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ABSTRACT: Intrinsically disordered regions of proteins often mediate important protein-protein interactions. However, the folding
upon binding nature of many polypeptide-protein interactions limits the ability of modeling tools to predict structures of such com-
plexes. To address this problem, we have taken a tandem approach combining NMR chemical shift data and molecular simulations
to determine structures of peptide-protein complexes. Here, we demonstrate this approach for polypeptide complexes formed with
the extraterminal (ET) domain of bromo and extraterminal domain (BET) proteins, which exhibit a high degree of binding plasticity.
This system is particularly challenging as the binding process includes allosteric changes across the ET receptor upon binding, and
the polypeptide binding partners can form different conformations (e.g., helices and hairpins) in the complex. In a blind study, the
new approach successfully modeled bound-state conformations and binding poses, using only backbone chemical shift data, in ex-
cellent agreement with experimentally-determined structures. The approach also predicts relative binding affinities of different pep-
tides. This hybrid MELD-NMR approach provides a powerful new tool for structural analysis of protein-polypeptide complexes in
the low NMR information content regime, which can be used successfully for flexible systems where one polypeptide binding partner
folds upon complex formation.

INTRODUCTION

Molecular modeling has become an integral toolset for predict-
ing bound conformations in structural biology. These successes
are attributable to advances in protein structure prediction, ro-
bust docking pipelines for small molecules, and accurate free
energy methods for quantifying relative (and absolute) binding
affinities'. Despite these advances, the accuracy of these meth-
ods decreases rapidly for systems involving significant confor-
mational changes upon complex formation, where receptors can
accommodate multiple binding modes, and for highly charged
systems™*. In particular, systems involving disorder-to-order
transitions upon complex formation, including peptides that
fold as they bind, challenge current protein-peptide docking
methods. Recently, machine learning tools have brought fast
and accurate predictions for protein structures** and are now be-
ing extended to predictions of complexes™®. More generally,
three-dimensional structures of peptide-protein complexes pro-
vide important information for understanding the mechanisms

of multiprotein complex assembly, and have the potential to in-
form drug discovery.

Here we describe an integrative approach to structure determi-

nation for peptide-protein complexes combining NMR chemi-
cal shift data and molecular simulations. High information-con-
tent NMR studies rely on extracting many distance and orienta-
tion restraints to solve the structure of the peptide-protein com-
plex’. At the other extreme, lower information-content NMR
studies, such as backbone chemical shift data which is prereq-
uisite to more extensive studies, provide valuable information
about the binding epitope and (in some cases) the bound-state
conformation of the peptide, but do not usually provide enough
data to reliably characterize the binding mode and structure of
the resulting complex.

Molecular simulations approach the problem of peptide binding
by sampling the binding/unbinding landscape, including multi-
ple binding modes and peptide conformations, relying on statis-
tical mechanics to identify preferred conformations in the en-
semble. Sampling multiple binding/unbinding events requires
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timescales much longer than the bound-state lifetime®, entailing
a large computational effort even with special purpose comput-
ers’ or advanced sampling technique strategies'*'*. Integrating
experimental data reduces the conformational space, focusing
sampling on structures that satisfy the physics as well as the ex-
perimental data'>!®. In this work we identify synergies between
incomplete or “sparse” NMR data and simulations for structure
prediction of peptide-protein complexes, focusing on applica-
bility and transferability as well as limitations. This pipeline al-
lows more rapid structure determination of complexes than con-
ventional NMR approaches, and can provide structures of com-
plexes even for systems for which extensive NMR data cannot
be obtained. We focus on the binding of polypeptides to the ex-
tra-terminal domain (ET) of bromo and extra-terminal domain
(BET) proteins, which exhibit disorder to order transitions of
the polypeptide upon binding, allosteric changes in the receptor,
and accommodate peptides binding in different conformations’.
This biologically-important system exhibits a large degree of
plasticity in binding modes and peptide conformations 71719,
as well as a large range in binding affinities, and poses chal-
lenges to current computational and experimental approaches.
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A.
Free ET
B.
Residue Types

@ Negatively charged
@ Positively charged
O Hydrophobic protein
O Hydrophobic peptide

© Peptide

The BET family of proteins (BRD2, BRD3 and BRD4) play
important roles in eukaryotic gene regulation by recognizing
and binding epigenetic signatures and recruiting other regula-
tory proteins. Structurally, BET proteins contain two bromo-
domains that recognize and bind acetylated signatures in his-
tones, and an extra-terminal domain (ET) which serves as an
anchor point to recruit other proteins such as NSD3, IMJD6,
CHD4, GLTSCR1 and ATADS". Some viruses like the murine
leukemia virus (MLV) or Kaposi’s sarcoma-associated herpes-
virus (KSHV), encode proteins that also bind to the ET domain.
For retroviral integration, this effectively facilitates their loca-
tion near active transcription start sites and CpG islands®. The
MLYV integrase (IN) contains an intrinsically disordered C-ter-
minal polypeptide “tail” segment that becomes structured upon
binding the ET domain. KSVH virus has a latency-associated
nuclear antigen (LANA) protein that also binds ET. Under-
standing and predicting how different polypeptide sequences
bind the ET domain can potentially lead to new approaches for
cancer treatment and gene replacement therapy.

ET+ JMJD6

Figure 1. Plasticity of ET - peptide complex formation. (A) Experimental structures of the ET domain of BET proteins interacting with
different peptides highlight differences across the binding modes observed in different ET — peptide complexes. (B) A network of alternating
positively (blue) and negatively (red) charged interactions between the peptide and protein residues a zipper like interacting mechanism
which is further stabilized by hydrophobic packing between a cleft in the protein and hydrophobic peptide sidechains.

The ET domain is an 87-residue three-helix bundle, with a
binding site defined by a hydrophobic pocket flanked by a
negatively charged loop region connecting helices a2 and a3.
Proteins interact with the ET domain through short peptide
epitopes which anchor hydrophobic residues in ET’s hydro-
phobic pocket and interlace positively charged residues of the
ET-binding polypeptide segment with negatively charged res-
idues of ET through a zipping mechanism'”. Interestingly, the
binding mode, orientation of the bound polypeptide segment,
and even secondary structure of the bound polypeptide can
change considerably for different polypeptide sequences,
causing the loop in the ET receptor to adopt different confor-
mations in different ET-polypeptide complexes (see Fig. 1).

We formulated this study in two stages. First, we carried out
blind computational modeling of two peptide-protein com-
plex structures, followed by assessment of model accuracy
based on high-quality NMR structures of these complexes’.
Here, the experimental team provided NMR datasets for pep-
tide-protein complexes for which structures were not yet de-
posited in the Protein Data Bank, and not available to the pre-
diction team, with increasing information content, and col-
lected predictions from the computational group at each stage.
The lowest tier data used only backbone '"N-'H chemical shift
perturbation (CSP) data measured on the receptor protein —
effectively identifying possible binding hot-spots. For ET
these CSP data include both effects at the peptide binding site,
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and changes throughout the structure due to allosteric confor-
mational shifts that result from peptide binding’. At the high-
est tier of experimental information, in addition to the back-
bone ""N-'H CSPs measured on the receptor protein, dihedral
angle restraints based on backbone chemical shift data for the
isotope-enriched receptor-bound peptide®?, and a few pep-
tide-protein contacts based on the strongest NOEs observed
between the protein and bound peptide, were provided. In the
second stage of the study, we also extended the method to
other peptide - ET domain complexes for which three-dimen-
sional structures were already published, to assess the gener-
ality of our methods.

METHODS

Experimental Methods:

NMR Data: Experimental NMR data were generated for mu-
rine BRD3 ET domain (residues 554 to 640) and for its com-
plexes with the 23-residue C-terminal tail peptide (TP) of
MLV IN (residues 1716 to 1738 of the Gag-Pol polyprotein),
and the ET-binding polypeptide segments of murine NSD3
(residues 151 to 184), as summarized in Table 1. *C,'>N- en-
riched samples of ET were produced using standard meth-
ods”?, while isotope-enriched peptides were produced as fu-
sion proteins followed by proteolytic cleavage, as described
elsewhere’. Sequence-specific resonance assignments for
peptide complexes (for both the ET protein and for the bound
polypeptides) were determined using standard triple-reso-
nance NMR methods, also described elsewhere’. NMR data
for ET-binding domains of CHD4* (BMRB ID 30367),
BRG1%* (BMRB ID 30368), LANA!” (BMRB ID 26042)
and IMJD6'® (BMRB ID 30373) were obtained from the Bi-
oMagResDataBank (BMRB). Backbone amide '"N-'H chem-
ical shift perturbations (CSPs) of apo BRD3 ET domain rela-
tive to values in the complex were calculated using AS m) =
((ASN/6)*+(ASK)»)*® and plotted as a function of BRD3 ET se-
quence. The threshold for defining a significant CSP was de-
termined by iterative analysis®. The standard deviation () of
the shift changes Adn.n was first calculated. To prevent bias-
ing the distribution by including the small number of residues
with very large shift changes, any residues for which the shift
change is greater than 3¢ were excluded. The standard devia-
tion (o) of the remaining AS( u) values was then recalculated.
Iteration of these calculations was performed until no further
residues were excluded. The threshold value for a significant
CSP was then set to ASwm = 36 = 0.02 ppm. *C and "N-
edited 3D NOESY spectra for uniformly '*C,'*N-enriched ET-
TP and ET-NSD3 complexes were recorded with NOE mix-
ing times of 120 ms.

Isothermal Titration Calorimetry: Isothermal titration calo-
rimetry was carried out using a MicroCal VP-ITC Isothermal
Titration Calorimeter located in the Analytical Biochemistry
Core Facility of the Center for Biotechnology and Interdisci-
plinary Sciences (CBIS) at Rensselaer Polytechnic Institute.
Recombinant TP (SRLTWRVQRSQNPLKIRLTREAP) and
NSD3

(EFTGSPEIKLKITKTIQNGRELFESSLCGDLLNEVQASE
) were prepared as described previously’. Samples of ET(~ 2.4
ml) and peptide binding partners (~ 300 pL) were prepared
for ITC studies by dialyzing together in separate dialysis bags
placed the same beaker of the ITC buffer containing 25 mM
Tris, 100 mM NaCl, 5 mM TCEP at pH 7.5. The ET and

peptide binding partners were first dialyzed in 1L ITC buffer
at4°C for 8 hours, and then dialyzed into a new 1L ITC buffer
at 4 °C overnight. Protein and peptide concentrations were de-
termined after dialysis by absorbance spectroscopy at 280 nm
or 205 nm using extinction coefficients for ET (e = 4470 M-
'em!), TP (&250 = 5500 M'em?) and NSD3 (exs = 126,480 M-
'em! , contains no Tyr or Trp), calculated from their respec-
tive amino acid sequences.

Datasets used for the blind study: We use three different ex-
perimental NMR datasets to mimic different approaches: (1)
CSP, (2) CSP+TALOS, (3) CSP+TALOS+NOE. For the
lowest information content dataset, experimental docking data
include only backbone '"N-'H CSP data for the protein recep-
tor in the presence/absence of a bound peptide. We call these
the CSP datasets. This approach uses comparison of the ['°N-
'H]-HSQC spectra of apo and peptide-bound receptor, and has
the advantage that the peptide binding partner does not require
isotope enrichment. Residues of the receptor (in this case, ET)
for which there is a chemical shift perturbation upon complex
formation may be directly involved in binding or indirectly
affected by allosteric conformational changes. Hence, these
CSP data do not provide information about which specific at-
oms of the protein (e.g. backbone vs. sidechain) are involved
in the interaction with the peptide, or which peptide residues
might be involved in the binding. The CSP threshold for sig-
nificant perturbations (calculated as described above) indi-
cates that the '>N-'H chemical shifts of the majority of resi-
dues in the ET receptor are perturbed upon complex formation
— with a broad range of CSP values (Fig. S1). Based on the
distribution of CSPs across the ET structure, for both the ET-
TP and ET-NSD3 complexes we assigned only residues with
relatively large CSP values > 0.25 ppm as “active residues” ,
likely to be in or near the peptide binding site. These include
20 and 22 protein residues, respectively, for the two com-
plexes (Fig. S1).

The second dataset adds conformational restraints for phi/psi
dihedral angle ranges for the bound peptide based on the back-
bone chemical shifts measured for the bound peptide in the
complex, determined with the program TALOS?!'*
(CSP+TALOS datasets). This data requires isotope-enrich-
ment of the peptide ligand, and NMR assignments for the
bound peptide. TALOS-generated peptide dihedral torsion re-
straints were used in MELD simulation with maximum and
minimum values shown in SI Tables S1 and S2. The third
dataset includes restraints derived from three strong interchain
NOEs among backbone and relatively easy to assign sidechain
resonances (CSP+TALOS+NOE datasets). Specifically, in
this third data set distance restraints were imposed between:
Val 24 CG1/ Trp 73 HH2, Ile 44 CD1/Ile 84 CD1, and Glu
47 CG / Leu 82 CD2 for the ET-TP system, and between Ile
44H/Leu73 H, Ile 42 H/Ile 75 H, and Val 24 CG1 / Phe 86
CD1 for the ET-NSD3 system. Simulations were performed
by trimming off 19 unstructured residues in the N-terminal re-
gion of ET (which are distant from the peptide binding site)
and renumbering the resulting trimmed domain sequence to
start at residue 1. Thus, the residue numbering convention
used in the MELD-NMR calculations uses residues 1 to 68 for
the ET receptor (corresponding to residues 573 to 640 of the
BRD3 protein), with residues of the peptide binding partner
numbered from 69 onward (corresponding residue numbers
shown in Table 1).
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Computational methods:

MELD approach: MELD is a plugin to the OpenMM?*® mo-
lecular simulations engine. It integrates data and simulations
through Bayesian inference'. The main advantage is that it
accommodates data sources that are ambiguous and/or noisy,
making it well-suited for analysis of protein NMR data.. For
example, CSP information on the ET receptor protein identi-
fies possible sites of interaction between the protein and pep-
tide — but we do not know which residues in the interface con-
tact with residues in the bound peptide, and which are never
in direct contact (e.g., CSPs distant from the binding site can
arise from allosteric or propagated structural changes). We
thus include all possibilities, knowing that only a small subset
will be present in the structure of the complex (see Fig. 2).
MELD samples through conformations and different imple-
mentations (subsets) of the data, to produce an ensemble that
is compatible with a subset of data and the physics model
(given a force field).

MELD simulations: As in previous studies, we used an H,T-
REMD protocol®’ for efficient exploration of the energy land-
scape. We used 30 replicas running for 1.5 s starting from an
unbound folded receptor and extended peptide conformation
placed 30 A away from the receptor. The temperature in-
creases geometrically from 300 K at lowest replica to 500 K
at the 12" replica and is kept constant at 500 K afterward. The
Hamiltonian changes according to how strongly we enforce
the data (strongly, k=350 kJ/(mol nm?), below replica 12,
and with no restraints at the 30™ replica—changing non-line-
arly in between the 12" and 30" replicas). The physics model
uses the GBNeck?2 implicit solvent model®® and a combination
of the ff14SB% (side chains) and ff99SB* (backbone) force
fields.

The CSP data was modeled by all possible combinations be-
tween the set of all peptide residues and the set of ET active
residues with CSP above the Adxn)= 0.25 ppm threshold, us-
ing a flat-bottom harmonic restraint between Cy’s of each pair.
The restraints added no energy penalty up to 8 A, and then the
energy penalty increased quadratically until 10 A, and linearly
beyond, with a force constant of 350 kJ/(mol nm?). The com-
binatorics leads to many possible restraints, but only a few are
present in the bound structure — hence we assigned a 4% con-
fidence level to this dataset. Which restraints are enforced is
deterministic: at each timestep all restraint energies are eval-
uated, and the 4% lowest energy restraints are enforced until
the next timestep. Different replicas can satisfy different sets
of restraints. An advantage of MELD is that each different
data source can have different confidence values. For exam-
ple, a second protocol created combinatoric restraints between
only the hydrophobic residues in the peptide and the active
protein residues. This resulted in a lower number of overall
restraints and a higher confidence level (10%).

We modeled bound-peptide chemical shift data in a similar
manner by enforcing phi and psi dihedral angle restraints
based on the minimum and maximum values provided by
TALOS (see Fig. 2 and Tables S3-S6). Modeling of dihedral
restraints is based on TALOS analysis of the chemical shift
values for each residue, and are therefore of higher accuracy
than the ambiguous modeling of CSP data. We set the confi-
dence on this data to 80%. Finally, we modeled NOE data with
a 5 A flat-bottom potential between backbone-bacbkone hy-
drogens. For NOEs between sidechain-sidechain or

backbone-sidechain hydrogens, we mapped the sidechain hy-
drogen to the corresponding heavy atom and added a 6 A fat-
bottom potential. We used 100% confidence on this dataset.

In all simulations, we also applied internal distance restraints
to the ET structure in order avoid protein unfolding at high
temperatures in the replica exchange. For this purpose, we cal-
culated all C, - C, distances in the apo-protein, selected those
closer than 8 A, and created a restraining potential for each
using an 8 A flat-bottom harmonic potential. To allow for pos-
sible conformational changes during binding, both locally to
the binding site due to binding plasticity and distant from the
binding site due to allosteric changes, we set this dataset with
a 90% confidence inside MELD. The accuracy parameter in
the different data sources plays a critical role in guiding the
search in MELD — but, it is unknown a priori. Enforcing
higher accuracy values result in more restrained systems and
thus faster convergence (shorter simulation times). However,
if the accuracy value is set too high, the restrained protein
structure might not be compatible with all of the data, leading
to incorrect simulations.

1754 CSP values for Peptide Backbone
1501 the receptor Chemical Shift

|

TALOS+

0 10 20 30 40 50 60 70
Residue number

| |

-100

-150

-150-100-50 0 50 100 150
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Figure 2. General flowchart of the current work. The upper
left plot shows NMR CSP values for each residue in the receptor,
with the threshold cutoff used to define active residues shown as
an orange line. Given the active residues, the lower left circular
plot represents the combinatorics of possible restraints between
the peptide (orange circles) and the receptor (grey circles) — each
line between pairs of residues is a potential contact. Purple lines
represent contacts that are not present in the native structure, and
green lines shows the ones present (true positives). For some ac-
tive residues there are no green lines, indicating that their high
CSP values were due to an allosteric or propagated structural-
changes. The lower right plot shows the dihedral restraints on the
binding peptide conformation, with their uncertainties (orange
lines) used in MELD with TALOS data. The Ramachandran plot
is made using https://github.com/gerdos/PyRAMA.

Competitive binding study: Relative binding affinities can be
calculated from MELD simulations in which two (or more)
peptides compete for the binding site. The relative binding af-
finities for ET was assessed for the TP and NSD3 peptide
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sequences shown in Table 1. We selected 3 possible restraints
common to both systems based on the experimentally-deter-
mined structures of these complexes. In the starting confor-
mation both peptides where 30 A away from each other and
from the receptor. In this case the contacts we enforced had to
be satisfied by either peptide at lower replicas, whereas both
were unbound at higher replicas. We also added restraints to
keep the two peptides from interacting with each other. The
ratio of the populations of peptide molecules bound in the
binding site is related to the relative binding free energy®'.

Clustering: We cluster the last 500 ns of the five lowest tem-
perature replicas using RMSD as a similarity metric with a
hierarchical agglomerative clustering algorithm implemented
in cpptraj**. All protocols for complexes use average linkage
to calculate distance between clusters with a 1.5 A cutoff. For
all cases, we have two clustering protocols: one using
LRMSD (Ligand root mean square deviation)* calculated
considering the whole peptide and another using LRMSD cal-
culated on only the core region of the peptide (excluding
floppy terminal regions). We report the centroid of the highest
populated cluster as our prediction.

AlphaFold predictions: We used the AlphaFold* advanced
colab version (https://github.com/sokrypton/ColabFold)* to
predict structures of these 6 complexes. For predicting pro-
tein-peptide complexes, a 30-residue glycine linker was used
between the C-terminal end of the protein and the N-terminal
end of the peptide sequence, to create a single polypeptide
chain that was used as input to AlphaFold. Five models were
predicted for each complex, and ranked according to their
pLDDT scores®. A similar protocol has recently been reported
to provide accurate results in predicting other protein-peptide
complexes®. Related ET-peptide structures already published
in the PDB were excluded for AlphaFold analysis. Each com-
plex model was then refined with the ff99SB forcefield.

Analysis methods. Predicted structures were assessed using
different state-of-the-art metrics used in the protein-protein or
protein- peptide docking communities including IRMSD, fi,
and IRMSD?***%%, Experimental structures determined by
NMR methods were reported as ensembles with 20 models.
For calculating each of these metrics, the medoid structure of
each NMR ensemble was used. The medoid, or representative,
structure for each complex was calculated using the PDBstat
software package’’.

Table 1. Six systems investigated with MELD-NMR and their
corresponding peptide sequences and public database identifiers,
where peptide residue numbers correspond to the sequence num-
bering used for these studies.

Peptide PDB/ Uniprot ID Residue
Name BMRB ID (Residue range) range
(MELD)
TP’ 7JQ8/ P03355 69-91
30786 (1716-1738)
SRLTWRVQRSQNPLKIRLTREAP
NSD3’ TIYN/ Q9BZ95-1 69-102
30790 (151-184)
PEIKLKITKTIQNGRELFESSLCGDLLNEVQA
SE

LANA! 2NDO/ QYQR71 69-87
26242 (1098-1116)
NLQSSIVKFKKPLPLTQPG
JMJD6'® | 6BNH/ Q6NYCI-1 69-81
30373 (84-96)
KWTLERLKRKYRN
CHD4% 6BGG/ Q14839-1 69-80
30367 (290-301)
KVAPLKIKLGGF
BRG1 * 6BGH/ P51532-1 69-80
30368 (1591-1602)
RSVKVKIKLGRK

RESULTS

Isothermal Titration calorimetry measurements. Binding af-
finities of TP and NSD3 peptides to BRD3 ET, K4 ~ 100 nM
and ~ 10 pM, respectively, were estimated at pH 7.5 and 25
°C by preliminary isothermal titration calorimetry measure-
ments. The former value is similar to the reported Kq ~ 150
nm for TP — BRD4 ET binding at pH 7.0 and 25 °C* ; there
is an ~100-fold difference in affinities for ET between TP and
NSD3 peptides.

Blind studies distinguish different binding modes. Figure 3
highlights our results using different datasets for the two blind
studies (TP and NSD3 peptides binding to the BRD3 ET do-
main). In all cases we report the centroid of the top population
cluster from the ensembles. Interestingly, each peptide re-
quires a different amount of data to accurately determine a
complex structure. MELD-NMR using CSP for the ET recep-
tor and TALOS backbone dihedral-angle restraints for the
bound peptide (i.e. only chemical shift data) successfully
identifies both peptides binding through antiparallel strands,
with TP forming intermolecular antiparallel beta-sheet inter-
actions with ET along its C-terminal region, and NSD3 form-
ing intermolecular beta-sheet interactions through its N-termi-
nal region, resulting in flipped orientations for the peptide
hairpin with respect each other (see Fig. 3). These binding
modes are in excellent agreement with the experimental NMR
structures of the two complexes (IRMSD = 2.28 A and 1.97
A, respectively). For the stronger-binding peptide (TP), CSP
on ET data alone was sufficient to provide an accurate binding
mode (see Fig. 3), and no data for the bound peptide was
needed. Using the CSP on ET data from TP for predicting the
NSD3 binding mode did not change the predictions (see SI),
demonstrating that even with a significantly-different binding
mode, a single study of CSPs on the receptor can be used to
successfully guide binding of other binding peptides. For both
complexes, adding the three strongest intermolecular NOEs
does not increase the accuracy of the prediction.

Interestingly, using no experimental data, for these two com-
plexes AlphaFold performs similarly to chemical-shift guided
MELD (IRMSD = 1.35 A and 1.55 A, respectively). For the
ET-NSD3 complex, AlphaFold also predicts an additional al-
pha helix in the tail of NSD3, which is unstructured in the ex-
perimental NMR structure (see Fig. 3 and Fig. S2). These re-
sults demonstrate the potential to use AlphaFold either to
screen for potential binding poses prior to beginning
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experimental studies, such as NMR-guided MELD modeling,

or for providing a validation of the results of MELD+NMR

studies.
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Figure 3. Predicted binding modes. The top panel shows the top MELD prediction using different experimental datasets (first three
columns) for the blind study along with AlphaFold (4" column) predictions: (A.) BRD3-TP , and (B.) BRD3-NSD3. Panel C shows the
predictions for the known helical binder, BRD3- JMJD6. The numbers below each structure represent IRMSD/ILRMSD/f, in the first row

and the population of the top clusters in the second row.

Funneling plots capture the ability of MELD ensembles to
sample and direct towards the native complex. Each funneling
plot shows all the cluster centers in the ensemble as a function
of the RMSD to the complex structure (see Fig. 4). MELD
simulates multiple binding/unbinding events driven by the
data. Unbound states are represented as low population clus-
ters sampled at high replica index (red). At lower replica in-
dexes, the simulation samples bound (green clusters) and mis-
bound (blue clusters) states. We seek approaches that have
funneling towards the green regions — as seen for the TP pep-
tide. Although the final top representative structure is identi-
fied based on clustering on the lower replicas, these funneling
plots clustering on all replicas are useful to identify confi-
dence in the results of MELD +NMR. When the experimental
structure is unknown (e.g. during these blind studies) we use
the top scoring cluster as a reference for RMSD calculations.

We used these types of plots to determine the CSP thresholds
and determine the accuracy parameter as a self-consistency
test before submitting predictions. For the TP peptide differ-
ent protocols agreed on the same bound conformation, in-
creasing the confidence in our predictions (see Fig. S3). For
the NSD3 peptide, using CSP data alone, different protocols
were not in agreement (see the higher number of misfolded
states in Fig. 4), with resulting conformations differing by
more than 5 A backbone RMSD between them. Adding back-
bone dihedral restraints for the bound peptide determined
from chemical shift data using TALOS narrowed the number
of clusters, and helped identify a core region that was bound,
with a flexible terminal region. This flexible region was re-
sponsible for a higher diversity of binding modes and lower
populations of the top cluster — clustering on the core region
rapidly identified a top cluster with highest confidence (49%
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population of the top cluster). A posteriori analysis looking
back at the CSP only dataset shows that the correct binding
mode was identified as the 5™ cluster — what in the docking
field is considered a scoring failure. Adding dihedral re-
straints for the bound peptide reduces the number of clusters

by 50% with respect to the initial protocol (see Fig. S3). Sim-
ilarly, a posteriori analysis for TP reveals that excluding the
disordered terminal region residues from the clustering calcu-
lation improved the confidence score for the correct prediction
(populations above 55%, see Fig. S3).
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Figure 4. Binding funnels plot. Each point represents the centroid of a cluster center arising from the clustering of MELD ensembles.
The size of the cluster is proportional to the population. Each cluster centroid is represented at the average replica index of the cluster to
which they belong and the LRMSD of the centroid structure with respect to the experimental one. Clusters sampled at high replica index are
shown in red, clusters sampled at lower replicas are shown in green (LRMSD < 5A) or blue. Blue represent mis-bound conformations.

Successful simulations have high populations of green clusters.

Studies on known peptide-ET complexes. Four additional pep-
tide-ET complexes have been previously experimentally char-
acterized (JMJD6, LANA, CHD4 and BRG1). These four
peptides are all weaker binders than TP (K4~ 160 uM'®, ~ 635
uM'7, ~95 uM?*, and ~ 7 uM?** respectively). Of these, IMID6
binds as an alpha-helix, with the rest binding as single anti-
parallel B-strands. MELD-NMR calculations were carried out
for the published complexes to further explore the interplay
between binding affinity, information content of the data, and
MELD’s ability to predict structures of even weaker-binding
complexes such as JIMID6, LANA, and CHD4. IMJD6 is the
only solved structure binding as a helix'®, illustrating the
broad binding mode plasticity of the ET domain. However,
JMID6 is also a special case, as access to the ET-binding
epitope (amino-acid residues 84 to 96)'® requires a conforma-
tional change in the JMJDG6 protein structure in order to ex-
pose these residues for binding into the ET cleft.

Lower affinity complexes have lower occupancy of the
bound-state conformation, resulting in weaker CSP effects on
the ET receptor (see Fig. S1). This challenge was addressed,
assuming competitive binding of these peptides with TP, by
using the CSP data for the ET-TP complex in MELD+NMR
modeling of these other complexes. Similarly, fast or interme-
diate exchange on the NMR chemical shift timescale also re-
sults in ensemble-averaging of the bound-state peptide chem-
ical shift data, precluding straight-forward determination of
the bound-state peptide backbone dihedral angles from these
chemical shift data for weakly-binding complexes using
TALOS (see Tables S7-8). In principle, in the intermediate
or fast exchange regime of these weaker complexes, bound-
state peptide backbone chemical shifts can be determined us-
ing more sophisticated NMR experiments such as relaxation
dispersion (e.g. Carr-Purcell-Meiboom-Gill*, CPMG), chem-
ical exchange by saturation transfer (CEST)* and/or peptide
titration experiments. To mimic such NMR data for testing
MELD-NMR’s applicability even for weakly binding
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systems, we obtained phi/psi restraint ranges directly from the
experimental structures using MDTraj*'. For consistency with
the blind study, we simulated three strong NOEs based on the
experimental structures (see Table S9) for generating intermo-
lecular distance restraints for the CSP+TALOS+NOE dataset.

Of the four peptides, MELD recovers the experimental bind-
ing modes for tighter-binding CHD4 and BRG1 complexes
using only CSP on ET data (see SI and Fig. S4). LANA is the
weakest binding peptide in the set, and using CSP on ET data
alone produces incorrect binding modes and peptide confor-
mations. Adding peptide backbone dihedral angle restraints
for the LANA-ET complex is enough to allow MELD+NMR
to model a binding mode close to the experimental structure.

Hence, for these three complexes, MELD-NMR provided ac-
curate models using only chemical shift data. The accuracy
of the LANA-ET binding pose is further improved by the ad-
dition of a few simulated NOE restraints (backbone-backbone
contacts, see SI and Fig. S4).

The ET-JMID6 complex, however, was more challenging.
IJMID6 was found to bind as a helix using each of the three
different datasets, with a bound-state structure similar to that
observed in the experimental structure of this complex'®.
However, the helix is displaced from the experimental binding
mode when using CSP and CSP+TALOS data. Interestingly,
for this system AlphaFold also predicts a helical structure for
the bound peptide. However, this binding pose is also signifi-
cantly different from the reported experimental structure (Fig.
S2). The top five AlphaFold predictions are diverse in terms
of binding mode and more closely agree with the MELD pre-
dictions than with the experimental JMJD6-ET complex
structure. As expected, adding three strong-NOE-based dis-
tance restraints simulated from the experimental structure to
MELD+NMR simulations recovers the experimentally-ob-
served binding pose (see Fig. 4).

Competitive binding simulations identify TP as a stronger
binder than NSD3, consistent with experimental ITC meas-
urements. Although AlphaFold was able to predict structures
of TP - ET and NSD3 - ET complexes quite well without any
experimental data, this modeling approach does not provide
any information about their binding affinities. However,
MELD calculations include a complete statistical-mechanical
energy function, and have the potential to also assess alterna-
tive predicted binding modes and their relative binding affin-
ities, or the relative affinities of two binding peptides. For
comparing the binding affinities of the TP and NSD3 peptides
for the ET domain, we chose a common set of information to
guide each peptide to the binding site (see Methods and Fig.
5A), and performed competitive binding simulations. Figure
5B summarizes the population of each peptide in the binding
site according to replica. While at high replica index both pep-
tides are unbound, early in the binding process there is a
marked preference for TP binding over NSD3. The latter pep-
tide can sample the binding site multiple times, especially in
intermediate replicas but it is rarely sampled at the lowest rep-
lica. Based on these results we predict a AAGping of -2.4
kcal/mol. The ITC experiments at pH 7.5 confirmed that the
TP peptide is a better binder, with experimental relative bind-
ing free energy of about 2.6 kcal/mol.
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Figure 5. Competitive binding simulations. (A) Three equiv-
alent handpicked contacts used to guide sampling for competitive
binding. Red and Blue spheres represent Oxygen and Nitrogen
respectively. (B) Population of native bound conformation for
each peptide at each of the 30 replicas. (C) Superposition of
bound peptides in the lowest temperature ensemble: each dot rep-
resents a C, of the bound peptide.

DISCUSSION

The protein-protein docking field has significantly advanced
thanks to community efforts such as CAPRI (Critical Assess-
ment of Prediction of Interaction)*>*. However, it is an un-
solved challenge to reliably predict, without any experimental
data, binding poses when a large degree of conformational
flexibility is involved. It is particularly challenging to model
bound peptide conformations in systems like these ET — pep-
tide complexes involving disorder to order transitions upon
complex formation. Such docking studies are particularly
challenging for binding receptors like ET that exhibit binding
plasticity, where peptides can bind along different modes and
conformations. Moreover, while docking can be more suc-
cessful when the bound-state peptide conformation is known,
such docking studies do not provide insights about the
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entropic cost for peptide folding, and as such challenges the
understanding of how likely it is that a particular peptide se-
quence would fold into the required conformation for binding.

Our strategy is to develop a reliable physics-based approach
for predicting structures and relative energetics of protein re-
ceptor — peptide complexes that are guided by low infor-
mation content NMR data, such as chemical shift data. Chem-
ical shift data is particularly attractive for this application be-
cause it is (i) prerequisite for further NMR studies to provide
higher information content data, and (ii) obtained by either so-
lution state or solid state NMR studies. Backbone chemical
shifts can be determined by solution state NMR for systems
as large at 60 — 80 kDa*, and potentially for even large com-
plexes using solid-state NMR. For weakly binding systems
these data may need to be supplemented with the strongest
backbone / backbone, backbone / methyl, backbone / aro-
matic, or methyl / methyl NOEs, that can generally be ob-
tained even for modestly large protein-peptide complexes.
Methods like HADDOCK already use this general ap-
proach®#, addressing the challenge in interpreting the ambi-
guity in the CSP data, and are successful in predicting docking
between folded proteins guided by such data. The key ad-
vantage of HADDOCK is speed since it is based on docking
and heuristic scoring functions. However, the folding-upon-
binding nature of protein-peptide complexes makes them par-
ticularly challenging systems for docking predictions with all
available methods, including HADOCK, and especially diffi-
cult when the receptor can accommodate peptides in different
binding modes and different peptide conformations (e.g. heli-
ces and strands as observed for ET-peptide complexes). The
MELD+NMR approach uses simulations and statistical me-
chanics to identify low free energy states and is thus suitable
to account for the entropic component of folding upon bind-
ing. The main advantage of such an approach is the produc-
tion of models that agree with both a physical model and ex-
perimental data, providing valuable biophysical parameters
such as relative free energies of binding.

In this study, we also observe that AlphaFold can successfully
predict structures of these ET - peptide complexes. Similar
applications of AlphaFold for peptide docking have also been
recently reported by other groups®. However, the deep-learn-
ing based AlphaFold models do not provide information about
relative binding affinities, which is a natural product of
MELD binding simulations. In the case of the ET — JMJD6
complex, AlphaFold returns multiple models with different
binding poses. In this sense, NMR-guided MELD+NMR and
data-independent AlphaFold calculations provide both vali-
dating and complementary information for accurately model-
ing receptor-peptide complexes.

Here we demonstrate a successful approach for accurate mod-
eling of protein-peptide complexes combining NMR back-
bone chemical shift data and MELD simulations. The goals of
the blind study are multiple: (i) determine if the method is suc-
cessful, (ii) assess its sensitivity to sequence and confor-
mation, (iii) determine the amount of data needed for confi-
dent determination of the structures, and (iv) assess if
MELD+NMR simulations can provide reliable relative free

energies of binding. We observe that for the tight (K4 < 1
puM) and moderately tight (~ 10 - 100 pM) ET — peptide com-
plexes, MELD+NMR can reliably predict bound-state confor-
mations of the peptide and relative binding free energies using
only backbone chemical shift data (for both the protein recep-
tor and for the bound peptide). Significantly, the method is
successful in blind binding studies involving very different
binding modes; e.g., the TP peptide and NSD3 peptide both
bind ET as beta hairpins but bind in “flipped” orientations (see
Fig. 1). In the best cases of the TP - ET, CHD4 - ET, and
BRG1 -ET complexes, only CSP data on the receptor (i.e.
ET) side of the complex was sufficient for an accurate NMR-
guided MELD docking; however for the NSD3 - ET and
LANA - ET complexes accurate modeling also required back-
bone chemical shifts for the bound peptide, which are used to
define backbone dihedral restraints with TALOS. The
MELD+NMR docking simulations also provide accurate rel-
ative free energies of binding for TP versus NSD3, in excel-
lent agreement with experimental measurements.

In binding to peptides, the ET domain exhibits CSPs through-
out the domain structure, reflecting an allosteric conforma-
tional change that is propagated across most of the domain’.
The biological significance of these structural changes result-
ing from partner binding is not yet understood. As expected,
the unstructured N-terminal regions of ET, which remains un-
structured in the complex, does not exhibit CSPs due to pep-
tide binding and/or allosteric changes’. The CSP data in Fig-
ure S1 shows insignificant chemical shift changes in this N-
terminal unstructured region of ET, not involved in binding,
where Adn.m chemical shift changes between apo and pep-
tide-bound forms are all < 0.02 ppm. For peptide docking, we
set the threshold CSP as > 0.25 ppm - a threshold value that is
enough to capture the highest perturbations, while bearing in
mind that smaller Adn ) CSPs (0.02 to 0.25 ppm) are also
significant. As seen in Fig. 2 and Fig S1, with this CSP thresh-
old we identify ~ 20 residues as potentially involved in pep-
tide binding —but, MELD is able to correctly identify that only
a subset of these contacts are present in the peptide binding
epitope of ET, with the rest of these CSPs corresponding to
conformational changes of ET that accompany peptide bind-
ing. It is more difficult to obtain epitope-specific CSPs for
weak binders, such as IMJD6 (see bottom panel in Fig. S1),
where the low population of the bound state yields smaller
changes in chemical shifts than observed for NSD3 or TP, pre-
cluding the use of the CSP data due to JMJD6 binding. As-
suming competitive binding of two peptides for a common (or
similar) binding site, transferring CSP data from strong bind-
ers for modeling complexes of weaker binders is thus a prom-
ising strategy for modeling their binding modes.

Using the published experimental chemical shift data for the
weakly-binding JMJD6-BRD3 ET complex (Kg ~ 160 uM'®)
in MELD-NMR docking simulations results in a binding pose
similar to the experimental structure, where the binding mode
is shifted by ~6 A RMSD relative to the native pose. Similar
results were obtained using the BRD4 ET domain in the
MELD-NMR docking calculations, and for models of this
complex returned by AlphaFold (Fig. S5). We also carried
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out explicit solvent molecular dynamics simulations starting
from the experimental NMR structure (without restraints).
These simulations also exhibited shifting of the peptide out of
the hydrophobic cleft of ET after 100 ns of simulation (Fig.
S5). While the experimental structure shows a tryptophan res-
idue of the JMJD6 buried in the hydrophobic cleft of the
highly homologous BRD4 ET domain, this is not observed in
the MELD-NMR, AlphaFold, or explicit solvent simulations
starting from the experimental structure. These results suggest
that the displaced pose observed in both MELD-NMR and Al-
phaFold might represent a true conformational state that is not
modeled by the experimental NMR structure analysis. This
discrepancy could arise from well-known challenges in inter-
pretation of ensemble-averaged NMR data. Simulations pro-
vide the structure with the most weight in the Boltzmann en-
semble. NOESY experiments yield peaks in the spectra when
two atoms are close in space. The intensity of the peaks is an
ensemble average over the experimental observable, which
rapidly decays with increasing distance between the two at-
oms as <1/r*>*"*_Tn practical terms, short distances between
two atoms have a stronger weight in conventional NMR struc-
ture determination protocols than those at a longer distance. A
structure exhibiting a long distance between two atoms 70%
of the time and a close distance 30% of the time, may be in-
terpreted by conventional modeling methods as a short dis-
tance in one single (or dominant) conformation present in the
sample. We believe, this could be of special importance in the
case of weak peptide binders, such as JMID6. If multiple
binding modes are present, some of the NOEs observed may
arise from a minor population with short interproton dis-
tances. Satisfying these NOE-based distance restraints could
then overweight the representation of these structures in the
final ensemble of prediction models. This is a general chal-
lenge for docking studies using NOE data. It provides a good
illustration of why NMR-guided MELD+NMR protocols us-
ing exclusively chemical shift data may be even better suited
for modeling the dominant poses of moderately-tight peptide
— protein complexes than conventional methods using such
ensemble-averaged NOE data.

In developing MELD+NMR we carefully considered the ac-
cessibly of experimental NMR data needed for successful
modeling of complexes. The method assumes backbone *N-
'H CSPs for the receptor protein, which can generally be ob-
tained for systems of up to 60 — 80 kDa. For studies of a series
of peptides binding to a common receptor, it may often be suf-
ficient to use the CSP data from one complex in modeling a
second complex with a peptide known to complete for binding
with the peptide of the first complex, as shown here for the
TP-ET and NSD3-ET complexes. In some cases, it is also
helpful to have backbone chemical shift data for the bound
peptide for generating backbone dihedral angle restraints, re-
quiring the production of isotope-enriched peptides. This is
facilitated by several recently described peptide-protein fu-
sion systems for high-level production of isotope-enriched
peptides’. Although not the focus of the present study, other
types of NMR such as residue dipolar couplings (RDCs)
could be valuable to orient the peptide with respect the protein
secondary structure elements®, albeit with the same caveats
for the effects of dynamic averaging in weaker binding com-
plexes discussed above for chemical shift and NOE data. The

nature of such data requires new restraint types and replica
exchange optimizations in MELD, which are planned devel-
opments for future work.

The eruption of Machine Learning into the field of structural
biology has many exciting prospects. We took advantage of
the AlphaFold pipeline as an orthogonal computational ap-
proach. Although AlphaFold was not originally designed for
the purpose of peptide binding, a recent report shows that a
tethered protein-peptide method using AlphaFold, similar to
the approach used in this work, is about ~40% accurate in pep-
tide-protein docking benchmarks®. The AlphaFold predic-
tions for three of the six systems analyzed in detail here were
remarkably good matches to the MELD+NMR models. In
particular, both provide accurate models of the TP-ET com-
plex, and for the NSD3-ET complex both methods yielded a
model where the structured domain was a hairpin, and the un-
structured termini formed a helix (with the same orientation).
Such agreement highlights a tendency from both the physics
model and the deep-learning algorithm towards helical states
for this generally-dynamic region of the sequence (see Fig. 4).
For the JIMIDG6 peptide, both methods modeled a helix as the
bound-state peptide conformation, consistent with the experi-
mental structure, and both predicted a binding mode displaced
with respect the experimentally - reported binding site (Fig.
S2). For the three other systems studied, AlphaFold can cap-
ture the native states but the relative orientation between the
receptor and peptide residues is shifted by one or two residues
compared to the experimental structures (Fig. S6).
MELD NMR, however, provided models for these com-
plexes in excellent agreement with the experimental struc-
tures. Overall, we take these predictions with optimism that
deep-learning approaches such as AlphaFold can be used to
filter and identify where and how peptides are likely to inter-
act with a protein receptor. However, as they are predictions,
they need to be compared with at least some experimental data
before building studies based on these models. The
MELD+NMR approach used here is more computationally
expensive at run time but produces models that are already
compatible with experimental NMR data. MELD+NMR ac-
counts for peptide conformational entropic preferences
through sampling, and can be exploited for virtual competitive
binding studies to assess binding affinities. Powerful strate-
gies will combine both methods in assessing peptide ligand
candidates, with structural filtering with AlphaFold to select
peptides worth exploring with experimental NMR studies fol-
lowed by MELD+NMR to produce experimentally-refined
models and to rank order binding preferences.

CONCLUSION

The novel MELD+NMR protocol produces valuable insights
and predictions for the problem of polypeptide folding upon
binding, a challenging area of computational modeling. We
have shown reliable predictions for tight and moderately tight
(Kq <10 - 100 uM) peptide - protein complexes using only
backbone chemical shift data, for both the receptor and the
bound peptide, together with simulations. However, a few
limitations are apparent. For weaker binders the current pro-
tocols struggle to find the correct conformation without at
least some NOE-based distance restraints. This is attributable,
at least in part, to conformational averaging in weaker com-
plexes, which confounds the interpretation of NMR data.
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Future work will aim to improve performance in cases of
weak binders where several conformations might be contrib-
uting to the binding affinity. This tandem experimental/com-
putational approach can also be useful for rational peptide de-
sign, where a large number of peptide designs directed to
common receptor can be screened for potential complex for-
mation with AlphaFold and then tested using MELD-NMR.
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BRD3 and BRD4: Specific BET proteins.

CSP: Chemical Shift Perturbation

ET: Extraterminal domain (residues 554 to 640) of human BRD3

MELD: Modeling Employing Limited Data

NSD3: Peptide fragment (residues 148 — 184) of the human Nu-
clear Receptor Binding SET Domain Protein 3

TP: Peptide corresponding to 22 C-terminal residues of murine
ET
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SYNOPSIS TOC The Extraterminal domain of BET proteins accommodates binding of different peptide sequences along
different binding modes. We combine computational methods designed to handle ambiguous and sparse contact data together

with NMR chemical shift data to determine structures of these complexes in excellent agreement with experimental structures
determined using extensive NMR data sets.
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