

1 **Canonical Strigolactones Are Not the Tillering-Inhibitory Hormone but**
2 **Rhizospheric Signals in Rice**

3
4 **Authors:** Shinsaku Ito^{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}*, Justine Braguy^{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}*, Jian You Wang^{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}, Akiyoshi Yoda⁶,
5 Valentina Fiorilli⁷, Ikuo Takahashi⁸, Muhammad Jamil^{2,3}, Abrar Felemban^{2,3,4}, Sho
6 Miyazaki⁹, Teresa Mazzarella⁷, Akihisa Shinozawa¹⁰, Aparna Balakrishna^{2,3}, Lamis
7 Berqdar^{2,3}, Chakravarty Rajan^{2,3}, Shawkat Ali^{2,13}, Imran Haider², Yasuyuki Sasaki¹,
8 Shunsuke Yajima¹, Kohki Akiyama¹¹, Luisa Lanfranco⁷, Matias Zurbriggen⁵, Takahito
9 Nomura^{6,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}, Tadao Asami^{8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}, Salim Al-Babili^{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}, #

10 **Affiliations:**

11 ¹Department of Bioscience, Faculty of Life Science, Tokyo University of Agriculture, 1-1-
12 1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan

13 ²King Abdullah University of Science and Technology (KAUST), Biological and
14 Environmental Sciences and Engineering Division, The BioActives Lab, Thuwal 23955-
15 6900, Saudi Arabia.

16 ³Center for Desert Agriculture, King Abdullah University of Science and Technology
17 (KAUST), Saudi Arabia

18 ⁴Plant Science Program, Biological and Environmental Science and Engineering Division,
19 King Abdullah University of Science and Technology (KAUST), Saudi Arabia

20 ⁵Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse
21 1, Building 26.12.U1.25, Düsseldorf 40225, Germany

22 ⁶Department of Biological Production Science, United Graduate School of Agricultural
23 Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo
24 183-8509, Japan

25 ⁷Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli
26 25, Torino 10125, Italy.

27 ⁸Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi,
28 Bunkyo-ku, Tokyo 113-8657, Japan

29 ⁹Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,
30 Yokohama, 223-8522, Japan

31 ¹⁰Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka,
32 Setagaya, Tokyo 156-8502, Japan

33 ¹¹Department of Applied Life Sciences, Graduate School of Life and Environmental
34 Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan

35 ¹²Center for Bioscience Research and Education, Utsunomiya University, 350
36 Minemachi, Utsunomiya, Tochigi 321-8505, Japan

37 ¹³Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5,
38 Canada

39 **These authors contributed equally to this work

40 # Correspondence to: Salim Al-Babili, Tadao Asami, and Takahito Nomura

41 Salim Al-Babili: salim.babili@kaust.edu.sa

42 Tadao Asami: asami@g.ecc.u-tokyo.ac.jp

43 Takahito Nomura: tnomura@cc.utsunomiya-u.ac.jp

44

45 **Abstract**

46 The plant hormones strigolactones (SLs) regulate shoot branching and mediate the
47 communication with symbiotic mycorrhizal fungi, but also with noxious root parasitic
48 weeds, such as *Striga* spp. SLs derive from carlactone (CL) and are divided structurally
49 into canonical and non-canonical SLs. However, the questions about particular biological
50 functions of the two groups and the identification of the SL that inhibits shoot branching
51 are still unanswered, hampering targeted modification of SL pattern towards improving
52 plant architecture and resistance against *Striga*. Here, we reported that 4-
53 deoxyorobanchol (4DO) and orobanchol, the two canonical SLs in rice, do not have major
54 role in determining rice shoot architecture. CRISPR/Cas9 mediated *Osmax1-900*
55 mutants, lacking these two SLs, do not show the high tillering and dwarf phenotype typical
56 for SL-deficient plants. However, the absence of 4DO and orobanchol in root exudates
57 significantly decreased their capability in inducing *Striga* seed germination, while caused
58 only a delay in root colonization by mycorrhizal fungi. To confirm the genetic evidence,
59 we used the SL-biosynthesis inhibitor TIS108. Our results showed that TIS108 is a MAX1-
60 specific inhibitor that lowers 4DO and orobanchol synthesis, conferring a resistance to
61 *Striga* without a severe impact on rice architecture. Hence, our work uncovers the specific

62 function of canonical SLs as rhizospheric signals and paves the way for establishing
63 chemical and genetic based approaches for combating the root parasitic weeds, by
64 targeted depletion of their release.

65 ----

66 Strigolactones (SLs) are carotenoid-derived hormones characterized by an enol-
67 ether bridge connecting a lactone ring (D-ring; Fig.S1) (Koichi Yoneyama et al. 2018) in
68 *R* configuration to a structurally variable second moiety that consists of a tricyclic lactone
69 ring (ABC-ring) in canonical SLs, while non-canonical SLs have variable structures based
70 on a β -ionone ring (A-ring) (Fig.S1) (Al-Babili and Bouwmeester 2015). SLs are a major
71 determinant of plant architecture; one of their key involvement amid several other
72 biological processes. Among other phenotypes, mutants affected in SL biosynthesis are
73 characterized by increased branching/tillering, shorter shoots (dwarf), and decreased
74 primary root length (Morris et al. 2001; Gomez-Roldan et al. 2008; Al-Babili and
75 Bouwmeester 2015).

76 In addition, when exposed to nutrients deficiency, particularly phosphate, plant
77 roots release SLs to attract arbuscular mycorrhizal fungi (AMF). The latter establish the
78 AM symbiosis, the most common type of plant mutualist association that significantly
79 increases the uptake of nutrients and water from the soil (Akiyama, Matsuzaki, and
80 Hayashi 2005; Marzec 2016; Lanfranco, Fiorilli, and Gutjahr 2018). However, canonical
81 SLs were first discovered as the host-derived signals that stimulate seed germination in
82 root parasitic weeds, such as *Orobanche* and *Striga spp.* (Cook et al. 1966). During their
83 evolution, these obligate parasites have acquired the ability to utilize SLs as signal to
84 coordinate their development with the presence of an available host in the close vicinity
85 (Toh et al. 2015). Infestation by root parasitic plants, such as *Striga hermonthica*, is a
86 severe problem for agriculture and a major threat for global food security, particularly in
87 Africa, where it causes more than US\$7 billion annual losses in cereal production
88 (Mohamed et al. 2006; Parker 2012).

89 The availability of high-branching mutants of monocot and dicot plant species
90 (Snowden et al. 2005; Stirnberg, Furner, and Ottoline Leyser 2007; Koltai et al. 2010;
91 Arite et al. 2007; Cardoso et al. 2014) paved the way for discovering the hormonal function
92 of SLs and enabled later the elucidation of their biosynthesis. SL biosynthesis starts with

93 the reversible isomerization of all-*trans*- into 9-*cis*- β -carotene, catalyzed by DWARF27
94 (Abuauf et al. 2018; Alder et al. 2012; Bruno and Al-Babili 2016). It is followed by cleavage
95 and rearrangement reactions, mediated by the CAROTENOID CLEAVAGE
96 DIOXYGENASE 7 and 8 (CCD7/D17 and CCD8/D10), which yield carlactone (CL), the
97 core intermediate of SL biosynthesis (Fig. S2) (Alder et al. 2012; Bruno and Al-Babili
98 2016). The discovery of CL unraveled the presence of the non-canonical SLs that were
99 unknown before. Indeed, different modifications of CL, which are catalyzed by
100 cytochrome P450 monooxygenases (CYP), in particular MORE AXILLARY GROWTH1
101 (MAX1) from the CYP711A clade, and other enzymes, give rise to the structural diversity
102 of the more than 30 natural canonical and non-canonical SLs (Booker et al. 2005;
103 Cardoso et al. 2014; Lazar and Goodman 2006; Wakabayashi et al. 2019).

104 Rice contains five MAX1 homologs - *Os01g0700900* (*OsMAX1-900*),
105 *Os01g0701400* (*OsMAX1-1400*), *Os01g0701500* (*OsMAX1-1500*), *Os02g0221900*
106 (*OsMAX1-1900*) and *Os06g0565100* (*OsMAX1-5100*) (Nelson and Werck-Reichhart
107 2011; R. J. Challis et al. 2013) – with a truncated *OsMAX1-1500* in the Nipponbare cv.
108 (Richard J. Challis et al. 2013). *In vitro* studies and transient expression in *Nicotiana*
109 *benthamiana* showed that all functional Nipponbare OsMAX1 enzymes (*OsMAX1-900*,
110 *OsMAX1-1400*, *OsMAX1-1900*, and *OsMAX1-5100*) can convert CL into carlactonoic acid
111 (CLA) that is transformed into the canonical SLs 4-deoxyorobanchol (4DO), and then
112 orobanchol by sequential action of *OsMAX1-900* and *OsMAX1-1400* (Fig. S2) (Zhang et
113 al. 2014; Kaori Yoneyama et al. 2018).

114 In this work, we investigated the biological function of canonical SLs in rice. For
115 this purpose, we generated two bi-allelic homozygous *OsMAX1-900* knockout lines
116 (*Os900-KO*: *Os900-32* and *-34*) disrupted in the biosynthesis of 4DO and orobanchol
117 through introducing CRISPR/Cas9-induced deletion, point mutation and frameshift
118 mutations (Fig. 1A). We first quantified 4DO and orobanchol in roots and root exudates
119 of hydroponically grown and phosphate-starved mutants by Liquid Chromatography
120 Tandem-Mass Spectrometry (LC-MS/MS) (Fig. 1B; Fig. S3A-B). 4DO and orobanchol
121 were undetectable in both lines, confirming *in planta* the role of *OsMAX1-900* as the rice
122 4DO synthase (Kaori Yoneyama et al. 2018) and that 4DO is the exclusive precursor of
123 orobanchol in rice. Besides the absence of 4DO and orobanchol, exudates of the mutant

124 lines showed a decrease of more than 96% in the level – and absent in rice root tissues
125 - of a non-canonical SL tentatively identified as 4-oxo-MeCLA (4-oxo-methyl-
126 carlactonoate) (Fig. S3C)), which was previously described as methoxyl-5-deoxystrigol
127 isomer (Yoneyama et al., 2018). Based on the ion peak characteristic of the D-ring at
128 97.028, we also identified a novel SL, CL+30 with a molecular formula C₁₉H₂₄O₅ (m/z
129 333.16989 as positive ion [M + H]⁺, calcd. for m/z 333.16965), which was present at high
130 levels in the *Os900* mutants (Fig. S3C). Feeding *Os900*-34 seedlings with [¹³C]-labeled
131 CL confirmed that CL+30 is a downstream product of CL (Fig. S4); however, the enzyme
132 responsible for the production of this metabolite remains elusive, as we did not get any
133 hint for the involvement of OsMAX1s from the transcript analysis (Fig. S5). The higher
134 accumulation of CL+30 in *Os900*-KO lines (Fig. S3B-C) indicated that it might be a
135 substrate of OsMAX1-900. We confirmed this assumption by expressing OsMAX1-900 in
136 yeast cells and feeding them with a CL+30 containing fraction. After incubation and LC-
137 MS/MS analysis, we detected a reduction in CL+30 content and its conversion into a
138 novel metabolite eluting at 6.1 min (m/z 347 in positive-ion mode and 345 in negative-ion
139 mode), corresponding to CL+30+14 Da (CL+30+14) (Fig. S6). As OsMAX1-900 catalyzes
140 the carboxylation of CL, we expected the arising metabolite to contain a carboxyl group.
141 Therefore, we methylated the novel OsMAX1-900 product by diazomethane, which gave
142 rise to a derivative with m/z 361 in positive ion mode and fragment pattern and retention
143 time (9.1 min), which are characteristic for the tentative 4-oxo-MeCLA (Fig. S7). Given
144 that OsMAX1-900 catalyzes the oxidation at the C19 position, we assumed that CL+30
145 corresponds to 4-oxo-19-hydroxy-CL (Fig. S8).

146 Next, we phenotyped the growth and development of the *Os900*-KO lines, in
147 comparison with WT and the high-tillering SL-deficient *d17* mutant (Butt et al. 2018). In
148 soil and under normal growth conditions (+Pi), shoots of mature *Os900*-KO plants did not
149 differ significantly from WT, in contrast to *d17* that showed the characteristic dwarfism
150 and extreme high-tillering (Fig. 1C-E). Interestingly, *Os900*-KO lines had even less tillers,
151 compared to WT (an average of 30 tillers for WT vs 21.4 and 23.6 tillers for *Os900*-32
152 and -34, respectively) (Fig. 1D; Fig. S9A). *Os900*-KO mutants, grown in rhizotrons under
153 normal conditions, showed a higher number of crown roots and root area, compared to
154 WT (Fig. S9B-C). When hydroponically grown under different conditions (+Pi, -Pi, and low

155 Pi), we did not detect common significant differences in shoot and root phenotype
156 between the two mutants and the WT; with the exception of shorter shoots, lighter shoot,
157 and root biomass under both +Pi and -Pi conditions (Fig. 1E; Fig. S10). Nevertheless, we
158 did not detect pronounced morphological alterations, which are characteristic for SL
159 deficient mutants (*d10* and *d17*), in the *Os900*-KO mutants in all three experiments,
160 indicating that (1) canonical SLs are not major regulators of rice architecture and (2) the
161 *Os900*-KO mutant lines still maintain a normal SL hormone homeostasis. To check the
162 first assumption, we fed hydroponically grown *d17* seedlings with different concentrations
163 of 4DO (0 nM, 1 nM, 10 nM, 100 nM, and 1000 nM) under normal conditions, using 1000
164 nM *rac*-GR24 (SL analog) as a positive control (Jamil et al., 2018) (Fig. S11A), and
165 determined the effect of the treatment on their phenotype. We observed a decrease in
166 tillering only at higher concentrations (100 and 1000 nM, Fig. S11B), which are much
167 higher than endogenous SL levels (usually at picomole level under nutrient deficiency
168 conditions). For the second hypothesis, we treated *d17* and *Os900*-KO mutants with 2.5
169 μ M zaxinone, a growth-promoting apocarotenoid that requires intact SL biosynthesis and
170 perception for its activity (Wang et al. 2019), with and without 1 μ M *rac*-GR24 (Fig. S12).
171 As expected, the application of zaxinone increased the *d17* root length only when
172 combined with GR24. In contrast, zaxinone alone significantly enhanced the root and
173 shoot length of *Os900*-KO lines (Fig. S13), suggesting that SL hormone biosynthesis and
174 signaling are working properly in the absence of 4DO and orobanchol. In conclusion,
175 these data suggested that canonical SLs are not responsible for regulating the tiller
176 number in rice, which is in line with a recently published study on the role of orobanchol
177 in tomato (Wakabayashi et al. 2019). Moreover, our results indicated that non-canonical
178 SLs are the SL hormone regulating shoot architecture. This was further supported by the
179 absence of canonical SLs and the presence of CL+30, as CL+30 was the only SL
180 detected in the root-shoot junction (area where the tillers emerge) of *Os900* mutants,
181 which do not have a shoot architecture-related phenotype (Fig. S14).

182 Next, we investigated the role of canonical SLs as rhizospheric signals. First, we
183 estimated the colonization of *Os900*-KO roots by the AMF *Rizophagus irregularis* after
184 10-, 20- and 35-days post inoculation (dpi). For this purpose, we used the transcript
185 abundance of *OsPT11*, a plant marker gene for a functional AM symbiosis (Guimil et al.

186 2005). At 10 dpi, there was a delay in colonization of *Os900*-KO roots compared to WT
187 roots; whereas, at 20 and 35 dpi the colonization of *Os900* mutants was comparable to
188 the WT (Fig. 2A). No other phenotypic differences were observed in intraradical fungal
189 structures (Fig. 2B) and in plant traits (Fig. S15). Additionally, application of *Os900*-KO
190 root exudates to *Gigaspora margarita* spores led to an induction of germination rate in
191 analogy to *rac*-GR24 (Fig. S16), suggesting that exudates of *Osmax1-900* mutants still
192 have non-canonical SLs at a sufficient level to sustain AMF germination in the absence
193 of canonical SLs.

194 We then tested the germination activity of *Os900* KO-lines root exudates on *Striga*
195 *hermonthica* and *Phelipanche ramosa* seeds and observed more than 50% decrease in
196 the germination of both parasitic species, compared to WT exudates (Fig. 2C-D; Fig.
197 S17). This indicates that 4DO and orobanchol are important cues for parasitic seed
198 germination, especially 4DO that was shown to be a stronger germination signal than
199 orobanchol (Ueno et al. 2011). Hence, we can conclude that the two rice canonical SLs,
200 4DO and orobanchol, are rhizospheric signals important for the interaction with root
201 parasitic plants and that decreasing their biosynthesis or even completely knocking it out
202 is highly desired for reducing the damage caused by *Striga* and other root parasitic plants,
203 without causing severe plant architectural changes. However, modulation of SL contents
204 by genetic modifications requires years of development; while chemically-induced
205 inhibition of their biosynthesis may lead much faster to rice plants lacking 4DO and
206 orobanchol. Therefore, we set out to identify chemical(s) that inhibit canonical SL
207 biosynthesis in rice.

208 TIS108 is an inhibitor of SL biosynthesis, which contains a 1*H*-1,2,4-triazole moiety
209 (Fig. 3A) that can bind to the heme iron of P450s, such as MAX1 enzymes, and potentially
210 impede their function(s) (Ito et al., 2011). Indeed, it inhibited the conversion of CL to CLA
211 to 4DO by OsMAX1-900 ($IC_{50} = 0.15 \mu M$, for both conversions), and of 4DO to orobanchol
212 by OsMAX1-1400 ($IC_{50} = 0.02 \mu M$) (Fig. 3A), when added to assays with microsomes
213 prepared from yeast cells overexpressing the corresponding MAX1 enzyme. We could
214 not determine whether TIS108 also affects the activity of OsMAX1-5100 and -1900, as
215 we did not detect the sufficient conversion of CL to CLA, neither with native nor with
216 codon-optimized OsMAX1-5100 and -1900 in yeast microsomes (Fig. S18).

217 To confirm the effect of TIS108 on the biosynthesis of canonical SLs *in planta* and
218 to check its impact on plant growth and architecture, we applied the inhibitor to
219 hydroponically grown rice seedlings under phosphate starvation. TIS108 treatment
220 caused a significant decrease of 4DO, orobanchol, and 4-oxo-MeCLA level and an
221 accumulation of CL+30 (Fig. 3B; Fig. S19). Seedlings of the rice *d14-1* SL-perception
222 mutant, which contains higher amounts of SLs due to the absence of a negative feedback
223 regulation, showed similar responses to TIS108 treatment, i.e. a decrease of canonical
224 SLs in roots and root exudates and an enhancement in CL+30 level (Fig. S20); confirming
225 the impact of TIS108 on SL pattern. Importantly, the application of TIS108 to 2-week-old
226 rice WT seedlings grown in hydroponic (Fig. S21) or soil (Fig. 3C and D) did not cause
227 phenotypic alterations, compared to the mock. We also investigated the effect of TIS108
228 on rice transcriptome, using RNAseq (Data S1). None of the identified 174 upregulated
229 and 107 downregulated differentially expressed genes (DEGs) in TIS108-treated rice
230 (Tables S1 and S2) was related to tillering or SL biosynthesis. This result is in line with
231 the absence of significant morphological changes upon TIS108 treatment (Table S3).
232 Furthermore, we investigated the impact of TIS108 on the AM symbiosis. Application of
233 this inhibitor at a 10 μ M concentration to plants inoculated with the AMF *R. irregularis* led
234 to a colonization pattern, based on *OsPT11* transcript abundance, similar to that observed
235 with the *Os900*-KO mutants: TIS108 caused a delay in mycorrhization at 10 dpi, which
236 was recovered at 20 dpi. However, by the end of the experiment, TIS108-treated plants
237 showed a tendency towards reduction of *OsPT11* transcript level, compared to WT (Fig.
238 S22). Next, we investigated whether TIS108 can be utilized for reducing *Striga* infestation.
239 For this purpose, we exposed rice grown in *Striga*-infested soil to TIS108 at
240 concentrations of 0, 0.0782, 0.235, and 0.782 mg/L (total amounts) over a 7-week time
241 period. Results obtained showed a reduction of *Striga* emergence in a dose-dependent
242 manner (Fig. 4A-E; Fig. S23-S24). We did not observe this decrease when we added the
243 SL analog methyl-phenlactonoate 1 (MP1; Jamil et al. 2018) to the TIS108 treatment,
244 suggesting that the lower *Striga* emergence detected with TIS108 alone is a result of
245 lower level of germination stimulant in the root exudates. Lower infestation protected the
246 rice plants from *Striga*-induced growth inhibition (Fig. 4A), leading to number of tillers and
247 spikes, plant height, grain yield, and grain number similar to those of WT rice grown in

248 *Striga*-free soil and without TIS108 treatment (Fig. 4B-E; Fig. S23). We also tested the
249 effect of TIS108 on Indica rice and sorghum - major crops in *Striga* infested regions in
250 Africa. Here again, we observed lower *Striga* germination inducing activity of the exudates
251 isolated from TIS108 treated plants (Fig. S25). Overall, the application of TIS108 mimics
252 the effect of knocking out *MAX1-900* in the *Osmax1-900* mutants (Fig. S26), with respect
253 to the level of canonical SLs and biological activity of root exudates, suggesting that rice
254 canonical SLs are rhizospheric signals rather than tillering-inhibitory hormones.

255 Taken together, we employed genetic and chemical strategies to manipulate rice
256 SL compositions, which allowed us to disentangle the biological functions of canonical
257 and non-canonical SLs in rice. Our findings unraveled the possibility of reducing *Striga*
258 infection by gene editing or chemical treatment without significantly affecting host's
259 morphology, growth and symbiotic capability. For immediate practical purpose, we
260 estimated the effective concentration of TIS108 to be around 305 g/ha, and its application
261 is a promising strategy alleviating the threat posed by *Striga* and other root parasitic plants
262 to global food security.

263

264 **Funding**

265 This work was supported in part by a grant from the Core Research for Evolutional
266 Science and Technology (CREST) Program of Japan Science and Technology Agency
267 (JST) to T.A.; a JSPS Grant-in-Aid for Scientific Research (grant number 18H05266 to
268 T.A. and 19K05838 to T.N.); the Asahi Glass Foundation to S.I.; the Bill & Melinda Gates
269 Foundation grant OPP1194472 and baseline funding from King Abdullah University of
270 Science and Technology given to S.A.-B.

271

272 **Author Contributions**

273 Conceptualization, S.I., J.Y.W., J.B., T.N., T.A, and S.A.-B.;
274 Investigation, S.I., J.B., J.Y.W., A.Y., V.F., T.M., M.J., L.B., A.B., C.R., S.A., I.M., I.T.,
275 K.K., S.M., A.F., A.S., S.A., and N.T.;
276 Generation of the *Os900*-KO lines, J.B., A.F., I.H. and S.A.;
277 Carlactone and carlactonoic acid synthesis, A.B. and K.A.;

278 Phenotyping studies, J.B., J.Y.W., M.J., C.R., L.B.;
279 Characterization Os900-KO lines by LC-MS/MS analysis, J.Y.W. and J.B.;
280 Rice feeding experiments with zaxinone and 4DO, J.Y.W. and J.B.;
281 AMF related studies, V.F., T.M. and L.L.;
282 Root parasitic plant studies, J.B., J.Y.W., I.T., and M.J.;
283 TIS108 related LC-MS/MS analysis, S.I., J.Y.W., J.B., A.Y., and T.N.;
284 TIS108 Synthesis, S.I.;
285 Expression of SL biosynthesis genes, A.Y. and T.N.;
286 RNAseq analysis, S.I., S.M., and A.S.;
287 Resources, S.I., L.F., T.N., T.A., and S.A.-B.;
288 Writing – Original Draft, J.B., J. Y. W. and S.A.-B.;
289 Writing – Review & Editing, S.I., J.B., J. Y. W., V.F., M. J., Y.S., S.Y., L.L., M.Z., T.N.,
290 T.A., and S.A.-B.
291 Funding acquisition, S.I., T.N., T.A. and S.A.-B.
292

293 **Acknowledgments**

294 We thank A. Gabar Babiker (Natinola Center for Research, Sudan) for providing *Striga*
295 seeds and Haroon Butt for the *d17* seeds. We are grateful to Salim Sioud and Vasileios
296 Samaras from KAUST Analytical Chemistry Corelab for their assistance in the SL
297 identification. We also thank Tomoyasu Sato, Elle Kanbayashi and Mara Novero for
298 technical assistance with the experiments.

299 **Competing interests**

300 The authors declare no conflict of interest.

301 **References**

302
303 Abuauf, Haneen, Imran Haider, Kun-Peng Jia, Abdugaffor Ablazov, Jianing Mi, Ikram Blilou,
304 and Salim Al-Babili. 2018. “The *Arabidopsis* DWARF27 Gene Encodes an All-Trans-/9-
305 Cis- β -Carotene Isomerase and Is Induced by Auxin, Abscisic Acid and Phosphate
306 Deficiency.” *Plant Science* 277 (December): 33–42.
307 <https://doi.org/10.1016/j.plantsci.2018.06.024>.

308 Akiyama, Kohki, Ken-ichi Matsuzaki, and Hideo Hayashi. 2005. “Plant Sesquiterpenes Induce
309 Hyphal Branching in Arbuscular Mycorrhizal Fungi.” *Nature* 435 (7043): 824–27.
310 <https://doi.org/10.1038/nature03608>.

311 Al-Babili, Salim, and Harro J. Bouwmeester. 2015. “Strigolactones, a Novel Carotenoid-Derived
312 Plant Hormone.” *Annual Review of Plant Biology* 66 (1): 161–86.
313 <https://doi.org/10.1146/annurev-arplant-043014-114759>.

314 Alder, Adrian, Muhammad Jamil, Mattia Marzorati, Mark Bruno, Martina Vermathen, Peter
315 Bigler, Sandro Ghisla, Harro Bouwmeester, Peter Beyer, and Salim Al-Babili. 2012.
316 “The Path from β -Carotene to Carlactone, a Strigolactone-like Plant Hormone.” *Science*
317 (New York, N.Y.) 335 (6074): 1348–51. <https://doi.org/10.1126/science.1218094>.

318 Arite, Tomotsugu, Hirotaka Iwata, Kenji Ohshima, Masahiko Maekawa, Masatoshi Nakajima,
319 Mikiko Kojima, Hitoshi Sakakibara, and Junko Kyozuka. 2007. “DWARF10, an
320 RMS1/MAX4/DAD1 Ortholog, Controls Lateral Bud Outgrowth in Rice: Control of Rice
321 Shoot Branching by D10.” *The Plant Journal* 51 (6): 1019–29.
322 <https://doi.org/10.1111/j.1365-313X.2007.03210.x>.

323 Booker, Jonathan, Tobias Sieberer, Wendy Wright, Lisa Williamson, Barbara Willett, Petra
324 Stirnberg, Colin Turnbull, Murali Srinivasan, Peter Goddard, and Ottoline Leyser. 2005.
325 “MAX1 Encodes a Cytochrome P450 Family Member That Acts Downstream of
326 MAX3/4 to Produce a Carotenoid-Derived Branch-Inhibiting Hormone.” *Developmental
327 Cell* 8 (3): 443–49. <https://doi.org/10.1016/j.devcel.2005.01.009>.

328 Bruno, Mark, and Salim Al-Babili. 2016. “On the Substrate Specificity of the Rice Strigolactone
329 Biosynthesis Enzyme DWARF27.” *Planta* 243 (6): 1429–40.
330 <https://doi.org/10.1007/s00425-016-2487-5>.

331 Butt, Haroon, Muhammad Jamil, Jian You Wang, Salim Al-Babili, and Magdy Mahfouz. 2018.
332 “Engineering Plant Architecture via CRISPR/Cas9-Mediated Alteration of Strigolactone
333 Biosynthesis.” *BMC Plant Biology* 18 (1): 174. <https://doi.org/10.1186/s12870-018-1387-1>.

335 Cardoso, Catarina, Yanxia Zhang, Muhammad Jamil, Jo Hepworth, Tatsiana Charnikhova,
336 Stanley O. N. Dimkpa, Caroline Meharg, et al. 2014. “Natural Variation of Rice
337 Strigolactone Biosynthesis Is Associated with the Deletion of Two *MAX1* Orthologs.”
338 *Proceedings of the National Academy of Sciences* 111 (6): 2379–84.
339 <https://doi.org/10.1073/pnas.1317360111>.

340 Challis, R. J., J. Hepworth, C. Mouchel, R. Waites, and O. Leyser. 2013. “A Role for MORE
341 AXILLARY GROWTH1 (MAX1) in Evolutionary Diversity in Strigolactone Signaling
342 Upstream of MAX2.” *PLANT PHYSIOLOGY* 161 (4): 1885–1902.
343 <https://doi.org/10.1104/pp.112.211383>.

344 Cook, C. E., L. P. Whichard, B. Turner, M. E. Wall, and G. H. Egley. 1966. “Germination of
345 Witchweed (*Striga Lutea* Lour.): Isolation and Properties of a Potent Stimulant.” *Science*
346 154 (3753): 1189–90. <https://doi.org/10.1126/science.154.3753.1189>.

347 Gomez-Roldan, Victoria, Soraya Fermas, Philip B. Brewer, Virginie Puech-Pagès, Elizabeth A.
348 Dun, Jean-Paul Pillot, Fabien Lettis, et al. 2008. “Strigolactone Inhibition of Shoot
349 Branching.” *Nature* 455 (7210): 189–94. <https://doi.org/10.1038/nature07271>.

350 Ito, S., Umehara, M., Hanada, A., Kitahata, N., Hayase, H., Yamaguchi, S., Asami, T. 2011
351 “Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice.”
352 *PLOS ONE* 6(7): e21723. <https://doi.org/10.1371/journal.pone.0021723>

353 Hassanali, A. 1985. "STRIGOL ANALOGUES : SYNTHETIC ACHIEVEMENTS AND
354 PROSPECTS." In *Striga: Biology and Control*, Kew Bulletin, 40:125–32. Hepper, F.
355 Nigel.

356 Jamil, Muhammad, Boubacar A Kountche, Imran Haider, Xiujie Guo, Valentine O Ntui, Kun-
357 Peng Jia, Shawkat Ali, et al. 2018. "Methyl Phenolactonoates Are Efficient Strigolactone
358 Analogs with Simple Structure." *Journal of Experimental Botany* 69 (9): 2319–31.
359 <https://doi.org/10.1093/jxb/erx438>.

360 Koltai, Hinanit, Sivarama P. LekKala, Chaitali Bhattacharya, Einav Mayzlish-Gati, Nathalie
361 Resnick, Smadar Wininger, Evgenya Dor, et al. 2010. "A Tomato Strigolactone-Impaired
362 Mutant Displays Aberrant Shoot Morphology and Plant Interactions." *Journal of
363 Experimental Botany* 61 (6): 1739–49. <https://doi.org/10.1093/jxb/erq041>.

364 Lanfranco, Luisa, Valentina Fiorilli, and Caroline Gutjahr. 2018. "Partner Communication and
365 Role of Nutrients in the Arbuscular Mycorrhizal Symbiosis." *New Phytologist* 220 (4):
366 1031–46. <https://doi.org/10.1111/nph.15230>.

367 Lazar, Gabor, and Howard M Goodman. 2006. "MAX1, a Regulator of the Flavonoid Pathway,
368 Controls Vegetative Axillary Bud Outgrowth in *Arabidopsis*." *PNAS* 103 (2): 472–76.

369 Marzec, Marek. 2016. "Perception and Signaling of Strigolactones." *Frontiers in Plant Science*
370 7: 1260. <https://doi.org/10.3389/fpls.2016.01260>.

371 Mohamed, Kamal I., Monica Papes, Richard Williams, Brett W. Benz, and A. Townsend
372 Peterson. 2006. "Global Invasive Potential of 10 Parasitic Witchweeds and Related
373 Orobanchaceae." *AMBIO: A Journal of the Human Environment* 35 (6): 281–88.
374 <https://doi.org/10.1579/05-R-051R.1>.

375 Morris, Suzanne E., Colin G.N. Turnbull, Ian C. Murfet, and Christine A. Beveridge. 2001.
376 "Mutational Analysis of Branching in Pea. Evidence That *Rms1* and *Rms5* Regulate the
377 Same Novel Signal." *Plant Physiology* 126 (3): 1205–13.
378 <https://doi.org/10.1104/pp.126.3.1205>.

379 Nelson, David, and Danièle Werck-Reichhart. 2011. "A P450-Centric View of Plant Evolution:
380 P450-Centric Evolution." *The Plant Journal* 66 (1): 194–211.
381 <https://doi.org/10.1111/j.1365-313X.2011.04529.x>.

382 Parker, Chris. 2012. "Parasitic Weeds: A World Challenge." *Weed Science* 60 (2): 269–76.
383 <https://doi.org/10.1614/WS-D-11-00068.1>.

384 Snowden, Kimberley C., Andrew J. Simkin, Bart J. Janssen, Kerry R. Templeton, Holly M.
385 Loucas, Joanne L. Simons, Sakuntala Karunairetnam, Andrew P. Gleave, David G. Clark,
386 and Harry J. Klee. 2005. "The Decreased Apical Dominance1/*Petunia Hybrida*
387 *CAROTENOID CLEAVAGE DIOXYGENASE8* Gene Affects Branch Production and
388 Plays a Role in Leaf Senescence, Root Growth, and Flower Development." *The Plant
389 Cell* 17 (3): 746–59. <https://doi.org/10.1105/tpc.104.027714>.

390 Stirnberg, Petra, Ian J. Furner, and H. M. Ottoline Leyser. 2007. "MAX2 Participates in an SCF
391 Complex Which Acts Locally at the Node to Suppress Shoot Branching: An SCFMAX2
392 Acts at the Node to Suppress Branching." *The Plant Journal* 50 (1): 80–94.
393 <https://doi.org/10.1111/j.1365-313X.2007.03032.x>.

394 Toh, Shigeo, Duncan Holbrook-Smith, Peter J. Stogios, Olena Onopriyenko, Shelley Lumba,
395 Yuichiro Tsuchiya, Alexei Savchenko, and Peter McCourt. 2015. "Structure-Function
396 Analysis Identifies Highly Sensitive Strigolactone Receptors in *Striga*." *Science* 350
397 (6257): 203–7. <https://doi.org/10.1126/science.aac9476>.

398 Ueno, Kotomi, Mami Fujiwara, Saki Nomura, Masaharu Mizutani, Mitsuru Sasaki, Hirosato
399 Takikawa, and Yukihiro Sugimoto. 2011. “Structural Requirements of Strigolactones for
400 Germination Induction of *Striga Gesnerioides* Seeds.” *Journal of Agricultural and Food
401 Chemistry* 59 (17): 9226–31. <https://doi.org/10.1021/jf202418a>.

402 Wakabayashi, Takatoshi, Misaki Hamana, Ayami Mori, Ryota Akiyama, Kotomi Ueno, Keishi
403 Osakabe, Yuriko Osakabe, et al. 2019. “Direct Conversion of Carlactonoic Acid to
404 Orobanchol by Cytochrome P450 CYP722C in Strigolactone Biosynthesis.” *Science
405 Advances* 5 (12): eaax9067. <https://doi.org/10.1126/sciadv.aax9067>.

406 Wang, Jian You, Imran Haider, Muhammad Jamil, Valentina Fiorilli, Yoshimoto Saito, Jianing
407 Mi, Lina Baz, et al. 2019. “The Apocarotenoid Metabolite Zaxinone Regulates Growth
408 and Strigolactone Biosynthesis in Rice.” *Nature Communications* 10 (1): 810.
409 <https://doi.org/10.1038/s41467-019-08461-1>.

410 Yoneyama, Kaori, Narumi Mori, Tomoyasu Sato, Akiyoshi Yoda, Xiaonan Xie, Masanori
411 Okamoto, Masashi Iwanaga, et al. 2018. “Conversion of Carlactone to Carlactonoic Acid
412 Is a Conserved Function of MAX 1 Homologs in Strigolactone Biosynthesis.” *New
413 Phytologist* 218 (4): 1522–33. <https://doi.org/10.1111/nph.15055>.

414 Yoneyama, Koichi, Xiaonan Xie, Kaori Yoneyama, Takaya Kisugi, Takahito Nomura,
415 Yoshifumi Nakatani, Kohki Akiyama, and Christopher S P McErlean. 2018. “Which Are
416 the Major Players, Canonical or Non-Canonical Strigolactones?” *Journal of Experimental
417 Botany* 69 (9): 2231–39. <https://doi.org/10.1093/jxb/ery090>.

418 Zhang, Yanxia, Aalt D J van Dijk, Adrian Scaffidi, Gavin R Flematti, Manuel Hofmann,
419 Tatsiana Charnikhova, Francel Verstappen, et al. 2014. “Rice Cytochrome P450 MAX1
420 Homologs Catalyze Distinct Steps in Strigolactone Biosynthesis.” *Nature Chemical
421 Biology* 10 (12): 1028–33. <https://doi.org/10.1038/nchembio.1660>.

422

423

424

425

426

427

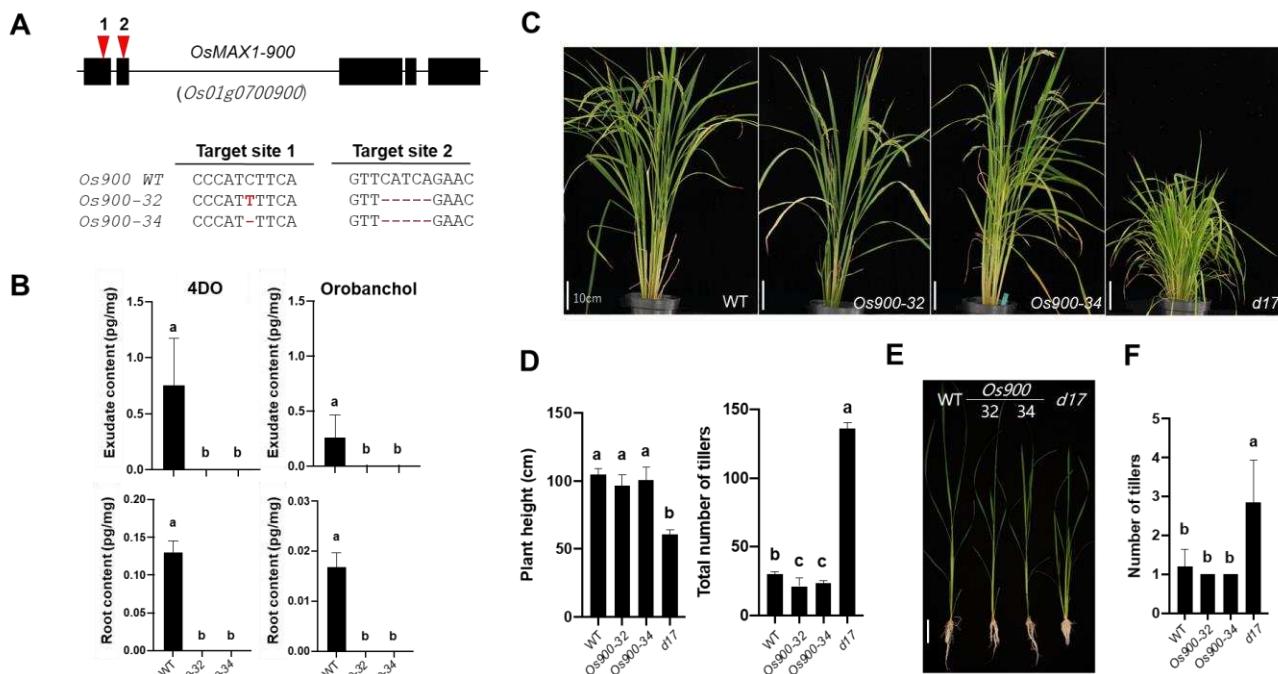
428

429

430

431

432


433

434

435

436

437 **FIGURE LEGENDS**

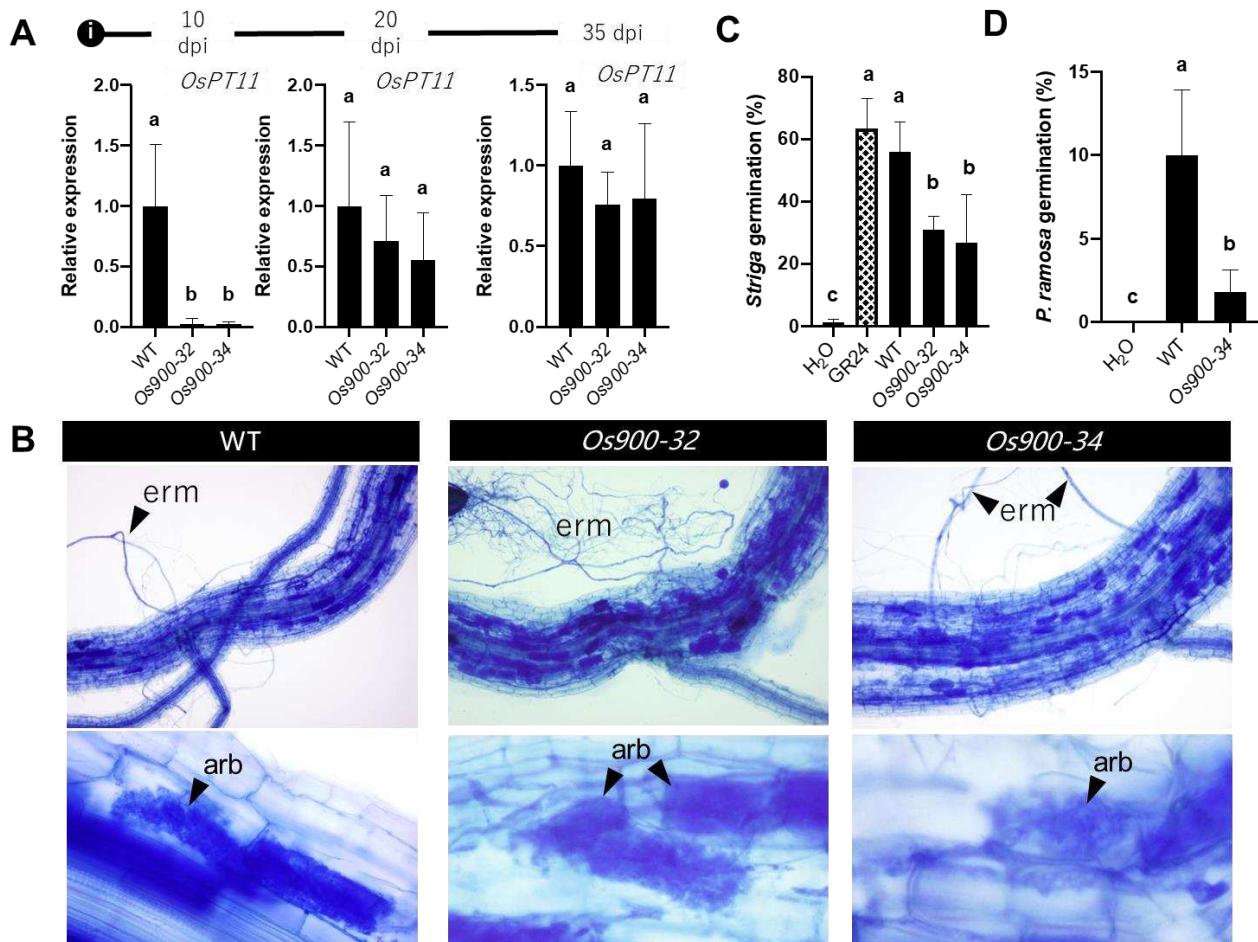
438

439 **FIGURE 1. Generation of the *Os900*-knockout lines by CRISPR/Cas9 system**

440 **(A)** The structure of the *Os900* gene and the sequences of the two CRISPR/Cas9 target
441 sites indicated by red arrows. Details of the CRISPR-mediated mutations of the two KO
442 lines, *Os900*-32 and -34, are reported. **(B)** Analysis of canonical SLs, 4DO and
443 orobanchol, in root exudates of *Os900*-KO lines grown under constant low Pi conditions.
444 The data are presented as means \pm SD from 5 samples. Means not sharing a letter in
445 common differ significantly at $P_{0.05}$. **(C and D)** Shoot phenotypes of WT, *Os900*-KO lines,
446 and *d17* mutant grown in soil and hydroponic culture under +Pi conditions (E and F). The
447 data are presented as mean \pm SD for the number of biological replicates (C and D, 5 \leq n \leq 7
448 for WT, *Os900*-32 and -34, n=3 for *d17*; E and F, 4 \leq n \leq 8).

449

450


451

452

453

454

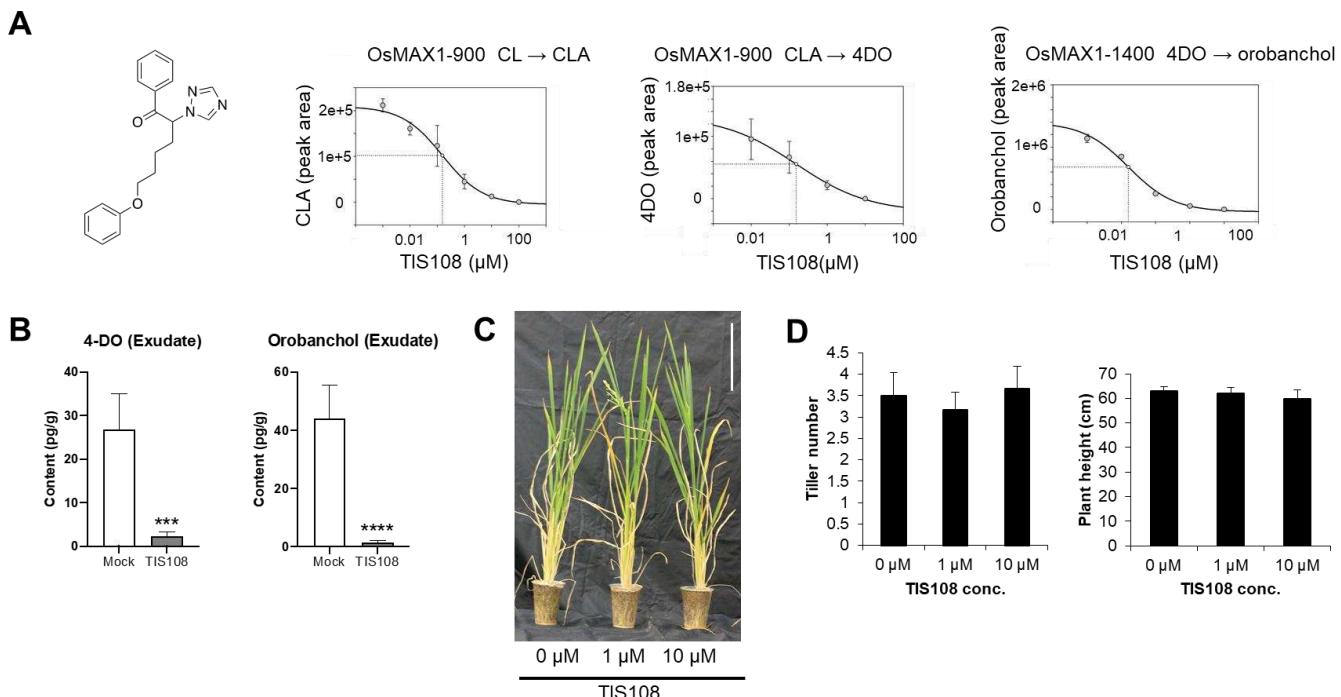
455

456

457 **FIGURE 2.** Effect of *Os900*-KO lines on the arbuscule formation (A, B) and the
458 germination of root parasitic weeds (C, *Striga*, and D, *Phelipanche*). The values are
459 represented as the mean \pm SD for the number of biological replicates (A and B, n=4; C,
460 2< n <4; and D, n=3). The statistical significance is determined by one-way ANOVA and
461 Tukey's multiple comparison test.

462 Arbuscule formation of *R. irregularis* was quantified by measuring the expression of
463 marker gene (*OsPT11*) (A). (B) Arbuscule formation at 35 dpi.

464


465

466

467

468

469

470

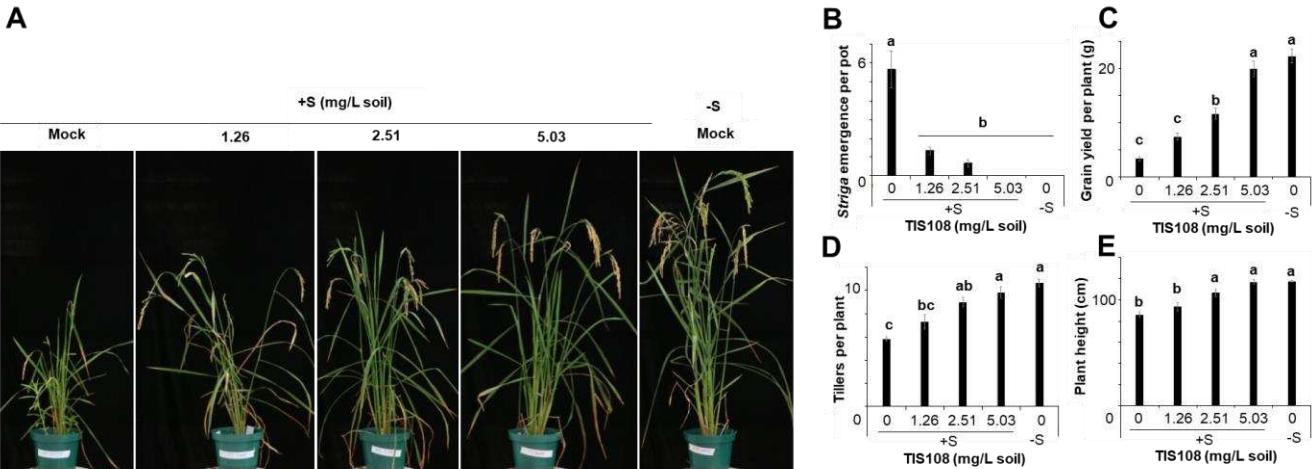
471 **FIGURE 3.** TIS108 is an OsMAX1s inhibitor.

472 (A) Structure of TIS108 and inhibition of the activity of rice MAX1s by TIS108. Different
473 substrates (carlactone, carlactonoic acid and 4-deoxyorobanchol) and concentrations of
474 TIS108 were incubated with MAX1 containing yeast microsomes. Assay extracts and
475 authentic standard controls were analyzed by LC-MS/MS. (B) TIS effect on canonical
476 SLs, 4DO and orobanchol, in root exudates of WT grown under constant low Pi
477 conditions. The data are presented as means \pm SD of 5 biological replicates. Asterisk
478 indicates significant difference without (Mock) and with 10 μ M TIS108 treatment (TIS108)
479 ($***P < 0.001$, $****P \leq 0.0001$, Student's t test). (C) Three-month-old rice plants treated with
480 TIS108. Scale bar = 10 cm. (D) Tiller number and plant height of plants from (C).

481

482

483


484

485

486

487

488

489

490 **FIGURE 4.** Application of TIS108 mitigates *Striga* infestation.

491 **(A)** *Striga* emergence test in rice grown in the presence (+S) or absence (-S) of *Striga*
492 seeds for 8 weeks. The soil was treated with 0, 10, 20 or 40 μ M TIS108 once a week up
493 to 3 weeks. Total amounts of TIS108 were 1.26 (10 μ M TIS108), 2.51 (20 μ M TIS108)
494 and 5.03 (40 μ M TIS108) mg/L soil. **(B)** Number of emerged *Striga* plants after 8 weeks.
495 Grain yield **(C)**, number of tillers **(D)** and plant height **(E)** were recorded at final harvesting.
496 The data are presented as means \pm SE from 6 samples. Different letters indicate
497 statistically significant differences at $P_{0.05}$.

498