

1 Single-cell multi-omic velocity infers dynamic and decoupled 2 gene regulation

3 Chen Li¹, Maria Virgilio^{1,2}, Kathleen L. Collins^{2,3,4}, Joshua D. Welch^{1,5}

4 ¹ Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA

5 ² Dept. of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA

6 ³ Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA

7 ⁴ Dept. of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

8 ⁵ Dept. of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA

9 welchjd@umich.edu

10 **Abstract.** Single-cell multi-omic datasets, in which multiple molecular modalities are profiled within
11 the same cell, provide a unique opportunity to discover the relationships between cellular epigenomic
12 and transcriptomic changes. To realize this potential, we developed MultiVelo, a mechanistic model of
13 gene expression that extends the RNA velocity framework to incorporate epigenomic data. MultiVelo
14 uses a probabilistic latent variable model to estimate the switch time and rate parameters of chromatin
15 accessibility and gene expression from single-cell data, providing a quantitative summary of the temporal
16 relationship between epigenomic and transcriptomic changes. Incorporating chromatin accessibility data
17 significantly improves the accuracy of cell fate prediction compared to velocity estimates from RNA
18 only. Fitting MultiVelo on single-cell multi-omic datasets from brain, skin, and blood cells reveals two
19 distinct classes of genes distinguished by whether chromatin closes before or after transcription ceases.
20 Our model also identifies four types of cell states—two states in which epigenome and transcriptome are
21 coupled and two distinct decoupled states. The parameters inferred by MultiVelo quantify the length of
22 time for which genes occupy each of the four states, ranking genes by the degree of coupling between
23 transcriptome and epigenome. Finally, we identify time lags between transcription factor expression
24 and binding site accessibility and between disease-associated SNP accessibility and expression of the
25 linked genes. We provide an open-source Python implementation of MultiVelo on PyPI and GitHub
26 (<https://github.com/welch-lab/MultiVelo>).

27 **Keywords:** Single-Cell · Multi-Omic · RNA Velocity · Chromatin · Gene Regulation

28 1 Introduction

29 The regulation of gene expression from DNA to RNA to protein is a key process governing cell fates.
30 Coordinated, stepwise gene expression changes—in which genes are turned on and off in a certain order—
31 underlie the developmental processes by which cells specialize. Increasingly, high-throughput single-cell
32 sequencing techniques are being applied to reveal these stepwise gene expression changes. However, because
33 experimental measurement destroys the cell, only temporal snapshot measurements are available, and it is
34 not possible to observe the same individual cell changing over time.

35 Computational approaches can leverage single-cell snapshots to infer sequential gene expression
36 changes during developmental processes. For example, cell trajectory inference algorithms^{1,2,3,4,5} use pairwise
37 cell similarities to map cells onto a “pseudotime” axis corresponding to predicted developmental progress.
38 However, trajectory inference based on similarity cannot predict the directions or relative rates of cellular
39 transitions. Methods for inferring RNA velocity^{6,7} address these limitations by fitting a system of differential
40 equations that describes the directions and rates of transcriptional changes using spliced and unspliced
41 transcript counts. The original RNA velocity approach⁶ relied on a steady-state assumption to fit model
42 parameters, but later work developed a dynamical model⁷ that explicitly fits the induction and repression
43 phases of gene expression, in addition to the steady states. Crucially, this dynamical model of RNA velocity
44 also infers a latent time value for each cell, providing a mechanistic means of reconstructing the order of gene
45 expression changes during cell differentiation. A recent paper further extended the RNA velocity framework to

46 include gene expression and protein measurements from the same cells, but used the steady-state assumption
47 to estimate parameters, and thus did not estimate latent time values for each cell⁸. Single-cell epigenome
48 values have also been used individually to infer future directions of cell differentiation, but these approaches
49 did not incorporate gene expression^{9,10}.

50 Single-cell multi-omic measurements provide an opportunity to incorporate epigenomic data into
51 mechanistic models of transcription. For example, new technologies such as SNARE-seq¹¹, SHARE-seq⁹, and
52 10X Genomics Multiome can quantify both RNA and chromatin accessibility in the same cell. The epigenome
53 and transcriptome both change during cellular differentiation, and thus the temporal snapshots in single-cell
54 multi-omic datasets potentially reveal the interplay among these molecular layers. For example, if epigenomic
55 lineage priming occurs at a particular genomic locus, single-cell multi-omic data could reveal a significant
56 time lag between chromatin remodeling of a gene and its transcription. Similarly, observing the dynamic
57 changes in both the expression of a transcription factor and the chromatin accessibility of putative binding
58 sites could reveal their temporal relationship.

59 Existing RNA velocity models assume that the transcription rate of a gene is uniform throughout
60 the induction phase of gene expression. However, epigenomic changes play a key role in regulating gene
61 expression, such as tightening or loosening the chromatin compaction of promoter and enhancer regions. For
62 example, a transition from euchromatin to heterochromatin significantly reduces the rate of transcription
63 at that locus, because transcriptional machinery cannot access the DNA. Therefore, a more realistic model
64 would reflect the influence of enhancer and promoter chromatin accessibility on transcription rate.

65 We present MultiVelo, a computational approach for inferring epigenomic regulation of gene ex-
66 pression from single-cell multi-omic datasets. We extend the dynamical RNA velocity model to incorporate
67 multi-omic measurements to more accurately predict the past and future state of each cell, jointly infer the
68 instantaneous rate of induction or repression for each modality, and determine the extent of coupling or time
69 lag between modalities. MultiVelo uses a probabilistic latent variable model to estimate the switch time and
70 rate parameters of gene regulation, providing a quantitative summary of the temporal relationship between
71 epigenomic and transcriptomic changes.

72 We demonstrate that MultiVelo accurately recovers cell lineages and quantifies the length of priming
73 and decoupling intervals in which chromatin accessibility and gene expression are temporarily out of sync.
74 Our differential equation model accurately fits single-cell multi-omic datasets from embryonic mouse brain,
75 embryonic human brain, and a newly generated dataset from human hematopoietic stem and progenitor
76 cells. Furthermore, our model predicts two distinct mechanisms of gene expression regulation by chromatin
77 accessibility, and we identify clear examples of both mechanisms across all of the tissues we investigated. Finally,
78 we use MultiVelo to infer the temporal relationship between transcription factors (TFs) and their binding sites
79 and between GWAS SNPs and their linked genes. In summary, MultiVelo provides fundamental insights into
80 the mechanisms by which epigenomic changes regulate gene expression during cell fate transitions.

81 2 Results

82 2.1 MultiVelo: A Mechanistic Model of Gene Expression Incorporating Chromatin 83 Accessibility

84 MultiVelo describes the process of gene expression as a system of three ordinary differential equations (ODEs)
85 characterized by a set of switch time and rate parameters (Fig. 1A). The time-varying levels of chromatin
86 accessibility (c), unspliced pre-mRNA (u), and spliced mature mRNA (s) are related by ODEs describing
87 the rates of chromatin opening (α_{co}) and closing (α_{cc}), RNA transcription (α), RNA splicing (β), and RNA
88 degradation or nuclear export (γ). We assume that chromatin opening rapidly leads to full accessibility and
89 similarly that chromatin closing rapidly leads to full inaccessibility, a model supported by the datasets we
90 analyzed (Fig. S3A and S3B). The single chromatin accessibility value (c) for a gene is calculated by summing
91 all accessibility peaks linked to the gene; we tested multiple strategies for calculating c and found that they
92 do not significantly change the results (Fig. S2). Each gene has distinct rate parameters describing its unique
93 kinetics. We assume that the transcription rate is proportional to the chromatin accessibility $c(t)$ and thus is

94 time-varying, and we model the distinct phases or states k that a cell traverses as its time t advances. There
95 are two states each for chromatin accessibility (c) and RNA (u, s): chromatin opening, chromatin closing,
96 transcriptional induction, and transcriptional repression. Each state begins at an associated switch time (t_c ,
97 t_i , and t_r ; chromatin opening begins at $t_o = 0$) and converges to an associated steady state value as $t \rightarrow \infty$.
98 The rate parameters and switch times are estimated for each gene using the three-dimensional phase portrait
99 of (c, u, s) triplets observed across a set of single cells. The state k and time t for each cell are determined by
100 projecting the cell to the nearest point on the curve described by the ODEs.

101 The mathematical formulation of the MultiVelo model immediately leads to two important insights
102 about the relationship between chromatin accessibility and transcription during the gene expression process.
103 First, there are multiple mathematically feasible combinations of chromatin accessibility and RNA transcription
104 states. That is, chromatin can be either opening or closing while transcription is being either induced or
105 repressed. This means that multiple orders of events are possible: chromatin closing can occur either before
106 or after transcriptional repression begins (Fig. 1B). We refer to the first ordering (chromatin closing begins
107 before transcriptional repression) as Model 1 and the second ordering as Model 2. Note that there are other
108 mathematically possible orderings where transcription occurs before chromatin opening, but these are not
109 biologically plausible, and we do not find convincing evidence that they occur in the datasets we analyzed
110 (Fig. S3C).

111 The second insight from MultiVelo's mathematical model is that two distinct types of discordance
112 between chromatin accessibility and transcription can occur. At the beginning of the gene expression process,
113 chromatin opens before transcription initiates. This creates a time interval during which $c(t)$ is positive but
114 $u(t)$ and $s(t)$ are both zero (Fig. 1C). We refer to this phenomenon as *priming*. In addition, at the end of the
115 gene expression process, chromatin closing and transcriptional repression can occur at different times. This
116 creates a time interval in which chromatin accessibility and gene expression move in opposite directions (Fig.
117 1D), a phenomenon we refer to as *decoupling*. The lengths of time during which priming and decoupling occur
118 depend on the specific rate parameters for each gene, and thus can vary widely across genes. In between
119 priming and decoupling intervals, when chromatin is open and transcription is active, the system converges
120 to a steady state in which chromatin and RNA levels are coupled; similarly, when transcription is inactive
121 and chromatin is closed, the system is in a stable repression state. These are the two stable states that
122 differentiated cells presumably occupy most of the time.

123 MultiVelo infers and quantifies these phenomena of multiple orders and types of discordance through
124 the ODE parameters estimated from single-cell data. First, the switch times (t_c , t_i , and t_r) indicate when
125 chromatin closing, transcriptional induction, and transcriptional repression begin. Thus, the lengths of priming
126 and decoupling phases are estimated by the model: $\Delta t_{\text{priming}} = t_i - t_o = t_i$ and $\Delta t_{\text{decoupling}} = t_r - t_c$.
127 Furthermore, because each cell is assigned latent time (t) and latent state (k) values, MultiVelo determines
128 whether each cell is in a primed, decoupled, or coupled phase for each gene (Fig. 1E). Thus, we refer to
129 the four possible states as *primed* (red), *coupled on* (orange), *decoupled* (green), and *coupled off* (blue).
130 Second, the parameters fitted by MultiVelo can be used to determine, for each gene, whether its observed
131 (c, u, s) values are best fit by Model 1 or Model 2 (Fig. 1F-G). Intuitively, it is possible to distinguish these
132 models because Model 1 genes achieve their highest accessibility values during the transcriptional induction
133 phase, while Model 2 genes reach maximum accessibility during the transcriptional repression phase (Fig.
134 1F-G).

135 2.2 MultiVelo Accurately Fits Simulated Data

136 We performed simulations to determine whether MultiVelo can recover rate parameters and switch times and
137 distinguish Model 1 from Model 2 in the presence of noise (Fig. S1). The results indicate that MultiVelo
138 accurately fits noisy data and can recover the underlying parameters. In addition, we found that MultiVelo
139 distinguishes between Model 1 and Model 2 with high accuracy (98.5% of the simulated genes were correctly
140 assigned based on model likelihood). We also confirmed that it is possible to distinguish Model 1 vs. Model 2
141 genes before fitting the ODE parameters by simply comparing the number of cells in the top quantiles above
142 and below the steady-state line (95.8% of the simulated genes were correctly assigned).

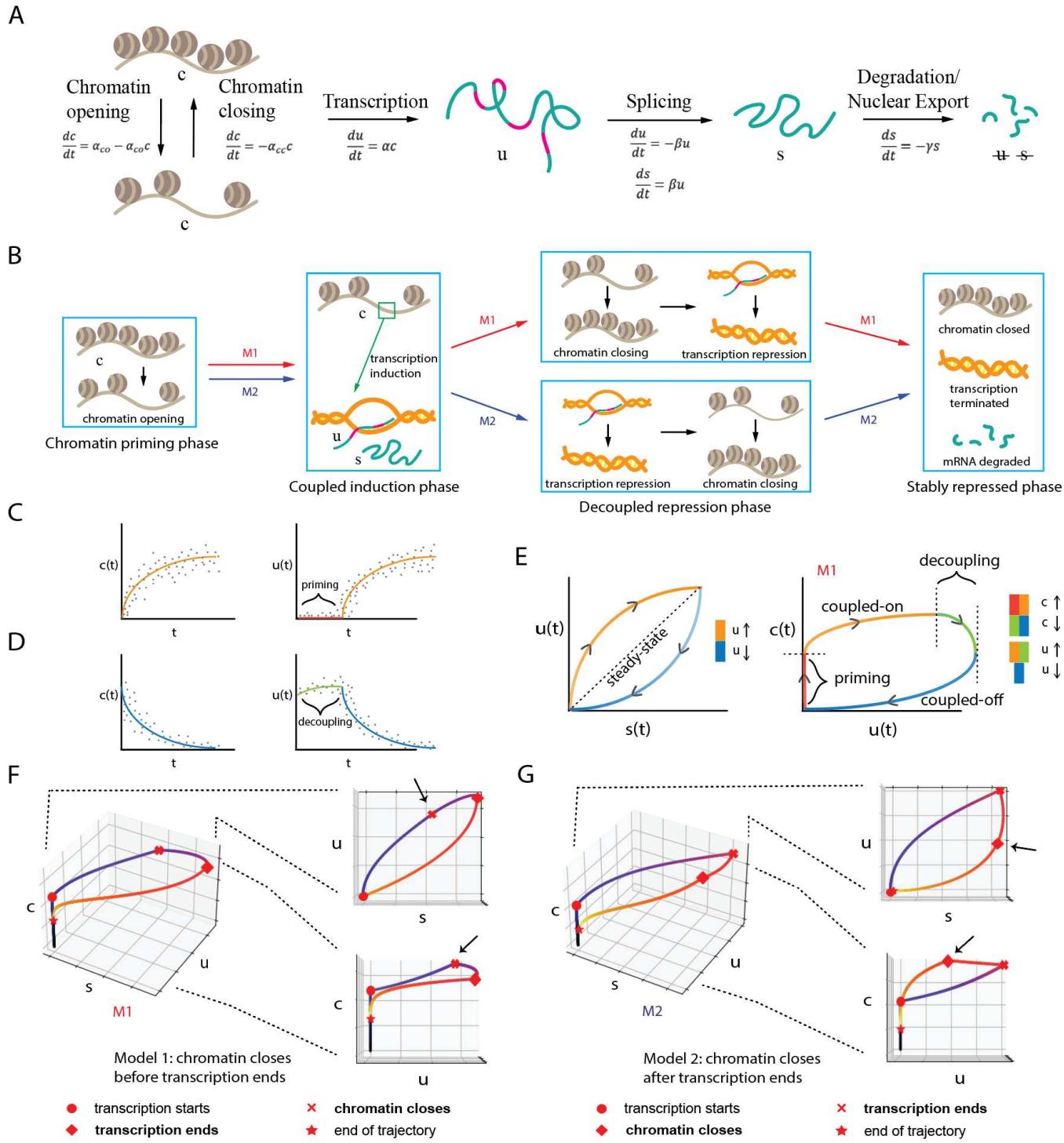


Fig. 1. Schematic of MultiVelo approach. **A.** System of three ordinary differential equations summarizes the temporal relationship among c , u , and s values during the gene expression process. **B.** Two different models (abbreviated as M1 and M2) describe two potential orderings of chromatin and RNA state changes. Chromatin accessibility starts to drop before transcriptional repression begins in M1, and the reverse happens in M2. **C.** Priming occurs when chromatin opens before transcription initiates. **D.** Decoupling occurs when chromatin closing and transcription repression begin at different times (example shown for Model 1). **E.** Phase portraits predicted by the ODE model, showing the four possible states each gene can occupy. Gene expression and chromatin accessibility are coupled in the orange and blue states, and decoupled in the red and green states. **F-G.** Simulated (c , u , s) values for a Model 1 (**F**) and a Model 2 (**G**) gene.

143 2.3 MultiVelo Distinguishes Two Models of Gene Expression Regulation in Embryonic Mouse
144 Brain

145 We first applied MultiVelo to 10X Multiome data from the embryonic mouse brain (E18). MultiVelo accurately
146 fit the observed chromatin accessibility, unspliced pre-mRNA, and spliced mRNA counts across the population
147 of brain cells, identifying 426 genes whose patterns fit the model with high likelihood. The resulting velocity
148 vectors and latent time values inferred by MultiVelo accurately recover the known trajectory of mammalian
149 cortex development. Specifically, radial glia (RG) cells in the outer subventricular zone (OSVZ) give rise to
150 neurons, astrocytes, and oligodendrocytes^{12,13,14}. Cortical layers are formed in an inside-out fashion during
151 neuron migration with new-born cells moving to upper layers and older cells staying in deeper layers¹⁵. RG
152 cells can divide into intermediate progenitor cells (IPCs) that serve as neural stem cells and further generate
153 various mature excitatory neurons in different layers^{16,17}.

154 Incorporating both chromatin accessibility and gene expression improves the accuracy of velocity
155 estimation compared to RNA-only models such as scVelo (Fig. 2A). In particular, the RNA-only model
156 predicts biologically implausible backflows inside upper layer neurons (Fig. 2B). Cell cycle scores^{18,7} indicate
157 that the developmental process begins with a cycling population (Fig. 2C) near RG, confirming the latent
158 time inferred by MultiVelo. MultiVelo and scVelo use similar parameter settings and estimation algorithms,
159 suggesting that the epigenomic data provides important additional information about the past and future
160 states of a cell, beyond what is available from transcriptomic data alone.

161 We expect the addition of chromatin accessibility to be most helpful for distinguishing cell states
162 where chromatin remodeling and gene expression are out of sync, such as when a gene's promoters and
163 enhancers have begun to open but little transcription has occurred. Two clear examples are *Eomes* and *Tle4*,
164 canonical markers of IPCs and deep layer neurons^{19,20,21,22}. RNA transcripts from these genes are highly
165 expressed in only one or two specific cell types. The remaining cells are densely clustered near the origin of the
166 (*u*, *s*) phase portrait, making it difficult for RNA velocity methods to distinguish their relative order (Fig. 2D).
167 However, the chromatin accessibility of these genes begins to rise before the gene expression, revealing gradual
168 changes that are not visible from gene expression alone. To put it another way, incorporating chromatin
169 allows us to infer 3D velocity vectors indicating each cell's predicted differentiation for each gene, better
170 resolving cellular differences than the 2D phase portraits from RNA alone.

171 MultiVelo identifies clear examples of genes that are best described by either Model 1 and Model 2
172 in this dataset. Comparing the phase portraits of the genes assigned to Model 1 and Model 2 shows clear
173 differences in the timing of maximum chromatin accessibility, consistent with the model predictions (Fig. 2E).
174 Model 1 genes such as *Satb2* reach maximum chromatin accessibility during the transcriptional induction
175 phase (above the diagonal steady-state line on the phase portrait⁶), while the accessibility of Model 2 genes
176 like *Gria2* is highest during the transcriptional repression phase (below the diagonal steady-state line). The
177 distinction between Model 1 and Model 2 is also evident when inspecting pairwise phase portraits of *c*, *u* and
178 *c*, *s* (Fig. 2F). However, the models cannot be distinguished by inspecting the RNA information alone in a
179 phase portrait of *u*, *s*; the distinction requires the additional information from chromatin.

180 We further investigated the Model 1 and Model 2 genes to see if they have any characteristic
181 properties. Gene ontology (GO) analysis showed that M2 genes are significantly enriched for terms related to
182 the cell cycle, such as “positive regulation of cell cycle”, “mitotic cell cycle”, and “regulation of cell cycle phase
183 transition”. Furthermore, Model 2 genes tend to achieve their highest spliced expression earlier in latent time
184 than Model 1 genes ($p = 9 \times 10^{-7}$, Wilcoxon rank-sum one-sided test; Fig. 2G). We hypothesize that cells
185 may use Model 2 for rapid, transient activation of genes that do not need to maintain expression, whereas
186 Model 1 may be useful for genes that need to be stably expressed.

187 We next looked at how often each type of gene expression kinetics (induction only, repression only,
188 Model 1, or Model 2) occurred. Most of the highly variable genes show both induction and repression phases
189 (a complete trajectory), and for genes that only have partial trajectories, induction-only phase portraits
190 appear more often than repression-only (29.5% vs 2.4% of variable genes; Fig. 2H). Note that, because Model
191 1 and Model 2 make the same predictions during the induction phase, we cannot distinguish Model 1 vs.

192 Model 2 for induction-only genes. Among the genes with both an induction and repression phase, the majority
193 are best explained by Model 1 (41.4% of variable genes), while the remainder are best fit by Model 2 (26.7%
194 of variable genes). The fact that Model 1 is more common is consistent with the expectation that chromatin
195 state changes generally precede mRNA expression changes.

196 Whether genes have complete or partial kinetics, MultiVelo fits ODE parameters that describe
197 the three dimensional trajectory of their chromatin accessibility and gene expression dynamics (Fig. 2I).
198 By modeling a time-varying transcription rate, MultiVelo is able to better capture the different types
199 of curvatures in the RNA phase portraits (Fig. S4B), whereas the RNA-only model cannot capture such
200 curvature differences²³. Genes with different model assignments and kinetics do not show significant differences
201 in likelihood or total counts, indicating that technical artifacts do not account for the phenomena (Fig.
202 S4C).

203 **2.4 MultiVelo Identifies Epigenomic Priming and Decoupling in Embryonic Mouse
204 Brain**

205 An exciting property of MultiVelo is its ability to quantify the discordance and concordance between
206 chromatin accessibility and gene expression within differentiating cells. Specifically, MultiVelo infers switch
207 time parameters that identify the intervals during which each gene is in one of the four possible states (primed,
208 coupled on, decoupled, and coupled off; see Fig. 1E). We next investigated whether these inferred states
209 and time intervals can accurately capture the interplay between epigenomic and transcriptomic changes in
210 embryonic mouse brain cells.

211 MultiVelo identifies clear examples of each of the four states in the 10X Multiome data (Fig. 3A).
212 For example, *Grin2b* is an induction-only gene with expression increasing toward the neuronal fate, so only
213 induction states—primed and coupled on—were predicted for this gene (Fig. 3A, left). The phase portrait of
214 *Nfix*, a Model 1 gene, possesses a complete trajectory shape and was labeled with all four states (Fig. 3A,
215 middle). Conversely, *Epha5* is a Model 2 gene, and its accessibility continues to rise throughout the whole
216 time range without an observed closing phase, so it only occupies the coupled on and decoupled states (Fig.
217 3A, right).

218 The state assignments can be confirmed qualitatively by plotting accessibility (*c*) and expression
219 (*u* and *s*) on UMAP coordinates and examining them side-by-side (Fig. 3B). Visually, we observe that the
220 colors of the *c* and *u* UMAP plots match when the state assignments are coupled on or coupled off, and
221 the differences in color occur when the assigned states are primed or decoupled. For example, the largest
222 discrepancy between *Robo2* RNA expression and chromatin accessibility occurs in the circled region, which
223 is predicted to be in the decoupled state (Fig. 3B, top). *Robo2* is a Model 1 gene; after chromatin closing
224 begins, expression stays at a relatively high level, even though its accessibility has already experienced a
225 drop toward the maturing neurons. Similarly, the accessibility of *Gria2* differs from RNA in the decoupled
226 state (Fig. 3B, middle). The chromatin accessibility of *Gria2*, a Model 2 gene, continues to increase beyond
227 the transcriptional induction phase. Furthermore, the gene *Grin2b* shows a clear example of the chromatin
228 priming phase, during which chromatin opens prior to RNA production (Fig. 3B, bottom).

229 Plotting *c*, *u*, and *s* along the inferred time *t* for each gene allows us to inspect the state transitions in
230 detail (Fig. 3C). First, the *u(t)* and *s(t)* values for *Robo2* show two inflection points during the transcriptional
231 repression phase, corresponding to the transitions from coupled on to decoupled states and from decoupled
232 to coupled off states (Fig. 3C, top). This pattern suggests that the distinct effects of chromatin closing and
233 transcriptional repression are visible in *u(t)* and *s(t)*. In other words, MultiVelo predicts that for *Robo2*,
234 chromatin closing decreases the overall transcription rate as RNA level begins to drop immediately following
235 the chromatin switch. The subsequent switch of transcription rate from positive to zero causes a second
236 inflection, leading to even more rapid down-regulation of RNA expression. The plots of *c(t)*, *u(t)*, and *s(t)*
237 for *Gria2* show the opposite trend: *c* continues to rise even after the switch to transcriptional repression,
238 causing *c* and *u* to move in opposite directions during the decoupled state (Fig. 3C, middle). In *Grin2b*'s long
239 priming phase, *c(t)* begins to rise while *u(t)* and *s(t)* stay at zero (Fig. 3C, bottom).

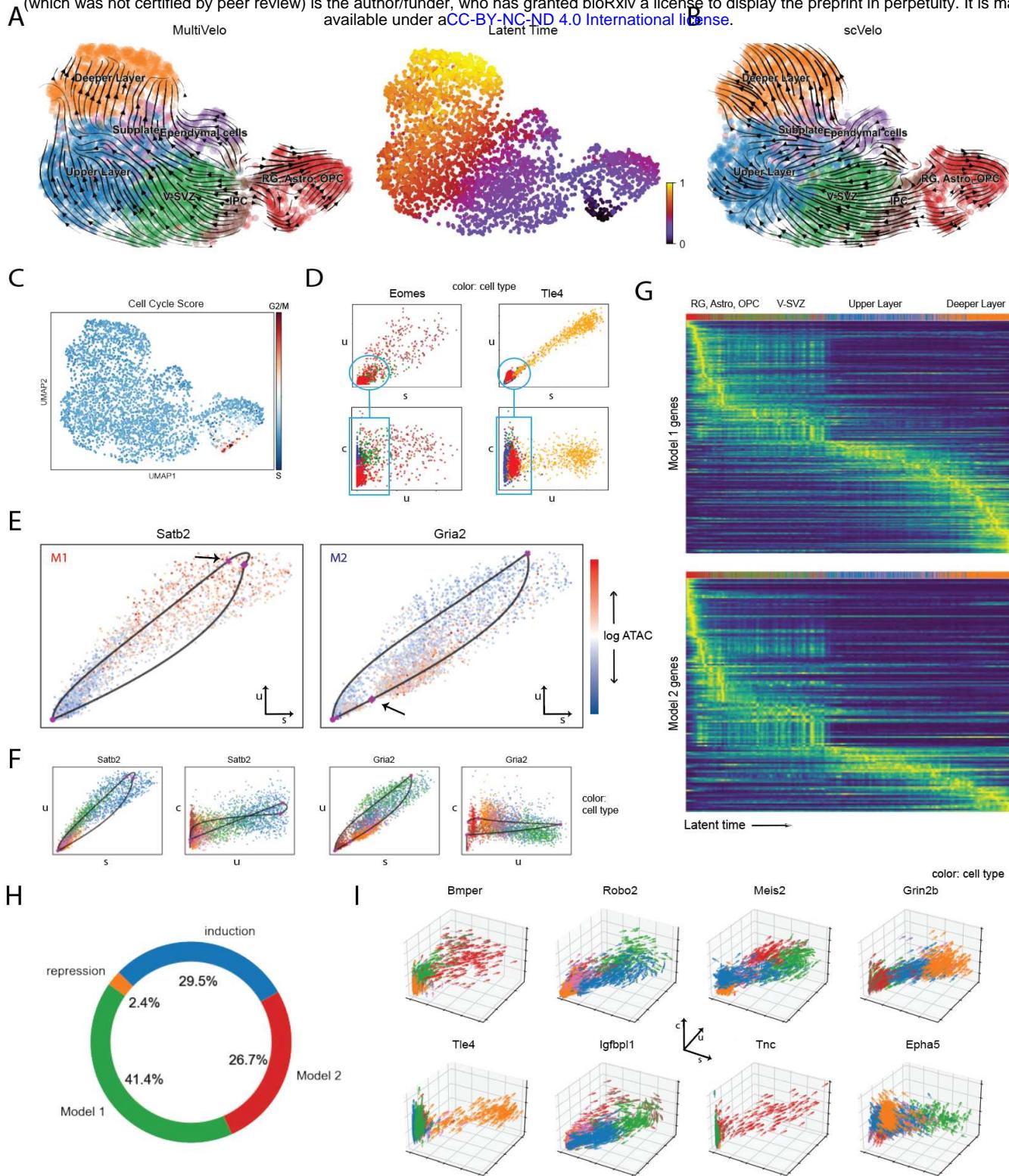


Fig. 2. MultiVelo reveals two distinct mechanisms of gene regulation. **A.** UMAP coordinates with stream plot of velocity vectors (left) and latent time (right) from MultiVelo. **B.** Stream plot of velocity vectors estimated from RNA only by scVelo. **C.** Cell cycle score indicating active dividing and cycling population (arrow). **D.** Chromatin values better separate differentiating cells when chromatin opening precedes transcription. **E.** RNA phase portraits (*u* vs. *s*) colored by *c* values show clear differences between Model 1 (left) and Model 2 (right) genes. **F.** Additional phase portraits for the genes shown in **E**. **G.** Heatmaps of Model 1 and Model 2 gene expressions as a function of latent time. Color represents smoothed spliced counts. Model 2 genes tend to achieve highest expression earlier in latent time than Model 1 genes. **H.** Relative proportion of each type of kinetics across all fitted genes (n=865). Note that genes with partial kinetics (induction-only or repression-only) cannot be identified as Model 1 or Model 2. **I.** MultiVelo predicts 3D velocity vectors, which can be visualized as three-dimensional arrow plots.

Because MultiVelo fits rate and switch time parameters for each gene, our analysis provides an opportunity to observe general trends in gene regulation. First, to determine whether the states of different genes are temporally coordinated, we counted the number of high-likelihood genes in each state per cell. There is indeed a cascade of state transitions through the neuronal clusters; multiple genes per cell are often simultaneously in the priming or decoupling states (Fig. 3D). Second, we looked for trends in the switch time and rate parameters. We placed each gene's induction/repression cycle on a time scale between 0 and 1 and found that the coupled on and coupled off states account for a larger proportion of the gene expression process than the primed and decoupled states (Fig. 3E). This makes sense, because even if genes experience some level of decoupling and time lag between the two modalities, chromatin accessibility and gene expression should still be generally correlated^{24,25,26,27}. The median primed interval length is 21% of the overall time, and the median decoupled interval length is 19% of the overall time. Furthermore, we can rank genes by how long their priming and decoupling intervals are to find examples of discordance between accessibility and expression (Fig. S4D). Additionally, we found that chromatin generally opens and closes at similar rates: the median ratio between inferred chromatin closing rate (α_{cc}) and chromatin opening rate (α_{co}) is almost exactly 1 (Fig. 3F).

2.5 MultiVelo Quantifies Epigenomic Priming in SHARE-seq Data from Mouse Hair Follicle

A recent study⁹ used SHARE-seq to investigate the rapid proliferation of transit-amplifying cells (TAC) in hair follicle tissue, which give rise to several mature effector cells, including inner root sheath (IRS) and layers of hair shaft: cuticle, cortical layer, and medulla²⁸. When applied to this dataset, MultiVelo correctly identified direction of differentiation from TACs to IRS and hair shaft cells (Fig. 4A), consistent with the diffusion map²⁹ analysis reported in the initial paper⁹. Latent time predicted the TACs to be the root cells—agreeing with biological expectation—whereas velocity analysis using RNA alone failed to capture the hair-shaft differentiation direction (Fig. 4B). We observed significantly more induction-only and fewer Model 2 genes in this dataset compared to mouse brain (Fig. 4C).

One of the key results of the original SHARE-seq paper was the identification of genes where promoter and enhancer chromatin accessibility presaged gene expression, a phenomenon the authors termed “chromatin potential”. The clearest example of this phenomenon was *Wnt3*, which encodes a paracrine signaling molecule and is important in controlling hair growth³⁰. Indeed, UMAP plots colored by accessibility, and unspliced and spliced mRNA expression show a clear time delay across modalities (Fig. 4D). We next examined the other genes identified in the SHARE-seq paper. Our fitted models show that MultiVelo faithfully captured the dynamics of each gene and provide clear illustrations of priming and decoupling regions (Fig. 4E). For instance, *Wnt3* and *Dsc1* show induction-only patterns and a priming state at the beginning while *Cux1*, *Dlx3*, and *Cobll1* have both induction and repression states with a short decoupling period in the middle.

To further quantify the temporal relationship between accessibility, unspliced expression, and spliced expression, we used dynamic time warping (DTW)³¹ to align the time series values for each molecular layer. DTW nonlinearly warps two time series to maximize their similarity and identify possible lagged correlation. DTW results on *Wnt3* show that the optimal warping function maps each point on the *c* time series forward in time, consistent with chromatin accessibility preceding gene expression (Fig. 4F, top). Unspliced and spliced expression show a similar pattern but with a shorter time delay (Fig. 4F, middle). Because DTW maps each time point on the earlier curve to a time point on the later curve, the time lag at each point in time can be computed by subtracting the times of the matched points (Fig. 4F, bottom). This analysis shows that both the delay between *c* and *s* and the delay between *u* and *s* remain positive throughout the observed time. In addition, the delay between *c* and *s* is longer than the delay between *u* and *s* throughout the observed range, with the maximum *c* and *s* delay reaching 0.6 (out of a total time range of 1).

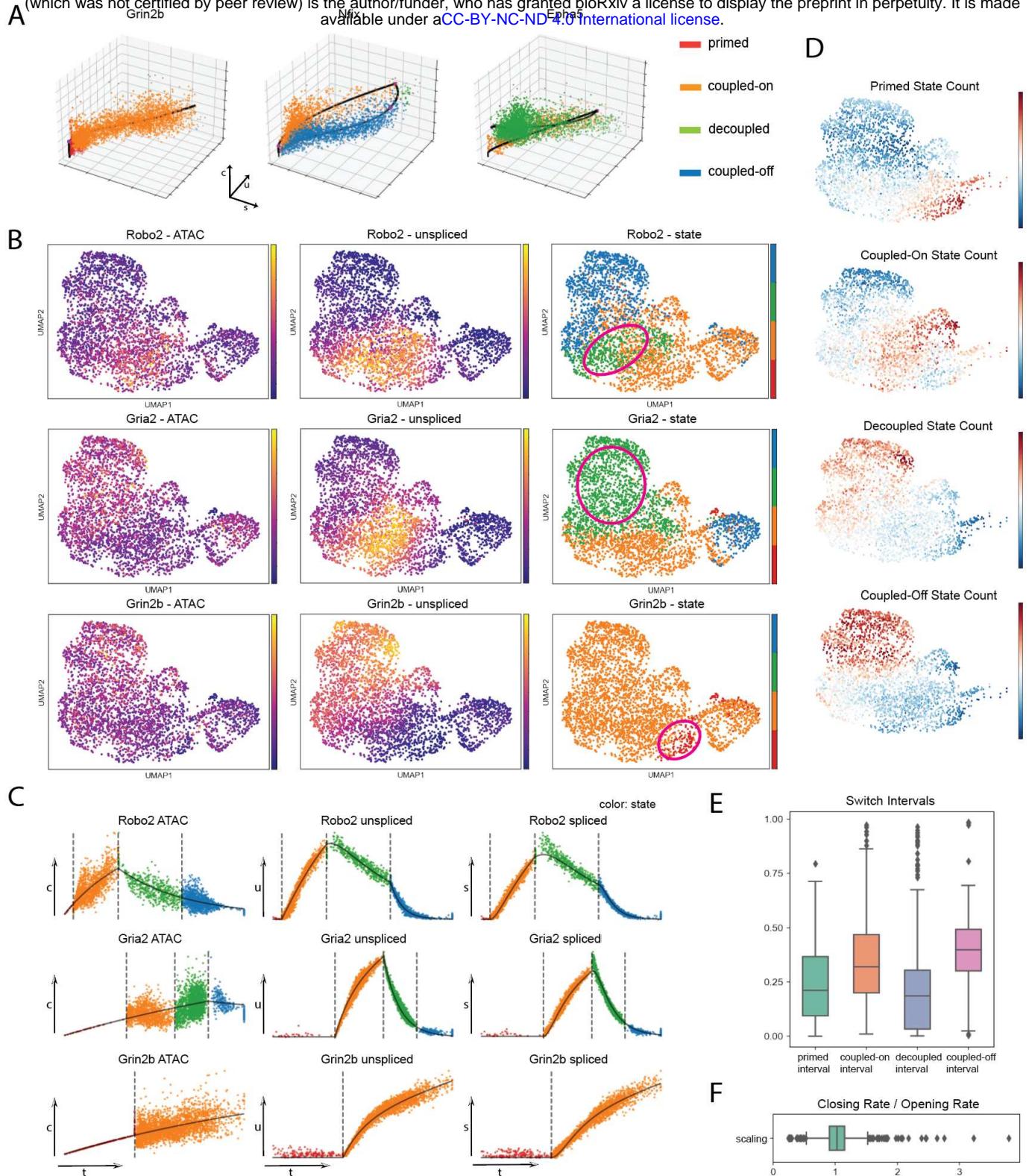


Fig. 3. MultiVelo quantifies epigenomic priming and decoupling in embryonic mouse brain **A.** 3D phase portraits overlaid with MultiVelo fits (solid lines) and inferred states (colors). Each point represents the (c, u, s) values observed for one gene in one cell. **B.** UMAP plots colored by c (Left), u (Middle), and state assignments (Right) for genes predicted by MultiVelo to have significant priming or decoupling intervals. Regions with priming or decoupling are circled. **C.** Observed values for c (Left), u (Middle) and s (Right) plotted as a function of latent time and colored by state assignment. Vertical lines indicate inferred switch times. **D.** UMAP plots colored by the number of genes in each cell assigned to each of the four states. **E.** Box plots summarizing the lengths of each of the four states across all fitted genes. **F.** Box plot summarizing the ratio between chromatin closing rate α_{cc} and opening rate α_{co} across all fitted genes.

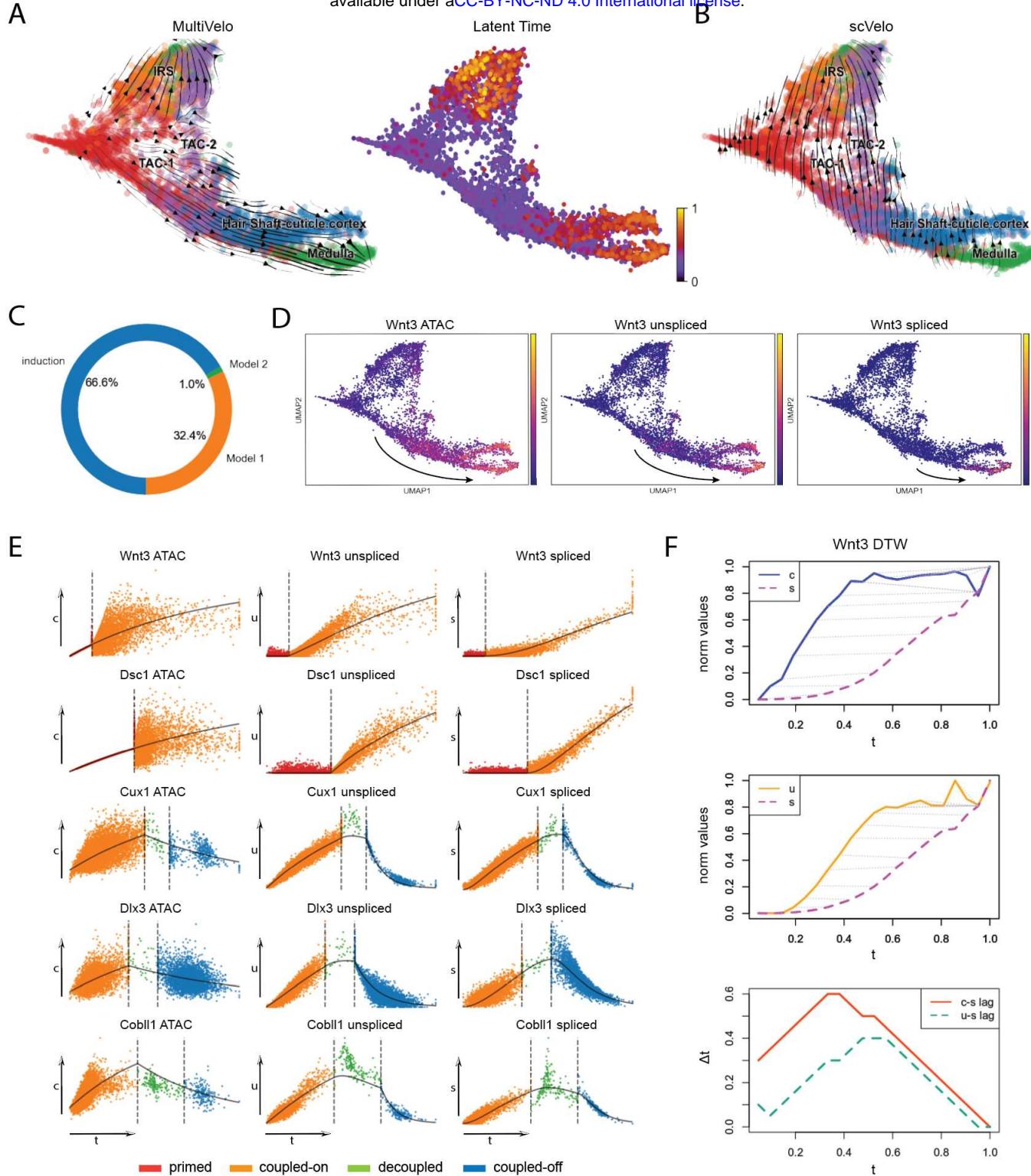


Fig. 4. MultiVelo quantifies epigenomic priming in mouse skin. **A.** UMAP coordinates with stream plot of velocity vectors (**Left**) and latent time (**Right**) from MultiVelo. **B.** Velocity streamplot from RNA-only model (scVelo). **C.** Relative proportion of each type of kinetics across all fitted genes ($n=960$). **D.** UMAP coordinates colored by c (**Left**), u (**Middle**) and s (**Right**) values for *Wnt3*. **E.** Examples of genes showing priming or decoupling. Observed c (**Left**), u (**Middle**) and s (**Right**) values plotted as a function of latent time and colored by state assignment. Vertical lines indicate inferred switch times. **F.** Dynamic time warping alignment of c and s values (**Top**) and u and s values (**Middle**) for *Wnt3*. Dotted gray lines indicate corresponding time points after alignment. **Bottom:** instantaneous time lags computed by subtracting times of aligned time points from the previous two panels.

²⁸⁶ **2.6 MultiVelo Reveals Early Epigenomic and Transcriptomic Changes in Human**
²⁸⁷ **Hematopoietic Stem and Progenitor Cells**

²⁸⁸ Hematopoietic progenitors consist of stem-like cell populations that rapidly and continuously differentiate
²⁸⁹ into various intermediate and mature blood cell types with progressively reduced self-renewal potential as
²⁹⁰ they enter more lineage-restricted states^{32,26}.

²⁹¹ We cultured purified human CD34+ cells for 7 days, then sequenced them using the 10X Multiome
²⁹² platform. We obtained 11,605 high-quality cells post-filtering with both single-nucleus RNA-seq and ATAC-
²⁹³ seq data. Using previously described marker genes^{33,34,35,36}, we identified clusters resembling many of the
²⁹⁴ populations of early blood development (Fig. S5A), including HSCs, multi-potent progenitors (MPP), lymphoid-
²⁹⁵ primed multipotent progenitors (LMPP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-
²⁹⁶ erythrocyte progenitors (MEP). We also identified clusters resembling early granulocytes, erythrocytes,
²⁹⁷ dendritic cells (DC), and platelets.

²⁹⁸ Blood cell differentiation is a challenging system to model with RNA velocity²³, but we find that
²⁹⁹ incorporating chromatin information significantly improves the local consistency and biological accuracy of
³⁰⁰ predicted cell directions (Fig. 5A). In comparison, velocity vectors inferred from RNA alone do not accurately
³⁰¹ reflect the known differentiation hierarchy of HSPCs. As with the mouse brain, MultiVelo predicts Model 1 to
³⁰² be more common than Model 2 in this dataset; induction-only is the third most common gene class (Fig. 5B).
³⁰³ The median lengths of observed primed and decoupled intervals are shorter than those of the coupled phases
³⁰⁴ (Fig. 5C). These patterns are consistent with what we observed in the mouse brain dataset, suggesting a
³⁰⁵ possible common underlying biological mechanism.

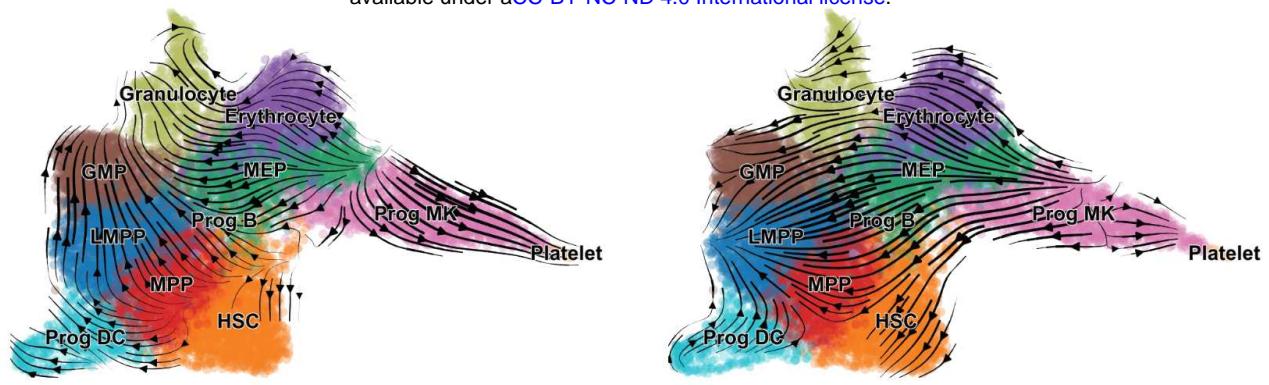
³⁰⁶ As with the mouse brain dataset, Model 2 genes in the HSPC dataset are significantly enriched
³⁰⁷ for GO terms related to the cell cycle. The terms “regulation of mitotic cell cycle”, “regulation of mitotic
³⁰⁸ metaphase/anaphase transition”, and “regulation of mitotic sister chromatid separation” are all enriched
³⁰⁹ in Model 2 genes at FDR < 0.002. If we examine the separate trajectories toward myeloid, erythroid, and
³¹⁰ platelet lineages, many G2/M phase marker genes¹⁸ show clear Model 2 patterns, with highest chromatin
³¹¹ accessibility after expression begins to drop (examples shown in Fig. 5D).

³¹² We further investigated whether Model 1 and Model 2 genes differ in their histone modification
³¹³ profiles. Because classically defined subpopulations of HSPCs can be sorted using FACS, bulk ChIP-seq data
³¹⁴ are available for some of the cell subsets in our analysis. Using these bulk datasets³⁷, we compared the levels
³¹⁵ of H3K4me3, H3K4me1, and H3K27ac in FACS-purified HSCs at chromatin accessibility peaks linked to
³¹⁶ Model 1 vs. Model 2 genes (Fig. S5C). We found that Model 2 genes show significantly higher H3K4me3
³¹⁷ ($p = 0.016$, one-sided Wilcoxon rank-sum test), a mark of active promoters. In contrast, Model 1 genes show
³¹⁸ somewhat higher H3K4me1 ($p = 0.097$), a primed enhancer mark. Both models show similar H3K27ac (an
³¹⁹ active enhancer marker) ($p = 0.48$) in HSCs.

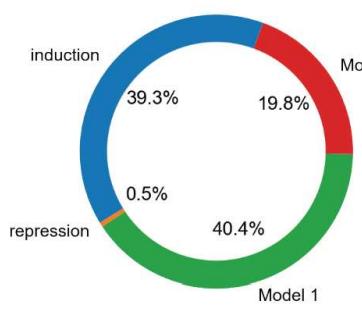
³²⁰ The gene models fit by MultiVelo reveal many examples of priming (Fig. 5E). Several terminal
³²¹ cell-type specific markers show induction-only dynamics with an increase in chromatin accessibility followed
³²² by increasing gene expression (*AZU1* in GMP, *HBD* in erythrocytes, *HDC* in granulocytes, *LYZ* in DC
³²³ progenitors, and *PF4* in the megakaryocyte (MK) progenitors direction)^{38,36}. In HSPCs, we again see some
³²⁴ clear examples of long priming periods, such as in *LYZ* and *PF4*.

³²⁵ Plotting velocities allows us to examine local chromatin and RNA trends in more detail (Fig. 5F).
³²⁶ While the chromatin shows most potential (highest velocity) at the beginning for these genes, for RNA, stem
³²⁷ cell populations such as HSC, MPP, MEP, and GMP show increased potential during their differentiation
³²⁸ process towards one lineage. More differentiated cell types lose the ability to maintain such potential and
³²⁹ gradually approach equilibrium (zero velocity), even though expression is still increasing somewhat. Note that
³³⁰ even though the overall expression elevates, and velocities stay positive, local acceleration can still switch
³³¹ signs. MultiVelo is able to capture such rich information about the direction and rate of differentiation due to
³³² the joint mathematical modeling of chromatin and mRNA. Adding the chromatin significantly enriches the
³³³ information available from RNA, as can be seen by inspecting RNA-only phase portraits (Fig. 5G).

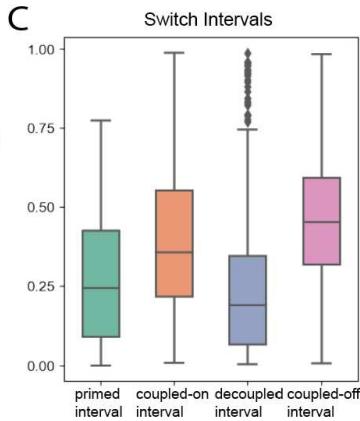
A



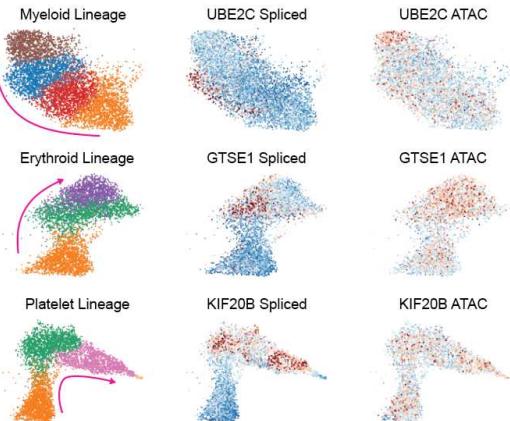
B



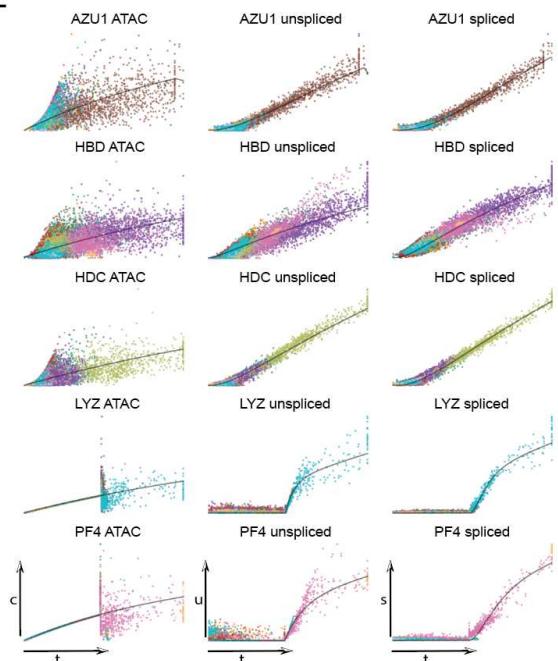
C



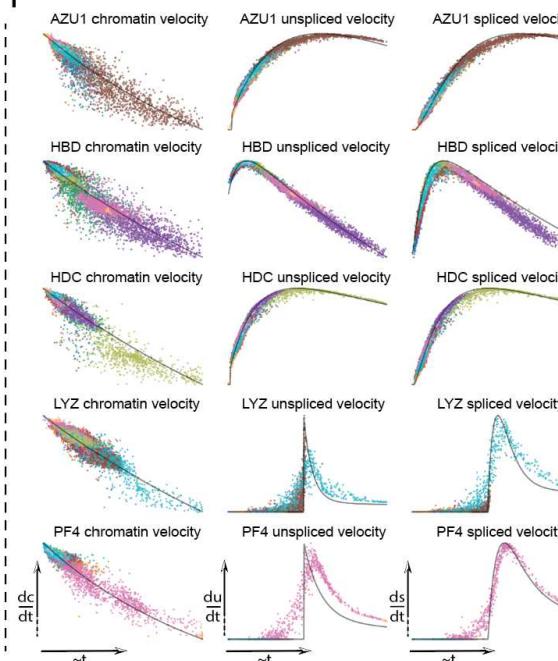
D



E



F



G

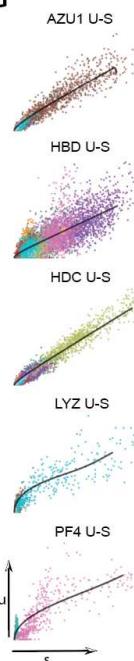


Fig. 5. MultiVelo identifies priming in hematopoietic stem cells. A. UMAP coordinates with stream plot of velocity vectors inferred by MultiVelo (Left) and an RNA-only model (scVelo). Cell types were annotated based on marker gene expression (Fig. S5A). B. Relative proportion of each type of kinetics across all fitted genes (n=936). C. Box plots summarizing the lengths of each of the four states across all fitted genes. D. Several G2/M cell cycle phase markers show Model 2 expression pattern towards different lineages. E. Examples of genes showing priming or decoupling. Observed c , u , and s values plotted as a function of latent time and colored by cell type. F. Corresponding velocity vectors of the same genes as in E. Cell velocities and times have been smoothed by RNA neighbors. Note that all velocity values are non-negative, and the lowest velocities are not necessarily at 0. G: RNA phase portraits of the same genes as in E-F.

334 2.7 MultiVelo Relates Transcription Factors, Polymorphic Sites, and Gene Expression in
335 *Developing Human Brain*

336 We next applied MultiVelo to a recently published 10X Multiome dataset from developing human cortex³⁹. As
337 with the embryonic mouse brain dataset, MultiVelo inferred velocity vectors consistent with known patterns
338 of brain cell development (Fig. 6A). MultiVelo correctly inferred a cycling population of cells near radial glia
339 as the cell type earliest in latent time. In contrast, velocity vectors inferred without chromatin information
340 predicted incongruous backflows in intermediate progenitor cells and upper layer excitatory neurons (Fig.
341 6B).

342 As with the mouse brain dataset, we identified clear examples of both Model 1 and Model 2 genes
343 (Fig. 6C), though fewer genes are predicted to follow Model 2 in the human dataset (Fig. 6D). Interestingly,
344 *MEF2C*, a Model 2 gene, is predicted by the RNA-only model to have a mostly repressive phase, likely
345 because the “width” of the $u - s$ phase portrait is narrow. However, the addition of chromatin information
346 allows the correct prediction that the gene has both induction and repression phases (Fig. S6A).

347 A key benefit of MultiVelo is its ability to place cells onto a latent time scale inferred from both
348 chromatin and expression data. We reasoned that latent time can identify time lags between expression and
349 accessibility of loci other than just those immediately near a gene. For example, latent time can be used to
350 calculate the length of time between the expression of a transcription factor (TF) and the accessibility of its
351 binding sites (Fig. 6E and Fig. S6B-C). To do this, we used chromVar⁴⁰ to calculate, for each cell, the total
352 accessibility of the peaks with binding sites for each TF, subsetting to only the TFs variably expressed in the
353 dataset. We then used dynamic time warping (DTW)³¹ to align the time series expression of each TF with
354 the accessibility of its binding sites. This revealed a consistent pattern, in which the time of the highest RNA
355 expression of the transcription factor preceded the time of corresponding high accessibility of downstream
356 targets. UMAP plots colored by TF expression and binding site accessibility visually confirmed this pattern.
357 The median time lag across all expressed TFs was positive, indicating TF expression precedes binding site
358 accessibility in most cases (Fig. 6F). We cannot conclusively determine the mechanisms underlying these
359 time lags without additional data. However, post-transcriptional and post-translational regulation, factors
360 that affect the activity of chromatin remodeling complexes, and intercellular signaling could all contribute to
361 this phenomenon.

362 Latent time inferred by MultiVelo is also useful for relating the chromatin accessibility of disease-
363 related variant loci to the expression of nearby genes. We collected a list of 6968 single-nucleotide polymor-
364 phisms (SNPs) and their linked genes implicated by genome-wide association studies of psychiatric diseases,
365 including bipolar disorder and schizophrenia. We further subset these SNPs to those overlapping chromatin
366 accessibility peaks linked to the genes fit by our model, a total of 757 SNPs. Many of these variants occur near
367 neuronal transcription factors and other developmentally important genes. We then calculated the chromatin
368 accessibility, per cell, of a 400 b.p. window centered around each SNP. Using MultiVelo’s latent time, we
369 determined the time of maximum accessibility for each SNP and the time lag between SNP accessibility
370 and the maximum expression of its linked gene (Fig. 6G). This analysis revealed 3 major groups of SNPs,
371 distinguished by whether their maximum accessibility occurred early or late in latent time and before or
372 after the expression of the linked gene. UMAP plots of the SNP accessibility and linked gene expression
373 confirm that these groups of SNPs have qualitatively distinct profiles. These groupings are significant for
374 understanding the functions of the SNPs; for example, a SNP that is accessible only early in latent time likely
375 plays a bigger role in developing cells than in fully differentiated cells. Similarly, a SNP whose accessibility
376 precedes a gene’s expression is more likely to participate in regulating its expression than a SNP whose
377 accessibility lags behind.

378 3 Discussion

379 In summary, MultiVelo accurately recovers cell lineages and quantifies the length of priming and decoupling
380 intervals in which chromatin accessibility and gene expression are temporarily out of sync. Our model
381 accurately fits single-cell multi-omic datasets from embryonic mouse brain, mouse dorsal skin, embryonic
382 human brain, and human hematopoietic stem cells. Furthermore, our model identifies two classes of genes that

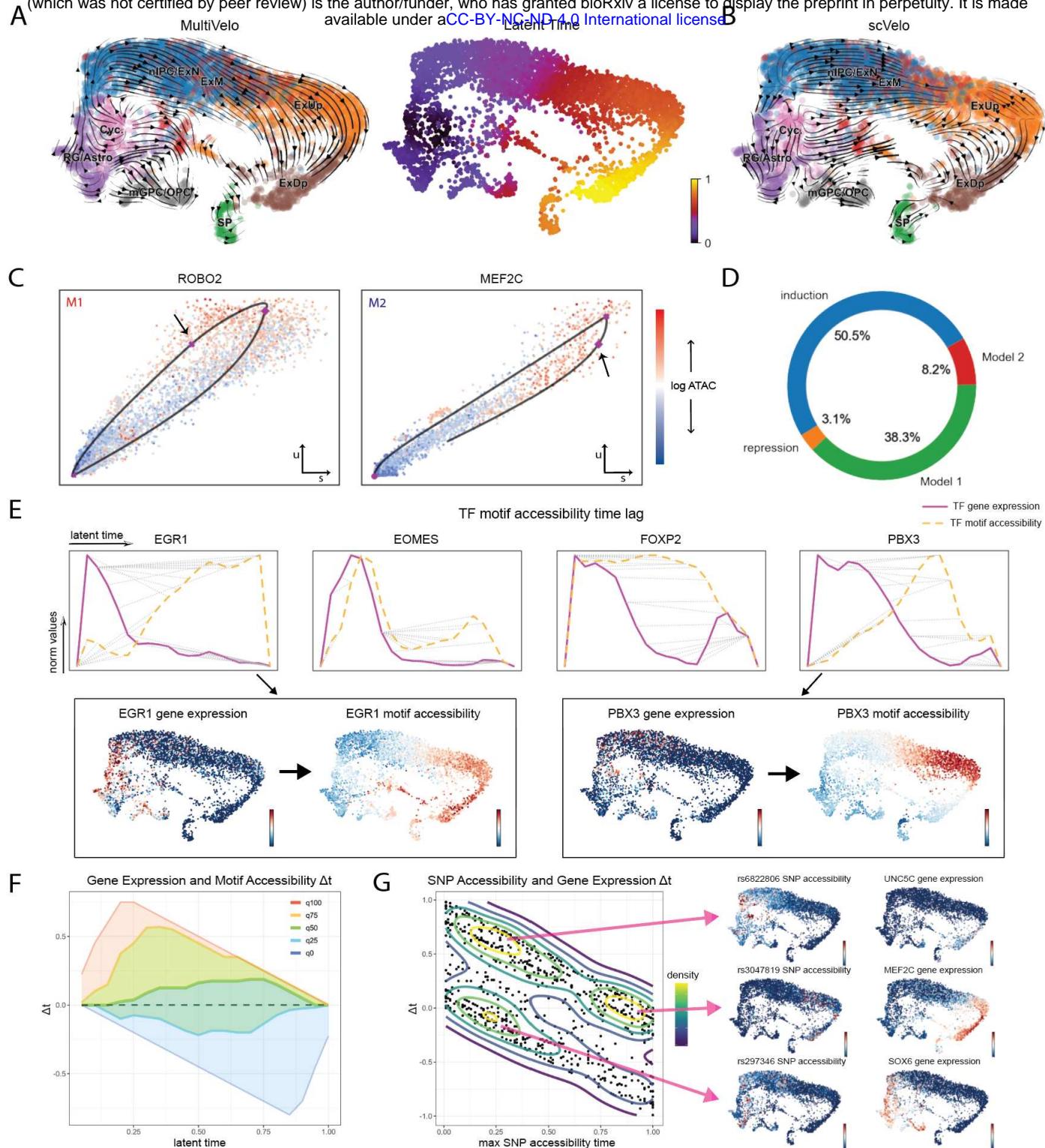


Fig. 6. MultiVelo infers epigenome and transcriptome dynamics in embryonic human brain. **A.** UMAP coordinates with stream plot of velocity vectors (**Left**) and latent time (**Right**) from MultiVelo. **B.** Velocity streamplot from RNA-only model (scVelo). **C.** RNA phase portraits (u vs. s) colored by c values show clear differences between Model 1 (*ROBO2*) and Model 2 (*MEF2C*) genes. Arrows indicate where chromatin closing begins. **D.** Relative proportion of each type of kinetics across all fitted genes ($n=747$). **E.** Dynamic time warping alignment of TF gene expression and the accessibility of predicted binding sites for four TFs. Dotted gray lines indicate corresponding time points after alignment. Inset UMAPs colored by TF expression and motif accessibility are shown for two of the TFs, *EGR1* and *PBX3*. **F.** Quantiles of TF motif time lags inferred by DTW across all expressed TFs. The median time lag across TFs is positive at most times, indicating that TF expression generally precedes motif accessibility. **G.** Classification of SNPs according to the relationship between maximum accessibility time and time of maximum linked gene expression. The contour lines indicate density, and 3 main groups of SNPs are visible. Inset UMAP plots are shown for one example SNP from each group.

383 differ in the relative order of chromatin closing and transcriptional repression, and we find clear examples of
 384 both mechanisms across all of the tissues we investigated. We anticipate that MultiVelo will provide insights
 385 into epigenomic regulation of gene expression across a range of biological settings, including normal cell
 386 differentiation, reprogramming, and disease.

387 4 Methods

388 4.1 Previous Approaches: RNA velocity

389 In the original RNA velocity model, the proposed system of differential equations for RNA splicing is as
 390 follows

$$391 \frac{du}{dt} = \alpha(t) - \beta(t)u(t) \quad (1)$$

$$392 \frac{ds}{dt} = \beta(t)u(t) - \gamma(t)s(t) \quad (2)$$

393 where u is unspliced RNA, s is spliced RNA, and α, β, γ are transcription, splicing, and degradation rate
 394 respectively. Assuming constant transcription and degradation rates, the rate equation parameters can be
 395 normalized by β and are reduced to

$$396 \frac{du}{dt} = \alpha - u(t) \quad (3)$$

$$397 \frac{ds}{dt} = u(t) - \gamma's(t) \quad (4)$$

398 In steady-state cell populations, the amount of spliced mRNA does not change: $\frac{ds}{dt} = 0$. Therefore, $\gamma' = \frac{u}{s}$
 399 and $\alpha = u$. The ratio γ' can be calculated using a simple linear regression that fits cells with expression
 400 values in upper and lower quantiles. RNA velocity is then defined as $v = \frac{ds}{dt}$.

401 Bergen et al. developed a dynamical RNA velocity model (scVelo) by extending the original equations
 402 to include time and cell state latent variables, capturing transient states between steady states.

$$403 \frac{du(t)}{dt} = \alpha^{(k)} - \beta u(t) \quad (5)$$

$$404 \frac{ds(t)}{dt} = \beta u(t) - \gamma s(t) \quad (6)$$

405 where k indicates one of the four transcription states: induction ($k = 1$), repression ($k = 0$), and two associated
 406 steady states ($k = ss1$ and $k = ss0$).

407 This system of differential equations can be solved analytically as follows:

$$408 u(t) = u_0 e^{-\beta\tau} + \frac{\alpha^{(k)}}{\beta} (1 - e^{-\beta\tau}) \quad (7)$$

$$409 s(t) = s_0 e^{-\gamma\tau} + \frac{\alpha^{(k)}}{\gamma} (1 - e^{-\gamma\tau}) + \frac{\alpha^{(k)} - \beta u_0}{\gamma - \beta} (e^{-\gamma\tau} - e^{-\beta\tau}) \quad (8)$$

410 where u_0 and s_0 are initial values, and $\tau = t - t_0^{(k)}$ is the time interval from the start of the induction or
 411 repression state.

412 The analytical solution converges to the steady-state values as $\tau \rightarrow \infty$:

$$413 (u_\infty^{(k)}, s_\infty^{(k)}) = \left(\frac{\alpha^{(k)}}{\beta}, \frac{\alpha^{(k)}}{\gamma} \right) \quad (9)$$

414 Because the equations involve the latent time variable τ , scVelo uses an expectation maximization algorithm
 415 to iteratively estimate latent time and the parameters of the ODE $\theta = (\alpha^{(k)}, \beta, \gamma)$, as well as state starting
 416 time $t_0^{(k)}$. Cells are assigned to latent times by approximately inverting the ODE solution.

412 **4.2 Differential Equation Model of Gene Expression Incorporating Chromatin
413 Accessibility**

414 To incorporate chromatin accessibility measurements into a differential equation model of gene expression,
415 we assume that the rate of transcription for a gene is influenced by the accessibility of its promoter and
416 enhancers. For simplicity, we model a single value c , which is the sum of accessibility at the promoter and
417 linked peaks for a gene. Unlike gene expression, which can theoretically grow without bound, it is possible in
418 principle for chromatin to be fully open or fully closed at a particular locus. Thus, we normalize chromatin
419 accessibility to $[0, 1]$, and assume that c approaches 1 with rate of change proportional to $\alpha_{co} > 0$ during the
420 opening phase and approaches 0 with rate of change proportional to $\alpha_{cc} > 0$ during the closing phase. Our
421 biological motivation for this mathematical formulation can be summarized as follows: impulses of remodeling
422 signals cause chromatin to begin opening or closing rapidly at first. However, biochemical constraints such as
423 the structures of histone complexes and their inter-molecular interactions gradually slow the rate of opening
424 or closing so that c asymptotically approaches full accessibility or inaccessibility (Fig. S3A). Empirically, we
425 find that the observed $c(t)$ values in single-cell multi-omic dataset show this qualitative behavior (Fig. S3B).
426 We define a new system of differential equations to reflect these modeling assumptions:

$$\frac{dc(t)}{dt} = -\alpha_{cc}c(t) \text{ or } \frac{dc(t)}{dt} = \alpha_{co} - \alpha_{co}c(t) \quad (10)$$

427 If we assume that the chromatin opening and closing kinetics are mirror images of each other, only a single
428 chromatin rate parameter $\alpha_c > 0$ is required, and the system of equations simplifies to:

$$\frac{dc(t)}{dt} = k_c \alpha_c - \alpha_c c(t) \quad (11)$$

$$\frac{du(t)}{dt} = \alpha^{(k)} c(t) - \beta u(t) \quad (12)$$

$$\frac{ds(t)}{dt} = \beta u(t) - \gamma s(t) \quad (13)$$

431 where

$$k_c = \begin{cases} 1, & \text{if chromatin is opening} \\ 0, & \text{if chromatin is closing} \end{cases}$$

432 As with the RNA velocity model, we define chromatin velocity as $\frac{dc}{dt}$. The parameter k_c allows for different
433 dynamics during chromatin opening ($k = 1$) and chromatin closing ($k = 0$), analogous to how the transcription
434 rate α_k in the dynamical RNA velocity model varies between transcriptional induction and repression phases
435 ($k = 1$ and $k = 0$). The system of differential equations can be solved analytically to obtain:

$$c(t) = k_c - (k_c - c_0)e^{-\alpha_c \tau} \quad (14)$$

$$u(t) = u_0 e^{-\beta \tau} + \frac{\alpha^{(k)} k_c}{\beta} (1 - e^{-\beta \tau}) + \frac{(k_c - c_0) \alpha^{(k)}}{\beta - \alpha_c} (e^{-\beta \tau} - e^{-\alpha_c \tau}) \quad (15)$$

$$s(t) = s_0 e^{-\gamma \tau} + \frac{\alpha^{(k)} k_c}{\gamma} (1 - e^{-\gamma \tau}) \\ + \frac{\beta}{\gamma - \beta} \left(\frac{\alpha^{(k)} k_c}{\beta} - u_0 - \frac{(k_c - c_0) \alpha^{(k)}}{\beta - \alpha_c} \right) (e^{-\gamma \tau} - e^{-\beta \tau}) \\ + \frac{\beta}{\gamma - \alpha_c} \frac{(k_c - c_0) \alpha^{(k)}}{\beta - \alpha_c} (e^{-\gamma \tau} - e^{-\alpha_c \tau}) \quad (16)$$

438 where c_0 , u_0 , and s_0 are the initial values of one of the four states, and $\tau = t - t_0$ is the time interval from
439 the start of that state. Note that the analytical solution is the same even if we assume different opening and
440 closing rates, if we simply use

$$\alpha_c = \begin{cases} \alpha_{co}, & \text{if } k_c = 1 \\ \alpha_{cc}, & \text{if } k_c = 0 \end{cases}$$

441 Similar to RNA velocity, the origin of the trajectory is $(0, 0, 0)$ (whether observed or not), and initial
 442 values of the next state can be obtained by solving the expected values at the switch interval using equations
 443 for the previous state. The range of chromatin values is restricted to $[0, 1]$ to span from fully closed to fully
 444 open chromatin accessibility. As such, the hypothetical steady states for chromatin accessibility $c_\infty^{(k_c)}$, as time
 445 approaches infinity on each interval, is simply 0 for closing state and 1 for opening state. The steady-state
 446 values for each state become

$$(c_\infty^{(k_c)}, u_\infty^{(k)}, s_\infty^{(k)}) = (k_c, \frac{\alpha^{(k)} k_c}{\beta}, \frac{\alpha^{(k)} k_c}{\gamma}) \quad (17)$$

447 Because the model includes separate latent variables for chromatin state k_c and RNA state k , there
 448 are multiple potential orders of chromatin remodeling states and transcription states. We label these possible
 449 orders as Model 0 (M0), Model 1 (M1), and Model 2 (M2):

450 M0: $(k_c = 1, k = 0) \rightarrow (k_c = 0, k = 0) \rightarrow (k_c = 0, k = 1) \rightarrow (k_c = 0, k = 0)$

451 M1: $(k_c = 1, k = 0) \rightarrow (k_c = 1, k = 1) \rightarrow (k_c = 0, k = 1) \rightarrow (k_c = 0, k = 0)$

452 M2: $(k_c = 1, k = 0) \rightarrow (k_c = 1, k = 1) \rightarrow (k_c = 1, k = 0) \rightarrow (k_c = 0, k = 0)$

453 We reason that it is biologically implausible for chromatin to be closed when transcription initiates, because
 454 it is difficult or impossible for a gene with inaccessible chromatin to be transcribed. Thus, we implement the
 455 capability to fit Model 0 if desired, but fit only Model 1 and Model 2 by default. Model 1 and Model 2 are
 456 both biologically plausible, and these different orders have biologically meaningful interpretations. We refer
 457 to Model 1 as delayed transcriptional repression and Model 2 as delayed chromatin repression. Within each
 458 model, a trajectory is defined by a set of eight core parameters θ , including three phase switching time points
 459 (transcriptional initiation time t_i , chromatin closing time t_c , and transcriptional repression time t_r) and five
 460 rate parameters (chromatin opening rate α_{co} , chromatin closing rate α_{cc} , transcription rate α , splicing rate β ,
 461 and RNA degradation rate γ). There is also a fourth possible switch time t_o at which chromatin opening
 462 begins, but by excluding Model 0 we can assume that $t_o = 0$ for all genes.

463 4.3 Model Likelihood

464 We can formulate a probabilistic model to calculate the likelihood of the observed data for a gene under
 465 particular ODE parameters θ . To do this, we simply assume that the observations are independent and
 466 identically distributed, and that the residuals are also normally distributed with mean given by the deterministic
 467 ODE solution and diagonal covariance. Because we scale the c , u , and s values, we can further assume that
 468 the variance is the same in all directions. That is, if we define the ODE prediction as $\mathbf{f}(t_i, \theta) = \hat{x}_i = (\hat{c}_i, \hat{u}_i, \hat{s}_i)$,
 469 then the distribution of the observed data $\mathbf{x}_i = (c_i, u_i, s_i)$ for each gene is:

$$\mathbf{x}_i \sim \mathcal{N}(\mathbf{f}(t_i, \theta), \sigma^2 \mathbf{I}) \quad (18)$$

470 The negative log likelihood of all n observations is then

$$-\log \mathcal{L}(\theta) = \frac{3}{2} \log(2\pi\sigma^2) + \frac{1}{2n\sigma^2} \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{f}(t_i, \theta)\|^2 \quad (19)$$

471 We can infer the ODE parameters θ by maximum likelihood estimation, which is equivalent to
 472 minimizing the mean-squared error. The maximum likelihood estimate of σ^2 is the sample variance of the
 473 residuals along each coordinate. We can then rank genes by their likelihood to identify the genes best fit by
 474 the ODE model. We can also determine which model best explains the c, u, s values observed for a particular
 475 gene by comparing the mean squared error (MSE) under Model 1 and Model 2.

476 4.4 Parameter Estimation and Latent Time Inference by Expectation Maximization

477 Both the cell times t and the ODE parameters are unknown, so we perform expectation-maximization to
 478 simultaneously infer them. The E-step involves determining the expected value of latent time for each cell given

479 the current best estimate of the ODE parameters. Because inverting the three-dimensional ODEs analytically
480 is not straightforward, we perform this time estimation by finding the time whose ODE prediction is nearest
481 each data point, selecting the time from a vector of uniformly spaced time points (see Implementation
482 Detail section). In the M-step, we find the ODE parameters that maximize the data likelihood (equivalent to
483 minimizing MSE) given the current time estimates for each cell. We use the Nelder-Mead simplex algorithm
484 to minimize MSE.

485 **4.5 Model Pre-Determination and Distinguishing Genes with Partial and Complete
486 Dynamics**

487 A gene does not have to complete a full trajectory within the measured cell population. In fact, for
488 differentiating cells, we found that it is not uncommon for a gene to possess only an induction or repression
489 phase, especially for differentially expressed cell-type marker genes. The three types of gene expression
490 patterns (induction only, repression only, and complete trajectory) can be directly inferred before fitting a
491 model, thus avoiding ambiguous assignments near RNA phase transition points.

492 We used a combination of two methods for this purpose. The first method directly results from the
493 assumptions of RNA velocity: given a steady-state fit, cells in the induction phase reside above the fitted
494 steady-state line while cells in the repression phase reside below the steady-state line. Thus, the ratio of sum
495 of squared distances (SSE) of cells on either side of the steady-state line is an indicator that can be used to
496 determine the direction of the trajectory.

497 The second method incorporates low-dimensional coordinates (e.g., from PCA or UMAP) as global
498 information. We use UMAP coordinates by default, because these are often precomputed for visualization.
499 Assuming that a gene possesses a complete trajectory, then at lower quantiles of its unspliced-spliced
500 phase portrait, these cells are expected to have a bimodal pairwise distance pattern in the low-dimensional
501 representation. Such a bimodal pattern indicates dissimilar populations, as some of these cells are in the
502 early phase of induction, while the others have reached the late phase of repression. In contrast, for partial
503 trajectories, cells at lower quantiles of the RNA phase portrait will have similar low-dimensional coordinates.
504 Similarly, the unimodal or bimodal pattern can also be derived from the assumption that noise is normally
505 distributed along the trajectory given by the ODE solution. We thus used a Gaussian mixture model to
506 test if the distribution of pairwise distances among cells in a gene's lower quantile region is unimodal or
507 bimodal, designating the trajectory being partial or complete, respectively. In order to be classified as a
508 complete trajectory, the distance of the means between two Gaussians under bimodal distribution must
509 exceed the globally measured variation (one standard deviation by default) of all pair-wise distances on the
510 low-dimensional coordinates for cells that express that gene, and the weight of the second, usually smaller
511 Gaussian must pass a certain threshold (0.2 by default). The final assignment of partial or complete trajectory
512 utilizes a combination of both methods (steady-state line ratio and bimodality), with the first method given
513 priority.

514 Additionally, whether a gene is better explained by Model 1 or Model 2 can be determined without
515 actually fitting parameters under both models. To see how, note that the chromatin closing phase precedes
516 transcriptional repression in Model 1 but succeeds transcriptional repression in Model 2. This implies that the
517 highest chromatin accessibility values occur during the transcriptional induction phase for Model 1 genes but
518 during the repression phase for Model 2 genes. Thus, the ratio of top chromatin values across the steady-state
519 line can be used to determine whether each gene is best described by Model 1 or Model 2 before actually
520 fitting the parameters. We implement this model pre-determination as a default to speed up computation,
521 but users can alternatively opt to fit both models and compare their losses instead.

522 **4.6 Parameter Initialization**

523 Parameters specifically related to RNA (α , β , γ , and the RNA switch time interval) are initialized based
524 on steady-state model as in scVelo. The rescaling factor for chromatin accessibility is initialized to 1, as the
525 maximum observed accessibility is likely some value in-between 0 and 1. Other parameters can be found in
526 Implementation Detail section below.

527 We also initialize a scale factor for u . Here we show that its value is closely related to the roundness
 528 of the U-S portrait under steady-state assumptions. First, u and s are both normalized to the range $[0, 1]$.
 529 Next, points of steady-state rate are found on the induction phase

$$\begin{aligned} \frac{\alpha - \beta u_1}{\beta u_1 - \gamma s_1} &= \gamma \\ \frac{\alpha - u_1}{u_1 - \gamma s_1} &= \gamma \\ \alpha - u_1 &= \gamma u_1 - \gamma^2 s_1 \\ u_1 &= \frac{\alpha + \gamma^2 s_1}{\gamma + 1} \\ u_1 &= \frac{a + a^2 s_1}{a + 1} \end{aligned} \tag{20}$$

530 where a is an unknown scalar and equals to the expected maximum of rescaled u . And similarly on the
 531 repression phase

$$\begin{aligned} \frac{-\beta u_2}{\beta u_2 - \gamma s_2} &= \gamma \\ \frac{-u_2}{u_2 - \gamma s_2} &= \gamma \\ -u_2 &= \gamma u_2 - \gamma^2 s_2 \\ u_2 &= \frac{\gamma^2 s_2}{\gamma + 1} \\ u_2 &= \frac{a^2 s_2}{a + 1} \end{aligned} \tag{21}$$

532 Then if we assume $u_1 = u_2 = \frac{1}{2}$ of maximum unspliced count, meaning the line connecting u_1 and u_2 is
 533 parallel to s -axis and at the same time, crosses the middle point of u (due to symmetry), then:

$$\begin{aligned} a + a^2 s_1 &= a^2 s_2 \\ s_2 - s_1 &= \frac{1}{a} \end{aligned} \tag{22}$$

534 The rescale factor for u is therefore $s_2 - s_1$ around middle of u when s is normalized to range of $[0, 1]$.
 535 $u/(1/a) = a * u$ and s are then used to initialize other parameters. Note that value of a is then further
 536 optimized during fitting.

537 4.7 Implementation Detail

538 A key implementation detail is how to estimate each cell's latent time given the ODE solution from the
 539 current parameters. Inverting the ODE solution is analytically challenging due to the complexity arising from
 540 a system of 3 ODEs. Thus, rather than pursuing an exact or approximate analytical solution to calculate
 541 time, we simply maintain a set of anchor points uniformly spaced in time. For each cell, we then identify the
 542 nearest anchor point and assign the cell's time to the time of the anchor point. In more detail, we calculate
 543 the (c, u, s) values of the ODE solution at a specified number of uniformly distributed time points. Then we
 544 calculate pairwise distances from the observed cells to these anchor points. The shortest distance represents
 545 the residuals to the inferred trajectory, and the time of the anchor point is assigned to the cell. We found
 546 that 500-1000 points are sufficient to capture the full trajectory dynamics. We restrict the time range to span
 547 from 0 to 20 hrs, consistent with scVelo's default setting.

548 After determining trajectory direction and model to fit, expression values are shifted so that the
 549 minimum value starts from zero, then they are scaled but not centered. RNA rate parameters are initialized
 550 based on the steady-state model: α is initialized as the mean of top-percentile u values to represent a gene's

551 overall transcription potential⁷. The splicing rate β is initialized to 1-consistent with the steady-state model
552 heuristic—and the degradation rate γ is obtained through linear regression of the top-percentile (u, s) values⁶.
553 Chromatin rate α_c is initialized as $-\log(1 - c_{high})/t_{sw3}$ where c_{high} is the mean accessibility of those cells
554 with accessibility above average of all cells for that gene, and t_{sw3} is the chromatin closing switch time in
555 the current grid search iteration. We initialize the RNA switch-off time using the explicit time-inversion
556 procedure described in scVelo’s method. To initialize the RNA switch-on time and chromatin switch-off time,
557 we search over a grid of times 2 hrs apart. The best initial switch time combinations are chosen based on
558 mean squared error loss.

559 To fit and optimize parameters, we minimize the negative log likelihood (equivalent to MSE loss)
560 using the Nelder-Mead downhill simplex method⁴¹, implemented in the `scipy minimize` function. The Nelder-
561 Mead algorithm performs a series of transformations on the model parameters, including reflection, shrinking,
562 and expansion to improve the fitting results. When fitting induction-only trajectories, only the first two
563 phases (chromatin priming phase and coupled induction phase) are aligned to observations. When fitting
564 repression-only trajectories, only the later two phases are fitted. To improve convergence speed, we minimize
565 with respect to subsets of parameters at any time, holding the others fixed. This is similar to a block
566 coordinate descent strategy. Within each iteration, we first update parameters exclusive to c , then parameters
567 related to u , and finally parameters affecting s . We found that 5-10 iterations are sufficient for convergence
568 in most cases. To ensure that the switch times occur in the proper order (e.g., transcriptional induction
569 precedes transcriptional repression), we opted to use switch intervals rather than switch time-points as actual
570 parameters. Thus a model is guaranteed to be valid if all parameters are positive, with no other constraints
571 needed.

572 The trajectory constructed using a set of rate parameters is represented by a set of uniformly
573 distributed anchor time-points. By using the uniform distribution, we assume cells have equal prior probability
574 to be measured at any given time-point. The local sparsity of cells is determined by model parameters. We
575 used KD-tree⁴² from `scipy` to search for the closest anchor to each observation and its corresponding distance.
576 Using anchor points also allows the model to mimic the expected local sparsity of cells along the fitted
577 trajectories by encouraging anchors to concentrate near where cells concentrate in order to reduce small
578 distance offsets caused by discrete representation of the trajectory.

579 After fitting the models, because genes with partial fitted trajectories result in a shorter total
580 observed time-range—violating the assumption that all genes share one time scale—the rate parameter set
581 and the switch times are scaled down and up, respectively, so that time ranges from 0 to 20 hr. (Note that
582 multiplying the time and dividing the rates by the same constant will result in identical trajectories.) This
583 ensures that the time parameters from all genes are comparable. Switch times are shifted backward in time if
584 the observable start of the trajectory happens later than 0 hr.

585 The optimized rate parameters and time assignments are plugged back into the system of ODEs to
586 obtain velocities for chromatin accessibility, unspliced RNA, and spliced RNA for each cell. Our multi-omic
587 velocity method is implemented in python. Many internal functions in our method have been accelerated
588 with Numba. Distances, time assignments, and velocity vectors are smoothed among nearest neighbors to
589 mitigate the effect of measurement stochasticity.

590 Because multi-omic velocity is an upstream extension of the original RNA velocity model, it can be
591 easily reduced to the RNA-only model by setting chromatin to be fully open (constant of 1) throughout the
592 entire trajectory. Fitting this RNA-only model is then very similar to running the multi-omic model, but
593 there will be no notion of the Model 1 and Model 2 distinction.

594 4.8 Post-fitting Analyses

595 Bergen et al.⁷ have developed great downstream analyses methods for RNA velocity in the scVelo toolkit.
596 Because our method is a direct extension of the dynamical model to multi-omic data, many of scVelo’s
597 methods can be applied with only a change of arguments. Our main method replaces the scVelo func-
598 tions `tl.recover_dynamics` and `tl.velocity`. In this paper, scVelo’s `tl.velocity_graph` with total-normalized

599 spliced velocity vectors computed from our multi-omic method was used to obtain a transition matrix
600 between cells based on cosine similarity between a cell's velocity vector and expression differences. We used
601 pl.velocity_embedding_stream to embed and plot velocity streams onto UMAP coordinates. Computation of
602 global latent time among cells and genes is implemented in tl.latent_time.

603 We performed Dynamic Time Warping using the dtw R package^{43,44}. First, the accessibilities or
604 expressions of cells were aggregated to 20 equal-sized bins based on either their gene time (for *Wnt3* in the
605 skin dataset) or latent time (for human brain motifs), and then maximum-normalized to the same range of
606 [0, 1]. For motifs, a rolling mean of three-bin was applied to the RNA and motif counts to smooth the curves.
607 We then added a zero to each end of the time series to ensure that the starting and ending values of each time
608 series matched. Then we used dtw to find the best alignment-local for *Wnt3* or global for motifs-between
609 the two time series with Euclidean distance penalty. We then calculated time lags by simply subtracting the
610 times of the aligned points. When many-to-one mappings occurred in global alignments, we averaged the
611 time lags across all points mapped to the same time. For SNP time analysis, both the SNP accessibilities and
612 log RNA expressions were aggregated to 100 equal-sized bins. We then calculated the time lag as the time
613 difference between the time bins with highest values in the two modalities.

614 4.9 Generation of Simulated Data

615 1000 genes were simulated with various rate parameters, switch times, time sequences, and models (1 and 2).
616 α_c , α , β , and γ values were generated from multivariate log-normal distributions with mean -2, 2, 0, 0 and
617 variance 0.5, 1, 0.3, and 0.3, with a small covariance of 0.01 between α_c , α and β . Four switch intervals were
618 random chosen from [1,4], [1,9], [1,9], and [1,9], and scaled to give a time range from 0-20 hrs. The model
619 (Model 1 vs. Model 2) was sampled uniformly at random. Cell times were sampled from a Poisson distribution.
620 Noise was added to each cell with diagonal covariances of $[max(c)^2/90, max(u)^2/90, max(s)^2/90]$. The
621 accuracy of loss-based and predetermined model decisions were separately computed.

622 4.10 Preprocessing of data, weighted nearest neighbors, and smoothing

623 **10X embryonic E18 mouse brain** Filtered expression matrix for ATAC-seq, feature linkage file, as well
624 as position-sorted RNA alignment (BAM) file of E18 mouse embryonic brain data of around 5k cells were
625 downloaded from 10X Genomics website (CellRanger ARC 1.0.0). Total, unspliced and spliced RNA reads
626 were separately quantified using the Velocyto run10x command. The resulting loom file was read into python
627 as an AnnData object and preprocessed with scmpy and scVelo to perform filtering, normalization, and
628 nearest neighbor assignment. Next, clusters were computed using the Leiden⁴⁵ algorithm. Cell-types were
629 manually annotated based on expression of known marker genes^{46,47,48,49}. We then excluded interneurons,
630 Cajal-Retzius, and microglia cell populations for our downstream analyses, because these cell types are not
631 actively differentiating. We then re-processed the raw counts of subset clusters, which consists of more than
632 3k remaining cells, with scVelo. The unspliced and spliced reads were neighborhood smoothed (averaged) by
633 scVelo's pp.moments method with 30 principal components among 50 neighbors. The downloaded feature
634 linkage file contains correlation information for gene-peak pairs of genomic features across cells. We first
635 collected all distal putative enhancer peaks (not in promoter or gene body regions) with ≥ 0.5 correlation with
636 either promoter accessibility or gene expression that were annotated to the same gene or within 10kb of that
637 gene. We then aggregated these enhancer peaks with 10X annotated promoter peaks for the corresponding
638 genes, as a single chromatin accessibility modality to boost chromatin signal. These aggregated accessibility
639 values were then normalized using the term frequency-inverse document frequency (TF-IDF) method²⁴. (Note
640 that during fitting, chromatin values are normalized to [0, 1], so using other total-count based normalization
641 will produce identical results.) Due to the increased sparsity of ATAC-seq data, the neighborhood graph
642 and clustering results based solely on peaks is often noisy and unreliable. Seurat group recently developed
643 a method to compute neighborhood assignments for simultaneously measured multi-modality data in the
644 Seurat V4 toolkit, which they called weighted nearest neighbor (WNN)⁵⁰. The WNN method learns weights
645 of each cell in either modality based on its predictive power by neighboring cells in each of the modalities, so
646 that both RNA and ATAC information can be incorporated when assigning neighbors. We used 50 WNNs
647 obtained from Seurat for each cell to smooth the aggregated and normalized chromatin peak values. Our WNN

648 analysis followed the recommended steps in Seurat V4 vignette for 10X RNA + ATAC. We thus obtained
649 three matrices containing chromatin accessibility, unspliced, and spliced counts. Shared cell barcodes and
650 genes were filtered among matrices and resulted in 3365 cells and 936 highly variable genes, these matrices
651 were then used for dynamical modeling.

652 **SHARE-seq mouse skin (hair follicle) data** The quantified ATAC-seq expression matrix, raw ATAC-
653 seq fragments file, and cell annotations of SHARE-seq mouse skin dataset⁹ were downloaded from GEO:
654 GSE140203. The RNA alignment BAM file as well as UMAP coordinates for TAC, IRS, Medulla, and Hair
655 Shaft Cuticle/Cortex cell populations used in the SHARE-seq manuscript were obtained directly from the
656 authors. We run Velocyto to quantify unspliced and spliced counts, and the RNA AnnData object was
657 further preprocessed with scanpy/scVelo for the four cell types of interest. In R, the chromatin fragment
658 file was used to construct a gene activity matrix by aggregating peaks onto gene coordinates using the
659 GeneActivity function in Signac. Domain of regulatory chromatin (DORCs) is defined as chromatin regions
660 that contain clusters of peaks that are highly correlated with gene expressions in SHARE-seq's analysis. A list
661 of computed DORCs coordinates was downloaded from its supplementary material section. These coordinates
662 were output to the bed format, and we extracted fragments together with their corresponding cell barcodes
663 that overlap with these DORCs regions. A peak expression matrix for DORCs was constructed with Liger's
664 makeFeatureMatrix method. The gene activity and DORCs counts were then merged in python to form a
665 single chromatin modality. Similar to brain data, this matrix underwent TF-IDF normalization and WNN
666 smoothing. A total of 6436 cells and 962 genes participated in the downstream analyses.

667 **Human hematopoietic stem and progenitor cell (HSPC)** Purified human CD34⁺ cells were purchased
668 from the Fred Hutch Hematology Core B. Freshly thawed cells were maintained at 37°C with 5% CO₂ in
669 Stemspan II medium supplemented with 100 ng/ml stem cell factor, 100 ng/ml thrombopoietin, 100 ng/ml
670 Flt3 ligand (all from Stemcell Technologies), and 100 ng/ml insulin-like growth factor binding protein 2
671 (R&D Systems) for seven days. HSPCs were prepared according to the manufacturer's "10X Genomics Nuclei
672 Isolation Single Cell multiome ATAC + Gene Expression Sequencing" demonstrated protocol. Briefly, cells
673 were washed in PBS supplemented with 0.04% BSA and sorted using the Sony SH800 cell sorter (Sony
674 Biotechnologies). Nuclei were isolated following the "Low Cell Input Nuclei Isolation" sub-protocol and
675 immediately processed using the Chromium Next GEM Single Cell Multiome + Gene Expression kit.

676 10X filtered expression matrices, Velocyto computed unspliced and spliced counts, and feature
677 linkage and peak annotation files from CellRanger ARC 2.0.0 were read into python to construct RNA
678 and ATAC AnnData objects. Filtering, normalization, and variable-gene selection were performed following
679 scVelo's online tutorial. Because HSPCs are rapidly proliferating, we noticed systematic differences in cell
680 cycle stage across the set of cells. The cell-cycle scores for both G2M and S phases, computed using scVelo's
681 tl.score_genes_cell_cycle function were then regressed out of the RNA expression matrices with scanpy's
682 pp.regress_out function (Fig. S5B). Note that the regression did not change unspliced and spliced counts.
683 Then gene expression scaling was performed. ATAC peaks were aggregated and normalized using the same
684 procedure as described for the 10X mouse brain. Joint filtering between RNA and ATAC resulted in 11605 cells
685 and 1000 genes. RNA expression was smoothed by scVelo's pp.moments with 30 principle components and 50
686 neighbors. Leiden found 11 clusters. Cell types were assigned based on canonical HSPC markers^{51,52,53,54,55}.
687 The chromatin accessibility matrix was WNN smoothed with 50 neighbors computed using Seurat. Then
688 the RNA and ATAC objects were input to our dynamical function with default parameters. We relaxed
689 the likelihood threshold for velocity genes (used for computing the velocity graph) to 0.02 compared to the
690 default of 0.05 due to noisiness of this dataset.

691 To find complete genes in each of the lineages from HSC towards GMP (myeloid), erythrocytes, and
692 platelets, we subset cells of each specific lineage and select known complete genes as those genes that have
693 higher unspliced and spliced expressions in the progenitor populations leading to each of the terminal cell
694 types. We then ran the model predetermination algorithm based on peak chromatin accessibility as described
695 in the previous section. The genes predicted as Model 1 and Model 2 for each lineage are then merged with

696 duplicates removed, and we performed gene ontology enrichment analysis (GORilla⁵⁶) using all sequenced
697 genes as the background set.

698 Preprocessed bulk ChIP-seq peaks of H3K4me3, H3K4me1, and H3K27ac for CD34+ HSPC were
699 downloaded from GSE70677³⁷. Peaks were mapped to genes with Homer⁵⁷. Known complete genes in the
700 myeloid and erythroid lineages were grouped together, and predicted M1 and M2 genes were extracted. Scores
701 of peaks associated with the same genes were aggregated. Wilcoxon rank-sum test was used to compute
702 significance.

703 **Human cerebral cortex** We obtained the multiome RNA, unspliced, spliced, and ATAC-seq peak files from
704 the authors. The ATAC peak matrix contains consensus peaks of non-overlapping uniform 500bp length. After
705 initial clustering, we observed a severe batch effect in one of the three samples. We thus decided to removed
706 this third sample and perform all downstream analyses with the two remaining samples (dc2r2_r1 and
707 dc2r2_r2). We re-named the clusters from the original paper as follows based on marker gene expression: RG
708 → RG/Astro, nIPC/GluN1 → nIPC/ExN, GluN3 → ExM, GluN2 → ExUp, GluN4 and GluN5 → ExDp⁴⁷.
709 Peaks were annotated to genes with Homer⁵⁷. We considered peaks within 10000bp of transcription start
710 sites as promoter peaks. A list of peak-gene links and correlations were downloaded from the supplementary
711 material and aggregated to promoter peaks if the correlation exceeded 0.4. After filtering the RNA and ATAC
712 matrices, 4693 cells and 919 genes were left and input to model fitting. TF motif profiles were computed with
713 chromVAR⁴⁰ on the JASPAR2020 database⁵⁸ using all consensus peaks. The background-corrected deviation
714 z-scores were used as normalized motif accessibilities, and the values were smoothed with WNN. Then TF
715 genes appearing in the variable gene list (after internal filtering by the dynamical function) were extracted
716 for time-lag analysis, which resulted in 30 known motifs. All mental or behavioural disorder associated SNPs
717 (EFO_0000677) were downloaded from the Ensembl GWAS Catalog. The list contains 6968 SNPs, and filtering
718 for overlap with consensus peaks linked to the top genes resulted in 757 SNPs. Each SNP's accessibility was
719 quantified as the count of all ATAC fragments that overlap a 400 b.p. bin centered on the SNP location. The
720 accessibility matrix was normalized by library size and smoothed by WNN neighbors.

721 5 Code and Data Availability

722 MultiVelo is implemented in Python. The package is available on GitHub (<https://github.com/welch-lab/MultiVelo>) and PyPI. The newly sequenced 10X Multiome HSPC sample will also be uploaded to
723 dbGAP and GEO.

725 6 Acknowledgements

726 This work was supported by NIH grants R01AI149669 to KLC and JDW and R01HG010883 to JDW. The
727 HSPC sample was provided by Cooperative Center of Excellence in Hematology grant DK106829. We thank
728 Jun Li, Stephen CJ Parker, Yichen Gu, and members of the Collins lab for helpful discussions.

729 References

- 730 1. Cao, J., Spielmann, M., Qiu, X., *et al.* The single-cell transcriptional landscape of mammalian organo-
731 genesis. *Nature* **566**, 496–502 (2019).
- 732 2. Street, K., Risso, D., Fletcher, R. B., *et al.* Slingshot: cell lineage and pseudotime inference for single-cell
733 transcriptomics. *BMC Genomics* **19**, 477 (2018).
- 734 3. Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis.
735 *Nucleic Acids Research* **44**, 117 (2016).
- 736 4. Setty, M., Kiseliouvas, V., Levine, J., *et al.* Characterization of cell fate probabilities in single-cell data
737 with Palantir. *Nature Biotechnology* **37**, 451–460 (2019).
- 738 5. Welch, J. D., Hartemink, A. J. & Prins, J. F. SLICER: inferring branched, nonlinear cellular trajectories
739 from single cell RNA-seq data. *Genome Biology* **17**, 106 (2016).
- 740 6. Manno, G. L., Soldatov, R., Zeisel, A., *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

741 7. Bergen, V., Lange, M., Peidli, S., *et al.* Generalizing RNA velocity to transient cell states through
742 dynamical modeling. *Nature Biotechnology* (2020).

743 8. Gorin, G., Svensson, V. & Pachter, L. Protein velocity and acceleration from single-cell multiomics
744 experiments. *Genome Biology* **21**, 39 (2020).

745 9. Ma, S., Zhang, B., LaFave, L. M., *et al.* Chromatin Potential Identified by Shared Single-Cell Profiling
746 of RNA and Chromatin. *Cell* **183**, 1103–1116 (2020).

747 10. Tedesco, M. *et al.* Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochro-
748 matin and euchromatin. *Nature Biotechnology* (2021).

749 11. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin
750 accessibility in the same cell. *Nature Biotechnology* **37**, 1452–1457 (2019).

751 12. Merkle, F. T., Tramontin, A. D., García-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to
752 adult neural stem cells in the subventricular zone. *Proceedings of the National Academy of Sciences* **101**,
753 17528–17532 (2004).

754 13. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer
755 subventricular zone of human neocortex. *Nature* **464**, 554–561 (2010).

756 14. Pollen, A. A. *et al.* Molecular identity of human outer radial glia during cortical development. *Cell* **163**,
757 55–67 (2015).

758 15. Nadarajah, B. & Parnavelas, J. G. Modes of neuronal migration in the developing cerebral cortex. *Nat
759 Reviews Neuroscience* **3**, 423–432 (2002).

760 16. Englund, C. *et al.* Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor
761 cells, and postmitotic neurons in developing neocortex. *Journal of Neuroscience* **25**, 247–251 (2005).

762 17. Mayer, S. *et al.* Multimodal single-Cell analysis reveals physiological maturation in the developing
763 human neocortex. *Neuron* **102**, 143–158.e7 (2019).

764 18. Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
765 *Science* **352**, 189–196 (2016).

766 19. Arnold, S. J. *et al.* The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical
767 subventricular zone. *Genes & Development* **22**, 2479–2484 (2008).

768 20. Vasistha, N. A. *et al.* Cortical and clonal contribution of Tbr2 expressing progenitors in the developing
769 mouse brain. *Cerebral Cortex* **25**, 3290–3302 (2014).

770 21. McEvilly, R. J., de Diaz, M. O., Schonemann, M. D., Hooshmand, F. & Rosenfeld, M. G. Transcriptional
771 regulation of cortical neuron migration by POU domain factors. *Science* **295**, 1528–1532 (2002).

772 22. Zahr, S. K. *et al.* A translational repression complex in developing mammalian neural stem cells that
773 regulates neuronal specification. *Neuron* **97**, 520–537.e6 (2018).

774 23. Bergen, V., Soldatov, R. A., Peter V, K. & Theis, F. J. RNA velocity—current challenges and future
775 perspectives. *Molecular Systems Biology* **17**, e10282 (2021).

776 24. Cusanovich, D. A. *et al.* A Single-Cell atlas of in Vivo mammalian chromatin accessibility. *Cell* **174**,
777 1309–1324.e18 (2018).

778 25. Lake, B. B. *et al.* Integrative single-cell analysis of transcriptional and epigenetic states in the human
779 adult brain. *Nature Biotechnology* **36**, 70–80 (2018).

780 26. Ranzoni, A. M. *et al.* Integrative single-Cell RNA-seq and ATAC-seq analysis of human developmental
781 Hematopoiesis. *Cell Stem Cell* **28**, 472–487.e7 (2021).

782 27. Jia, G. *et al.* Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and
783 lineage settlement. *Nature Communications* **9**, 4877 (2018).

784 28. Zhang, B. & Hsu, Y.-C. Emerging roles of transit-amplifying cells in tissue regeneration and cancer.
785 *WIREs Developmental Biology* **6**, e282 (2017).

786 29. Coifman, R. R. *et al.* Geometric diffusions as a tool for harmonic analysis and structure definition of
787 data: Diffusion maps. *Proceedings of the National Academy of Sciences* **102**, 7426–7431 (2005).

788 30. Millar, S. E. *et al.* WNT signaling in the control of hair growth and structure. *Developmental Biology*
789 **207**, 133–149 (1999).

790 31. J.Berndt, D. & Clifford, J. Using dynamic time warping to find patterns in time series. *Workshop on
791 knowledge discovery in databases* **398**, 359–370 (1994).

792 32. Buenrostro, J. D. *et al.* Integrated single-cell analysis maps the continuous regulatory landscape of
793 human hematopoietic differentiation. *Cell* **173**, 1535–1548.e16 (2018).

794 33. Orkin, S. H. & Zon, L. I. Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. *Cell* **132**,
795 631–644 (2008).

796 34. Görgens, A. *et al.* Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct
797 hematopoietic lineages. *Cell Reports* **3**, 1539–1552 (2013).

798 35. Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes.
799 *Nature* **553**, 418–426 (2018).

800 36. Pellin, D. *et al.* A comprehensive single cell transcriptional landscape of human hematopoietic progenitors.
801 *Nature Communications* **10**, 2395 (2019).

802 37. Romano, O. *et al.* Transcriptional, epigenetic and retroviral signatures identify regulatory regions
803 involved in hematopoietic lineage commitment. *Scientific Reports* **6**, 24724 (2016).

804 38. Stuart, T. *et al.* Comprehensive integration of single-cell data. *Cell* **177**, 1888–1902.e21 (2019).

805 39. Trevino, A. E. *et al.* Chromatin and gene-regulatory dynamics of the developing human cerebral cortex
806 at single-cell resolution. *Cell* **184**, 5053–5069.e23 (2021).

807 40. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-
808 associated accessibility from single-cell epigenomic data. *Nature Methods* **14**, 975–978 (2017).

809 41. Nelder, J. A. & Mead, R. A simplex method for function minimization. *Computer Journal* **7**, 308–313
810 (1965).

811 42. Bentley, J. L. Multidimensional Binary Search Trees Used for Associative Searching. *Communications
812 of the ACM* **18**, 509–517 (1975).

813 43. Giorgino, T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package.
814 *Journal of Statistical Software* **31**, 1–24 (2009).

815 44. Tormene, P., Giorgino, T., Quaglini, S. & Stefanelli, M. Matching incomplete time series with dynamic
816 time warping: an algorithm and an application to post-stroke rehabilitation. *Artificial Intelligence in
817 Medicine* **45**, 11–34 (2009).

818 45. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected
819 communities. *Scientific Reports* **9**, 5233 (2019).

820 46. Batiuk, M. Y. *et al.* Identification of region-specific astrocyte subtypes at single cell resolution. *Nature
821 Communications* **11**, 1220 (2020).

822 47. Polioudakis, D. *et al.* A single-cell transcriptomic atlas of human neocortical development during
823 mid-gestation. *Neuron* **103**, 785–801.e8 (2019).

824 48. Cahoy, J. D. *et al.* A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new
825 resource for understanding brain development and function. *Journal of Neuroscience* **28**, 264–278 (2008).

826 49. Hochgerner, H., Zeisel, A., Lönnerberg, P. & Linnarsson, S. Conserved properties of dentate gyrus
827 neurogenesis across postnatal development revealed by single-cell RNA sequencing. *Nature Neuroscience*
828 **21**, 290–299 (2018).

829 50. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29 (2021).

830 51. Karamitros, D. *et al.* Single-cell analysis reveals the continuum of human lympho-myeloid progenitor
831 cells. *Nature Immunology* **19**, 85–97 (2018).

832 52. Yáñez, A. *et al.* Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently
833 produce functionally distinct monocytes. *Immunity* **47**, 890–902.e4 (2017).

834 53. Villani, A.-C. *et al.* Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes,
835 and progenitors. *Science* **356**, eaah4573 (2017).

836 54. Grajkowska, L. T. *et al.* Isoform-specific expression and feedback regulation of E protein TCF4 control
837 dendritic cell lineage specification. *Immunity* **46**, 65–77 (2017).

838 55. Paul, F. *et al.* Transcriptional heterogeneity and lineage commitment in myeloid progenitors. *Cell* **163**,
839 1663–1677 (2015).

840 56. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization
841 of enriched GO terms in ranked gene lists. *BMC Bioinformatics* **10**, 48 (2009).

842 57. Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-regulatory
843 elements required for macrophage and B cell identities. *Molecular Cell* **38**, 576–589 (2010).

844 58. Fornes, O. *et al.* JASPAR 2020: update of the open-access database of transcription factor binding
845 profiles. *Nucleic Acids Research* **48**, D87–D92 (2019).