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Abstract

The plant hormones strigolactones (SLs) regulate shoot branching and mediate the
communication with symbiotic mycorrhizal fungi, but also with noxious root parasitic
weeds, such as Striga spp. SLs derive from carlactone (CL) and are divided structurally
into canonical and non-canonical SLs. However, the questions about particular biological
functions of the two groups and the identification of the SL that inhibits shoot branching
are still unanswered, hampering targeted modification of SL pattern towards improving
plant architecture and resistance against Striga. Here, we reported that 4-
deoxyorobanchol (4DO) and orobanchol, the two canonical SLs in rice, do not have major
role in determining rice shoot architecture. CRISPR/Cas9 mediated Osmax1-900
mutants, lacking these two SLs, do not show the high tillering and dwarf phenotype typical
for SL-deficient plants. However, the absence of 4DO and orobanchol in root exudates
significantly decreased their capability in inducing Striga seed germination, while caused
only a delay in root colonization by mycorrhizal fungi. To confirm the genetic evidence,
we used the SL-biosynthesis inhibitor TIS108. Our results showed that TIS108 is a MAX1-
specific inhibitor that lowers 4DO and orobanchol synthesis, conferring a resistance to
Striga without a severe impact on rice architecture. Hence, our work uncovers the specific
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function of canonical SLs as rhizospheric signals and paves the way for establishing
chemical and genetic based approaches for combating the root parasitic weeds, by
targeted depletion of their release.

Strigolactones (SLs) are carotenoid-derived hormones characterized by an enol-
ether bridge connecting a lactone ring (D-ring; Fig.S1) (Koichi Yoneyama et al. 2018) in
R configuration to a structurally variable second moiety that consists of a tricyclic lactone
ring (ABC-ring) in canonical SLs, while non-canonical SLs have variable structures based
on a B-ionone ring (A-ring) (Fig.S1) (Al-Babili and Bouwmeester 2015). SLs are a major
determinant of plant architecture; one of their key involvement amid several other
biological processes. Among other phenotypes, mutants affected in SL biosynthesis are
characterized by increased branching/tillering, shorter shoots (dwarf), and decreased
primary root length (Morris et al. 2001; Gomez-Roldan et al. 2008; Al-Babili and
Bouwmeester 2015).

In addition, when exposed to nutrients deficiency, particularly phosphate, plant
roots release SLs to attract arbuscular mycorrhizal fungi (AMF). The latter establish the
AM symbiosis, the most common type of plant mutualist association that significantly
increases the uptake of nutrients and water from the soil (Akiyama, Matsuzaki, and
Hayashi 2005; Marzec 2016; Lanfranco, Fiorilli, and Gutjahr 2018). However, canonical
SLs were first discovered as the host-derived signals that stimulate seed germination in
root parasitic weeds, such as Orobanche and Striga spp. (Cook et al. 1966). During their
evolution, these obligate parasites have acquired the ability to utilize SLs as signal to
coordinate their development with the presence of an available host in the close vicinity
(Toh et al. 2015). Infestation by root parasitic plants, such as Striga hermonthica, is a
severe problem for agriculture and a major threat for global food security, particularly in
Africa, where it causes more than US$7 billion annual losses in cereal production
(Mohamed et al. 2006; Parker 2012).

The availability of high-branching mutants of monocot and dicot plant species
(Snowden et al. 2005; Stirnberg, Furner, and Ottoline Leyser 2007; Koltai et al. 2010;
Arite et al. 2007; Cardoso et al. 2014) paved the way for discovering the hormonal function
of SLs and enabled later the elucidation of their biosynthesis. SL biosynthesis starts with
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93 the reversible isomerization of all-frans- into 9-cis-3-carotene, catalyzed by DWARF27
94  (Abuauf et al. 2018; Alder et al. 2012; Bruno and Al-Babili 2016). It is followed by cleavage
95 and rearrangement reactions, mediated by the CAROTENOID CLEAVAGE
96 DIOXYGENASE 7 and 8 (CCD7/D17 and CCD8/D10), which yield carlactone (CL), the
97  core intermediate of SL biosynthesis (Fig. S2) (Alder et al. 2012; Bruno and Al-Babili
98 2016). The discovery of CL unraveled the presence of the non-canonical SLs that were
99 unknown before. Indeed, different modifications of CL, which are catalyzed by
100  cytochrome P450 monooxygenases (CYP), in particular MORE AXILLARY GROWTH1
101  (MAX1) from the CYP711A clade, and other enzymes, give rise to the structural diversity
102  of the more than 30 natural canonical and non-canonical SLs (Booker et al. 2005;
103  Cardoso et al. 2014; Lazar and Goodman 2006; Wakabayashi et al. 2019).

104 Rice contains five MAX7 homologs - 0Os01g0700900 (OsMAX1-900),
105 Os01g0701400 (OsMAX1-1400), Os0190701500 (OsMAX1-1500), Os02g0221900
106 (OsMAX1-1900) and Os06g0565100 (OsMAX1-5100) (Nelson and Werck-Reichhart
107  2011; R. J. Challis et al. 2013) — with a truncated OsMAX7-1500 in the Nipponbare cv.
108  (Richard J. Challis et al. 2013). /n vitro studies and transient expression in Nicotiana
109  benthamiana showed that all functional Nipponbare OsMAX1 enzymes (OsMAX1-900,
110 OsMAX1-1400, OsMAX-1900, and OsMAX1-5100) can convert CL into carlactonoic acid
111 (CLA) that is transformed into the canonical SLs 4-deoxyorobanchol (4DO), and then
112 orobanchol by sequential action of OsMAX1-900 and OsMAX1-1400 (Fig. S2) (Zhang et
113 al. 2014; Kaori Yoneyama et al. 2018).

114 In this work, we investigated the biological function of canonical SLs in rice. For
115 this purpose, we generated two bi-allelic homozygous OsMAX7-900 knockout lines
116  (0Os900-KO: Os900-32 and -34) disrupted in the biosynthesis of 4DO and orobanchol
117  through introducing CRISPR/Cas9-induced deletion, point mutation and frameshift
118 mutations (Fig. 1A). We first quantified 4DO and orobanchol in roots and root exudates
119  of hydroponically grown and phosphate-starved mutants by Liquid Chromatography
120 Tandem-Mass Spectrometry (LC-MS/MS) (Fig. 1B; Fig. S3A-B). 4DO and orobanchol
121  were undetectable in both lines, confirming in planta the role of OsMAX1-900 as the rice
122 4DO synthase (Kaori Yoneyama et al. 2018) and that 4DO is the exclusive precursor of
123 orobanchol in rice. Besides the absence of 4DO and orobanchol, exudates of the mutant


https://doi.org/10.1101/2022.04.05.487102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487102; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

124  lines showed a decrease of more than 96% in the level — and absent in rice root tissues
125 - of a non-canonical SL tentatively identified as 4-oxo-MeCLA (4-oxo-methyl-
126  carlactonoate) (Fig. S3C)), which was previously described as methoxyl-5-deoxystrigol
127  isomer (Yoneyama et al., 2018). Based on the ion peak characteristic of the D-ring at
128 97.028, we also identified a novel SL, CL+30 with a molecular formula C19H240s5 (m/z
129  333.16989 as positive ion [M + H]*, calcd. for m/z 333.16965), which was present at high
130 levels in the Os900 mutants ( Fig. S3C). Feeding Os900-34 seedlings with ['3C]-labeled
131  CL confirmed that CL+30 is a downstream product of CL (Fig. S4); however, the enzyme
132 responsible for the production of this metabolite remains elusive, as we did not get any
133 hint for the involvement of OsMAX1s from the transcript analysis (Fig. S5). The higher
134 accumulation of CL+30 in Os900-KO lines (Fig. S3B-C) indicated that it might be a
135  substrate of OsMAX1-900. We confirmed this assumption by expressing OsMAX1-900 in
136  yeast cells and feeding them with a CL+30 containing fraction. After incubation and LC-
137  MS/MS analysis, we detected a reduction in CL+30 content and its conversion into a
138  novel metabolite eluting at 6.1 min (m/z 347 in positive-ion mode and 345 in negative-ion
139  mode), corresponding to CL+30+14 Da (CL+30+14) (Fig. S6). As OsMAX1-900 catalyzes
140  the carboxylation of CL, we expected the arising metabolite to contain a carboxyl group.
141  Therefore, we methylated the novel OsMAX1-900 product by diazomethane, which gave
142  rise to a derivative with m/z 361 in positive ion mode and fragment pattern and retention
143 time (9.1 min), which are characteristic for the tentative 4-oxo-MeCLA (Fig. S7). Given
144 that OsMAX1-900 catalyzes the oxidation at the C19 position, we assumed that CL+30
145  corresponds to 4-oxo-19-hydroxy-CL (Fig. S8).

146 Next, we phenotyped the growth and development of the Os900-KO lines, in
147 comparison with WT and the high-tillering SL-deficient d77 mutant (Butt et al. 2018). In
148  soil and under normal growth conditions (+Pi), shoots of mature Os900-KO plants did not
149  differ significantly from WT, in contrast to d77 that showed the characteristic dwarfism
150 and extreme high-tillering (Fig. 1C-E). Interestingly, Os900-KO lines had even less tillers,
151 compared to WT (an average of 30 tillers for WT vs 21.4 and 23.6 tillers for Os900-32
152  and -34, respectively) (Fig. 1D; Fig. S9A). 0Os900-KO mutants, grown in rhizotrons under
153  normal conditions, showed a higher number of crown roots and root area, compared to
154  WT (Fig. S9B-C). When hydroponically grown under different conditions (+Pi, -Pi, and low
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155 Pi), we did not detect common significant differences in shoot and root phenotype
156  between the two mutants and the WT; with the exception of shorter shoots, lighter shoot,
157  and root biomass under both +Pi and -Pi conditions (Fig. 1E; Fig. S10). Nevertheless, we
158 did not detect pronounced morphological alterations, which are characteristic for SL
159 deficient mutants (d70 and d77), in the Os900-KO mutants in all three experiments,
160 indicating that (1) canonical SLs are not major regulators of rice architecture and (2) the
161  0s900-KO mutant lines still maintain a normal SL hormone homeostasis. To check the
162  first assumption, we fed hydroponically grown d77 seedlings with different concentrations
163  of 4DO (0 nM, 1 nM, 10 nM, 100 nM, and 1000 nM) under normal conditions, using 1000
164 nM rac-GR24 (SL analog) as a positive control (Jamil et al., 2018) (Fig. S11A), and
165 determined the effect of the treatment on their phenotype. We observed a decrease in
166 tillering only at higher concentrations (100 and 1000 nM, Fig. S11B), which are much
167  higher than endogenous SL levels (usually at picomole level under nutrient deficiency
168  conditions). For the second hypothesis, we treated d77 and Os900-KO mutants with 2.5
169 uM zaxinone, a growth-promoting apocarotenoid that requires intact SL biosynthesis and
170  perception for its activity (Wang et al. 2019), with and without 1 yM rac-GR24 (Fig. S12).
171  As expected, the application of zaxinone increased the d77 root length only when
172  combined with GR24. In contrast, zaxinone alone significantly enhanced the root and
173 shoot length of Os900-KO lines (Fig. S13), suggesting that SL hormone biosynthesis and
174  signaling are working properly in the absence of 4DO and orobanchol. In conclusion,
175 these data suggested that canonical SLs are not responsible for regulating the tiller
176 number in rice, which is in line with a recently published study on the role of orobanchol
177  in tomato (Wakabayashi et al. 2019). Moreover, our results indicated that non-canonical
178  SLs are the SL hormone regulating shoot architecture. This was further supported by the
179  absence of canonical SLs and the presence of CL+30, as CL+30 was the only SL
180 detected in the root-shoot junction (area where the tillers emerge) of Os900 mutants,
181  which do not have a shoot architecture-related phenotype (Fig. S14).

182 Next, we investigated the role of canonical SLs as rhizospheric signals. First, we
183  estimated the colonization of 0Os900-KO roots by the AMF Rizophagus irregularis after
184 10-, 20- and 35-days post inoculation (dpi). For this purpose, we used the transcript
185 abundance of OsPT11, a plant marker gene for a functional AM symbiosis (Guimil et al.
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186  2005). At 10 dpi, there was a delay in colonization of Os900-KO roots compared to WT
187  roots; whereas, at 20 and 35 dpi the colonization of Os900 mutants was comparable to
188 the WT (Fig. 2A). No other phenotypic differences were observed in intraradical fungal
189  structures (Fig. 2B) and in plant traits (Fig. S15). Additionally, application of Os900-KO
190  root exudates to Gigaspora margarita spores led to an induction of germination rate in
191 analogy to rac-GR24 (Fig. S16), suggesting that exudates of Osmax7-900 mutants still
192  have non-canonical SLs at a sufficient level to sustain AMF germination in the absence
193  of canonical SLs.

194 We then tested the germination activity of Os900 KO-lines root exudates on Striga
195  hermonthica and Phelipanche ramosa seeds and observed more than 50% decrease in
196 the germination of both parasitic species, compared to WT exudates (Fig. 2C-D; Fig.
197 S17). This indicates that 4DO and orobanchol are important cues for parasitic seed
198  germination, especially 4DO that was shown to be a stronger germination signal than
199  orobanchol (Ueno et al. 2011). Hence, we can conclude that the two rice canonical SLs,
200 4DO and orobanchol, are rhizospheric signals important for the interaction with root
201  parasitic plants and that decreasing their biosynthesis or even completely knocking it out
202 is highly desired for reducing the damage caused by Striga and other root parasitic plants,
203  without causing severe plant architectural changes. However, modulation of SL contents
204 by genetic modifications requires years of development; while chemically-induced
205 inhibition of their biosynthesis may lead much faster to rice plants lacking 4DO and
206  orobanchol. Therefore, we set out to identify chemical(s) that inhibit canonical SL
207  biosynthesis in rice.

208 TIS108 is an inhibitor of SL biosynthesis, which contains a 1H-1,2,4-triazole moiety
209  (Fig. 3A) that can bind to the heme iron of P450s, such as MAX1 enzymes, and potentially
210  impede their function(s) (lto et al., 2011). Indeed, it inhibited the conversion of CL to CLA
211 to 4DO by OsMAX1-900 (ICs0 = 0.15 pM, for both conversions), and of 4DO to orobanchol
212 by OsMAX1-1400 (ICso = 0.02 uM) (Fig. 3A), when added to assays with microsomes
213 prepared from yeast cells overexpressing the corresponding MAX1 enzyme. We could
214 not determine whether TIS108 also affects the activity of OsMAX1-5100 and -1900, as
215 we did not detect the sufficient conversion of CL to CLA, neither with native nor with
216  codon-optimized OsMAX1-5100 and -1900 in yeast microsomes (Fig. S18).
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217 To confirm the effect of TIS108 on the biosynthesis of canonical SLs in planta and
218 to check its impact on plant growth and architecture, we applied the inhibitor to
219  hydroponically grown rice seedlings under phosphate starvation. TIS108 treatment
220 caused a significant decrease of 4DO, orobanchol, and 4-oxo-MeCLA level and an
221  accumulation of CL+30 (Fig. 3B; Fig. S19). Seedlings of the rice d714-1 SL-perception
222 mutant, which contains higher amounts of SLs due to the absence of a negative feedback
223 regulation, showed similar responses to TIS108 treatment, i.e. a decrease of canonical
224 SlLsinroots and root exudates and an enhancement in CL+30 level (Fig. S20); confirming
225 the impact of TIS108 on SL pattern. Importantly, the application of TIS108 to 2-week-old
226  rice WT seedlings grown in hydroponic (Fig. S21) or soil (Fig. 3C and D) did not cause
227  phenotypic alterations, compared to the mock. We also investigated the effect of TIS108
228  on rice transcriptome, using RNAseq (Data S1). None of the identified 174 upregulated
229 and 107 downregulated differentially expressed genes (DEGs) in TIS108-treated rice
230 (Tables S1 and S2) was related to tillering or SL biosynthesis. This result is in line with
231 the absence of significant morphological changes upon TIS108 treatment (Table S3).
232 Furthermore, we investigated the impact of TIS108 on the AM symbiosis. Application of
233 this inhibitor at a 10 yM concentration to plants inoculated with the AMF R. irregularis led
234 to acolonization pattern, based on OsPT11 transcript abundance, similar to that observed
235  with the Os900-KO mutants: TIS108 caused a delay in mycorrhization at 10 dpi, which
236  was recovered at 20 dpi. However, by the end of the experiment, TIS108-treated plants
237  showed a tendency towards reduction of OsPT11 transcript level, compared to WT (Fig.
238  S22). Next, we investigated whether TIS108 can be utilized for reducing Striga infestation.
239  For this purpose, we exposed rice grown in Striga-infested soil to TIS108 at
240  concentrations of 0, 0.0782, 0.235, and 0.782 mg/L (total amounts) over a 7-week time
241 period. Results obtained showed a reduction of Striga emergence in a dose-dependent
242 manner (Fig. 4A-E; Fig. S23-S24). We did not observe this decrease when we added the
243  SL analog methyl-phenlactonoate 1 (MP1; Jamil et al. 2018) to the TIS108 treatment,
244 suggesting that the lower Striga emergence detected with TIS108 alone is a result of
245 lower level of germination stimulant in the root exudates. Lower infestation protected the
246  rice plants from Striga-induced growth inhibition (Fig. 4A), leading to number of tillers and
247  spikes, plant height, grain yield, and grain number similar to those of WT rice grown in
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248  Striga-free soil and without TIS108 treatment (Fig. 4B-E; Fig. S23). We also tested the
249  effect of TIS108 on Indica rice and sorghum - major crops in Striga infested regions in
250  Africa. Here again, we observed lower Striga germination inducing activity of the exudates
251 isolated from TI1S108 treated plants (Fig. S25). Overall, the application of TIS108 mimics
252  the effect of knocking out MAX7-900 in the Osmax1-900 mutants (Fig. S26), with respect
253  to the level of canonical SLs and biological activity of root exudates, suggesting that rice
254  canonical SLs are rhizospheric signals rather than tillering-inhibitory hormones.

255 Taken together, we employed genetic and chemical strategies to manipulate rice
256  SL compositions, which allowed us to disentangle the biological functions of canonical
257 and non-canonical SLs in rice. Our findings unraveled the possibility of reducing Striga
258 infection by gene editing or chemical treatment without significantly affecting host’s
259  morphology, growth and symbiotic capability. For immediate practical purpose, we
260 estimated the effective concentration of TIS108 to be around 305 g/ha, and its application
261 is a promising strategy alleviating the threat posed by Striga and other root parasitic plants
262  to global food security.
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439  FIGURE 1. Generation of the Os900-knockout lines by CRISPR/Cas9 system

440  (A) The structure of the Os900 gene and the sequences of the two CRISPR/Cas9 target
441  sites indicated by red arrows. Details of the CRISPR-mediated mutations of the two KO
442  lines, 0Os900-32 and -34, are reported. (B) Analysis of canonical SLs, 4DO and
443  orobanchol, in root exudates of Os900-KO lines grown under constant low Pi conditions.
444  The data are presented as means * SD from 5 samples. Means not sharing a letter in
445  common differ significantly at Po.os. (C and D) Shoot phenotypes of WT, Os900-KO lines,
446  and d717 mutant grown in soil and hydroponic culture under +Pi conditions (E and F). The
447  data are presented as mean + SD for the number of biological replicates (C and D, 5sn<7
448  for WT, Os900-32 and -34, n=3 for d17; E and F, 4<n<8).

449

450

451

452

453

454

455


https://doi.org/10.1101/2022.04.05.487102
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.05.487102; this version posted April 7, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

10 20 . D
A o_ dpi dpi 35 dpi C

2.0- OsPT11 2.0+ a OsPT11 159 a OsPT11 80— a

-

(3]
1
o

1.5- 1.5- 60

-
(=]
1

1.0

1.0 404

(3]
1
o

0.5+

0.5+ 0.5 20+

Relative expression
Relative expression
5
1
Relative expression
Striga germination (%)

c

P. ramosa germination (%)

(=]
1

0.0- 0.0- 0.0- 0- rbb(
v ok & o) ok SV O o 9 ok O
S S NI S &L F A & &g

of )
F P o o ISale) 0°

456 : ¢ \ ;
457 FIGURE 2. Effect of Os900-KO lines on the arbuscule formation (A, B) and the

458 germination of root parasitic weeds (C, Striga, and D, Phelipanche). The values are

459 represented as the mean x SD for the number of biological replicates (A and B, n=4; C,
460 2<n<4; and D, n=3). The statistical significance is determined by one-way ANOVA and
461  Tukey’s multiple comparison test.

462  Arbuscule formation of R. irregularis was quantified by measuring the expression of
463  marker gene (OsPT11) (A). (B) Arbuscule formation at 35 dpi.
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471  FIGURE 3. TIS108 is an OsMAX1s inhibitor.

472 (A) Structure of TIS108 and inhibition of the activity of rice MAX1s by TIS108. Different
473  substrates (carlactone, carlactonoic acid and 4-deoxyorobanchol) and concentrations of
474  TIS108 were incubated with MAX1 containing yeast microsomes. Assay extracts and
475  authentic standard controls were analyzed by LC-MS/MS. (B) TIS effect on canonical
476  SLs, 4DO and orobanchol, in root exudates of WT grown under constant low Pi
477  conditions. The data are presented as means + SD of 5 biological replicates. Asterisk
478 indicates significant difference without (Mock) and with 10 uM T1S108 treatment (TIS108)
479  (***P<0.001, ****P<0.0001, Student’s t test). (C) Three-month-old rice plants treated with
480  TIS108. Scale bar = 10 cm. (D) Tiller number and plant height of plants from (C).
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FIGURE 4. Application of TIS108 mitigates Striga infestation.

(A) Striga emergence test in rice grown in the presence (+S) or absence (-S) of Striga
seeds for 8 weeks. The soil was treated with 0, 10, 20 or 40 uM TIS108 once a week up
to 3 weeks. Total amounts of TIS108 were 1.26 (10 uM TIS108), 2.51 (20 uM TIS108)
and 5.03 (40 uM T1S108) mg/L soil. (B) Number of emerged Striga plants after 8 weeks.
Grain yield (C), number of tillers (D) and plant height (E) were recorded at final harvesting.
The data are presented as means + SE from 6 samples. Different letters indicate

statistically significant differences at Po.os.
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