

3 Authors:

4 Katherine E. Dougan^{1,2*}, Anthony J. Bellantuono³, Tim Kahlke⁴, Raffaela M. Abbriano⁴, Yibi
5 Chen¹, Sarah Shah¹, Camila Granados-Cifuentes², Madeleine J. H. van Oppen^{5,6}, Debashish
6 Bhattacharya⁷, David J. Suggett⁴, Cheong Xin Chan^{1*}, Mauricio Rodriguez-Lanetty^{2*}

7 Affiliations:

⁸ ¹The University of Queensland, School of Chemistry and Molecular Biosciences, Australian
⁹ Centre for Ecogenomics, Brisbane, QLD 4072, Australia

10 ²Florida International University, Department of Biological Sciences, Miami, FL 33099, U.S.A.

11 ³Florida International University, Department of Biological Sciences, Biomolecular Science
12 Institute, Miami, FL 33099, U.S.A.

13 ⁴University of Technology Sydney, Climate Change Cluster, NSW 2007, Australia

14 ⁵School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia

15 ⁶Australian Institute of Marine Science, Townsville, QLD 4810, Australia

16 ⁷Rutgers University, Department of Biochemistry and Microbiology, New Brunswick, NJ 08901,
17 U.S.A.

18 *Correspondence: k.dougan@uq.edu.au (K. E. Dougan), c.chan1@uq.edu.au (C. X. Chan),
19 rodmauri@fiu.edu (M. Rodriguez-Lanetty)

20 **Abstract:**

21 Coral reefs are fundamentally sustained by symbioses involving dinoflagellate algae in the
22 Family Symbiodiniaceae. The coral symbiont *Durusdinium trenchii* is notable for enhancing the
23 resilience of coral holobionts under thermal stress. Believed to have experienced whole-genome
24 duplication (WGD), *D. trenchii* offers a valuable model system to understand how selection acts
25 on the genome of a facultative symbiont after WGD. We present genome assemblies for two
26 isolates of *D. trenchii* and confirm WGD in these taxa, providing the first example of this
27 phenomenon in a single-celled eukaryotic symbiont. We assess how the facultative lifestyle has
28 contributed to the retention and divergence of duplicated genes, and how these results intersect
29 with the observed thermotolerance of corals hosting *D. trenchii* symbionts. Our findings reveal
30 that the free-living lifestyle is the main driver of post-WGD evolution, however, they also
31 implicate symbiosis in this process, with both lifestyles increasing algal fitness. Our results
32 demonstrate that WGD, driven by selection in the free-living phase, has converted *D. trenchii*
33 into a coral symbiont that serendipitously provides increased thermal stress protection to the host
34 coral.

35

36 **Main Text:**

37 Uncovering the foundations of biotic interactions, particularly symbiosis, remains a central goal
38 for research given that virtually no organism lives in isolation. Coral reefs are marine
39 biodiversity hotspots that are founded upon symbioses involving dinoflagellate algae in the
40 Family Symbiodiniaceae (1). These symbionts are the solar power plants of reefs, providing
41 photosynthetically fixed carbon and other metabolites to the coral holobiont (2, 3). Breakdown of
42 the coral-dinoflagellate symbiosis (i.e. coral bleaching), often due to ocean warming, puts corals
43 at risk of starvation, disease, and eventual death. Symbiodiniaceae microalgae are diverse with at
44 least 15 clades and 11 named genera (1, 4-6), encompassing a broad spectrum of symbiotic
45 associations and host-specificity. Most of these taxa are facultative symbionts (i.e. they can live
46 freely or in symbiosis), although solely free-living species are also known (1). Genomes of
47 Symbiodiniaceae are believed to reflect the diversification and specialization of these taxa to
48 inhabit distinct ecological niches. The genomes of symbionts, due to spatial confinement, are
49 predicted to undergo structural rearrangements, streamlining, and enhanced genetic drift (7). This
50 hypothesis is supported by the relatively high level of structural rearrangement,
51 pseudogenization, and duplication in genomes of symbiotic Symbiodiniaceae (8).

52 Whole-genome duplication (WGD) is an evolutionary mechanism for generating functional
53 novelty and genomic innovation (9, 10), and can occur within species following errors in
54 meiosis, i.e. via autopolyploidy. Following WGD, the evolutionary trajectory of duplicated
55 sequence regions generally proceeds from large-scale purging, temporary retention and/or
56 divergence, to fixation (11, 12); WGD-derived genes (i.e. *ohnologs* (13, 14)) that are retained

57 can provide a selective advantage and enhance fitness through increased gene dosage,
58 specialization in function, and/or the acquisition of novel functions (11, 12).

59 WGD has been described in free-living unicellular eukaryotes such as yeast (15-18) and the
60 ciliate *Paramecium* (19, 20), but not in symbiotic species. Evidence of WGD is absent among
61 Symbiodiniaceae lineages, with the exception of the genus *Durusdinium*, as observed in
62 microsatellite sequence data (21). This genus includes the thermotolerant species *Durusdinium*
63 *trenchii*, a facultative symbiont known to confer heat-tolerance on corals and thus enhance their
64 resilience under thermal stress (22). Given its facultative lifestyle (i.e. free-living *versus*
65 symbiotic), *D. trenchii* offers a valuable model system to understand how selection acts on the
66 genome of a symbiont after a WGD event. To this end, we present *de novo* genome assemblies
67 from two isolates of *D. trenchii* and demonstrate WGD in this lineage. Based on gene expression
68 profiles, we assess how the duality of facultative lifestyle has contributed to the fate of ohnologs
69 in these microalgae, and how these results intersect with the observed thermotolerance of corals
70 hosting *D. trenchii* symbionts.

71 We generated *de novo* genome assemblies from *D. trenchii* CCMP2556 (total length = 1.71 Gb;
72 N50 = 774.26 kb; 29,137 scaffolds) and *D. trenchii* SCF082 (total length = 1.64 Gb; N50 =
73 398.48 kb; 44,682 scaffolds) using 10X Genomics linked reads (tables S1 and S2). The two
74 genomes are highly similar in terms of marker genes (fig. S1), whole-genome sequence (~98%
75 shared identity; fig. S2 and table S3), and repeat landscapes (fig. S3), yielding ~54,000 protein-
76 coding genes (table S4) with a high extent of data completeness (table S5; see Methods). To
77 assess WGD in *D. trenchii*, we followed González-Pech *et al.* (8) to identify collinear gene
78 blocks within each genome (see Methods); these blocks likely arose via segmental duplication

79 and/or WGD. We identified 864 blocks implicating 27,597 (49.46% of the total 55,799) genes in
80 CCMP2556, and 776 blocks implicating 18,209 (34.02% of the total 53,519) genes in SCF082
81 (table S6). The proportion of genes present in collinear blocks in *D. trenchii* is ~49-fold greater
82 than that in other Symbiodiniaceae and the outgroup polar dinoflagellate *Polarella*, which have
83 not experienced WGD (Fig. 1A). We also observed a high extent of conserved synteny (22,041
84 CCMP2556 genes syntentic with 21,094 SCF082 genes), with ohnologs predominant in these
85 syntentic blocks (CCMP2556: 15,395 [69.85%]; SCF082: 12,617 [59.31%]) (Fig. 1B and table
86 S6). Using homologous protein sets derived from available whole-genome data, our inference of
87 lineage-specific duplicated genes (see Methods) revealed 7,945 gene duplication events specific
88 to *D. trenchii*, which is an order of magnitude greater than in other Symbiodiniaceae (fig. S4).
89 Whereas the distribution of synonymous substitution sites (K_s) lacks the distinct peak (fig. S5)
90 expected in ohnologs, this is not surprising for the relatively recent WGD expected in *D. trenchii*
91 (23). The timing of WGD in *D. trenchii*, as observed in other taxa, likely coincides with its split
92 from the sister taxon, *D. glynnii* ~1 million years ago (1). These results based on independently
93 assembled genomes from two isolates, combined with the extent and size of the gene blocks
94 (table S7 and fig. S6), provide unambiguous evidence for WGD in *D. trenchii*.

95 To assess the fate of ohnologs in *D. trenchii*, we focused on CCMP2556 from which
96 transcriptome data exist (24) for cells from two lifestyles: free-living in culture or engaged in
97 symbiosis with the anemone *Exaiptasia pallida*, with both under ambient (28°C) and thermal
98 stress (34°C) conditions. We assessed conservation of expression in ohnologs using the gene-
99 expression modules (fig. S7 and table S8) inferred from weighted gene co-expression network
100 analysis (WGCNA). We adopted an integrated approach (fig. S8; see Methods) to classify each

101 ohnolog-pair into distinct evolutionary scenarios based on their expression profiles and
102 correlation to lifestyle and/or to temperature (Fig. 1, C and D, and table S9). Most ohnolog-pairs
103 that correlated to lifestyle exhibit “Conserved” (4,830 of 9,349 [51.67%]) expression profiles:
104 2,284 (24.43%) and 2,546 (27.23%) correlated to the free-living and symbiotic lifestyles,
105 respectively (Fig. 1C); this indicates strong functional constraints by each lifestyle, likely due to
106 the benefit from increased gene dosage. Other ohnolog-pairs with “Divergent” expression
107 profiles indicate selection (i.e. specialization) based on lifestyle (2,539 of 9,349 [27.16%]). Of
108 the ohnolog-pairs that correlate with temperature (Fig. 1C), very few are “Conserved” (28°C: 79
109 of 2,759 [2.86%]; 34°C: 70 of 2,759 [2.54%]) and most exhibit “Gain/Loss” of correlation in one
110 ohnolog (28°C: 1,294 [46.90%]; 34°C: 1,107 [40.12%]); this clearly indicates that lifestyle is the
111 main driver of post-WGD evolution.

112 WGD enables the retention of complete metabolic pathways, which we assessed in both *D. trenchii* isolates following Aury *et al.* (19). Of the 98 metabolic pathways retained in duplicate
113 (table S10), specialization driven by lifestyle was detected in central metabolic pathways (figs.
114 S9-S16), such as glycolysis/gluconeogenesis (Fig. 1E). Ohnolog specialization in
115 glycolysis/gluconeogenesis reflects the contrasting functions of this pathway during symbiotic
116 versus free-living phases. That is, a high rate of gluconeogenesis, inferred using ohnolog
117 expression data, supplies glucose for translocation to the coral host during symbiosis, whereas a
118 high rate of glycolysis fuels dynamic energetic needs inherent to free-living cells tolerating
119 more-variable environments (7). Development of minor or partitioned functionality following
120 WGD has been described in duplicate glycolysis pathways (25). In yeast, these pathways
121 diverged and became semi-independent, with each specialized for low and high glucose levels

123 (25); in *D. trenchii*, this might represent a capacity for fine-tuning carbon metabolism to the
124 contrasting energetics of the two lifestyles.

125 Whereas most ohnolog pairs were expressed at similar levels (fig. S17) or with one ohnolog
126 more highly or dominantly expressed (table S11; see Methods), some have diverged sufficiently
127 to each be dominantly expressed under different scenarios of lifestyle and/or temperature; these
128 pairs represent putative instances of sub-functionalization or neo-functionalization. We identified
129 90 such divergent ohnolog-pairs in *D. trenchii* (table S12 and fig. S18). Most of these (73
130 [81.11%]) diverged between the two lifestyles, with many (44 from clusters I-IV and X; fig. S18)
131 exhibiting peak expression when free-living, implicating this lifestyle as the major driver of
132 gene-expression divergence (Fig. 2A and fig. S18). These ohnolog-pairs highlight strong
133 specialization at key nodes in metabolic pathways with broader ohnolog retention and divergence
134 related to nitrogen cycling (including metabolisms of alanine, aspartate, and glutamate; fig. S9)
135 and glutathione metabolism (fig. S10). Notably, this includes a glutamine synthetase (GS;
136 Cluster X; Fig. 2A and fig. S18) that has been connected to rapid symbiotic establishment with
137 hosts by *D. trenchii* (26) and an ammonium transporter (Cluster III; fig. S18); both exhibit peak
138 expression in the free-living phase. Along with other transporters among the 90 ohnolog pairs
139 such as a sugar phosphate/phosphate translocator and Na⁺/dicarboxylate transporter (fig. S18),
140 this enhanced metabolite exchange likely reflects a concerted response of nutrient cycling due to
141 limited sources that are otherwise available during symbiosis. We also observed a similar pattern
142 in mRNA editing based on these data, suggesting the highest functional diversity during the free-
143 living phase (Fig. 2B, fig. S19, and tables S13-14; see Methods).

144 Our results suggest that the divergence in ohnolog-pair expression is driven by changes in gene
145 regulation and transcript processing (figs. S20 and S21). We observed a greater extent of
146 alternative splicing (AS) in ohnologs compared to non-ohnologs (figs. S22 and S23, and table
147 S15), along with considerable divergence within ohnolog-pairs in both the number and
148 conservation of splice sites (table S16). The increased AS among the ohnologs (table S17 and
149 Figure S24) yielded distinct patterns of differential exon usage (Fig. 2C and fig. S25); we
150 observed asymmetric distributions of exon expression among those in “Gain/Loss” (panel iii)
151 and the 90 divergent ohnolog-pairs (panel iv), compared to singletons (panel i) and those in
152 “Conserved” and “Retained” (panel ii). This asymmetry is observed among ohnologs that have
153 gained and/or retained its specificity to lifestyle within the “Gain/Loss” pairs, and more so
154 among the 90 divergent ohnolog-pairs. This result suggests an accumulation of beneficial exons
155 or purging of superfluous exons, reflecting the lifestyle that drove ohnolog-pair divergence and
156 fixation. Exon restructuring (27) and the increase in alternative splicing (28) appear to drive
157 ohnolog gene expression divergence in *D. trenchii* vis-à-vis algal lifestyle.

158 In summary, we demonstrate WGD in a microalgal endosymbiont, and provide strong evidence
159 that lifestyle is the key driver of post-WGD evolution in *D. trenchii*. Given that these algae
160 transition frequently between the free-living and symbiotic lifestyle, we present a hypothetical
161 framework of how this duality drives post-WGD genome evolution (Fig. 3). Under the null
162 hypothesis (i.e. free-living), we expect adaptations to be driven by nutrient availability and
163 fluctuating environmental conditions, whereas under the alternative hypothesis (i.e. symbiosis),
164 we expect adaptations to reflect maintenance of a stable host-symbiont relationship and tightly
165 integrated nutrient/metabolite cycling within the coral holobiont. Whereas our results provide

166 stronger support for the null hypothesis as the driving force behind post-WGD evolution, they
167 implicate both lifestyles in impacting the maintenance and expression divergence of ohnologs.
168 These combined selective forces increase overall fitness in *D. trenchii* and likely explain the high
169 thermotolerance of this species within corals (29). Benefits conferred by WGD to a free-living
170 lifestyle in more-variable environments serendipitously primed *D. trenchii* to better assist or
171 exploit the coral holobiont when faced with thermal stress. Whether symbiosis may also have
172 negative effects on fitness post-WGD is unknown (30). It should be noted that the dual lifestyle
173 is widespread in Symbiodiniaceae (1), yet WGD is not. Therefore, the key feature of *D. trenchii*
174 that we are addressing is not the dual lifestyle, but rather how this trait impacts post-WGD
175 genome evolution and adaptation to the symbiotic *versus* free-living phase. Since the algae
176 propagate to very high densities in coral tissues ($0.5\text{--}5.0 \times 10^6 \text{ cells/cm}^{-2}$) (31, 32), the symbiotic
177 lifestyle may also indirectly provide a mechanism for propagation of successful algal genotypes
178 while resident in host tissues. Consequently, these genotypes could re-seed free-living
179 populations upon dissociation from the coral due to colony death, bleaching, or other
180 mechanisms of symbiont population control. The maintenance of multi-gene copies combined
181 with fixed, adaptive changes likely makes *D. trenchii* more capable of metabolic maintenance
182 under dynamic, often stressful environments, and hence a more-resilient symbiont. This may
183 explain the vast geographic and expanded host range for *D. trenchii* (22) and its well-known
184 capacity for increasing coral survival under heat waves. Therefore, in an interesting and
185 unexpected twist, WGD, driven by selection under the free-living lifestyle has converted *D.*
186 *trenchii* into the ideal coral symbiont, able to protect the host coral from thermal stress while
187 increasing its population size during symbiosis.

188 **References:**

189 1. T. C. LaJeunesse *et al.*, Systematic revision of Symbiodiniaceae highlights the antiquity
190 and diversity of coral endosymbionts. *Current Biology* **28**, 2570-2580. e2576 (2018).

191 2. N. Rädecker *et al.*, Heat stress destabilizes symbiotic nutrient cycling in corals.
192 *Proceedings of the National Academy of Sciences* **118**, (2021).

193 3. T. Xiang *et al.*, Symbiont population control by host-symbiont metabolic interaction in
194 Symbiodiniaceae-cnidarian associations. *Nature Communications* **11**, 1-9 (2020).

195 4. T. C. LaJeunesse *et al.*, Revival of *Philozoon* Geddes for host-specialized dinoflagellates,
196 ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern
197 hemispheres. *European Journal of Phycology*, 1-15 (2021).

198 5. X. Pochon, T. C. LaJeunesse, *Miliolidium* n. gen, a new symbiodiniacean genus whose
199 members associate with soritid foraminifera or are free-living. *Journal of Eukaryotic
200 Microbiology* **68**, e12856 (2021).

201 6. M. R. Nitschke *et al.*, Description of *Freudenthalidium* gen. nov. and *Halluxium* gen.
202 nov. to formally recognize clades Fr3 and H as genera in the family Symbiodiniaceae
203 (Dinophyceae). *Journal of Phycology* **56**, 923-940 (2020).

204 7. R. A. González-Pech, D. Bhattacharya, M. A. Ragan, C. X. Chan, Genome evolution of
205 coral reef symbionts as intracellular residents. *Trends in Ecology & Evolution* **34**, 799-
206 806 (2019).

207 8. R. A. González-Pech *et al.*, Comparison of 15 dinoflagellate genomes reveals extensive
208 sequence and structural divergence in family Symbiodiniaceae and genus *Symbiodinium*.
209 *BMC Biology* **19**, 1-22 (2021).

210 9. Y. Van de Peer, S. Maere, A. Meyer, The evolutionary significance of ancient genome
211 duplications. *Nature Reviews Genetics* **10**, 725-732 (2009).

212 10. M. E. Schranz, S. Mohammadin, P. P. Edger, Ancient whole genome duplications,
213 novelty and diversification: the WGD Radiation Lag-Time Model. *Current Opinion in
214 Plant Biology* **15**, 147-153 (2012).

215 11. G. C. Conant, K. H. Wolfe, Increased glycolytic flux as an outcome of whole-genome
216 duplication in yeast. *Molecular Systems Biology* **3**, 129 (2007).

217 12. G. C. Conant, K. H. Wolfe, Turning a hobby into a job: how duplicated genes find new
218 functions. *Nature Reviews Genetics* **9**, 938-950 (2008).

219 13. S. Ohno, U. Wolf, N. B. Atkin, Evolution from fish to mammals by gene duplication.
220 *Hereditas* **59**, 169-187 (1968).

221 14. P. P. Singh, J. Arora, H. Isambert, Identification of ohnolog genes originating from whole
222 genome duplication in early vertebrates, based on synteny comparison across multiple
223 genomes. *PLoS Computational Biology* **11**, e1004394 (2015).

224 15. M. Kellis, B. W. Birren, E. S. Lander, Proof and evolutionary analysis of ancient genome
225 duplication in the yeast *Saccharomyces cerevisiae*. *Nature* **428**, 617-624 (2004).

226 16. B. Gallone *et al.*, Domestication and divergence of *Saccharomyces cerevisiae* beer
227 yeasts. *Cell* **166**, 1397-1410. e1316 (2016).

228 17. J. Peter *et al.*, Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates. *Nature*
229 **556**, 339-344 (2018).

230 18. F. Bigey *et al.*, Evidence for Two Main Domestication Trajectories in *Saccharomyces*
231 *cerevisiae* Linked to Distinct Bread-Making Processes. *Current Biology* **31**, 722-
232 732.e725 (2021).

233 19. J.-M. Aury *et al.*, Global trends of whole-genome duplications revealed by the ciliate
234 *Paramecium tetraurelia*. *Nature* **444**, 171-178 (2006).

235 20. C. L. McGrath, J.-F. Gout, T. G. Doak, A. Yanagi, M. Lynch, Insights into three whole-
236 genome duplications gleaned from the *Paramecium caudatum* genome sequence.
237 *Genetics* **197**, 1417-1428 (2014).

238 21. D. T. Pettay, T. C. Lajeunesse, Microsatellite loci for assessing genetic diversity,
239 dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D *Symbiodinium*.
240 *Molecular Ecology Resources* **9**, 1022-1025 (2009).

241 22. D. T. Pettay, D. C. Wham, R. T. Smith, R. Iglesias-Prieto, T. C. LaJeunesse, Microbial
242 invasion of the Caribbean by an Indo-Pacific coral zooxanthella. *Proceedings of the*
243 *National Academy of Sciences* **112**, 7513-7518 (2015).

244 23. G. P. Tiley, M. S. Barker, J. G. Burleigh, Assessing the performance of Ks plots for
245 detecting ancient whole genome duplications. *Genome Biology and Evolution* **10**, 2882-
246 2898 (2018).

247 24. A. J. Bellantuono, K. E. Dougan, C. Granados-Cifuentes, M. Rodriguez-Lanetty, Free-
248 living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly
249 distinct transcriptomes under both stable and heat stress conditions. *Molecular Ecology*
250 **28**, 5265-5281 (2019).

251 25. G. C. Conant, K. H. Wolfe, Functional partitioning of yeast co-expression networks after
252 genome duplication. *PLoS Biology* **4**, e109 (2006).

253 26. I. Yuyama, M. Ishikawa, M. Nozawa, M.-a. Yoshida, K. Ikeo, Transcriptomic changes
254 with increasing algal symbiont reveal the detailed process underlying establishment of
255 coral-algal symbiosis. *Scientific Reports* **8**, 1-11 (2018).

256 27. Z. Chen *et al.*, De novo assembly of the goldfish (*Carassius auratus*) genome and the
257 evolution of genes after whole-genome duplication. *Science Advances* **5**, eaav0547
258 (2019).

259 28. Y. Wang, B. Guo, The divergence of alternative splicing between ohnologs in teleost
260 fishes. *BMC Ecology and Evolution* **21**, 1-10 (2021).

261 29. L. J. Chakravarti, M. J. van Oppen, Experimental evolution in coral photosymbionts as a
262 tool to increase thermal tolerance. *Frontiers in Marine Science* **5**, 227 (2018).

263 30. L. Carretero-Paulet, Y. Van de Peer, The evolutionary conundrum of whole-genome
264 duplication. *American Journal of Botany* **107**, 1101 (2020).

265 31. E. A. Drew, The biology and physiology of alga-invertebrates symbioses. II. The density
266 of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from
267 various depths. *Journal of Experimental Marine Biology and Ecology* **9**, 71-75 (1972).

268 32. J. W. Porter, L. Muscatine, Z. Dubinsky, P. G. Falkowski, Primary Production and
269 Photoadaptation in Light- and Shade-Adapted Colonies of the Symbiotic Coral,
270 *Stylophora pistillata*. *Proceedings of the Royal Society B: Biological Sciences* **222**, 161-
271 180 (1984).

272 **Acknowledgments:**

273 This project is supported by computational resources of the National Computational
274 Infrastructure (NCI) National Facility systems through the NCI Merit Allocation Scheme
275 (Project d85) awarded to CXC. We thank Brian Kemish and David Green for their technical

276 assistance during genome assembly as well as Joel Burke and Michelle Havlik for technical
277 assistance with the algal cultures. #

278 **Funding:**

279 Australian Research Council grant DP190102474 (CXC, DB)
280 Australian Research Council grant FL180100036 (MJHvO)
281 National Science Foundation grant CAREER1453519 (MRL)
282 City University of New York (CGC)
283 University of Technology Sydney (TK)

284 **Author contributions:**

285 Conceptualization: KED, AJB, DJS, CXC, MRL
286 Methodology: KED, AJB, TK, RMA, YC, SS, CXC
287 Investigation: KED, AJB, TK, RMA, YC, SS
288 Visualization: KED, DB, CXC
289 Funding acquisition: TK, CGC, DB, DJS, CXC, MRL
290 Supervision: DB, DJS, CXC, MRL
291 Writing – original draft: KED, DB, CXC
292 Writing – review & editing: KED, AJB, MJHvO, DB, DJS, CXC, MRL

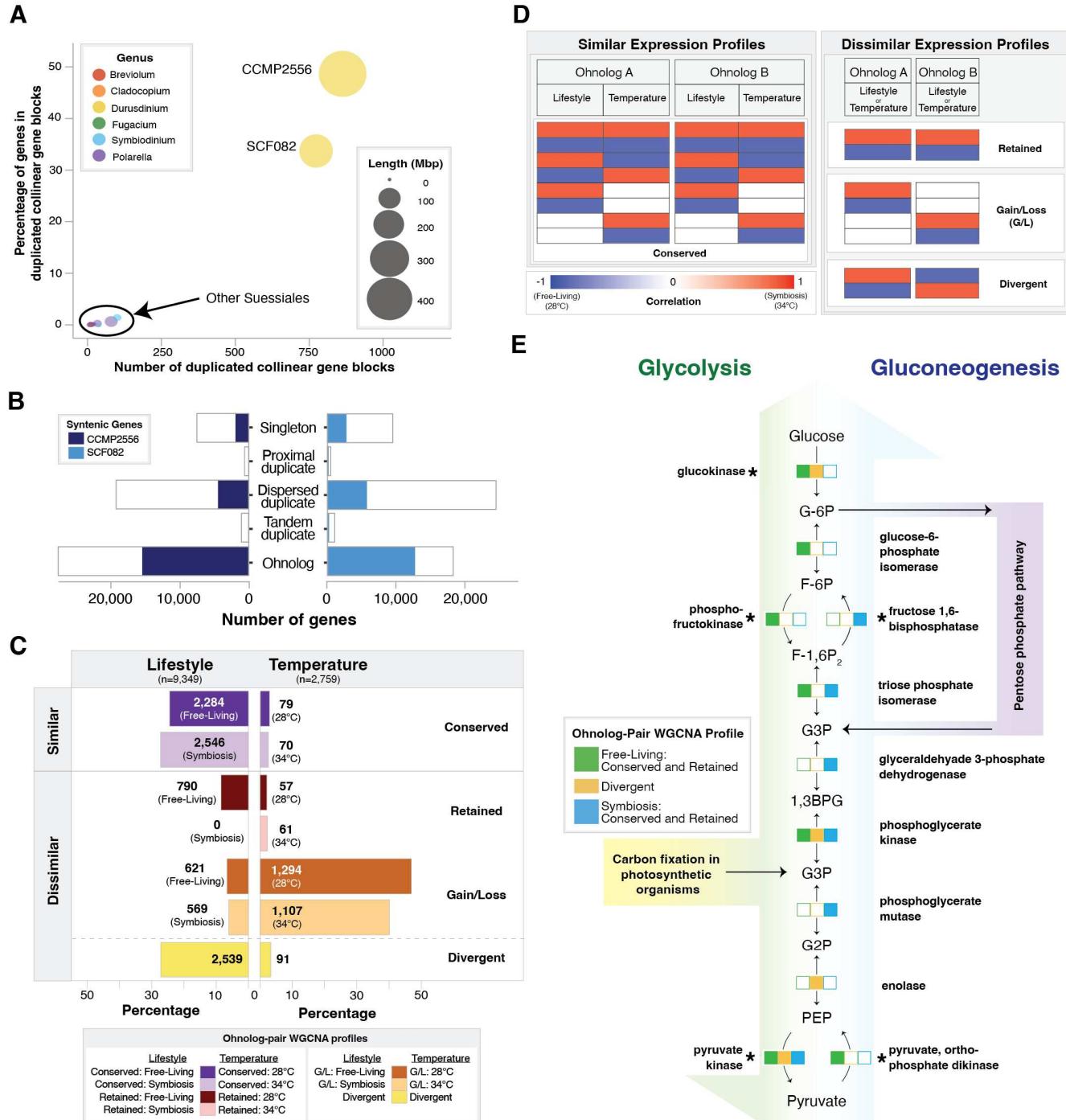
293 **Competing interests:**

294 Authors declare that they have no competing interests.

295 **Data and materials availability:**

296 The assembled genomes, predicted gene models, and proteins for *D. trenchii* CCMP2556 and
297 SCF082 are available at Cloudstor
298 (<https://cloudstor.aarnet.edu.au/plus/s/XNkoZSH5MKEG2WO>).

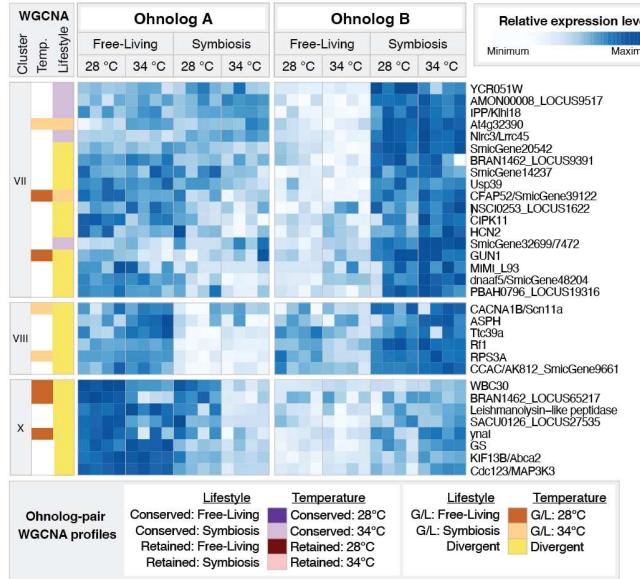
299 **List of Supplementary materials:**

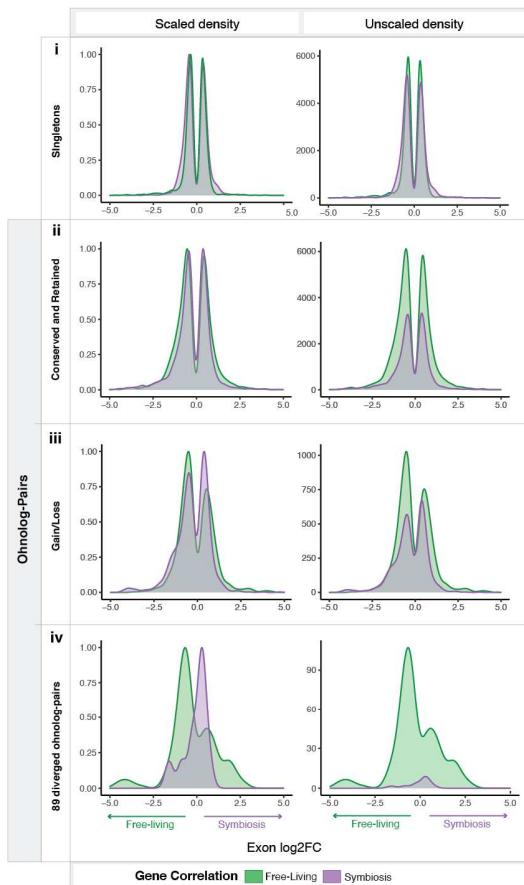

300 Materials and Methods

301 Supplementary Text

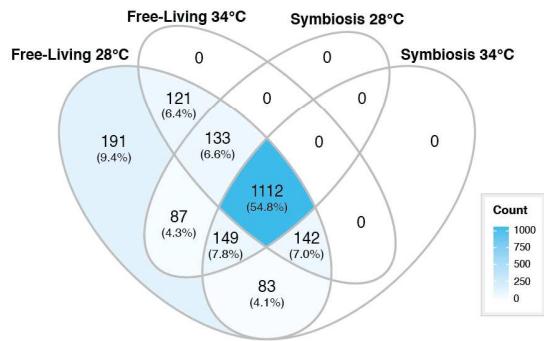
302 Figs. S1-S20

303 Tables S1-S17


304 References 33-62

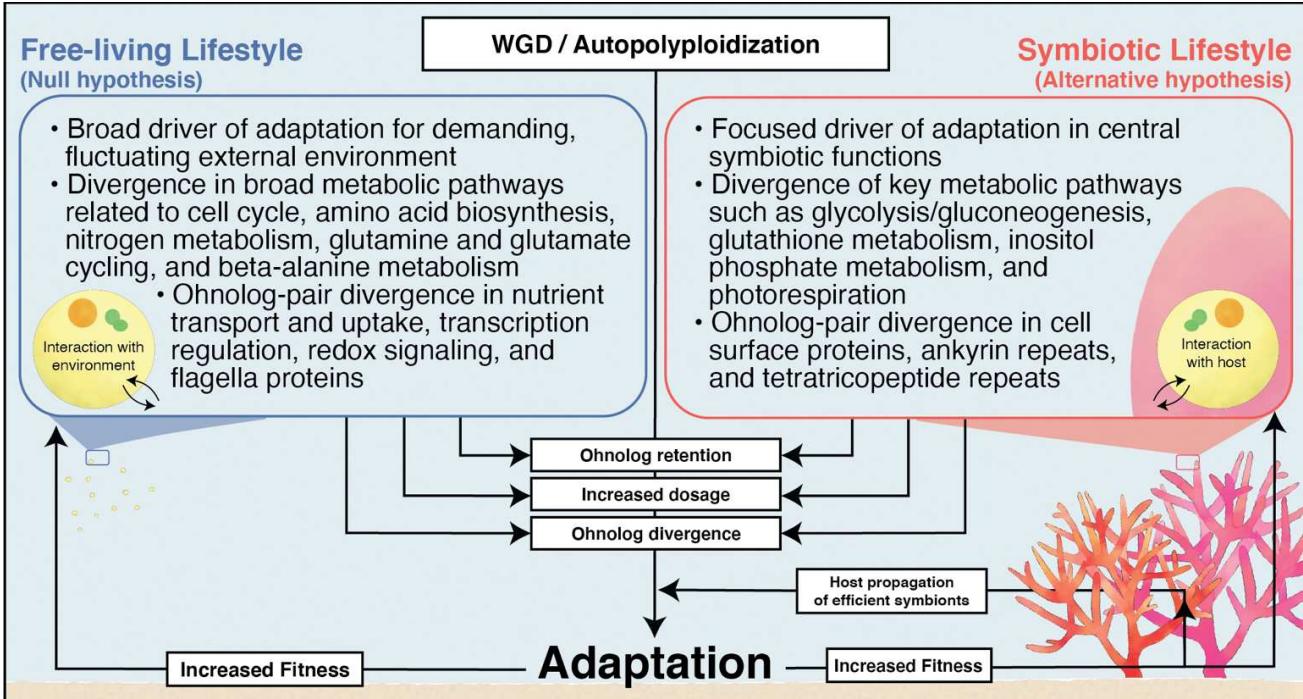

306 **Fig. 1. Ohnolog retention and divergence in gene expression.**

307 (A) The percentage of genes in duplicated collinear gene blocks is shown relative to the number
308 of duplicated collinear gene blocks identified within the genomes of Suessiales species. (B) The
309 number of genes in CCMP2556 and SCF082 across the different MCScanX duplication
310 categories. Colored portions of bars represent the number of syntenic genes between the two
311 isolates from that category. (C) Breakdown of ohnolog pairs classified into each evolutionary
312 scenario of conservation/divergence according to their distribution in the WGCNA modules. (D)
313 Summary of the types of ohnolog-pair expression profiles represented by each category of
314 evolutionary conservation. (E) Diagram showing the divergence in glycolysis/gluconeogenesis
315 pathways predominantly found within putative WGD-duplicated regions in context of
316 “Conserved”, “Retained”, and “Divergent” ohnolog-pairs.


A

C

B



317

318 **Fig. 2. Lifestyle drives ohnolog specialization via exon restructuring.**

319 (A) Gene expression heatmap displaying a subset of the ohnolog-pairs exhibiting divergence and
 320 specialization to different growth conditions with ohnolog-pairs clustered according to their
 321 expression patterns using Euclidean distances. Expression levels were scaled within each row
 322 from the minimum to maximum value to allow comparison of expression between the two genes
 323 in an ohnolog-pairs. (B) Venn diagram depicting the number of genes displaying mRNA editing
 324 across the treatments. (C) Scaled and unscaled density plots of the log₂FC of differentially used
 325 exons (p < 0.001) for (i) singlets, (ii) all “Conserved” and “Retained” in context of lifestyle,

326 (iii) the ohnolog from “Gain/Loss” pairs exhibiting a correlation to lifestyle, and (iv) all
327 ohnologs exhibiting a correlation to a particular lifestyle from the 90 divergent ohnolog-pairs.
328 Directionality of the \log_2FC change is indicated along the x-axis, with different colors indicating
329 their gene-level correlation to either the free-living (green) or symbiotic (purple) lifestyles.

