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Abstract

AlphaFold and AlphaFold-multimer can predict the structure of single- and multiple chain
proteins with very high accuracy. However, predicting protein complexes with more than a
handful of chains is still unfeasible, as the accuracy rapidly decreases with the number of
chains and the protein size is limited by the memory on a GPU. Nevertheless, it might be
possible to predict the structure of large complexes starting from predictions of
subcomponents. Here, we take a graph traversal approach to assemble 175 protein
complexes with 10-30 chains using predictions of subcomponents. We compute paths
through a complex graph constructed of subcomponents using Monte Carlo Tree Search and
assemble these in a stepwise fashion. Using subcomponents predicted from all possible
trimeric interactions, 88 complexes (50%) are assembled to completion. We create a scoring
function, mpDockQ, that can distinguish if assemblies are complete and predict their
accuracy. Selecting complete complexes with TM-score 20.9 at FPR 10% using mpDockQ
results in 23 complexes with a median TM-score of 0.92. The complete assembly protocol,
starting from the sequences, is freely available at: https://qitlab.com/patrickbryant1/molpc
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Introduction

Large protein complexes govern many cellular processes, performing complicated tasks
such as mRNA splicing[1], protein degradation[2] or assisting protein folding[3]. By
incorporating protein-interaction information from many co-purification experiments, the
human protein complex map, hu.MAP 2.0[4], provides a set of 4,779 complexes with more
than two chains. However, only 83 of these complexes are present in PDB. There are only
372 structurally resolved human protein complexes with over two chains, and of the 3130
eukaryotic core complexes in CORUM]I5] only 800 have homologous structures covering all
chains in PDB, suggesting a gap in our structural knowledge of protein complexes.

In total, there are only 265 hetero and homomeric, non-redundant complexes in the PDB
with 10-30 chains. Although it is unknown how many large complexes may exist, following
the relationship between the known human complexes from hu.MAP and the structural
coverage of these, one can extrapolate that there may indeed be a low structural coverage
across different species.

There are at least three approaches|[6] for modelling the structure of protein complexes,
template-based modelling[7], shape complementarity docking[8] and integrative
modelling[9,10]. Template-based modelling and docking methods have recently been shown
to be outperformed by a combined fold and docking methodology using AlphaFold[11] for
dimeric complexes, even if the bound form of each monomer is known[12]. Further, few
docking programs handle more than two protein chains, i.e. these methods are not suitable
for building large complexes with no close homology to known complexes. There is currently
(to our knowledge) no available docking benchmark for complexes with more than two
chains, and previous studies only report results on a few examples[13].

Assembling large protein complexes with integrative modelling generally requires electron
density maps or other experimental information to guide the assembly process[9],[14]. This
type of guided assembly is typically based on a Markov process[9] or Gaussian mixture
models[15], where many different potential configurations are explored and scored. This
process makes it possible to assemble complexes with up to 1000 protein chains[16].
However, obtaining electron density maps can be very difficult, as some protein complexes
are hard to express, purify and crystallise. Still, many recent assemblies of large protein
complexes exist, such as the human nuclear pore complex[17] and 26S proteasome[18].

The only deep learning method primarily designed to predict the structure of more than two
protein chains is AlphaFold-multimer[19]. This method has been trained on proteins of up to
nine chains or 1536 residues and can predict complexes of up to a few thousand residues,
where memory limitations come into play. However, the performance declines rapidly for
proteins with over two chains (Supplementary figures 1 and 2). Predicting the structure of
larger complexes is thereby currently not feasible. An alternative approach could be to
predict the structure of subcomponents of large complexes and then assemble them. We
have earlier shown that it is possible to manually assemble large complexes from dimers in a
few cases [20].
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In vivo, all components of large protein complexes do not assemble simultaneously, but
stepwise[21], due to the presence of homologous protein chains and potential interfaces that
need to be buried before subsequent chains can be added. Here, we explore the limitations
of AlphaFold for predicting protein complexes with 10-30 chains and create a graph-traversal
algorithm that excludes overlapping interactions, making it possible to assemble large
protein complexes in a stepwise fashion.

Results and Discussion

Complex assembly

To analyse the possibility of assembling large protein complexes, we extracted all
high-resolution non-redundant complexes from the PDB with more than nine chains, not
containing nucleic acids or interactions from different organisms (175 in total). We start by
analysing the possibility to assemble these protein complexes if all pairs of interactions
between protein chains are known. Using either AlphaFold-multimer[19] (AFM) or the
FoldDock protocol[12] using AlphaFold[11] (AF), we predict the structure of all unique pairs
of interacting protein chains as subcomponents and create assembly paths, described
below, from these.

As an example, the assembly of 6ESQ (acetoacetyl-CoA thiolase/HMG-CoA synthase
complex) is shown in Figure 1, using subcomponents predicted with AFM. The process
starts from the two dimers, AC and CH, creating the trimer ACH through superposition using
the chain C present in both dimers. Next, chain L is added through a connection with H
(superposition using chain H); after that, chain J through a connection with L, this process
then continues until the entire complex is assembled according to the outlined path.

During the first part of this paper, we assume that the interaction graph is known, i.e. we limit
the assembly paths only to include interactions existing in the complex. Although this is a
simplification, the number of assembly paths is still huge, and it could at least be
theoretically possible to obtain this information from other types of experiments[22] or
predictions[4]. Next, potential assembly paths are created by starting at a randomly selected
chain and adding all possible connections through superposition. Often overlaps occur
among the predictions due to imperfect subcomponents, resulting in that, e.g. atoms from
chains B and C occupy the same spatial position in a given complex ABCD. Therefore, an
assembly path is discontinued when over half of the alpha carbons from two different chains
are within 5A from each other. An assembly path is complete when all chains in a complex
can be linked together. For 6ESQ, the assembly results in a model with a TM-score of 0.96.
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Figure 1: Assembly principle for the complex 6ESQ (acetoacetyl-CoA thiolase/HMG-CoA
synthase complex). Starting from protein sequences from each chain and the interaction
network, the structure of all interacting chains is predicted. From these predictions, an
assembly path is constructed using the predictions as a guide. In each step, a new chain is
added through a network edge resulting in a sequential construction of the complex. The
taken path is outlined in red. The complete assembly is shown in overlap with the native
complex (grey). The resulting TM-score is 0.96 using subcomponents from AFM (shown)
and 0.92 using FoldDock (not shown).
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Monte Carlo Tree Search

Due to the high number of possible paths to explore, searching all paths is unfeasible.
Therefore, we search for an optimal path using Monte Carlo Tree Search[23] (MCTS, Figure
2), which has been applied successfully to solve a variety of game-related problems[24,25].
Starting from a randomly selected chain (node); chains are added at random to expand the
path, thereby creating new nodes. From these expansions, complete assemblies are
simulated. Simulations are stopped when no additional subunits can be added, see
methods. The simulated assemblies are scored by their cumulative mpDockQ
(multiple-interface predicted DockQ; average interface pIDDT times the logarithm of the
number of interface contacts, Methods section) score, and the scores are backpropagated to
yield support for the previous selections. The path with the most support is selected, creating
a complex that is the most likely to be correct. Due to the statistical nature of the search
procedure, no aspect of a specific complex is being “learned” in the backpropagation, which
means that all 175 complexes can be used for the evaluation.

Selection — — — — - Expansion — — — — P Simulation — — — — # Backpropagation

Select the highest
scoring node

Expand to a new
node selected
randomly

a complete Score the complex and
complex by adding new backpropagate the
nodes randomly score to yield support to

previous selections

Figure 2. Monte Carlo Tree Search. Starting from a node (subcomplex), a new node is
selected based on the previously backpropagated scores. From this node, a random node is
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added (expansion). A complete assembly process is then simulated by adding nodes

randomly until an entire complex is assembled or a stop caused by too much overlap is
reached. The complex is scored and the score is backpropagated to all previous nodes,
which yields support to the previous selections. The end result is that the nodes that are
most likely to result in high scoring complexes are joined in a path containing all chains.

AFM vs AF using pairwise interactions

Four and fifteen out of 175 complexes could be assembled to completion using known
pairwise interactions with AFM and FoldDock (AF) respectively (Figure 3a). All assemblies
based on FoldDock perform on par or better than those based on AFM. The results suggest
that if a complete path can be found, it is likely to obtain a high TM-score (median=0.77)
using the FoldDock pipeline.

The AFM modelling pipeline often causes clashes (Figure 3b), resulting in atoms from
different chains occupying the same positions. Defining clashes as atoms from different
protein chains being within 1 Angstrém from each other, 61.7% (403/653) of the AFM dimers
contain clashes and 6.3% (41/656) for the FoldDock pipeline. This is likely the major reason
that the assembly using AF is more likely to succeed.

For the unique trimers predicted with AFM, the clashes are even more frequent than for the
dimers, 87.1% (1076/1236), while for the FoldDock pipeline, the corresponding fraction is
23.2% (520/2242). The high proportion of clashes and suboptimal performance obtained
using AFM lead us to abandon this method and continue with only the FoldDock protocol in
all subsequent analyses. This is also the reason why all possible trimers were not predicted
with AFM.

Limited conformational sampling in dimers

During assembly, the additive relative orientation of different protein chains can result in
overlaps, due to predictions not being entirely correct. One cause of overlaps during the
assembly process is due to that only the most stable conformation is favoured in the
predictions, resulting in wrong interfaces in some dimers. As an example, we can investigate
1A8R, a homo 10-mer. When predicting unique pairwise interactions, only one type of
dimeric conformations can be found, but in the complex, each chain has at least two different
types of interactions with other chains This means that it is impossible to assemble the entire
complex from the predicted dimers.

The overlapping interfaces can, here, be circumvented by predicting trimeric interactions,
thereby generating alternative interfaces. In the case of 1A8R, the trimer is wrongly
predicted for AFM (Figure 3c), resulting in the third chain (magenta) ending up within the
complex (grey). This trimer prediction also contains clashes. If correctly predicted, the
magenta chain should be above or below the green or cyan chains, as can be seen from the
FoldDock prediction.
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Figure 3. a) TM-scores for the 15 complexes that could be assembled to completion using
pairwise interactions with AFM and FoldDock (AF) respectively b) Clashes in the predictions
are shown for pairwise and trimeric interactions belonging to the complexes 5J09 and 2NV2
respectively. These overlaps are due to the fact that the AFM modelling pipeline does not
consider clashes. ¢) The overlaps in the predictions are due to the most stable configuration
being predicted. PDB ID 1A8R, is a homo 10-mer, containing only one unique chain (A10).
This means that all interactions are between copies of this chain. When predicting pairwise
interactions, only one conformation is found. This can be circumvented by predicting trimeric
interactions. In this case, however, the trimer is wrongly predicted, resulting in the third chain
(magenta) ending up within the complex (grey). Notable is that the magenta chain is also
clashing with the two others. In the FoldDock prediction, the trimer configuration is predicted
correctly.
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Complex assembly using trimeric interactions

Using the FoldDock protocol with AF, all known trimeric interactions were predicted for all
complexes. From these, all dimeric interactions were extracted and assembly paths were
constructed as previously. Out of 175 complexes, 58 (33 %) could be assembled to
completion with a median TM-score of 0.80 (Figure 4a). In comparison with the guided dimer
TM-scores (median=0.77 for 15 complexes), the guided trimer approach results in 46
additional complexes and a higher median TM-score, while three could not be assembled.
When both approaches are successful, the results are similar.

In many cases, the exact interactions of all protein chains are not known, only that a set of
chains interact [4]. After applying the method in protein complexes where we have assumed
knowledge of interactions, we now turn to the more challenging (and realistic) problem of
predicting the complexes without knowing interactions (no-knowledge approach). In addition
to the problem of possibly incorrectly identified interacting pairs, this also increases the
number of possible erroneous paths to be sampled. We find that 88/175 (50%) of structures
can be assembled with a median TM-score of 0.51 (Figure 4a) using all possible trimeric
interactions. 39 additional complexes are obtained, although 9 are missing compared to the
known trimer approach. When both trimer approaches have complete assemblies (n=51),
the median scores are 0.76 and 0.80 for the no-knowledge and known trimer approaches,
respectively. To have knowledge of interactions thereby results in higher scores overall.

To analyse the possibility to distinguish when a complex is assembled to completion and has
a high TM-score (20.9, n=22), we analyse the ROC curve (Figure 4b) as a function of the
average interface pIDDT (predicted IDDT from AF), the number interface residues, contacts
and interactions between chains normalised with the number of chains in each complex and
the average interface pIDDT times the logarithm of the number of interface contacts. The
pIDDT -log(contacts) results in the highest AUC value (0.84) as well as higher TPRs at low
FPRs, which is why it is preferred. We fit a sigmoidal curve using the pIDDT - log(contacts)
and the TM-score, creating the mpDockQ score (multiple-interface predicted DockQ, see
Methods section). When the mpDockQ tends to be high, so does the TM-score and %
completion of the complex (Figure 4c). This suggests that mpDockQ can be used to both
select for when a complex is complete and how accurate it is.

Figure 4d shows examples of complexes assembled using all possible trimeric
subcomponents selected at FPR 10% (TPR=55%, 23 complexes) with mpDockQ. Obtaining
complete complexes with very high TM-scores (20.9) is the most important, as large
complexes that are not entirely correct are not likely to provide biologically meaningful
insights. The native and predicted complexes are in a structural superposition, portrayed in
grey and coloured by chain, respectively. The median TM-scores for this selection are 0.92
and 0.92 using all 23 and only the complete (18) complexes in the selection, respectively.
1IWA, a heterodimeric complex with 16 chains has a TM-score of 0.93 and is completely
assembled and so is 50VS (homodimeric complex with 14 chains, TM-score=0.99) and
1DW9 (homodimeric complex with 10 chains, TM-score=0.96). The complex 1RBL
(heterodimeric, 16 chains) was not assembled to completion, one chain is missing. The part
that could be assembled has a good correspondence with the native structure
(TM-score=0.96).
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Figure 4. a) TM-scores for the complexes that could be assembled to completion using
FoldDock (AF) and known dimeric, known trimeric and all trimeric subcomponents,
respectively. The complete set of complexes from the three different approaches (n=97) is
shown, with scores of zero representing missing complexes for each approach. The points
display the TM-score of the individual complexes and the black “x” marks the median scores
(0.00, 0.37 and 0.49 using known dimers, trimers and all trimers, respectively). The reason
the median scores are low is due to the missing complexes between the approaches.
Considering only the successful assemblies using known dimers, trimers and all trimers the
median scores are 0.77, 0.80 and 0.51, respectively. b) Complex scoring using all trimers as
subcomponents. ROC curve, where positives (n=22) are complete assemblies of TM-score
20.9, as a function of the average interface pIDDT, the number of interface residues and
contacts normalised with the number of chains in each complex, the average interface
pIDDT times the logarithm of the number of interface contacts and mpDockQ (see c). The
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best separators are pIDDT - log(contacts) and mpDockQ, both with AUC 0.84. ¢) TM-score vs
the best separator in b), pIDDT - log(contacts), coloured by the fraction of completion for the
assemblies. The solid grey line represents a sigmoidal fit creating the mpDockQ score (see
Methods section). When the mpDockQ tends to be high, so does the TM-score and %
completion of the complex. This suggests that mpDockQ can be used to both select for
when a complex is complete and how accurate it is. d) Examples of assembled complexes
selected at FPR 10% (TPR=55%) with mpDockQ, using all trimeric interactions for assembly
(the no-knowledge approach). The native and predicted complexes are in structural
superposition, portrayed in grey and coloured by chain, respectively. 1IWA, a heterodimeric
complex with 16 chains has a TM-score of 0.93 and is completely assembled and so is
50VS (homodimeric complex with 14 chains, TM-score=0.99) and 1DW9 (homodimeric
complex with 10 chains, TM-score=0.96). The complex 1RBL (heterodimeric, 16 chains) was
not assembled to completion, one chain is missing. The part that could be assembled has a
good correspondence with the native structure (TM-score=0.96).

Aspects affecting the assembly

To answer why some complexes can be assembled with high accuracy and others not, we
analyse the kingdom, the number of total chains, the oligomeric type (hetero or homomer),
the number of effective sequences (Neff) and the subcomponent accuracy for each complex
(Figure 5). We performed this analysis for the complexes assembled with known trimers due
to the high redundancy of subcomponents in the blind approach. Bacteria is the most
abundant kingdom and displays the most complete assemblies (29/85) with a median
TM-score of 0.85 (Figure 5a). Eukaryota, Viruses and Archaea have 17/63, 8/12 and 4/15
with median TM-scores of 0.75, 0.44 and 0.92, respectively.

Most complete assemblies have fewer chains and are of homomeric type (Figures 5b and c),
although the spread in TM-score is large. The TM-scores are higher for the complexes with
higher (over 500) average Neff values, which corresponds well with findings for
heterodimeric complexes[12] (Figure 5d). When analysing how far towards completion the
assemblies go one finds that most complexes are 90-100% complete (Figure 5e). There
appears to be a weak decreasing trend in TM-score with completion suggesting that smaller
subcomplexes may be accurate, although the complete complex cannot be assembled. The
average TM-score of the subcomponents (Figure 5f) provides the most evident explanation
of when an assembled complex is accurate. When the subcomponents display high
accuracy, so does the assembled complex.
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Figure 5. Analysis of the assemblies using known trimers.

a) TM-score per kingdom for the complete assemblies (n=58). Bacteria is the kingdom with
the most complete assemblies (n=29) and reports a median TM-score of 0.85. Eukaryota
(n=17), Viruses (n=8) and Archaea (n=4) have median TM-scores of 0.75, 0.44 and 0.92,
respectively. b) TM-score vs the number of chains for the complete assemblies (n=58). Most
complexes have fewer chains and the spread in TM-score is large. ¢) TM-score vs oligomer
type, homomer (n=38 out of 114) or heteromer (n=20 out of 61), using complete assembilies.
The homomeric complexes have a median TM-score of 0.86 and the heteromeric 0.73.

d) TM-score and Neff. The TM-scores are higher for the complexes with over 500 in average
Neff value. e) TM-score and completion. The coloured points represent the scores within
bins of 10% and the grey line shows the median for each bin. Most complexes are 90-100%
complete and there appears to be a weak decreasing trend of the accuracy with completion.
f) Average TM-score of subcomponents vs TM-score of the whole complex for the complete
assemblies (n=58). When the subcomponents display high accuracy, so does the assembled
complex (SpearmanR=0.80).
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Conclusions and Limitations

To predict the structure of large complexes directly from sequence information is currently a
difficult challenge. Here, we present a novel method that suggests that one possible
approach is to predict subcomponents and assemble them into a larger complex.
AlphaFold-multimer (AFM) is currently the only method primarily designed to predict the
structure of more than one protein chain directly from sequence information without using
templates. We show here that when predicting subcomponents with AFM, most of them
contain clashes, resulting in that AFM is unable to be used in the pipeline. However, we
expect this issue to be resolved in the future, making AFM predictions equally
interchangeable. The FoldDock protocol based on AlphaFold (AF) is less affected by this
issue. AF was not trained for this purpose either, yielding support to the robustness of this
method.

More complexes are assembled to completion when using known trimeric subcomponents
and the median TM-score is higher than with dimeric subcomponents. Assuming no
knowledge of interactions with trimeric subcomponents results in the most complete
complexes, although the median TM-score is lower. The created scoring function mpDockQ
can distinguish if assemblies are complete and predict their accuracy, making this blind
approach feasible. We find that when the subcomponents are accurately predicted using
known trimers, so are the complete assemblies. This suggests it is possible to assemble
complexes as long as their subcomponents are accurate.

Currently, not all trimers can be folded using two NVIDIA A100 Tensor Core GPUs with 40Gb
of RAM. Roughly, the limit of AF (and AFM) on this computational platform appears to be
3000 residues, and 73/175 (42%) of all complexes are larger than that. Depending on the
speed of computational development, an assembly approach to complex prediction may be
needed even for proteins with much fewer than 10 chains.

Future outlook

Here, we have shown that it is possible to assemble large complexes using only protein
sequence information and stoichiometry. Modelling large complexes in parts and assembling
them converts the problem of predicting large complexes to the prediction of their
subcomponents. This suggests an exciting future where models of all components in entire
cells, and eventually entire cells themselves, may be modelled.

One limitation for predicting protein complexes using the approach proposed here is
stoichiometry. It is often not known how many copies there are of a protein in a given
complex, a requirement for the assembly. Once this limitation is overcome either by
computational or experimental studies of complexes, it will be possible to assemble many
different protein complexes, possibly in novel configurations.
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Methods

Non-redundant complexes with 10-30 chains from the PDB

Since AlphaFold-multimer has a limit of 9 chains or 1536 residues [19] in its training and
testing data, and there is no available method validated for modelling larger complexes, we
obtained all complexes with 10-30 chains from the PDB to extend the current limit (Figure
6a). First, we selected all complexes not containing nucleic acids with <3A resolution and
experimental method X-ray crystallography or Electron Microscopy (1216). From these
complexes, we require that all chains originate from the same organism (1027). We cluster
all sequences from the complexes on 20% sequence identity using MMseqs2 (version
edb8223d1ea07385ffe63d4f103af0eb12b2058e) [26] using this command:

MMseqgs2 easy-cluster fastafile outname /tmp --min-seg-id 0.2 -c
0.8 —-—-cov-mode 1

Using clustering, we ensure that no complex has all of its clusters overlapping with any
other. We keep the complexes that have the most clusters, resulting in that subcomponents
of larger clusters are removed (265). E.g. if the sequences from complex 1 map to clusters
A, B and C and those of complex 2 map to clusters A, B, C, and D, then complex 2 will be
kept and complex 1 excluded. After the clustering, we ensure that no complex contains any
chain shorter than 50 residues (193 complexes), to remove protein-peptide interactions. We
then download the first biological assembly[27] from each complex and check that the
reported stoichiometry is correct and that the PDB files do not contain discontinuous chains,
resulting in a total of 175 complexes. The distribution of the number of chains can be seen in
Figure 6b. Most complexes have 10-12 chains.
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Figure 6. a) Outline of the data selection process.

b) Distribution of the number of chains for the 175 complexes. Most complexes have 10-12
chains ¢) Distribution of the number of interactions between all chains in a complex. On
average there are 22 interactions per complex. d) Distribution of the number of contacts per
interaction. On average there are 70 contacts per pair of interacting chains.

Interaction network

To create interaction networks for the guided assembly of the complexes, interactions
between different chains with CBs (CA for Glycine) within 8A from each other were
extracted. Interactions are defined when 10% of the beta carbons (alpha carbon for glycine)
of the shortest of two different protein chains are within 8 Angstrém from the other. On
average, each interaction pair consists of 70 residue pairs and within each complex, there
are 22 interacting pairs of chains (Figures 6¢ and 6d).

Subcomponent and edge complexity

To assemble entire complexes, we predict all dimeric and trimeric interactions in a set of n
chains.

The number of possible dimers follows:

_ ! _ n(n-1
b(n) = (n—nZ)!Z! ==3
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The number of possible trimers follows:

! (n-1)(n—2) )
r(n) = (n—n3)!31 == (i)

From these dimers and trimers, we extract all edges (pairwise interactions). The number of
edges in D(n) dimers is D(n) and in T(n) trimers:

E(n) = w (i)

Structural predictions of dimeric and trimeric subcomponents

AlphaFold-multimer[19] was run with the standard settings. Four different MSAs are created
by searching various databases with several genetic search programs. Using jackhmmer
from HMMERS3[28], three different MSAs are created through searching the databases
Uniref90 v.2020_01[29], Uniprot v.2021_04[30] and MGnify v.2018_12[31]. The fourth MSA
is created by searching the Big Fantastic Database[32] (BFD from https://bfd.mmseqgs.com/)
and uniclust30_2018_08[33] jointly with HHBIits[34] (from hh-suite v.3.0-beta.3 version
14/07/2017). By using the species (prokaryotes and eukaryotes) and genetic positional
information (prokaryotes only), the results from the Uniprot search paired. All results from the
other searches are instead block-diagonalized. All of the created MSAs (one paired and
three block-diagonalized) are used to predict the structure of a protein complex.

The FoldDock protocol[12], based on AlphaFold[11], was run as well. This protocol creates
two MSAs constructed from a single search with HHblits[34] version 3.1.0 against
uniclust30_2018 08[33] using the options:

hhblits -E 0.001 -all -oa3m -n 2

The first of the two MSAs are constructed by extracting the organism identifiers (OX) from
the resulting a3m file and pairing sequences using the top hit from each OX. The second is
constructed by block diagonalizing the resulting a3m file. An extension to 3 chains was made
here also, following the same pairing and block diagonalizing procedure as has been done
for two chains. The folding was performed using AlphaFold model_1, 10 recycles and one
ensemble structure. The recycles refer to how many times the intermediate output is fed
back into the network and the MSAs are resampled. The ensemble structure entails how
many times the information within the network is processed before it is averaged.

The structural prediction was performed on two NVIDIA A100 Tensor Core GPUs each with
40 Gb of RAM. Three different sets of different subcomponents for the complexes were
modelled, all known dimeric, all known trimeric and all possible trimeric subcomponents.

The unique dimer subcomponents of 653/656 and 656/656 could be predicted for AFM and
FoldDock respectively. For FoldDock, 2242/2246 unique known trimers were predicted and
for AFM 1236. The four that did not work using FoldDock had the error message “Cannot
create a tensor proto whose content is larger than 2GB.”. The reason not all 2246 trimers
were predicted using AFM is the high amount of clashes observed in the predicted ones
(87%). Clashes result in unrealistic proteins due to the breaking of physical constraints,
which led us to abandon this method. For the approach using all trimers, 8556/8561 unique
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subcomponents were successfully modelled. The five that did not work had the error
message “Cannot create a tensor proto whose content is larger than 2GB.”.

Path complexity

When considering all possible interactions in a complex, both dimeric and trimeric, one
quickly realises that there are many possible paths that could connect all chains. Take the
example of the maximum number of chains modelled here, 30. In the most extreme
scenario, all of these are assumed to interact with each other. This means that starting at
chain 1, it is possible to attach chain 2-30 (29 possibilities) and from these 28 possibilities for
each node and so on.

If there are no overlapping interfaces in a complex of n’ nodes and E(n) edges, the number
of unique paths that contain all nodes follow:

P(n) = n'(n'_z), n' =2 (iv)

Note that n’ here are the number of nodes extracted from the predicted subcomponents,
which are more than the number of unique nodes since e.g. the trimers ABC and ABD both
contain the nodes A and B. Equation (iv) is exponential and thereby grows very fast.
However, the overlaps will grow with the number of nodes as well, as it will be more likely to
have overlapping interfaces with more edges.

30(30—1)(30—2)
6

30 chains. For each trimer, there are three possible edges, resulting in 4060 -3=12180 edges
in total. This means that the number of effective nodes are more than the actual number of
nodes. This is because e.g. chain A occurs many times in different trimers. E.g. ABC, ABD,
ABE all have the possibility to have different interactions between A and B. Following
equation (iv) there will be 30?2 = 2.3-10*' possible paths at the upper bound considering all
dimers from 30 protein chains (and many more considering all trimers). This is a very large
number that is not possible to search in a feasible amount of time with our available
computational resources. However, it is very unlikely this number of paths has to be explored
due to overlaps in the subassemblies.

According to equation (ii), there are = 4060 possible trimers for a complex of

When the subpaths that contain overlaps are excluded during assembly, the number of
possible paths reduces quickly. Let’'s assume there are only 3 possible interactions for each
chain. Then the number of possible paths become much fewer, depending on how the
network is connected. If all branches in a network contain unique chains (Figure 7), there is
in fact only one possible path that connects all chains. Still, there may be many possible
paths to traverse to find this non-overlapping one that connects all chains. Therefore, we
limit the number of paths searched at a given time point.
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Figure 7. Branch network of 30 chains all connected to two other chains. There is only one
path that connects all 30 chains (the network itself).

Assembly procedure with Monte Carlo Tree Search

From the interactions in the predicted subcomponents, we add chains sequentially following
a path through the interaction network (graph) constructed using Monte Carlo Tree Search
(MCTS) [23]. MCTS applies a heuristic search method through a graph to find an optimal
path (Figure 8). MCTS consists of four different steps named, selection, expansion,
simulation and backpropagation. It has been shown that sampling random paths to
completion from a certain node (simulation) informs the best action at a certain position. To
add new chains to a path, we use BioPython’s SVD Superimposer[35]. As an example, if two
pairwise interactions are A-B and B-C, we assemble the complex A-B-C by superposing
chain B from A-B and B-C and rotating the missing chain C to its correct relative position.
The MCTS procedure is outlined accordingly:

1. Selection: start at a randomly chosen node 1 (e.g. chain A).

2. Expansion: obtain all edges €',..,eN, deemed “children” to node 1 and create N
different paths. Expand the new nodes added through the edges by randomly
selecting new edges. If the new nodes do not have any edges, they are deemed “leaf
nodes”. In this case, the best scoring node according to equation (v) is selected and
a new expansion is started from there. We expand all possibilities, ensuring
convergence towards the best node selection at each position.

3. Simulation: add chains randomly to the path until the overlap criterium is obtained or
the complex is complete. An overlap is defined as when over 50% of the alpha
carbons in the shortest of two protein chains are within 5 A from each other.

4. Backpropagation: score the simulated complex using equation (vi). Update all “parent
nodes” with this score. The simulation and backpropagation together provide an
estimate of how well the parent node performs in terms of creating a successful
assembly path.
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The best child nodes are selected using the upper confidence bound (UCB) accordingly:

),

Where Vi, is the average complex score (equation vi) of all nodes below node i, N is the
number of times the parent node has been visited and n; is the number of times the node
being scored has been visited. The MCTS procedure is continued until all chains are in
complex or there are no more non-overlapping chains to add to the current path, after which
the procedure is terminated.

UCB = Vl,+ 2

A Expand
Start at node A - select a connecting
node
l Yes AIH—— B — C
Al B Is the new node a i T T
“leaf’ node ‘ |
Obtain a connecting T No Simulate
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complex A— B —C
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Figure 8. Monte Carlo Tree Search (MCTS) procedure. Starting at node A, a connecting
node (chain) is selected and added according to its predicted orientation. If this node is a
“‘leaf’” node (a node that has not been expanded before), an expansion is performed. During
the expansion, a new node is added and from this an entire complex is simulated. The score
from the simulation (equation vi) is backpropagated to all “parent” nodes of the expansion
which is used to determine the UCB (equation v) and thus select the best possible path.

The complex 6LNI could not be assembled using trimers due to no interactions between the
chains being present in the predictions. This protein is an amyloid protein and should
thereby not occur naturally in the cell. For the assembly approach using all possible trimers,
there are very many paths to assemble for some complexes. Ten additional complexes
(1IRU, 1MFR, 1PCQ, 1S3Q, 1260, 30J5, 6J0B, 6LQH, 6NHT and 6PYT) could not be
assembled due to time constraints (48 hours on a 2.6 GHz processor).

Scoring

We score the interfaces of the complexes being assembled in the MCTS using:

log 10(number of interface contacts) - average interface plDDT (vi)
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, as done when calculating the pDockQ score[12]. This score for multiple interfaces, we
deem “multiple-interface predicted DockQ” or mpDockQ. The interface contacts are taken as
beta carbons (alpha carbons for Glycine) from two different protein chains being within 8A
from each other. These metrics are calculated for the entire interface of each chain, as in the
DockQ[36] score for multiple interfaces. E.g. if chain A interacts with both chains B and C,
the score is taken over both of these interfaces simultaneously. This is done for all interfaces
and chains and summed over the entire complex. The complexes with the highest sums are
favoured. Favouring complexes with higher scores, results in complexes with both larger
interfaces and with more reliably predicted residues.

Sigmoidal fit for mpDockQ

To create a continuous score for the multiple interface DockQ (mpDockQ), we fit a simple
sigmoidal function towards the TM-score (Figure 4c) using the complete complexes
assembled from trimeric subcomponents and “curve_fit” from SciPy v.1.4.1 [37] with the
following sigmoidal equation:

mpDockQ = ———+b (vii)
1+e 0

, Where x = average interface pIDDT -log10(number of interface contacts) (equation vi)
across all interfaces and we obtain L= 0.827, x0= 261.398, k= 0.036 and b= 0.221.

Clashes

To analyse if the atoms from different chains in the same prediction overlap, we calculate the
distance between all atoms in all chains in a given prediction. We count clashes as two atom
positions from different chains being within 1A from each other (the size of one hydrogen
atom).

MMalign

The DockQ[36] program is too slow to be run on large complexes if all interfaces are to be
compared (minutes-hours for a single complex). Therefore, the program MMalign[38] is used
to score entire complexes, as compared to the scoring of dimeric complexes with FoldDock
previously[12]. MMalign performs optimal structural alignment between the model and native
structures, computing a score (TM-score) normalised to be between zero and one, where
one indicates a perfect match.

Since MMalign performs optimal structural superposition, it is also possible to evaluate
models of different size. This is important since the predictions are based on full length
protein sequences (and to score incomplete assemblies), while the PDB structures generally
do not contain all residues from these, meaning that loops and other disordered regions are
not present in the PDB structures. This also means that for most proteins, the score can
never be 1, depending on how similar the SEQRES sequence is to the sequence present in
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the PDB structure. Since we assess the real sequences here, our approach represents a
more realistic modelling scenario.

Number of effective sequences

The number of effective sequences (Neff) is a measure of the information present in a
multiple sequence alignment. To calculate the Neff, we clustered sequences from each MSA
independently (both the paired and block diagonalized versions) at 62% sequence identity,
following the rationale behind the BLOSUM62 matrix[39]. The clustering was performed
using MMseqgs2 version fcf52600801a73e95fd74068e1bb1afb437d719d [26]rs was used to
indicate the Neff. MMseqs2 was run with the following command:

MMseqgs2 easy-cluster msa outname /tmp --min-seg-id 0.62 -c 0.8
—-—cov-mode 1

The clustering was done for all predicted subcomponents in each complex. To obtain a Neff
score for each complex, we averaged the scores for all subcomponents.

ROC curve

We create receiver operating characteristic (ROC) curves using the metrics average
interface pIDDT (predicted IDDT from AF), the number interface residues, contacts and
interactions between chains normalised with the number of chains in each complex and the
mpDockQ (multiple-interface predicted DockQ; average interface pIDDT times the logarithm
of the number of interface contacts). The positive examples are taken either as complete
assemblies (when all native chains are present in an assembly) or being above the median
TM-score (only for mpDockQ). The metrics are used to distinguish between true and false
positives (TP and FP, respectively) by creating thresholds of all possible metric values. From
the thresholding we calculate the true- and false positive rates:

R
TPR = ——x (viii)

_ FP .
FPR = FP+TN (ix)

Using the thresholds and corresponding TPR and FPR, the TPR is plotted against the FPR.
This creates a ROC curve. For each metric the area under the ROC curve (AUC) is
computed as:
1
AUC = [ TPR(——=—)dx (X)
0

FPR(x)
x=
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Non-redundant complexes from the PDB with 3-6 chains

The dataset of 3-6-mers was taken from the DOCKGROUND resource
(dockground.compbio.ku.edu)[40] to analyse the relationship between accuracy and number
of chains in complex using AlphaFold-multimer. This dataset consists of non-redundant PDB
structures (available before October 2020) which have 3-6 protein chains (all longer than 30
amino acids) in both biological PDB units and do not have RNA or DNA. The extracted
structures were further divided by stoichiometry. Redundancy was considered on the level of
structural similarity of the quaternary structure quantified by the TM-score produced by
MM-align[38]. Redundancy was removed within each stoichiometric group, separately, using
a threshold of TM-score 0.6. In total, there are 1105 trimers, 678 tetramers, 210 pentamers
and 531 hexamers. Supplementary figure 2 displays the distribution of the different types of
oligomeric complexes.

Human structures in the PDB

To analyse the number of available human PDB files (reported in the introduction), we
downloaded all human entries from the PDB on 14th of October 2021 and counted the
number of chains occurring in each entry. In total, there are 2649 human PDB files, 1557
with one chain, 720 with two and 372 entries with over two chains.

Hu.MAP

To analyse the gap in complex structural knowledge for human proteins (introduction), all
complexes with at least three chains from hu.MAP 2.0[4] were selected. hu.MAP is the result
of a machine learning framework that identifies protein complexes using data from over
15000 mass spectrometry experiments. In total, there are 6956 complexes and 30572
protein chains, from 9962 unique genes. There are 4779 complexes with at least 3 chains, of
which only 83 have all chains together in the same PDB entry.
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Supplementary figures
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Supplementary Figure 1. TM-score distributions for sets of non-redundant trimers,
tetramers, pentamers and hexamers successfully modelled with AlphaFold-multimer . The
scores decrease rapidly for oligomers with over three chains. The black boxes indicate the
first and third quartiles of the data and the white dots the medians.
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Supplementary Figure 2. Distribution of oligomers and their different cases for the
complexes with 3-6 chains. A3 means three of the same chain, while ABC means three
different chains and A2B two of the same and one different. All other namings follow the
same convention. In total there are 1105 trimers, 678 tetramers, 210 pentamers and 531
hexamers.
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