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Machine learning prediction algorithms such as AlphaFold! and RoseTTAFold? can create
remarkably accurate protein models, but these models usually have some regions that are
predicted with low confidence or poor accuracy*%. We hypothesized that by implicitly
including experimental information, a greater portion of a model could be predicted
accurately, and that this might synergistically improve parts of the model that were not
fully addressed by either machine learning or experiment alone. An iterative procedure
was developed in which AlphaFold models are automatically rebuilt based on experimental
density maps and the rebuilt models are used as templates in new AlphaFold predictions.
We find that including experimental information improves prediction beyond the
improvement obtained with simple rebuilding guided by the experimental data. This
procedure for AlphaFold modeling with density has been incorporated into an automated
procedure for crystallographic and electron cryo-microscopy map interpretation.

Advanced machine learning-based structure prediction algorithms are transforming the way that
three-dimensional structures of proteins and their complexes are obtained**”8. The AlphaFold!
and RoseTTAFold? algorithms, for example, can often create accurate models for substantial
regions of a protein structure based on the amino acid sequence of that protein and on residue
covariation information® present in a multiple sequence alignment'. Prediction can be augmented
by including experimentally determined structures of proteins with similar sequences as
templates!. In many cases the resulting predicted models are accurate enough to allow
straightforward structure determination using molecular replacement in macromolecular
crystallography or by docking a structure in a density map in single-particle cryo-electron
microscopy (cryo-EM), without requiring that a similar structure has been previously
determined”%10,

There are limitations in using predicted models for structure determination®-. In particular,
machine-learning methods typically do not yield accurate predictions for all of the residues in a
protein®. This is partly due to the presence of disordered segments in many proteins®!!, but is
also due to the limited size and accuracy of multiple sequence alignments for part or all of some
protein sequences, resulting in a limited amount of available information about residue
covariation !. A related limitation is that parts of proteins that can adopt alternative
conformations may be systematically predicted in only one of them!-12; this limitation may be
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reduced by alternative sampling of multiple sequence alignments'?. Additionally, individual
domains of proteins are often predicted accurately, but in the absence of extensive conserved
interaction surfaces the spatial relationship between domains cannot be unambiguously predicted
with current methods®. A final limitation is that as these machine learning methods are trained on
structures in the PDB!, predictions are likely to be biased towards these known structures even if
they are not included explicitly as templates in prediction.

A strength of recent machine-learning algorithms for protein structure prediction is that they can
assess the accuracies of their own predictions. AlphaFold, for example, estimates the value of a
commonly-used measure of model accuracy (IDDT-C,'?) for each residue in a protein and
reports these estimates as a confidence measure, pIDDT!. Validation with known structures
demonstrated that these AlphaFold pIDDT values are reasonably good indicators of actual
accuracy (Pearson’s r value relating pIDDT and IDDT-C,, is 0.73°).

It is well known that the accuracy of structure prediction can be improved by including external
structural information, for example distances between specified pairs of residues in a protein!4.
In AlphaFold and RoseTTAFold, for example, residue pair distance information is implicitly
derived from sequence covariation!-. It is reasonable to expect that experimental structural
information from density maps such as those used in cryo-EM or crystallographic structure
determination could be included as well, though a mechanism for incorporation of this
information in a form that is compatible with modeling would be required.

The hypothesis underlying the present work is that experimental information might improve
structure prediction synergistically, where correcting one part of a protein chain might improve
structure prediction in another part of the chain. In AlphaFold, a core algorithm focuses attention
on features that may contribute the most to structure prediction'. An internal recycling procedure
uses the path of the protein chain in one cycle to focus attention on interactions that should be
considered in the next cycle. If experimental information were to result in adjustments in
conformation, the attention mechanism might recognize important relationships that otherwise
would have been missed. This means that experimental information might be amplified by the
prediction algorithm. At the same time, improvement in the accuracy of a predicted model might
make it easier to identify modifications to that model needed to obtain a better match to the
density map. These possibilities suggest that an iterative procedure for incorporation of
information from a density map into structure prediction might further improve the accuracy of
modeling. This would be similar to the situation in macromolecular crystallography, where
improvement of one part of a model leads to improved estimates of crystallographic phases, in
turn improving the density map everywhere and allowing still more of the model to be built!?.

A second hypothesis in this work is that information from a density map can be partially
captured in the form of a rebuilt version of a predicted model that has been adjusted to match the
map. The structure of such a model could only represent a small part of the total information in a
map, but it seemed possible that much of the key information could be captured, including
overall relationships between domains in a protein as well as the detailed conformation of the
protein. As AlphaFold can use models of known proteins as templates!, such a rebuilt model
could readily be incorporated into subsequent cycles of structure prediction.

We tested these ideas by developing an automated procedure in which a predicted AlphaFold
model is trimmed, superimposed (docked) on a cryo-EM density map, and rebuilt to better match
the map. The rebuilt model is then supplied along with the sequence to AlphaFold in a new cycle
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of prediction. The output of this procedure is a new AlphaFold model that has incorporated
experimental information through the use of the rebuilt template in the prediction. We applied
four cycles of the iterative
algorithm to the sequence of
one protein chain and the full
density map for each of 25
cryo-EM structures, all
deposited after the training
database for the version of
AlphaFold we used was
created (July 2020). In these
tests, multiple sequence
alignments were included in
each stage of AlphaFold
modeling. To emulate the
situation where no similar
structure is present in the
PDB, templates from the
PDB were not used. For each
protein we then examined the
four AlphaFold models
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Fig. 1. Iterative AlphaFold prediction and model rebuilding using density maps. A. Comparison of AlphaFold
model of SARS-CoV-2 spike protein receptor binding domain (blue) with deposited model'® (PDB entry 7mlz,
brown). The position of V445 is indicated. B. Comparison of model in A rebuilt using density map (in purple) with
deposited model (brown). C. AlphaFold model obtained using density map and four cycles of iteration including
rebuilt models as templates (green), compared with deposited model (brown). D, E, F. Models as in A, B and C,
superimposed on the map used for rebuilding (EMDB entry 23914!7, automatically sharpened as described in
Materials and Methods). G, H, 1. Details of iterative rebuilding of the 2AG3 Fab heavy chain!® (PDB entry 7mjs
chain H) using cryo-EM data from EMDB entry 23883 at a resolution of 3.0 A. G. AlphaFold prediction
superimposed on density map. H. AlphaFold prediction as in G, but after one cycle of iterative rebuilding. I, As in
H, but after 4 cycles of iterative rebuilding. J. Accuracy of models obtained with AlphaFold alone (abscissa) and
obtained with iterative AlphaFold prediction and rebuilding with density (ordinate) for one chain from each of 25
structures from the PDB and EMDB. Accuracy is assessed as the percentage of of Co atoms in the deposited model
matched within 3 A by a Co atom in the superimposed AlphaFold model. K. Accuracy of models shown in J,
assessed based on rmsd of matching Cq atoms and shown on a log scale. Abscissa is rmsd for models obtained with
AlphaFold alone and ordinate is for models obtained with iterative AlphaFold prediction and rebuilding with
density. L. Accuracy of models assessed as in J by the percentage of of Cy atoms in the deposited model matched
within 3 A by a Co atom in the superimposed model, obtained with direct model-building using the corresponding
density maps using the Phenix tool map to_model (abscissa) compared with those obtained with iterative AlphaFold
prediction (ordinate).
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Fig. 1 (A-F) illustrates iterative structure prediction for one of these structures, that of a focused
reconstruction of SARS-CoV-2 spike protein receptor binding domain (RBD) in a complex with
neutralizing antibodies'® (3.7 A; EMDB entry 23914, PDB entry 7mlz; only the spike protein is
analyzed here). Panel A shows that the five-stranded -sheet (lower left corner) in the AlphaFold
model (in blue) created based on the sequence of the spike protein can be superimposed closely
on the deposited model (in brown), but the loops near P479 in the right part of (A) then do not
match well. The same AlphaFold model is shown along with the density map in (D), where it can
be appreciated that the density map does not clearly show the path of the protein chain. The
agreement between the AlphaFold model and the map is considerably worse than between the
deposited model and map (map correlation with map calculated from deposited model is 0.70;
from AlphaFold model is 0.41). Panel B shows a rebuilt version of this AlphaFold model (in
purple) obtained after automatic rebuilding using the density map. It is different from the blue
predicted model in panel A and agrees better with the density map (panel E), where the map
correlation increased from 0.41 to 0.58. The percentage of C,, atoms in the deposited model
matched within 3 A by a C, atom in the rebuilt model was also somewhat improved over that for
the superimposed AlphaFold model (from 71% to 76%). This rebuilt model was used as a
template in AlphaFold modeling, with the goal of providing the inference procedure with some
additional information about which parts of the structure are close together, and the rebuilding
and modeling were repeated for a total of four iterations. The AlphaFold model obtained after
iterative prediction and rebuilding is shown in green in panel C. It matches the deposited model
(in brown) much more closely than the original AlphaFold model obtained with sequence alone,
particularly in the loop region near residue P479, and 91% of C., atoms in the deposited model
were matched within 3 A by a C, atom in the superimposed AlphaFold model. The overall map
correlation for AlphaFold model obtained after iterative prediction and rebuilding is 0.57. Note
that unlike the rebuilt model, the AlphaFold predicted model shown in panel C has not been
adjusted by coordinate refinement or rebuilding; it is simply superimposed as a rigid unit on the
density map. The similarity obtained to the map and to the deposited model therefore reflects an
improvement in the AlphaFold prediction itself.

Overall, panels A-F of Fig. 1 show that the AlphaFold model obtained with our iterative
procedure and shown in green in panel C is much more similar to the deposited model (brown)
than is either the predicted AlphaFold model created with sequence alone, shown in blue in panel
A, or the rebuilt version of this predicted model, shown in purple in panel B. The improvement
over the original AlphaFold model supports the idea that a template created by rebuilding an
AlphaFold model using a density map contains information from that density map that can be
used to improve AlphaFold structure prediction. The observations that the AlphaFold model
obtained using a density map also improves upon the rebuilt model and that iteration improves
the AlphaFold model support the idea that model rebuilding is synergistic with AlphaFold
prediction, yielding a new model that is better than either alone.

Panels G, H and I of Fig. 1 illustrate the improvement of another AlphaFold prediction by
iterative rebuilding and modeling. A detail of the superimposed AlphaFold prediction of the
2AG3 Fab heavy chain'® is shown in panel G along with the corresponding portion of the density
map from EMDB entry 23883 at a resolution of 3.0 A. The superimposed predicted model does
not match the density well, and the rmsd of all matching C, atoms from the deposited model is
3.6 A. Panel H shows that the superposed AlphaFold model obtained after one cycle of iterative
rebuilding matches the map considerably better, and panel I shows that after four cycles the
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AlphaFold model closely matches the density map. The full AlphaFold prediction for this heavy
chain obtained after four cycles of iteration with the density map has an rmsd of matching Cy
atoms from the deposited model of just 0.8 A.

Panel J compares the accuracy of AlphaFold models obtained without and with density
information for all of the 25 recently-deposited structures considered. The inclusion of density
information increased the number of these 25 structures with at least 90% of C, atoms
superposing within 3 A from 12 to 20. This set of models is assessed based on rmsd of matching
C, atoms in panel K demonstrating that in most cases the iterative AlphaFold models have much
lower rmsd from corresponding deposited models than predictions using sequence alone.

Panel L of Fig. 1 extends this analysis further by comparing the 25 models obtained using
iterative AlphaFold modeling and model rebuilding (abscissa) with models created directly from
density maps using an automatic model-building algorithm!® that is based on many of the same
tools used here in model rebuilding, but without including AlphaFold at all (ordinate). All but
one of the iterative AlphaFold models are more accurate than the corresponding models created
by automatic model-building alone.

In the cases described above, it was possible that information about the specific sequences that
are being modeled could be present in the AlphaFold parameter database because similar
structures may have been present in the PDB when AlphaFold was trained. In this work we are
comparing AlphaFold predictions that are identical except that they are carried out with and
without templates, so this does not directly affect our conclusion that AlphaFold modeling and
rebuilding using a density map are synergistic. There was a possibility, however, that including
the density information in these examples allowed AlphaFold prediction to use some pre-existing
information about similar structures, rather than truly incorporating new information from the
density maps. To address such a possibility, we carried out an analysis of a structure for which
no similar structure was present in the PDB when AlphaFold training was carried out. The
structure we used was that of a domain of a bacterial flagellar basal body?® (PDB entry 7bgl,
chain a, residues 250-365, EMDB entry 12183, resolution of 2.2 A) included in the CASP-14
structure prediction competition?! (target identification of T1047s2-D3). The PDB entry with the
most similar sequence (PDB entry 2hm?2) present at the time of AlphaFold training has a
sequence identity of just 9% and has a very different structure?!. Parts of the structure of this
domain from the basal body are accurately predicted by AlphaFold?!, however there was a
substantial difference in the arrangement of two antiparallel strands relative to the cryo-EM
structure, as well as a small difference in the position of a helix (cf. panel A of Fig. 2 and
compare the four-stranded sheet in the AlphaFold model in blue with the two-stranded sheet in
the deposited model in brown at the left side of the figure, and compare positions of the blue and
brown helices in the center).

We used the flagellar basal body (7bgl) structure to test whether iterative AlphaFold prediction
and model rebuilding would be effective in a case where AlphaFold was trained without any
similar structures. In this test, fragments from a model automatically built from the density map
were included in model rebuilding, and multiple sequence alignments were only used in the first
cycle of AlphaFold modeling. These options were chosen to improve model rebuilding and to
allow the conformations of the rebuilt models to guide the AlphaFold prediction. Panel A of Fig.
2 showed that a standard AlphaFold prediction leads to a model that has some correct and some
substantially incorrect parts. Note that the deposited model in brown is missing residues 285-315
which are not visible in the density map. These residues are modeled by AlphaFold but are not
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included in our comparisons. Iteration of AlphaFold modeling with model rebuilding yields a
model that agrees more closely with the deposited (7bgl) model (panel B) This iterative
AlphaFold model is much more accurate than the original AlphaFold prediction (panel A) based
on rmsd between matching C atoms (1.7 A vs 4.7 A) and by percentile-based spread, which de-
emphasizes large discrepancies®® (0.3 A vs 2.0 A). It is similar to but somewhat more accurate
than the initial rebuilt model (rmsd of 1.8 A, percentile-based spread of 0.4 A). To check that the
improvement in prediction with iteration was not simply due to leaving out the multiple sequence
alignment in predictions after the first, we carried out AlphaFold modeling without a multiple
sequence alignment and without information from the map. This resulted in a prediction that was
quite different from that of the deposited model (rmsd of 11.5 A, percentile-based spread of 11.2
A). These observations show that the synergy in iterative AlphaFold modeling and model
rebuilding using a density map can be obtained even if AlphaFold is trained in the absence of
any similar structures.

Fig. 2. Iterative AlphaFold prediction and model rebuilding of domain from flagellar basal body. A.
Comparison of AlphaFold model flagellar basal
bodychain a residues 250-365 (blue) with deposited
model?® (PDB entry 7bgl, brown). The positions of
G316 and V284, bracketing a segment that is not present
in the deposited model, are indicated. B. Comparison of
model in A obtained with three cycles of iterative
AlphaFold modeling and rebuilding using density map
(in green) with deposited model (brown).

An immediate application of iterative prediction and model rebuilding is automatic analyses of
cryo-EM or crystallographic density maps. Though tools exist for this purpose, automatic map
interpretation is challenging, particularly when high-resolution maps are not available. For
example, Panels A-D of Fig. 3 show that automatically-generated models created by each of two
automated tools '*2* using the experimental density map for the SARS-CoV-2 spike protein
structure illustrated in Fig. 1 fail to create a model resembling the deposited structure. The
automated map interpretation methods in panels A and C are able to match just 60% and 24%,
respectively, of Co atoms in the corresponding deposited model within 3 A.
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Fig. 3. Current automatic map interpretation tools work poorly with an unclear map but can be improved
upon by iterative AlphaFold prediction and model rebuilding. A. Machine-learning method for automatic map
interpretation (DeepTracer®®) applied to the SARS Cov-2 structure shown in Fig. 1 panel A. Deposited model is in
brown and DeepTracer model is in blue. B. Comparison of DeepTracer model with density map. C and D, as in A
and B except model-building carried out with the Phenix tool map to model and map _to model structure is in
magenta'®. The unoccupied density in B and D that does not correspond to the brown deposited model in A and C
corresponds to an antibody heavy chain that is part of this structure. E. Progress of automated model-building for
structures shown in Fig. 1 using AlphaFold prediction iterated with model rebuilding based on a density map. The
resolution of the map and the PDB identifier for each structure is listed. The vertical bars show the percentage of Cq
atoms in the deposited structure that are within 3 A of any C., atom in the corresponding model. The purple bars
represents initial AlphaFold models, superimposed on the deposited structure. The salmon, grey, yellow and red bars
respectively, represent the rebuilt model in cycles 1, 2, 3, and 4 of iterative AlphaFold modeling and rebuilding.

The output of the iterative AlphaFold modeling and map-based rebuilding process described
above is a predicted AlphaFold model that is already positioned to match the density in a map.
The predicted model may still require some adjustment indicated by the density map, and such
adjustment can be carried out by automatic refinement?* or rebuilding as described above. The
resulting refined or rebuilt model is an automatically-generated interpretation of the
corresponding part of the density map. Our procedure can therefore also be viewed as a method
to automatically interpret a density map, incorporating information from a density map into
AlphaFold modeling in the process.

Panel E of Fig. 3 presents results from the same analysis of cryo-EM maps as that shown in Fig.
1, this time from the perspective of automated map interpretation. As in a real case where the
structure is not known, each full density map is supplied without any trimming or masking. The
sequence of one chain to be interpreted in this map was used to create a standard AlphaFold
prediction. That predicted model is automatically oriented to match the map, rebuilt to match the
density in the map, and included in the next AlphaFold prediction. After iteration, the last
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version of the model that was rebuilt to match the map is the output of the procedure. This
differs from Fig. 1 in that the final model is now no longer an AlphaFold model, but instead is an
AlphaFold model that has been adjusted to match the map. The progress of map interpretation
for each of the 25 recent cryo-EM density maps considered in Fig. 1 panel J is shown in Fig. 3
panel E. Some of these structures contain multiple copies of the same chain. In these cases,
matching any copy was allowed in this evaluation. Others contained multiple chains with similar
sequences (e.g., proteasome structures 7lsx and 71s5, the antibody heavy and light chains in
7mjs, and the a3yd histones in 71v9). In these cases, a match was allowed to whichever chain
matched the location the automatic docking had chosen (the correct location was actually picked
in all cases except for 71v9, a structure at a resolution of 4.5 A). For each structure and density
map, panel E shows this percentage of matching C., atoms for the initial AlphaFold model
(superimposed on the deposited chain with secondary-structure matching) and the four
automatically-docked and iteratively rebuilt models. The structures are arranged based on the
resolutions of the corresponding maps, with finer (higher) resolution on the left and coarser
(lower) resolution on the right. The SARS Cov-2 spike protein structure!® shown in Fig. 1 is
labeled as 7mlz in panel E; it can be seen that the automated interpretation of this density map
starts with 71% of C,, atoms in the deposited model matched by the rebuilt model and improves
with each cycle of rebuilding until the next-to-last cycle, where 92% are matched, and no
additional improvement is obtained on the final cycle. Others that improve substantially include
7m7b (improving from 59% to 77% matched), 71x5 (75% to 91%), and 71ci (73% to 95%). In 18
of 25 cases a model matching at least 95% of C, atoms in the deposited structure within 3 A was
obtained; this level of accuracy was present in only 11 of the starting AlphaFold models. Two of
the cases (71v9 and 7msw) yielded very poor models (E). In each of these cases, the initial
AlphaFold model was predicted with very low confidence. In the case of 71v9, the pIDDT for
only 5 of 97 residues was above the threshold for a “good” prediction of 0.7, for 7msw this
portion was 86 of 635 residues. Overall, the accuracy of the 25 chains examined improved from
an average of 82% of C,, atoms in the deposited model matched of to an average of 91% after
iterative modeling and rebuilding.

As the procedures described here are not specific to AlphaFold, to cryo-EM maps or to the
Phenix?’ model rebuilding software used in this work, we expect that the synergy of model
prediction and model rebuilding using a density map observed here will be general and that
similar results could be obtained using other model prediction and model rebuilding approaches
and using other types of density maps such as those obtained in cryo-tomography or
crystallography.
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Methods

Choice of maps and models

The 25 maps and corresponding models shown in Fig. 1 and 3 were chosen in Aug. 2021 in a
way that was intended to yield relatively representative recent structures in the PDB. We selected
the first protein chain in the 25 most recently-deposited unique cryo-EM structures at the time
with resolution of 4.5 A or better and containing between 100 and 1000 residues. For this
purpose, we considered two structures to be duplicates if the first protein chains matched in
sequence at a level of 99% identity or greater. We included one pair of similar structures in the
25 structures chosen (7mlz and 71x5). These differ in residues at the ends of the chain and differ
also in that the SARS Cov-2 spike protein (the chain analyzed) is bound to different antibodies in
the two structures. The PDB and EMDB accession numbers for these 25 structures are listed in
Extended Data Table 1.

The choice of structure and map to test model creation using AlphaFold trained without similar
sequences in the PDB was made by selecting the (one) structure in CASP-14 that was
determined by cryo-EM, classified as a “hard” target in CASP-142°, and for which experimental
data is available in the EMDB and PDB. This structure was PDB entry 7bgl*’, EMDB entry
12183. We chose domain 3 of chain a in this structure as AlphaFold performed poorly on this
target in CASP-14 (rank of 78) compared to most other targets (rank of 1 for all other 7bgl
targets).

Map and model display

Figures were prepared with ChimeraX?’.

Map preparation

For the analyses shown in Fig. 1 and 3, the full maps corresponding to each structure were used.
The overall resolution-dependent sharpening or blurring of maps were automatically adjusted
using the deposited model with the Phenix tool local aniso sharpen (without the local
sharpening feature but applying the anisotropic correction). For the 7bgl structure in Fig. 2, the
map was boxed so as to include the density corresponding to the domain that was analyzed, but
was not masked (density corresponding to other chains was therefore present as well).

Overall procedure for iterative AlphaFold model generation and model rebuilding using a density
map

The first cycle of our iterative procedure consists of creating an AlphaFold model using a Google
Colab (https://colab.research.google.com/) AlphaFold2 notebook, followed by downloading the
resulting model and automatically trimming, docking, and rebuilding the model with the density
map and the Phenix tool dock and_ rebuild. Subsequent cycles consisted of converting the
rebuilt model to mmCIF format®3, uploading the model to the Colab notebook, generating a new
AlphaFold model using the rebuilt model as a template, and rebuilding as in the first cycle. A
total of four cycles were carried out. We considered the last AlphaFold model obtained in this
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procedure to be the AlphaFold model created with information from a density map, and the last
rebuilt model to be the overall final model produced by the procedure.

AlphaFold model generation

We used a slightly modified version of the ColabFold notebook? to create models with
AlphaFold. The principal difference from ColabFold is that this notebook can create models for
a group of sequences, each with optional uploaded templates. This allowed us to analyze all the
structures in Fig. 1 as a group. Another difference is that this notebook allows any combination
of use of templates supplied by the user and chosen from the PDB and the optional use of
multiple sequence alignments. The notebook is available at
https://colab.research.google.com/github/phenix-
project/Colabs/blob/main/alphafold2/AlphaFold2.ipynb . In the first cycle of AlphaFold model
generation, no templates were used and multiple sequence alignments were included. In
subsequent cycles, the rebuilt model from the previous cycle was used as a template. For the
examples in Fig. 1, multiple sequence alignments were included in all cycles; for the 7bgl
example in Fig. 2, they were included only in the first cycle.

Automatic model trimming, docking and rebuilding

We used the Phenix? tool dock_and_rebuild to orient AlphaFold models in a density map and
rebuild them based on the map. This is accomplished in five overall steps: trimming and splitting
into domains, docking of individual domains, morphing the full AlphaFold model to match the
docked domains, creating rebuilt versions of the model, and assembly of the best parts of the
rebuilt versions of the model. All these steps are carried out automatically with the

dock_and _rebuild tool that in turn uses other Phenix tools to carry out individual steps. Key
parameters are noted in the text below; except as noted, default values were used throughout this
work.

Model trimming and splitting into compact domains

AlphaFold models are automatically trimmed and split into domains based on the coordinates of
the AlphaFold model and on estimates of confidence (pIDDT values') supplied by AlphaFold for
each residue in the structure. The Phenix tool process predicted _model is used for this purpose.
Residues with pIDDT value less than 70 (the threshold for a “good” prediction') are removed
and the remaining residues are grouped into “domains” (up to three by default, controlled by the
parameter maximum_domains) consisting of one or more parts of the chain that contain a
sufficient number of residues (10 residues, controlled by the parameter
minimum_domain_length) and form a compact unit. This grouping can be carried out based on
spatial proximity (default), or based on the predicted uncertainties in Cq, - Cq, distances. We note
that in cycles after the first, a template is supplied that derives in part from the previous
AlphaFold model, resulting in systematically higher pIDDT values. In this work we have not
quantified this effect or adjusted the threshold to account for it.

Domain docking into density

The compact groups of residues (“domains”) obtained by trimming the AlphaFold model are
aligned, one at a time, to the density map. Two approaches are used. The first approach uses
secondary structure matching (SSM) to dock the domain onto the map using the Phenix tool
superpose_and_morph with the setting ssm_match_to_map="True (see below for details of this
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tool). The second approach consists of a direct correlation search between model-based density
and the map using the Phenix tool dock in_map*. Normally these procedures are carried out
sequentially, and if the first yields a match with a map-model correlation (CC_mask value using
the Phenix tool map _model cc) sufficiently large (typically 0.3, controlled by the parameter
ssm_search_min_cc) the other is skipped. Based on the hypothesis that the transformations for
different domains may often be similar, the transformations for successfully-docked domains are
considered as possible transformations for each additional domain. These methods typically yield
a set of possible placements of each domain in the map. If symmetry is automatically detected in
the map?’, these placements also include all the possibilities obtained by applying this symmetry
to placements found directly.

The final inclusion and placement of each domain is then chosen by maximizing an empirical
scoring function. The function includes the fraction of domains that are placed and the map
correlation for each placement. It also includes a penalty for placing two domains further apart
than can be spanned by the number of residues between those domains, and a penalty function
for the number of C, atoms in one domain overlapping with those in another domain within 3 A
(controlled by the parameter overlap ca ca_distance). The score starts out at zero. If the map
correlation for each domain is at least 0.15 (minimum_docking cc) the score is given large
positive increases (200 units) for each of the following that occur: (1) lowest map correlation of
all docked domains is greater than 0.5 (set with acceptable docking cc), (2) if #1 occurs and
also all placements have similar transformations (i.e., the docking was essentially a rigid-body
docking), where two transformations are similar if applying them to a domain gives an rms
difference in coordinates equal to the resolution of the map or less, (3) all domains are docked,
(4) the fraction of residues that overlap between domains is less than 0.1
(allowed_fraction_overlapping), (5) no domains are further apart than can be spanned by the
number of residues between those domains. If any domains are further apart than can be
spanned by the number of residues between those domains plus twice the resolution plus 15 A
(maximum_connectivity deviation), 200 units are subtracted from the score. The resulting score
is then adjusted with the following additions and subtractions: (1) the lowest map correlation of
all domains is added, (2) the average map correlation is added, (3) the fraction of transformations
that are different from the first is subtracted, (4) the fraction of C, atoms that overlap between
domains is subtracted, and (5) the sum of all deviations in distances between domains,
normalized to the sum of all allowed distances between domains, is subtracted. This scoring
function was not optimized and does not contain weights except as described above.

Morphing and refining the full AlphaFold model to match the map based on docked domains

Once a set of domains is placed to match a map, the entire AlphaFold model is morphed to
superimpose on these domains as much as possible, while smoothly distorting along the chain
between domains. We use a shift-field approach to morphing?®, creating a vector function that
varies smoothly in space. The shift (distortion) applied to a particular atom in a model is the
value of the shift field at the coordinates of that atom.

The shift field is calculated from a set of (shift coordinate, shift vector) pairs. There is one such
pair for each C, atom in a docked domain. The value of the shift coordinate is the position of the
corresponding C, atom in the full AlphaFold model. The value of the shift vector is the
difference between the coordinate of the C, atom in the docked model and the corresponding Cq
atom in the full AlphaFold model. The shift field at any point in space is then the weighted
average of all the shift vectors, where the weights are the inverse exponential of the normalized

13


https://doi.org/10.1101/2022.01.07.475350
http://creativecommons.org/licenses/by/4.0/

10

15

20

25

30

35

40

45

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475350; this version posted January 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

squared distance between that point in space and the corresponding shift coordinate, and where
the normalization is the square of the shift field distance, which has a typical value of 10 A (set
with the parameter shift field distance and chosen to be a compromise between maintaining the
model geometry with a long shift field distance and matching the docked domains closely with a
a short one). The coordinates of a morphed AlphaFold model are then calculated from the initial
coordinates and this shift field. This morphing has the property that local distortions occur on a
scale of about 10 A, the shift field distance. The docked, morphed AlphaFold model is adjusted
to match the map using the refinement tool real space refine*.

Creating rebuilt models by replacing uncertain parts of the docked, morphed, refined AlphaFold
model

The parts of the docked, morphed, refined AlphaFold model that have either (1) low confidence
predictions from AlphaFold (typically residues with pIDDT < 0.7 as above), or (2) low
correlation with the map, are then identified and used to specify segments of the model that
require rebuilding. The threshold defining low map correlation is obtained with the following
procedure. Density values in the map at positions of all C, atoms are noted, the values in the
lower half are removed, and the mean and standard deviation of remaining (“good”) density
values are noted. Low map correlation is defined as more than 3 standard deviations below the
mean (where the ratio of 3 is defined by the parameter cc_sd_ratio). Before applying these
thresholds, the pIDDT values and density values for each residue are smoothed by averaging
with a window of 10 residues along the chain (defined by minimum_domain_length).

Then a series of attempts to improve the fit of each poorly-fitting segment to the map are carried
out. These attempts to improve the fit include: (1) iterative resolution refinement, in which the
model is iteratively refined, initially at low resolution (6 A, controlled by the parameter
iterative_refine_start resolution), then progressing in 1 A decrements until the resolution of the
map is reached, (2) rebuilding of loops, using the Phenix tool fit loops, (3) retracing loops by
finding a path through the density map that connects the ends of the loop with a chain that
follows the path with the highest minimum value'®, (4) a combination of retracing part of the
loop with superimposing and splicing that part of the existing refined model that matches the
remainder of the loop, (5) iterative morphing, and (6) use of an external model. The combination
method addresses the situation where clear density is present in the map for the beginning and
end of a loop and the remainder is unclear. In this case, the refined model for the residues that
cannot be modeled from density are simply grafted on to the residues that can be modeled, using
a shift-field procedure as described above to morph the refined model while superimposing 3
residues on each end. The iterative morphing procedure was similar to one previously used to
distort a model to better match the density?!, but in the current procedure morphing is carried out
on 6 residues from each end at a time (specified by n_window), then the remainder of the model
is superimposed on the 12 morphed residues, the window is shifted by one residue from either
end, and the process is repeated until the loop is morphed. In cases where an externally-created
model has been supplied to the rebuilding procedure, another attempt to rebuild each loop
consisted of selecting a matching segment from the external model, if such a segment with the
expected number of residues was present and could be connected to the existing model with
deviations at the ends of 3.8 A or less (defined by the parameter ca_distance). Each attempt to
rebuild a part of the refined model yields a new candidate segment of the model. All the
candidate segments obtained with a particular rebuilding method (e.g., rebuilding loops) are used
to replace the corresponding segments in the refined model and the resulting full model is refined
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based on the density map. This overall process then yields several new full-length versions of
the model.

Assembling the best parts of rebuilt models into a single final model

The rebuilt and refined models are then used as hypotheses for the structure to be built. In the
preceding step, boundaries of regions needing or not needing rebuilding were identified. In this
step, each model is broken up into the corresponding segments. Then the best version of each
segment, chosen based on their map correlation, is used to create a new full model. This model is
refined using the density map to produce a single full-length final model.

Values of parameters

Default values were used for the parameters controlling model rebuilding, with two exceptions.
One exception was that for the 7bgl structure? in Fig. 2, model-building was aided by supplying
a model created by the Phenix tool map to model" as a source of possible fragments to use in
rebuilding the structure. The reason this was necessary was that without these fragments, model
rebuilding with the methods described below was incomplete for this structure despite the very
good resolution of 2.2 A, possibly because the AlphaFold model was quite different from the
actual structure in some places. The other exception was that in cases where multiple chains with
similar sequences (and therefore presumably similar structures) were present in a structure, the
secondary-structure-based docking procedure was skipped and only a direct density correlation
search was used (with the Phenix tool dock in_map). The rationale for this was that, as might be
expected, docking with a correlation search was more effective than a secondary structure search
at distinguishing the correct placement from one superimposing on related but different chain.

In the first cycle of rebuilding for each model, the corresponding AlphaFold model was supplied
along with the full corresponding density map and the resolution of the structure reported in the
PDB. In subsequent cycles, a new AlphaFold model was supplied as well as the rebuilt model
from the previous cycle.

Model superposition and comparisons

Models were superimposed using the Phenix tools superpose_pdbs, superpose_and _morph and
the Coot secondary structure matching tool32.

The superpose _pdbs tool carries out least-squares superposition of matching C,, atoms identified
by alignment of the sequences of two models. Note that in cases where the sequences of two
models are similar and the models differ largely by rigid-body movement of one domain relative
to another, this procedure can lead to a superposition where neither domain superimposes
closely.

The superpose_and _morph tool carries out secondary structure matching (SSM) to superimpose
part or all of one model on another using reduced representations of secondary structure elements
and indexing of these elements to speed up comparisons and allowing matches that are non-
sequential in a procedure similar to that used in*. If the option ssm_match_to_map is used, the
inputs are a model and a map. In this case the tool find helices_strands is used to find secondary
structure elements (SSE’s) in the map and to create a secondary-structure model containing these
SSE’s. Then the model to be docked is superimposed on the a secondary-structure model with a
modified form of SSM. In this SSM procedure, two secondary structure elements from the map
(e.g., a helix and a strand) are paired with two matching elements from the domain to be docked
(e.g., a matching helix and strand), thereby defining a transformation between the domain to be
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docked and the map. As the precise alignment of secondary structure elements from the map and
those from the domain to be docked is not known, all possible alignments of the shorter of each
pair of elements with the longer element are tested (e.g., residues 1-10 of one helix might be
paired with residues 1-10, 2-11, 3-12 and so on from the other). All the C, atoms in each element
from the map are then associated with C,, atoms in the corresponding element from the domain,
and a least-squares superposition is carried out. If these C, atoms match (by default within 5 A,
controlled by the parameter match_distance high), the resulting transformation is applied to all
Co atoms in the domain and the map-model correlation of the resulting docked domain is
calculated with the Phenix tool map model cc. If the resulting correlation is above a minimum
level (controlled by the parameter ok brute force cc with a default value of 0.25), the docked
model is adjusted by rigid-body refinement to maximize this correlation.

The Phenix chain_comparison tool was used to compare models that were already

superimposed. This tool counts the number of C,, atoms in a target model that are matched within
3 A by any C, atom in the matching model. Allowing any Cq atom in the matching model to
superimpose effectively ignores the connectivity of the chains, but it is useful for evaluating
whether a Cq, atom is placed in a position where some C, atom belongs. The distance of 3 A is
the default value and is useful for ranking pairs of models that have more than about 30% of Cq
atoms matching. It is less useful for ranking pairs with lower similarity because two overlapping
structures that are completely unrelated will often have 20-30% of C, atoms matching within 3

A.

Map correlations

We used the Phenix tool map _model_cc to calculate correlations between experimental density
maps and model-based density maps for PDB entry 7mlz and resulting AlphaFold and rebuilt
models. The overall orientation and positions of AlphaFold models are arbitrary and the values
in the atomic displacement parameter field (B-values) are pIDDT values. We superimposed
these models on the corresponding deposited structure before calculation of map correlations,
keeping all coordinates fixed at the values obtained by direct superposition. To make a fair
comparison with rebuilt and deposited models, we refined the atomic displacement parameters
for all the models to match the map before calculation of map correlations. For the 7mlz
example shown in Fig. 1, the refinement of B-values increased all the map correlation values.
Map correlation values for the deposited model, initial superposed AlphaFold model (with B-
values representing pIDDT), initial rebuilt model, and final AlphaFold model were 0.64, 0.26,
0.47, and 0.44. After B-value refinement these were 0.70, 0.41, 0.58, and 0.57.
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Extended Data

Structures and maps used

PDB ENTRY | EMDB RESOLUTION (A) | CHAIN MOST Percent | RMSD
ENTRY SIMILAR | matching | (A)

IN PDB

(at time of

deposition)
Tmby 23750 2.44 B 6pt0 2 19.5
7me0 23786 2.48 A 7kOr 98 0.4
7ev9 31325 2.6 A lyew 100 0.5
71s5 23502 2.74 A 3gpt 99 0.4
7eda 31062 2.78 A 5xnl 4 21.6
7lci 23274 29 R 6lmk 7 4.1
Tlvr 23541 29 A 6b0i 100 1.0
7c2k 30275 2.93 A 7btf 98 1.0
7m7b 23709 2.95 A 7m3i 98 29
7n8i 24237 3 L 6iw?2 3 2.6
7mjs 23883 3.03 H 6ukj 2 7.0
711k 23110 3.16 A 4kvo 2 14.6
716u 23208 33 A Shej 94 1.3
Tku7 23035 34 A 5ejk 91 1.7
Tkzz 23093 3.42 B Svrf 98 1.4
71x5 23566 3.44 B 7klh 2 5.7
7brm 30160 3.6 A 4uv3 92 0.7
7lsx 23508 3.61 A 6fvw 8 23.7
71c6 23269 3.7 A 6hrb 1 10.2
Tmlz 23914 3.71 A 7lrs 2 15.5
Tmsw 23970 3.76 A 6cel 2 17.0
7rb9 24400 3.76 B 6upv 98 0.4
7bxt 30237 4.2 A 6mup 22 0.8
7m9c 23723 4.2 A 3udb 1 6.0
71v9 23530 4.5 B 5x0y 5 16.4

Extended Data Table I. List of structures and maps used in Figs. 1 and 3. The most similar
entries at time of deposition were obtained using the RCSB PDB “Find similar proteins by 3D
structure tool” and choosing the highest-scoring entry that was deposited earlier than the target
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structure. The percentage of residues matching and rmsd were obtained using the Phenix
superpose_pdbs tool using only C, atoms from the target and noting the number of residues in
the target, the number of superposed residues, and the final rmsd of matching C,, atoms.
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Percentage C, atoms within 2 A of C, atom in deposited model

Extended Data Figure 1. Analysis of automatic map interpretation in Fig. 3 panel E using 2 A
cutoff instead of 3 A. Figure as in Fig. 3 panel E, except the value of the keyword max_dist was
set to 2 A instead of 3 A. This then reports the percentage of C, atoms in the deposited structure
matched within 2 A by a Cy atom in the corresponding final rebuilt model.
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Supplementary Information

Prediction of 7bgl flagellar basal body structure as a homo-multimer

The flagellar basal body structure is a symmetric 26-mer (C26), while the AlphaFold prediction
in CASP-14 used a monomer, and we also used the sequence of a monomer in our analysis. It
seemed likely that some of the sequence covariation present in the multiple sequence alignment
would be due to inter-subunit contacts, and that if we supplied a sequence corresponding to a
homo-oligomer, AlphaFold might be able to use this inter-subunit contact information to create a
more accurate model of each individual chain. We carried out a prediction with a 26-mer of the
7bgl sequence; this model had highly overlapping copies of the chain and was not considered
further. We also carried out predictions with a trimer and a dodecamer of the 7bgl sequence and
compared one chain from each with the deposited model. The conformation of each chain in
predictions from the trimer were similar to that of the predicted monomer in Fig. 2 panel A, and
had an rmsd from the deposited model of 3.8 A. Three of five dodecamer predictions had a
conformation for each single chain that was more like the deposited model, with an rmsd of
superposed Cq atoms for the top-scoring model of 3.0 A. For comparison, the iterative
AlphaFold model in Fig. 2B has an rmsd of 0.8 A.

Iterative model improvement requires both iterative rebuilding and iterative modeling

We carried out tests to check whether the improvement obtained between Fig. 1 panels A and C
actually requires both the iteration of prediction and the iteration of model rebuilding. To test
whether model rebuilding is necessary, we carried out iterative cycles of AlphaFold prediction
for the SARS Cov-2 spike protein! example in Fig. 1 panel A using the AlphaFold model from
each cycle directly as a template in the next. The resulting prediction after four cycles was very
similar to the original AlphaFold model, with an rmsd of matching C, atoms in the model of just
0.5 A after superposition, and differed very substantially from the model obtained with iterative
prediction and rebuilding (corresponding rmsd of 3.2 A), indicating that without model
rebuilding, iteration of the procedure has little effect.
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To test whether iteration of prediction is necessary, we carried out iterative cycles of rebuilding
of the same structure, starting with the rebuilt model in purple in Fig. 1 panel B. This starting
model had an rmsd of matching C, atoms in the deposited model of 5.7 A, while the model in
Fig. 1 panel C had a corresponding rmsd of 2.4 A. Carrying out iterative cycles of rebuilding
without further prediction yielded a model with a much greater rmsd to the deposited model of
4.4 A, showing that without iteration of the prediction part of the process, the procedure is not
effective.

Situations where non-default choices of parameters may be useful in modeling

The principal options that are available in our procedure for iterative AlphaFold prediction and
rebuilding are (1) including an external model as a source of hypotheses during model
rebuilding, and (2) omitting multiple sequence alignments in cycles of AlphaFold after the first.

The use of an external model may be useful in cases where the density map is clear but the
automatically docked and trimmed AlphaFold predicted model matches the map poorly enough
that the automatic rebuilding process fails. This can happen for example if the AlphaFold model
is placed incorrectly in the map or if the residues remaining at the ends of trimmed fragments
agree so poorly with the density map that the rebuilding process is not able to identify
connections between them. An indication for using this approach is that the density map appears
to show clear density for a protein but neither the rebuilt model nor the final AlphaFold model
matches that density. An external model from an automatic map interpretation procedure such as
Phenix map to_model* or DeepTracer® could be used as well as a manually built model.

Omitting multiple sequence alignments after the first AlphaFold cycle may be useful in cases
where the sequence alignment causes AlphaFold to create a model that is inconsistent with the
density map. The residue covariation deduced from multiple sequence alignments are presumed
to be a principal source of information about residue-residue distances for AlphaFold # but at the
same time multiple sequence alignments may have significant uncertainties®. If a multiple
sequence alignment is inconsistent with the actual structure of the protein being modeled,
inclusion of this alignment could make modeling work poorly. In AlphaFold modeling the
contribution from a multiple sequence alignment is often very substantial®, but in cycles after the
first our procedure supplies a template and use of the multiple sequence alignment is less critical
and can be omitted. An indication that this option might be useful would be that the rebuilt
model produced by the dock _and_rebuild procedure matches the map but the resulting
AlphaFold model does not.
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