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Abstract:

Coral reefs are fundamentally sustained by symbioses involving dinoflagellate algae in the
Family Symbiodiniaceae. The coral symbiont Durusdinium trenchii is notable for enhancing the
resilience of coral holobionts under thermal stress. Believed to have experienced whole-genome
duplication (WGD), D. trenchii offers a valuable model system to understand how selection acts
on the genome of a facultative symbiont after WGD. We present genome assemblies for two
isolates of D. trenchii and confirm WGD in these taxa, providing the first example of this
phenomenon in a single-celled eukaryotic symbiont. We assess how the facultative lifestyle has
contributed to the retention and divergence of duplicated genes, and how these results intersect
with the observed thermotolerance of corals hosting D. trenchii symbionts. Our findings reveal
that the free-living lifestyle is the main driver of post-WGD evolution, however, they also
implicate symbiosis in this process, with both lifestyles increasing algal fitness. Our results
demonstrate that WGD, driven by selection in the free-living phase, has converted D. trenchii
into a coral symbiont that serendipitously provides increased thermal stress protection to the host

coral.
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Main Text:

Uncovering the foundations of biotic interactions, particularly symbiosis, remains a central goal
for research given that virtually no organism lives in isolation. Coral reefs are marine
biodiversity hotspots that are founded upon symbioses involving dinoflagellate algae in the
Family Symbiodiniaceae (/). These symbionts are the solar power plants of reefs, providing
photosynthetically fixed carbon and other metabolites to the coral holobiont (2, 3). Breakdown of
the coral-dinoflagellate symbiosis (i.e. coral bleaching), often due to ocean warming, puts corals
at risk of starvation, disease, and eventual death. Symbiodiniaceae microalgae are diverse with at
least 15 clades and 11 named genera (/, 4-6), encompassing a broad spectrum of symbiotic
associations and host-specificity. Most of these taxa are facultative symbionts (i.e. they can live
freely or in symbiosis), although solely free-living species are also known (/). Genomes of
Symbiodiniaceae are believed to reflect the diversification and specialization of these taxa to
inhabit distinct ecological niches. The genomes of symbionts, due to spatial confinement, are
predicted to undergo structural rearrangements, streamlining, and enhanced genetic drift (7). This
hypothesis is supported by the relatively high level of structural rearrangement,

pseudogenization, and duplication in genomes of symbiotic Symbiodiniaceae (§).

Whole-genome duplication (WGD) is an evolutionary mechanism for generating functional
novelty and genomic innovation (9, /0), and can occur within species following errors in
meiosis, i.e. via autopolyploidy. Following WGD, the evolutionary trajectory of duplicated
sequence regions generally proceeds from large-scale purging, temporary retention and/or

divergence, to fixation (//, 12); WGD-derived genes (i.e. ohnologs (13, 14)) that are retained
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can provide a selective advantage and enhance fitness through increased gene dosage,

specialization in function, and/or the acquisition of novel functions (71, 12).

WGD has been described in free-living unicellular eukaryotes such as yeast (/5-78) and the
ciliate Paramecium (19, 20), but not in symbiotic species. Evidence of WGD is absent among
Symbiodiniaceae lineages, with the exception of the genus Durusdinium, as observed in
microsatellite sequence data (27). This genus includes the thermotolerant species Durusdinium
trenchii, a facultative symbiont known to confer heat-tolerance on corals and thus enhance their
resilience under thermal stress (22). Given its facultative lifestyle (i.e. free-living versus
symbiotic), D. trenchii offers a valuable model system to understand how selection acts on the
genome of a symbiont after a WGD event. To this end, we present de novo genome assemblies
from two isolates of D. trenchii and demonstrate WGD in this lineage. Based on gene expression
profiles, we assess how the duality of facultative lifestyle has contributed to the fate of ohnologs
in these microalgae, and how these results intersect with the observed thermotolerance of corals

hosting D. trenchii symbionts.

We generated de novo genome assemblies from D. trenchii CCMP2556 (total length = 1.71 Gb;
N50 = 774.26 kb; 29,137 scaffolds) and D. trenchii SCF082 (total length = 1.64 Gb; N50 =
398.48 kb; 44,682 scaffolds) using 10X Genomics linked reads (tables S1 and S2). The two
genomes are highly similar in terms of marker genes (fig. S1), whole-genome sequence (~98%
shared identity; fig. S2 and table S3), and repeat landscapes (fig. S3), yielding ~54,000 protein-
coding genes (table S4) with a high extent of data completeness (table S5; see Methods). To
assess WGD in D. trenchii, we followed Gonzalez-Pech et al. (§) to identify collinear gene

blocks within each genome (see Methods); these blocks likely arose via segmental duplication
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and/or WGD. We identified 864 blocks implicating 27,597 (49.46% of the total 55,799) genes in
CCMP2556, and 776 blocks implicating 18,209 (34.02% of the total 53,519) genes in SCF082
(table S6). The proportion of genes present in collinear blocks in D. trenchii is ~49-fold greater
than that in other Symbiodiniaceae and the outgroup polar dinoflagellate Polarella, which have
not experienced WGD (Fig. 1A). We also observed a high extent of conserved synteny (22,041
CCMP2556 genes syntenic with 21,094 SCF082 genes), with ohnologs predominant in these
syntenic blocks (CCMP2556: 15,395 [69.85%]; SCF082: 12,617 [59.31%]) (Fig. 1B and table
S6). Using homologous protein sets derived from available whole-genome data, our inference of
lineage-specific duplicated genes (see Methods) revealed 7,945 gene duplication events specific
to D. trenchii, which is an order of magnitude greater than in other Symbiodiniaceae (fig. S4).
Whereas the distribution of synonymous substitution sites (Ks) lacks the distinct peak (fig. S5)
expected in ohnologs, this is not surprising for the relatively recent WGD expected in D. trenchii
(23). The timing of WGD in D. trenchii, as observed in other taxa, likely coincides with its split
from the sister taxon, D. glynnii ~1 million years ago (/). These results based on independently
assembled genomes from two isolates, combined with the extent and size of the gene blocks

(table S7 and fig. S6), provide unambiguous evidence for WGD in D. trenchii.

To assess the fate of ohnologs in D. trenchii, we focused on CCMP2556 from which
transcriptome data exist (24) for cells from two lifestyles: free-living in culture or engaged in
symbiosis with the anemone Exaiptasia pallida, with both under ambient (28°C) and thermal
stress (34°C) conditions. We assessed conservation of expression in ohnologs using the gene-
expression modules (fig. S7 and table S8) inferred from weighted gene co-expression network

analysis (WGCNA). We adopted an integrated approach (fig. S8; see Methods) to classify each
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101  ohnolog-pair into distinct evolutionary scenarios based on their expression profiles and

102  correlation to lifestyle and/or to temperature (Fig. 1, C and D, and table S9). Most ohnolog-pairs
103 that correlated to lifestyle exhibit “Conserved” (4,830 of 9,349 [51.67%]) expression profiles:
104 2,284 (24.43%) and 2,546 (27.23%) correlated to the free-living and symbiotic lifestyles,

105  respectively (Fig. 1C); this indicates strong functional constraints by each lifestyle, likely due to
106  the benefit from increased gene dosage. Other ohnolog-pairs with “Divergent” expression

107  profiles indicate selection (i.e. specialization) based on lifestyle (2,539 of 9,349 [27.16%]). Of
108  the ohnolog-pairs that correlate with temperature (Fig. 1C), very few are “Conserved” (28°C: 79
109  0of 2,759 [2.86%]; 34°C: 70 of 2,759 [2.54%]) and most exhibit “Gain/Loss” of correlation in one
110  ohnolog (28°C: 1,294 [46.90%]; 34°C: 1,107 [40.12%]); this clearly indicates that lifestyle is the

111 main driver of post-WGD evolution.

112 WGD enables the retention of complete metabolic pathways, which we assessed in both D.

113 trenchii isolates following Aury et al. (19). Of the 98 metabolic pathways retained in duplicate
114  (table S10), specialization driven by lifestyle was detected in central metabolic pathways (figs.
115 S9-S16), such as glycolysis/gluconeogenesis (Fig. 1E). Ohnolog specialization in

116  glycolysis/gluconeogenesis reflects the contrasting functions of this pathway during symbiotic
117  versus free-living phases. That is, a high rate of gluconeogenesis, inferred using ohnolog

118  expression data, supplies glucose for translocation to the coral host during symbiosis, whereas a
119  high rate of glycolysis fuels dynamic energetic needs inherent to free-living cells tolerating

120  more-variable environments (7). Development of minor or partitioned functionality following
121  WGD has been described in duplicate glycolysis pathways (25). In yeast, these pathways

122 diverged and became semi-independent, with each specialized for low and high glucose levels
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123 (25); in D. trenchii, this might represent a capacity for fine-tuning carbon metabolism to the

124 contrasting energetics of the two lifestyles.

125  Whereas most ohnolog pairs were expressed at similar levels (fig. S17) or with one ohnolog

126  more highly or dominantly expressed (table S11; see Methods), some have diverged sufficiently
127  to each be dominantly expressed under different scenarios of lifestyle and/or temperature; these
128  pairs represent putative instances of sub-functionalization or neo-functionalization. We identified
129 90 such divergent ohnolog-pairs in D. trenchii (table S12 and fig. S18). Most of these (73

130 [81.11%]) diverged between the two lifestyles, with many (44 from clusters I-IV and X; fig. S18)
131  exhibiting peak expression when free-living, implicating this lifestyle as the major driver of

132 gene-expression divergence (Fig. 2A and fig. S18). These ohnolog-pairs highlight strong

133 specialization at key nodes in metabolic pathways with broader ohnolog retention and divergence
134 related to nitrogen cycling (including metabolisms of alanine, aspartate, and glutamate; fig. S9)
135  and glutathione metabolism (fig. S10). Notably, this includes a glutamine synthetase (GS;

136 Cluster X; Fig. 2A and fig. S18) that has been connected to rapid symbiotic establishment with
137  hosts by D. trenchii (26) and an ammonium transporter (Cluster III; fig. S18); both exhibit peak
138  expression in the free-living phase. Along with other transporters among the 90 ohnolog pairs
139  such as a sugar phosphate/phosphate translocator and Na+/dicarboxylate transporter (fig. S18),
140  this enhanced metabolite exchange likely reflects a concerted response of nutrient cycling due to
141  limited sources that are otherwise available during symbiosis. We also observed a similar pattern
142  in mRNA editing based on these data, suggesting the highest functional diversity during the free-

143 living phase (Fig. 2B, fig. S19, and tables S13-14; see Methods).
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144 Our results suggest that the divergence in ohnolog-pair expression is driven by changes in gene
145  regulation and transcript processing (figs. S20 and S21). We observed a greater extent of

146  alternative splicing (AS) in ohnologs compared to non-ohnologs (figs. S22 and S23, and table
147  S15), along with considerable divergence within ohnolog-pairs in both the number and

148  conservation of splice sites (table S16). The increased AS among the ohnologs (table S17 and
149  Figure S24) yielded distinct patterns of differential exon usage (Fig. 2C and fig. S25); we

150  observed asymmetric distributions of exon expression among those in “Gain/Loss” (panel iii)
151  and the 90 divergent ohnolog-pairs (panel iv), compared to singletons (panel i) and those in
152 “Conserved” and “Retained” (panel ii). This asymmetry is observed among ohnologs that have
153  gained and/or retained its specificity to lifestyle within the “Gain/Loss” pairs, and more so

154  among the 90 divergent ohnolog-pairs. This result suggests an accumulation of beneficial exons
155  or purging of superfluous exons, reflecting the lifestyle that drove ohnolog-pair divergence and
156  fixation. Exon restructuring (27) and the increase in alternative splicing (28) appear to drive

157  ohnolog gene expression divergence in D. trenchii vis-a-vis algal lifestyle.

158  In summary, we demonstrate WGD in a microalgal endosymbiont, and provide strong evidence
159  that lifestyle is the key driver of post-WGD evolution in D. trenchii. Given that these algae

160 transition frequently between the free-living and symbiotic lifestyle, we present a hypothetical
161  framework of how this duality drives post-WGD genome evolution (Fig. 3). Under the null

162  hypothesis (i.e. free-living), we expect adaptations to be driven by nutrient availability and

163  fluctuating environmental conditions, whereas under the alternative hypothesis (i.e. symbiosis),
164  we expect adaptations to reflect maintenance of a stable host-symbiont relationship and tightly

165 integrated nutrient/metabolite cycling within the coral holobiont. Whereas our results provide
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166  stronger support for the null hypothesis as the driving force behind post-WGD evolution, they
167  implicate both lifestyles in impacting the maintenance and expression divergence of ohnologs.
168  These combined selective forces increase overall fitness in D. trenchii and likely explain the high
169  thermotolerance of this species within corals (29). Benefits conferred by WGD to a free-living
170  lifestyle in more-variable environments serendipitously primed D. trenchii to better assist or
171  exploit the coral holobiont when faced with thermal stress. Whether symbiosis may also have
172 negative effects on fitness post-WGD is unknown (30). It should be noted that the dual lifestyle
173 is widespread in Symbiodiniaceae (1), yet WGD is not. Therefore, the key feature of D. trenchii
174  that we are addressing is not the dual lifestyle, but rather how this trait impacts post-WGD

175  genome evolution and adaptation to the symbiotic versus free-living phase. Since the algae

176  propagate to very high densities in coral tissues (0.5-5.0 x 10° cells/cm™2) (31, 32), the symbiotic
177  lifestyle may also indirectly provide a mechanism for propagation of successful algal genotypes
178  while resident in host tissues. Consequently, these genotypes could re-seed free-living

179  populations upon dissociation from the coral due to colony death, bleaching, or other

180  mechanisms of symbiont population control. The maintenance of multi-gene copies combined
181  with fixed, adaptive changes likely makes D. trenchii more capable of metabolic maintenance
182  under dynamic, often stressful environments, and hence a more-resilient symbiont. This may
183  explain the vast geographic and expanded host range for D. trenchii (22) and its well-known
184  capacity for increasing coral survival under heat waves. Therefore, in an interesting and

185  unexpected twist, WGD, driven by selection under the free-living lifestyle has converted D.

186  trenchii into the ideal coral symbiont, able to protect the host coral from thermal stress while

187  increasing its population size during symbiosis.
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Fig. 1. Ohnolog retention and divergence in gene expression.

(A) The percentage of genes in duplicated collinear gene blocks is shown relative to the number
of duplicated collinear gene blocks identified within the genomes of Suessiales species. (B) The
number of genes in CCMP2556 and SCF082 across the different MCScanX duplication
categories. Colored portions of bars represent the number of syntenic genes between the two
isolates from that category. (C) Breakdown of ohnolog pairs classified into each evolutionary
scenario of conservation/divergence according to their distribution in the WGCNA modules. (D)
Summary of the types of ohnolog-pair expression profiles represented by each category of
evolutionary conservation. (E) Diagram showing the divergence in glycolysis/gluconeogenesis
pathways predominantly found within putative WGD-duplicated regions in context of

“Conserved”, “Retained”, and “Divergent” ohnolog-pairs.
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317

318  Fig. 2. Lifestyle drives ohnolog specialization via exon restructuring.

319  (A) Gene expression heatmap displaying a subset of the ohnolog-pairs exhibiting divergence and
320  specialization to different growth conditions with ohnolog-pairs clustered according to their

321  expression patterns using Euclidean distances. Expression levels were scaled within each row
322 from the minimum to maximum value to allow comparison of expression between the two genes
323  in an ohnolog-pairs. (B) Venn diagram depicting the number of genes displaying mRNA editing
324 across the treatments. (C) Scaled and unscaled density plots of the log2FC of differentially used

325  exons (p <0.001) for (i) singletons, (ii) all “Conserved” and “Retained” in context of lifestyle,
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(iii) the ohnolog from “Gain/Loss” pairs exhibiting a correlation to lifestyle, and (iv) all
ohnologs exhibiting a correlation to a particular lifestyle from the 90 divergent ohnolog-pairs.
Directionality of the log2FC change is indicated along the x-axis, with different colors indicating

their gene-level correlation to either the free-living (green) or symbiotic (purple) lifestyles.
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Fig. 3. Model of how free-living and symbiotic lifestyles influenced a facultative symbiont’s

evolution after WGD.
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