㌵㘠㌹ㄮ㜲ㄠ㐰ㄮ㌰㥝ਯ䑥獴⁛㌸‰⁒ 塙娠㄰㘮㌹㄰‱ㄵ⸸㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㈸⸶㌴‱㜸⸷〱″㐳⸳㔳‱㠹⸴㤲崊⽄敳琠嬶‰⁒ 塙娠㔶⸶㤳〠㐸㜮㌳㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㌮㤰㘠㠴⸰㔴″㈰⸸㜹‹㘮〰㝝ਯ䑥獴⁛㌠〠删⽘奚‱㠲⸵㄰〠㜵⸵㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㈷ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈷㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈷㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㌲㔮㔴‶㤲⸰㘹″㔱⸷㐱‷〲⸸㔹崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤牵朮慩⹴敮捥湴⹣潭⽰牯瑥楮⽢挴〯摯睮汯慤⹨瑭氩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐴㜮㄰㔠㘶㠮ㄵ㠠㐵㤮㘱ㄠ㘷㠮㤴㥝ਯ䑥獴⁛㤠〠删⽘奚‵㘮㘹㌰‷ㄲ⸶㤲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤹⸰㠱‵㜲⸵ㄷ′ㄳ⸸〱‵㠳⸳〸崊⽄敳琠嬳‰⁒ 塙娠㔶⸶㤳〠㐹㐮㐱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌰㠮㈱㘠㔳㠮㔸㠠㌲㠮㐶㠠㔴㜮㐴㉝ਯ䑥獴⁛㄰‰⁒ 塙娠㔶⸶㤳〠㜳㔮㌰㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㜹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㠮㔹‴㠱⸳㌷″㔹⸴㤹‴㤳⸲㥝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㜰ㄮ㐳㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐲㌮㔳ㄠ㐸ㄮ㌳㜠㔴㤮㘶㌠㐹㌮㈹崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′㘹⸱ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱ㄳ⸰〱‴㘹⸳㠲′〳⸲㜴‴㠱⸳㌵崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴㌶⸴㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜶⸷㤵‴㘹⸳㠲‴〶⸱㌳‴㠱⸳㌵崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‷ㄱ⸴㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵〵⸵㠹‴㘹⸳㠲‵㔶⸳〳‴㠱⸳㌵崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㐰〮㜸㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷‴㔷⸴㈷‱〲⸹㈷‴㘹⸳㡝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‴〰⸷㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱〶⸹㜶‴㔷⸴㈷′ㄲ⸹㜸‴㘹⸳㡝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㔹ㄮ㤰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔴ㄮ〳ㄠ㐵㜮㐲㜠㔵㌮㔳㜠㐶㤮㌸崊⽄敳琠嬱〠〠删⽘奚‵㘮㘹㌰‵ㄵ⸲㤵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬷㘮㘶㘠㌸㔮㘹㘠ㄴ㜮㤰㠠㌹㜮㘴㥝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㜰ㄮ㐳㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㠸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄸ㜮㄰㠠㈲㌮㤵㔠ㄹ㌮㔶㤠㈳㐮〷㡝ਯ䑥獴⁛㔲‰⁒ 塙娠㜱⸹㌲〠㠵⸰㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈸㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㤮㔷‵㤮㜷㌠ㄲ㠮㘵㘠㜱⸷㈶崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷〱⸴㌴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ㤱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㈹〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㈹㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㈹㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐰㠮㔰㘠㜲ㄮ㠵㠠㐲ㄮ〱㈠㜳㌮㠱ㅝਯ䑥獴⁛ㄲ‰⁒ 塙娠㈵〮〵㜰‷〱⸰㤱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠶⸸㔷‶㠵⸹㤳‵㔶⸳〳‶㤷⸹㐵崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷‶㜴⸰㌷‷㜮㘱‶㠵⸹㥝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‱㈵⸸ㄶ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㈹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㐸⸸㜲‶㜴⸰㌷″㘹⸱㈵‶㠵⸹㥝ਯ䑥獴⁛㄰‰⁒ 塙娠㔶⸶㤳〠㌴㤮㐷㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴㜮〱㘠㘵〮ㄲ㜠㈵㤮㔲㈠㘶㈮〸崊⽄敳琠嬶㠠〠删⽘奚‱〵⸳㜶〠㌰㔮㠵㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㐮㐱㌠㘵〮ㄲ㜠㌲㘮㤱㤠㘶㈮〸崊⽄敳琠嬶㠠〠删⽘奚‱〶⸱㈵〠㔱㤮㔵㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌷㤮㐸㘠㘵〮ㄲ㜠㌹ㄮ㤹㈠㘶㈮〸崊⽄敳琠嬱㈠〠删⽘奚′㔰⸰㔷〠㜰ㄮ〹㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄱ㌮㈸ㄠ㈶㠮ㄸㄠㄲ〮㈵㐠㈸〮ㄳ㑝ਯ䑥獴⁛㔲‰⁒ 塙娠㄰〮㈸㘰″㘸⸹㘷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔶⸸㘠ㄲ㐮㜱㤠㔵㈮㐳‱㌶⸶㜲崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄴ㤮㜲㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐱㌮㌶㠠㘳⸶ㄲ‴ㄹ⸵㤴‷㌮㠱㥝ਯ䑥獴⁛㐠〠删⽘奚‹㘮㤰㤰‱㈳⸰㌵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌰㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌰㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〶‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌰㘠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㐮㈱㔠㐱〮㐷㠠㌷㠮㘱㤠㐲㈮㐳ㅝਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠ㄶㄮ㔱㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼〹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㘮㐴㠠㌹㠮㔲㌠㐱㠮㤴‴㄰⸴㜶崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㄰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌱ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㄰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼ㄳ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″ㄲ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌱㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤰⸶㜹‷㈱⸸㔸′㠲⸹㠹‷㌳⸸ㄱ崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄵ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐵ㄮ㘵ㄠ㜰㤮㤰㌠㔳㔮㜵㌠㜲ㄮ㠵㙝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠ㄶㄮ㔱㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼ㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㠳⸴㜳‶㤷⸹㐸‹〮㐴㔠㜰㤮㤰ㅝਯ䑥獴⁛㔠〠删⽘奚‹㠮㐰㠰‴㘱⸷㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘵⸰㔲‶㘲⸰㠲‴㌳⸲㐴‶㜴⸰㌵崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′〹⸳㌶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜸⸸㐳‶㘲⸰㠲‵㔲⸴㌠㘷㐮〳㕝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‵㔶⸲〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌱㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳ㄵ⸰㜶‶㌸⸱㜲″㈲⸰㐹‶㔰⸱㈵崊⽄敳琠嬵‰⁒ 塙娠㄰㈮〰㌰‱ㄸ⸱㜱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌲〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌴⸵㈹‶ㄴ⸲㘲‵㐱⸵〱‶㈶⸲ㄴ崊⽄敳琠嬵‰⁒ 塙娠㄰㈮〰㌰‱ㄸ⸱㜱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌲ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱〱⸰㘹‴㔴⸰〵‱ㄵ⸷㠹‴㘴⸷㤶崊⽄敳琠嬳‰⁒ 塙娠㔶⸶㤳〠㐹㐮㐱㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㤮㠹㌠ㄳㄮ㠶ㄠㄱ㘮㠶㘠ㄴ㌮㠱㍝ਯ䑥獴⁛㘠〠删⽘奚‹㔮㜵㘰′㘶⸸㔴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌲㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼㈴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌲㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌲㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌲㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌳㔮㌳㘠㐰㈮㐰㠠㌴㈮㌰㠠㐱㐮㌶ㅝਯ䑥獴⁛㜠〠删⽘奚‹㤮㔵㜰‵㘳⸸〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌲㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㤱⸷〱″㌰⸶㜷″㤸⸶㜴″㐲⸶㍝ਯ䑥獴⁛㜠〠删⽘奚‹㤮㔵㜰‵㘳⸸〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌲㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼㌰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌲㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌳ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌳㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㌳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㌵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌳㜠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼㌸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌳㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㌹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌳㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㐱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌴㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㐴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㐳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌴㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬲㔵⸲㜸‶㘱⸲㜱′㠱⸴㜹‶㜳⸲㈴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽤牵朮慩⹴敮捥湴⹣潭⽰牯瑥楮⽢挴〯摯睮汯慤⹨瑭氩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㘮㔴㔠㘲㔮㐰㘠㔴㤮㘶㌠㘳㜮㌵㥝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐴㠮㐳㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔴㐮〷㐠㘱㌮㐵ㄠ㔵㘮㌰㌠㘲㔮㐰㑝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㐶〮㌹㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔵⸶㤷‶〱⸴㤶‱㜰⸲㤴‶ㄳ⸴㐸崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴㘰⸳㤴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㔳⸵㔲‶〱⸴㤶′㘶⸰㔹‶ㄳ⸴㐸崊⽄敳琠嬱ㄠ〠删⽘奚‱〵⸷㠵〠㔷〮㠴㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔴ㄮ〳ㄠ㐸㘮〳㠠㔵㌮㔳㜠㐹㘮㠲㡝ਯ䑥獴⁛㤠〠删⽘奚‱〶⸰ㄳ〠㈲㘮㤱㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㤶⸶㠵‱㐱⸸㤶‱〹⸱㤱‱㔲⸶㠶崊⽄敳琠嬳㠠〠删⽘奚‱〱⸴㘲〠㐷ㄮㄹ㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㔲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌵㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㔴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌵㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔵⸹㤹‴㤱⸳㈳‴㤱⸷㤹‵〸⸳㔸崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‵〸⸲ㄵ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㌴⸶㠹‴㜶⸴㜸′㠲⸰㔵‴㤱⸳㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㔶⸶㤳〠㔰㠮㈱㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㤮㔴㐠㐱㜮㌹㤠㐸㠮〸㠠㐲㤮㌵㉝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐹㘮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐵㤮㐵ㄠ㌹㐮〴㈠㐷ㄮ㤵㜠㐰㐮㠳㍝ਯ䑥獴⁛㌸‰⁒ 塙娠㄰㘮㌹㄰‱ㄵ⸸㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㤰⸷㌱‸㤠㌰㌮㈳㠠㤹⸷㤱崊⽄敳琠嬹‰⁒ 塙娠㄰㘮〱㌰′㈶⸹ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼㘲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌶ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌶㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㤮㌳㌠㘳ㄮ㜳㤠㐸㜮〴㤠㘴㌮㘹㉝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㐹㘮㈶〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈲㌮㌴㤠㔷㔮㔰㐠㌱㐮㜳㠠㔸㠮〹㙝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㘵ㄮ㘷㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㐮㠱㘠㔳㤮㘳㠠㌸㘮㈵㈠㔵ㄮ㔹ㅝਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‴㜲⸵ㄶ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌶㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬴㄰⸸㤷‴㠱⸹㘴‴㘳⸲㐷‴㤲⸷㔴崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯潳瑲潫慣栯灲潴敩湳潬癥爩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㘹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㐲〮㔲㈠㐳㌮㔹‴㐰⸸〲‴㐵⸵㐲崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴灳㨯⽧楴桵戮捯洯摲潲污戯杶瀩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㐮㘳㔠㐰㤮㘷㤠㈶㘮㠷ㄠ㐲ㄮ㘳㉝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㜰ㄮ㐳㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄹ㠮㠸㜠㈹㌮㘶㠠㈱ㄮ㌹㌠㌰㔮㘲ㅝਯ䑥獴⁛ㄱ‰⁒ 塙娠㄰㔮㜸㔰‵㜰⸸㐵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㈠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈲⸰㐮ㄵ⸴㠸㐹㈩㸾敮摯扪ਲ਼㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㌮㔶㐠㜷㠠㈷㘮㌴‷㠸崊⽁†㌷㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜴‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⵮搯㐮〯⤾㹥湤潢樊㌷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘲⸳㌲‷㘲‴〴⸳㘴‷㜲崊⽁†㌷㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴㌮ㄴ㈠㐴㘮㐲㌠㈵㔮㘴㠠㐵㜮㈱㑝ਯ䑥獴⁛ㄱ‰⁒ 塙娠㄰㘮㐵㠰′㘵⸰〶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌷㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㠳⸷㠹′㌸⸱㘳‴㤶⸲㤵′㐸⸹㘷崊⽄敳琠嬱ㄠ〠删⽘奚‱〵⸷㠵〠㔷〮㠴㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㜸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㜸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㠰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄵ⸰㘸‶㌲⸴㌶″㌷⸵㔱‶㔲⸳㘱崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰′㘹⸱ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㠹⸶㈸‶ㄴ⸵〳′㔸⸷ㄳ‶㌴⸴㈹崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷〱⸴㌴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄷ⸹㐵‵㤶⸵㜱″〹⸳〳‶ㄶ⸴㤶崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‴㌶⸴㠴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〱⸱㜹‵㜸⸶㌸′㜴⸵㔳‵㤸⸵㘳崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠㌷㘮㠷㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄹ㔮㤲㈠㔶〮㜰㔠㈹〮㌲㌠㔸〮㘳崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰″㜶⸷〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈶⸴ㄱ‵㐲⸷㜲″㔶⸷㈵‵㘲⸶㤸崊⽄敳琠嬱㐠〠删⽘奚‵㘮㘹㌰‷ㄱ⸴㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌸㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〰⸹㔸‵㈴⸸㐠㌰㜮㈵㘠㔴㐮㜶㕝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㔶⸶㤳〠㔹ㄮ㤰㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈰㌮㐱㤠㐳㔮㤷㈠㈱㔮㤲㔠㐴㜮㤲㑝ਯ䑥獴⁛㘸‰⁒ 塙娠㄰㔮㌷㘰″〵⸸㔸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㘹⸳ㄱ″㈹⸰㜲′㌸⸳㤷″㐸⸹㤷崊⽄敳琠嬱㌠〠删⽘奚‵㘮㘹㌰‷〱⸴㌴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄹ⸸㔹″ㄱ⸱㌹″ㄲ⸳㔱″㌱⸰㘴崊⽄敳琠嬸‰⁒ 塙娠㔶⸶㤳〠ㄲ㔮㠱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌹㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㤲‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌹㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪ਲ਼㤵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠″㤴‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㌹㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤲⸴㤠㌶㘮㐰㌠㈸㐮㤸㈠㌸㘮㌲㡝ਯ䑥獴⁛㠠〠删⽘奚‵㘮㘹㌰‱㈵⸸ㄶ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊㌹㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬳㌳⸸㤷″㘶⸴〳″㔴⸱㜷″㠶⸳㈸崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡨瑴瀺⼯灥潰汥⹣獡楬⹭楴⹥摵⽩湧牡桡洯杲慰栭灲潴敩渭摥獩杮⽤慴愯捡瑨⼩㸾ਯ卵扴祰支䱩湫㸾敮摯扪ਲ਼㤸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㈮〴⸱㔮㐸㠴㤲⤾㹥湤潢樊㌹㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈳⸵㘴‷㜸′㜶⸳㐠㜸㡝ਯ䄠″㤸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮挭湤⼴⸰⼩㸾敮摯扪਴〱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㈮㌳㈠㜶㈠㐰㐮㌶㐠㜷㉝ਯ䄠‴〰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊㐰㔠〠潢樊㰼⽔祰支䵥瑡摡瑡ਯ卵扴祰支塍䰯䱥湧瑨‱㐸㈾㹳瑲敡洊㰿硰慣步琠扥杩渽⟯뮿✠楤㴧圵䴰䵰䍥桩䡺牥卺乔捺正㥤✿㸊㰿慤潢攭硡瀭晩汴敲猠敳挽≃剌䘢㼾਼砺硭灭整愠硭汮猺砽❡摯扥㩮猺浥瑡⼧⁸㩸浰瑫㴧塍倠瑯潬歩琠㈮㤮ㄭㄳⰠ晲慭敷潲欠ㄮ㘧㸊㱲摦㩒䑆⁸浬湳㩲摦㴧桴瑰㨯⽷睷⹷㌮潲术ㄹ㤹⼰㈯㈲⵲摦⵳祮瑡砭湳⌧⁸浬湳㩩堽❨瑴瀺⼯湳⹡摯扥⹣潭⽩堯ㄮ〯✾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩰摦㴧桴瑰㨯⽮献慤潢攮捯洯灤是ㄮ㌯✾㱰摦㩐牯摵捥爾䝐䰠䝨潳瑳捲楰琠㄰⸰〮〼⽰摦㩐牯摵捥爾਼灤昺䭥祷潲摳㸼⽰摦㩋敹睯牤猾਼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硭瀽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⼧㸼硭瀺䵯摩晹䑡瑥㸲〲㌭㄰ⴲ㑔ㄴ㨲㘺㌵娼⽸浰㩍潤楦祄慴放਼硭瀺䍲敡瑥䑡瑥㸲〲㌭㄰ⴲ㑔ㄴ㨲㘺㌵娼⽸浰㩃牥慴敄慴放਼硭瀺䍲敡瑯牔潯氾䱡呥堠睩瑨⁨祰敲牥昼⽸浰㩃牥慴潲呯潬㸼⽲摦㩄敳捲楰瑩潮㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺硡灍䴽❨瑴瀺⼯湳⹡摯扥⹣潭⽸慰⼱⸰⽭洯✠硡灍䴺䑯捵浥湴䥄㴧畵楤㩥㈹㈷摣㜭慡㤵ⴱㅦ㤭〰〰ⵥ㌶扦㤱㡤挰㐧⼾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩤挽❨瑴瀺⼯灵牬⹯牧⽤振敬敭敮瑳⼱⸱⼧⁤挺景牭慴㴧慰灬楣慴楯港灤昧㸼摣㩴楴汥㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㹁⁄敥瀠卅⠳⤭䕱畩癡物慮琠䵯摥氠景爠䱥慲湩湧⁉湶敲獥⁐牯瑥楮⁆潬摩湧㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺瑩瑬放㱤挺捲敡瑯爾㱲摦㩓敱㸼牤昺汩㹍慴琠䵣偡牴汯渠㬠䉥渠䱡椠㬠䩩湢漠塵†㰯牤昺汩㸼⽲摦㩓敱㸼⽤挺捲敡瑯爾㱤挺摥獣物灴楯渾㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺摥獣物灴楯渾㰯牤昺䑥獣物灴楯渾਼⽲摦㩒䑆㸊㰯砺硭灭整愾ਠ††††††††††††††††††††††††††††††††††† ††††††††††††††††††††††††††††††††††††਼㽸灡捫整⁥湤㴧眧㼾੥湤獴牥慭੥湤潢樊硲敦ਰ‴〶ਰ〰〰〰〰〠㘵㔳㔠映ਰ〰〰㘰㈲㠠〰〰〠渠ਰ〰〰㘸㔵㐠〰〰〠渠ਰ〰〳㔸㜲㘠〰〰〠渠ਰ〰〳㘷㜶㐠〰〰〠渠ਰ〰〵㌹㐹㜠〰〰〠渠ਰ〰〶㔴㠱㜠〰〰〠渠ਰ〰〶㘱㈴㌠〰〰〠渠ਰ〰〸㌷㌸〠〰〰〠渠ਰ〰〸㔴㌵㜠〰〰〠渠ਰ〰ㄱ〲㌸㈠〰〰〠渠ਰ〰ㄱ〷㤸㈠〰〰〠渠ਰ〰ㄲ㘳㔸㔠〰〰〠渠ਰ〰〸㐳㔱㔠〰〰〠渠ਰ〰〸㔰ㄸ㘠〰〰〠渠ਰ〰〰㘰㜱㜠〰〰〠渠ਰ〰〰㘸㐷㘠〰〰〠渠ਰ〰〰㘸㐹㜠〰〰〠渠ਰ〰〰㘸㠱㠠〰〰〠渠ਰ〰〰㜲㤸ㄠ〰〰〠渠ਰ〰〰㜳〰㈠〰〰〠渠ਰ〰〰㜸㌵㠠〰〰〠渠ਰ〰ㄲ㘵㠸ㄠ〰〰〠渠ਰ〰ㄲ㘶㌴㐠〰〰〠渠ਰ〰ㄲ㘶㜵㠠〰〰〠渠ਰ〰ㄲ㘷ㄸ㔠〰〰〠渠ਰ〰ㄲ㘷㔱㐠〰〰〠渠ਰ〰ㄲ㘷㤲㌠〰〰〠渠ਰ〰ㄲ㘸㈵㐠〰〰〠渠ਰ〰ㄲ㘸㔸㤠〰〰〠渠ਰ〰ㄲ㘸㤳㘠〰〰〠渠ਰ〰ㄲ㘹㌷㈠〰〰〠渠ਰ〰ㄲ㘹㘷㜠〰〰〠渠ਰ〰ㄲ㜰〷㔠〰〰〠渠ਰ〰ㄲ㜰㌲㈠〰〰〠渠ਰ〰ㄲ㜰㔹㔠〰〰〠渠ਰ〰ㄲ㜰㠳㠠〰〰〠渠ਰ〰ㄲ㜱〲㜠〰〰〠渠ਰ〰〸㔸㘸〠〰〰〠渠ਰ〰〳㔸㔱㘠〰〰〠渠ਰ〰〳㔸㔶ㄠ〰〰〠渠ਰ〰〳㔸㤴㌠〰〰〠渠ਰ〰〳㘶〶㔠〰〰〠渠ਰ〰〳㘶〸㘠〰〰〠渠ਰ〰〳㘶㈳㘠〰〰〠渠ਰ〰〳㘶㐵㤠〰〰〠渠ਰ〰〳㘶㘳㤠〰〰〠渠ਰ〰〳㘶㠶㜠〰〰〠渠ਰ〰〳㘸〵㌠〰〰〠渠ਰ〰〳㜳㠰㔠〰〰〠渠ਰ〰〳㜳㠲㘠〰〰〠渠ਰ〰〳㜳㤸㌠〰〰〠渠ਰ〰〳㜴㔸㐠〰〰〠渠ਰ〰〳㜴ㄹ㜠〰〰〠渠ਰ〰〳㜴㠷㌠〰〰〠渠ਰ〰〳㠰㐱㘠〰〰〠渠ਰ〰〳㠰㐳㜠〰〰〠渠ਰ〰〳㠳㤴㔠〰〰〠渠ਰ〰〵㌱㐲ㄠ〰〰〠渠ਰ〰〵㌱㔷㠠〰〰〠渠ਰ〰〵㌱㜹㈠〰〰〠渠ਰ〰〵㌲ㄹ㐠〰〰〠渠ਰ〰〵㌲㔰㜠〰〰〠渠ਰ〰〵㌲㘶㐠〰〰〠渠ਰ〰〵㌲㠸㌠〰〰〠渠ਰ〰〵㌳〲㜠〰〰〠渠ਰ〰〵㌳㈳㜠〰〰〠渠ਰ〰〵㌳㌹〠〰〰〠渠ਰ〰ㄲ㘰㐴㌠〰〰〠渠ਰ〰〵㌳㘰㘠〰〰〠渠ਰ〰〵㌳㘵ㄠ〰〰〠渠ਰ〰〵㌹㘸㈠〰〰〠渠ਰ〰〶㔰㔵〠〰〰〠渠ਰ〰〶㔰㔷㌠〰〰〠渠ਰ〰〶㔰㜸㌠〰〰〠渠ਰ〰〶㔰㤶㠠〰〰〠渠ਰ〰〶㔵〵㠠〰〰〠渠ਰ〰〶㘱ㄱ㜠〰〰〠渠ਰ〰〶㘱ㄳ㠠〰〰〠渠ਰ〰〶㘱㐶㜠〰〰〠渠ਰ〰〶㘶㔷㌠〰〰〠渠ਰ〰〶㘶㔹㐠〰〰〠渠ਰ〰〶㜲ㄹ㤠〰〰〠渠ਰ〰〸㌷㈳〠〰〰〠渠ਰ〰〸㌷㈷㔠〰〰〠渠ਰ〰〸㌷㔴㤠〰〰〠渠ਰ〰〸㐳㐲㔠〰〰〠渠ਰ〰〸㐳㐴㘠〰〰〠渠ਰ〰〸㐳㘸㔠〰〰〠渠ਰ〰〸㔰㄰㠠〰〰〠渠ਰ〰〸㔰ㄲ㤠〰〰〠渠ਰ〰〸㔰㌵㘠〰〰〠渠ਰ〰〸㔴㈷㤠〰〰〠渠ਰ〰〸㔴㌰〠〰〰〠渠ਰ〰〸㔴㔸㈠〰〰〠渠ਰ〰〸㔸㔶㘠〰〰〠渠ਰ〰〸㔸㔸㜠〰〰〠渠ਰ〰〸㔸㤳ㄠ〰〰〠渠ਰ〰〸㘲㐱㘠〰〰〠渠ਰ〰〸㘲㐳㜠〰〰〠渠ਰ〰〸㘷㜲㌠〰〰〠渠ਰ〰ㄱ〱㐵ㄠ〰〰〠渠ਰ〰ㄱ〱㘰㤠〰〰〠渠ਰ〰ㄱ〱㠴〠〰〰〠渠ਰ〰ㄱ〱㠸㜠〰〰〠渠ਰ〰ㄱ〲㘱〠〰〰〠渠ਰ〰ㄱ〷㠳〠〰〰〠渠ਰ〰ㄱ〷㠵㈠〰〰〠渠ਰ〰ㄱ〸㈱〠〰〰〠渠ਰ〰ㄱㄱ㈱㔠〰〰〠渠ਰ〰ㄱㄱ㈳㜠〰〰〠渠ਰ〰ㄱㄳ㌸㠠〰〰〠渠ਰ〰ㄱ㤶ㄵ㌠〰〰〠渠ਰ〰ㄱ㤸〴㘠〰〰〠渠ਰ〰ㄲ㘰㈹㤠〰〰〠渠ਰ〰ㄲ㘰㌷㌠〰〰〠渠ਰ〰ㄲ㘰㘹㔠〰〰〠渠ਰ〰ㄲ㘳㐸ㄠ〰〰〠渠ਰ〰ㄲ㘳㔰㌠〰〰〠渠ਰ〰ㄲ㘳㜷㌠〰〰〠渠ਰ〰ㄲ㘵㠰ㄠ〰〰〠渠ਰ〰ㄲ㘵㠲㌠〰〰〠渠ਰ〰〵㌳㜹㈠〰〰〠渠ਰ〰〳㘷〳㈠〰〰〠渠ਰ〰ㄲ㜱㈶㤠〰〰〠渠ਰ〰〵㌴ㄶ㤠〰〰〠渠ਰ〰ㄲ㜳㄰ㄠ〰〰〠渠ਰ〰ㄲ㜵㌴ㄠ〰〰〠渠ਰ〰〵㌴㌶㠠〰〰〠渠ਰ〰ㄲ㜹ㄵ㈠〰〰〠渠ਰ〰ㄱ〲〰㘠〰〰〠渠ਰ〰ㄲ㠱㔱㐠〰〰〠渠ਰ〰ㄲ㠱㤸㔠〰〰〠渠ਰ〰ㄲ㠲㠱㜠〰〰〠渠ਰ〰〵㌴㘸㔠〰〰〠渠ਰ〰〶㔱〸㔠〰〰〠渠ਰ〰ㄲ㤰㐰㤠〰〰〠渠ਰ〰〵㌴㤶㔠〰〰〠渠ਰ〰〳㘷㐰㔠〰〰〠渠ਰ〰〳㜴㌱㐠〰〰〠渠ਰ〰ㄲ㤵㜳ㄠ〰〰〠渠ਰ〰ㄲ㤶〶㈠〰〰〠渠ਰ〰〵㌹㌲㔠〰〰〠渠ਰ〰ㄲ㤶㈷〠〰〰〠渠ਰ〰ㄲ㤶㘶㤠〰〰〠渠ਰ〰ㄲ㤶㠱㘠〰〰〠渠ਰ〰ㄲ㤶㤰㐠〰〰〠渠ਰ〰ㄲ㤷ㄵ〠〰〰〠渠ਰ〰ㄲ㤷㈶㤠〰〰〠渠ਰ〰〶㔴㔶㘠〰〰〠渠ਰ〰ㄲ㤷㌵㐠〰〰〠渠ਰ〰〵㌹㐱㈠〰〰〠渠ਰ〰〳㘷㘶㤠〰〰〠渠ਰ〰ㄲ㤷㤹㘠〰〰〠渠ਰ〰ㄲ㤸〱㠠〰〰〠渠ਰ〰ㄲ㤸〴〠〰〰〠渠ਰ〰ㄲ㤸〶㈠〰〰〠渠ਰ〰ㄲ㤸〸㐠〰〰〠渠ਰ〰ㄲ㤸㄰㘠〰〰〠渠ਰ〰ㄲ㤸ㄲ㠠〰〰〠渠ਰ〰ㄲ㤸ㄵ〠〰〰〠渠ਰ〰ㄲ㤸ㄷ㈠〰〰〠渠ਰ〰ㄲ㤸ㄹ㐠〰〰〠渠ਰ〰ㄲ㤸㈱㘠〰〰〠渠ਰ〰ㄲ㤸㈳㠠〰〰〠渠ਰ〰ㄲ㤸㈶〠〰〰〠渠ਰ〰ㄲ㤸㈸㈠〰〰〠渠ਰ〰ㄲ㤸㌰㐠〰〰〠渠ਰ〰ㄲ㤸㌲㘠〰〰〠渠ਰ〰ㄲ㤸㌴㠠〰〰〠渠ਰ〰ㄲ㤸㌷〠〰〰〠渠ਰ〰ㄲ㤸㌹㈠〰〰〠渠ਰ〰ㄲ㤸㐱㐠〰〰〠渠ਰ〰ㄲ㤸㐳㘠〰〰〠渠ਰ〰ㄲ㤸㐵㠠〰〰〠渠ਰ〰ㄲ㤸㐸〠〰〰〠渠ਰ〰ㄲ㤸㔰㈠〰〰〠渠ਰ〰ㄲ㤸㔲㐠〰〰〠渠ਰ〰ㄲ㤸㔴㘠〰〰〠渠ਰ〰ㄲ㤸㔶㠠〰〰〠渠ਰ〰ㄲ㤸㜲㜠〰〰〠渠ਰ〰ㄲ㤸㠸㜠〰〰〠渠ਰ〰ㄲ㤹〴㘠〰〰〠渠ਰ〰ㄲ㤹㈰㘠〰〰〠渠ਰ〰ㄲ㤹㌶㘠〰〰〠渠ਰ〰ㄲ㤹㔲㔠〰〰〠渠ਰ〰ㄲ㤹㘸㌠〰〰〠渠ਰ〰ㄲ㤹㠴㈠〰〰〠渠ਰ〰ㄳ〰〰ㄠ〰〰〠渠ਰ〰ㄳ〰ㄶ〠〰〰〠渠ਰ〰ㄳ〰㌲〠〰〰〠渠ਰ〰ㄳ〰㐸〠〰〰〠渠ਰ〰ㄳ〰㘴〠〰〰〠渠ਰ〰ㄳ〰㜹㤠〰〰〠渠ਰ〰ㄳ〰㤵㤠〰〰〠渠ਰ〰ㄳ〱ㄱ㠠〰〰〠渠ਰ〰ㄳ〱㈷㘠〰〰〠渠ਰ〰ㄳ〱㐳㔠〰〰〠渠ਰ〰ㄳ〱㔹㔠〰〰〠渠ਰ〰ㄳ〱㜵㔠〰〰〠渠ਰ〰ㄳ〱㤱㐠〰〰〠渠ਰ〰ㄳ〲〷㐠〰〰〠渠ਰ〰ㄳ〲㈳㌠〰〰〠渠ਰ〰ㄳ〲㌹㌠〰〰〠渠ਰ〰ㄳ〲㔵㈠〰〰〠渠ਰ〰ㄳ〲㘲㜠〰〰〠渠ਰ〰ㄳ〲㜳㌠〰〰〠渠ਰ〰ㄳ〲㠱㘠〰〰〠渠ਰ〰ㄳ〲㤲㌠〰〰〠渠ਰ〰ㄳ〳〸㈠〰〰〠渠ਰ〰ㄳ〳㈴㈠〰〰〠渠ਰ〰ㄳ〳㐰㈠〰〰〠渠ਰ〰ㄳ〳㔵㤠〰〰〠渠ਰ〰ㄳ〳㜱㤠〰〰〠渠ਰ〰ㄳ〳㠷㠠〰〰〠渠ਰ〰ㄳ〴〳㘠〰〰〠渠ਰ〰ㄳ〴ㄹ㈠〰〰〠渠ਰ〰ㄳ〴㌵㈠〰〰〠渠ਰ〰ㄳ〴㔱㈠〰〰〠渠ਰ〰ㄳ〴㘷ㄠ〰〰〠渠ਰ〰ㄳ〴㠳〠〰〰〠渠ਰ〰ㄳ〴㤸㤠〰〰〠渠ਰ〰ㄳ〵ㄴ㘠〰〰〠渠ਰ〰ㄳ〵㌰㌠〰〰〠渠ਰ〰ㄳ〵㐶㌠〰〰〠渠ਰ〰ㄳ〵㘲ㄠ〰〰〠渠ਰ〰ㄳ〵㜸〠〰〰〠渠ਰ〰ㄳ〵㤴〠〰〰〠渠ਰ〰ㄳ〶〹㤠〰〰〠渠ਰ〰ㄳ〶㈵㠠〰〰〠渠ਰ〰ㄳ〶㐱㠠〰〰〠渠ਰ〰ㄳ〶㔷㠠〰〰〠渠ਰ〰ㄳ〶㜳㜠〰〰〠渠ਰ〰ㄳ〶㠹㘠〰〰〠渠ਰ〰ㄳ〷〵㘠〰〰〠渠ਰ〰ㄳ〷㈱㘠〰〰〠渠ਰ〰ㄳ〷㌷㐠〰〰〠渠ਰ〰ㄳ〷㔳㐠〰〰〠渠ਰ〰ㄳ〷㘹㈠〰〰〠渠ਰ〰ㄳ〷㠵㈠〰〰〠渠ਰ〰ㄳ〸〱㈠〰〰〠渠ਰ〰ㄳ〸ㄷㄠ〰〰〠渠ਰ〰ㄳ〸㌳〠〰〰〠渠ਰ〰ㄳ〸㐸㠠〰〰〠渠ਰ〰ㄳ〸㘴㘠〰〰〠渠ਰ〰ㄳ〸㠰㘠〰〰〠渠ਰ〰ㄳ〸㤶㌠〰〰〠渠ਰ〰ㄳ〹ㄲㄠ〰〰〠渠ਰ〰ㄳ〹㈷㠠〰〰〠渠ਰ〰ㄳ〹㌵㌠〰〰〠渠ਰ〰ㄳ〹㐵㤠〰〰〠渠ਰ〰ㄳ〹㔴㈠〰〰〠渠ਰ〰ㄳ〹㘴㤠〰〰〠渠ਰ〰ㄳ〹㜱㤠〰〰〠渠ਰ〰ㄳ〹㜷㔠〰〰〠渠ਰ〰ㄳ〹㤳㔠〰〰〠渠ਰ〰ㄳ㄰〹㌠〰〰〠渠ਰ〰ㄳ㄰㈵㌠〰〰〠渠ਰ〰ㄳ㄰㐱〠〰〰〠渠ਰ〰ㄳ㄰㔷〠〰〰〠渠ਰ〰ㄳ㄰㜳〠〰〰〠渠ਰ〰ㄳ㄰㠹ㄠ〰〰〠渠ਰ〰ㄳ㄰㤶㘠〰〰〠渠ਰ〰ㄳㄱ〷㈠〰〰〠渠ਰ〰ㄳㄱㄵ㔠〰〰〠渠ਰ〰ㄳㄱ㈶㈠〰〰〠渠ਰ〰ㄳㄱ㐱㤠〰〰〠渠ਰ〰ㄳㄱ㔷㠠〰〰〠渠ਰ〰ㄳㄱ㜳㜠〰〰〠渠ਰ〰ㄳㄱ㠹㠠〰〰〠渠ਰ〰ㄳㄲ〵㜠〰〰〠渠ਰ〰ㄳㄲ㈱㐠〰〰〠渠ਰ〰ㄳㄲ㈸㤠〰〰〠渠ਰ〰ㄳㄲ㌹㔠〰〰〠渠ਰ〰ㄳㄲ㐷㠠〰〰〠渠ਰ〰ㄳㄲ㔸㔠〰〰〠渠ਰ〰ㄳㄲ㜸㤠〰〰〠渠ਰ〰ㄳㄲ㤴㠠〰〰〠渠ਰ〰ㄳㄳ㄰㜠〰〰〠渠ਰ〰ㄳㄳ㈶㜠〰〰〠渠ਰ〰ㄳㄳ㐲㔠〰〰〠渠ਰ〰ㄳㄳ㔸㐠〰〰〠渠ਰ〰ㄳㄳ㜴㐠〰〰〠渠ਰ〰ㄳㄳ㤰㐠〰〰〠渠ਰ〰ㄳㄴ〶㌠〰〰〠渠ਰ〰ㄳㄴ㈲〠〰〰〠渠ਰ〰ㄳㄴ㌷㤠〰〰〠渠ਰ〰ㄳㄴ㔳㠠〰〰〠渠ਰ〰ㄳㄴ㘹㜠〰〰〠渠ਰ〰ㄳㄴ㠵㘠〰〰〠渠ਰ〰ㄳㄵ〱㈠〰〰〠渠ਰ〰ㄳㄵ〸㜠〰〰〠渠ਰ〰ㄳㄵㄹ㌠〰〰〠渠ਰ〰ㄳㄵ㈷㘠〰〰〠渠ਰ〰ㄳㄵ㌸㌠〰〰〠渠ਰ〰ㄳㄵ㔴㐠〰〰〠渠ਰ〰ㄳㄵ㜰㌠〰〰〠渠ਰ〰ㄳㄵ㠵㠠〰〰〠渠ਰ〰ㄳㄶ〱㜠〰〰〠渠ਰ〰ㄳㄶㄷ㜠〰〰〠渠ਰ〰ㄳㄶ㌳㜠〰〰〠渠ਰ〰ㄳㄶ㐹㜠〰〰〠渠ਰ〰ㄳㄶ㘵㠠〰〰〠渠ਰ〰ㄳㄶ㠱㔠〰〰〠渠ਰ〰ㄳㄶ㤷㈠〰〰〠渠ਰ〰ㄳㄷ〴㜠〰〰〠渠ਰ〰ㄳㄷㄵ㌠〰〰〠渠ਰ〰ㄳㄷ㈳㘠〰〰〠渠ਰ〰ㄳㄷ㌴㌠〰〰〠渠ਰ〰ㄳㄷ㔰㌠〰〰〠渠ਰ〰ㄳㄷ㘶ㄠ〰〰〠渠ਰ〰ㄳㄷ㜳㘠〰〰〠渠ਰ〰ㄳㄷ㠴㈠〰〰〠渠ਰ〰ㄳㄷ㤲㔠〰〰〠渠ਰ〰ㄳㄸ〳㈠〰〰〠渠ਰ〰ㄳㄸㄹㄠ〰〰〠渠ਰ〰ㄳㄸ㌵ㄠ〰〰〠渠ਰ〰ㄳㄸ㔰㠠〰〰〠渠ਰ〰ㄳㄸ㘶㠠〰〰〠渠ਰ〰ㄳㄸ㠲㘠〰〰〠渠ਰ〰ㄳㄸ㤸㘠〰〰〠渠ਰ〰ㄳㄹㄴ㘠〰〰〠渠ਰ〰ㄳㄹ㌰㔠〰〰〠渠ਰ〰ㄳㄹ㐶㐠〰〰〠渠ਰ〰ㄳㄹ㔳㤠〰〰〠渠ਰ〰ㄳㄹ㘴㔠〰〰〠渠ਰ〰ㄳㄹ㜲㠠〰〰〠渠ਰ〰ㄳㄹ㠳㔠〰〰〠渠ਰ〰ㄳㄹ㤹㐠〰〰〠渠ਰ〰ㄳ㈰ㄵ㈠〰〰〠渠ਰ〰ㄳ㈰㈲㜠〰〰〠渠ਰ〰ㄳ㈰㌳㌠〰〰〠渠ਰ〰ㄳ㈰㐱㘠〰〰〠渠ਰ〰ㄳ㈰㔲㌠〰〰〠渠ਰ〰ㄳ㈰㔹㠠〰〰〠渠ਰ〰ㄳ㈰㜰㐠〰〰〠渠ਰ〰ㄳ㈰㜸㜠〰〰〠渠ਰ〰ㄳ㈰㠹㐠〰〰〠渠ਰ〰ㄳ㈰㤶㤠〰〰〠渠ਰ〰ㄳ㈱〷㔠〰〰〠渠ਰ〰ㄳ㈱ㄵ㠠〰〰〠渠ਰ〰ㄳ㈱㈶㔠〰〰〠渠ਰ〰ㄳ㈱㌴〠〰〰〠渠ਰ〰ㄳ㈱㐴㘠〰〰〠渠ਰ〰ㄳ㈱㔲㤠〰〰〠渠ਰ〰ㄳ㈱㘳㘠〰〰〠渠ਰ〰ㄳ㈱㠴ㄠ〰〰〠渠ਰ〰ㄳ㈲〰ㄠ〰〰〠渠ਰ〰ㄳ㈲ㄶㄠ〰〰〠渠ਰ〰ㄳ㈲㌲〠〰〰〠渠ਰ〰ㄳ㈲㐸ㄠ〰〰〠渠ਰ〰ㄳ㈲㘴ㄠ〰〰〠渠ਰ〰ㄳ㈲㠰ㄠ〰〰〠渠ਰ〰ㄳ㈲㠷㘠〰〰〠渠ਰ〰ㄳ㈲㤸㈠〰〰〠渠ਰ〰ㄳ㈳〶㔠〰〰〠渠ਰ〰ㄳ㈳ㄷ㈠〰〰〠渠ਰ〰ㄳ㈳㌳㈠〰〰〠渠ਰ〰ㄳ㈳㐹ㄠ〰〰〠渠ਰ〰ㄳ㈳㘵ㄠ〰〰〠渠ਰ〰ㄳ㈳㠱㈠〰〰〠渠ਰ〰ㄳ㈳㤶㘠〰〰〠渠ਰ〰ㄳ㈴〴ㄠ〰〰〠渠ਰ〰ㄳ㈴ㄴ㜠〰〰〠渠ਰ〰ㄳ㈴㈳〠〰〰〠渠ਰ〰ㄳ㈴㌳㜠〰〰〠渠ਰ〰ㄳ㈴㐹㜠〰〰〠渠ਰ〰ㄳ㈴㘵㜠〰〰〠渠ਰ〰ㄳ㈴㠱㘠〰〰〠渠ਰ〰ㄳ㈵〰㤠〰〰〠渠ਰ〰ㄳ㈵ㄸ㤠〰〰〠渠ਰ〰ㄳ㈵㌴㤠〰〰〠渠ਰ〰ㄳ㈵㔱〠〰〰〠渠ਰ〰ㄳ㈵㔸㔠〰〰〠渠ਰ〰ㄳ㈵㘹ㄠ〰〰〠渠ਰ〰ㄳ㈵㜷㐠〰〰〠渠ਰ〰ㄳ㈵㠸ㄠ〰〰〠渠ਰ〰ㄳ㈶〴㈠〰〰〠渠ਰ〰ㄳ㈶㈰㌠〰〰〠渠ਰ〰ㄳ㈶㈷㠠〰〰〠渠ਰ〰ㄳ㈶㌸㐠〰〰〠渠ਰ〰ㄳ㈶㐶㜠〰〰〠渠ਰ〰ㄳ㈶㔷㐠〰〰〠渠ਰ〰ㄳ㈶㜳㐠〰〰〠渠ਰ〰ㄳ㈶㠹㐠〰〰〠渠ਰ〰ㄳ㈷〵㐠〰〰〠渠ਰ〰ㄳ㈷㈱㌠〰〰〠渠ਰ〰ㄳ㈷㌷㈠〰〰〠渠ਰ〰ㄳ㈷㔳㈠〰〰〠渠ਰ〰ㄳ㈷㘹ㄠ〰〰〠渠ਰ〰ㄳ㈷㠵㈠〰〰〠渠ਰ〰ㄳ㈸〱㈠〰〰〠渠ਰ〰ㄳ㈸ㄷㄠ〰〰〠渠ਰ〰ㄳ㈸㈴㘠〰〰〠渠ਰ〰ㄳ㈸㌵㈠〰〰〠渠ਰ〰ㄳ㈸㐳㔠〰〰〠渠ਰ〰ㄳ㈸㔴㈠〰〰〠渠ਰ〰ㄳ㈸㜰〠〰〰〠渠ਰ〰ㄳ㈸㤱㤠〰〰〠渠ਰ〰ㄳ㈸㤹㐠〰〰〠渠ਰ〰ㄳ㈹㄰〠〰〰〠渠ਰ〰ㄳ㈹ㄸ㌠〰〰〠渠ਰ〰ㄲ㤷㐳㤠〰〰〠渠ਰ〰ㄲ㤷㜴㔠〰〰〠渠ਰ〰ㄲ㤷㤱㤠〰〰〠渠ਰ〰ㄳ㈹㈹〠〰〰〠渠ੴ牡楬敲਼㰯卩穥‴〶㸾ੳ瑡牴硲敦ਲ㈱ਥ╅但�

