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Abstract. Single-cell multi-omic datasets, in which multiple molecular modalities are profiled within10

the same cell, provide a unique opportunity to discover the relationships between cellular epigenomic11

and transcriptomic changes. To realize this potential, we developed MultiVelo, a mechanistic model of12

gene expression that extends the RNA velocity framework to incorporate epigenomic data. MultiVelo13

uses a probabilistic latent variable model to estimate the switch time and rate parameters of chromatin14

accessibility and gene expression from single-cell data, providing a quantitative summary of the temporal15

relationship between epigenomic and transcriptomic changes. Incorporating chromatin accessibility data16

significantly improves the accuracy of cell fate prediction compared to velocity estimates from RNA17

only. Fitting MultiVelo on single-cell multi-omic datasets from brain, skin, and blood cells reveals two18

distinct classes of genes distinguished by whether chromatin closes before or after transcription ceases.19

Our model also identifies four types of cell states–two states in which epigenome and transcriptome are20

coupled and two distinct decoupled states. The parameters inferred by MultiVelo quantify the length of21

time for which genes occupy each of the four states, ranking genes by the degree of coupling between22

transcriptome and epigenome. Finally, we identify time lags between transcription factor expression23

and binding site accessibility and between disease-associated SNP accessibility and expression of the24

linked genes. We provide an open-source Python implementation of MultiVelo on PyPI and GitHub25

(https://github.com/welch-lab/MultiVelo).26
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1 Introduction28

The regulation of gene expression from DNA to RNA to protein is a key process governing cell fates.29

Coordinated, stepwise gene expression changes–in which genes are turned on and off in a certain order–30

underlie the developmental processes by which cells specialize. Increasingly, high-throughput single-cell31

sequencing techniques are being applied to reveal these stepwise gene expression changes. However, because32

experimental measurement destroys the cell, only temporal snapshot measurements are available, and it is33

not possible to observe the same individual cell changing over time.34

Computational approaches can leverage single-cell snapshots to infer sequential gene expression35

changes during developmental processes. For example, cell trajectory inference algorithms1,2,3,4,5 use pairwise36

cell similarities to map cells onto a “pseudotime” axis corresponding to predicted developmental progress.37

However, trajectory inference based on similarity cannot predict the directions or relative rates of cellular38

transitions. Methods for inferring RNA velocity6,7 address these limitations by fitting a system of differential39

equations that describes the directions and rates of transcriptional changes using spliced and unspliced40

transcript counts. The original RNA velocity approach6 relied on a steady-state assumption to fit model41

parameters, but later work developed a dynamical model7 that explicitly fits the induction and repression42

phases of gene expression, in addition to the steady states. Crucially, this dynamical model of RNA velocity43

also infers a latent time value for each cell, providing a mechanistic means of reconstructing the order of gene44

expression changes during cell differentiation. A recent paper further extended the RNA velocity framework to45
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include gene expression and protein measurements from the same cells, but used the steady-state assumption46

to estimate parameters, and thus did not estimate latent time values for each cell8. Single-cell epigenome47

values have also been used individually to infer future directions of cell differentiation, but these approaches48

did not incorporate gene expression9,10.49

Single-cell multi-omic measurements provide an opportunity to incorporate epigenomic data into50

mechanistic models of trancription. For example, new technologies such as SNARE-seq11, SHARE-seq9, and51

10X Genomics Multiome can quantify both RNA and chromatin accessibility in the same cell. The epigenome52

and transcriptome both change during cellular differentiation, and thus the temporal snapshots in single-cell53

multi-omic datasets potentially reveal the interplay among these molecular layers. For example, if epigenomic54

lineage priming occurs at a particular genomic locus, single-cell multi-omic data could reveal a significant55

time lag between chromatin remodeling of a gene and its transcription. Similarly, observing the dynamic56

changes in both the expression of a transcription factor and the chromatin accessibility of putative binding57

sites could reveal their temporal relationship.58

Existing RNA velocity models assume that the transcription rate of a gene is uniform throughout59

the induction phase of gene expression. However, epigenomic changes play a key role in regulating gene60

expression, such as tightening or loosening the chromatin compaction of promoter and enhancer regions. For61

example, a transition from euchromatin to heterochromatin significantly reduces the rate of transcription62

at that locus, because transcriptional machinery cannot access the DNA. Therefore, a more realistic model63

would reflect the influence of enhancer and promoter chromatin accessibility on transcription rate.64

We present MultiVelo, a computational approach for inferring epigenomic regulation of gene ex-65

pression from single-cell multi-omic datasets. We extend the dynamical RNA velocity model to incorporate66

multi-omic measurements to more accurately predict the past and future state of each cell, jointly infer the67

instantaneous rate of induction or repression for each modality, and determine the extent of coupling or time68

lag between modalities. MultiVelo uses a probabilistic latent variable model to estimate the switch time and69

rate parameters of gene regulation, providing a quantitative summary of the temporal relationship between70

epigenomic and transcriptomic changes.71

We demonstrate that MultiVelo accurately recovers cell lineages and quantifies the length of priming72

and decoupling intervals in which chromatin accessibility and gene expression are temporarily out of sync.73

Our differential equation model accurately fits single-cell multi-omic datasets from embryonic mouse brain,74

embryonic human brain, and a newly generated dataset from human hematopoietic stem and progenitor75

cells. Furthermore, our model predicts two distinct mechanisms of gene expression regulation by chromatin76

accessibility, and we identify clear examples of both mechanisms across all of the tissues we investigated. Finally,77

we use MultiVelo to infer the temporal relationship between transcription factors (TFs) and their binding sites78

and between GWAS SNPs and their linked genes. In summary, MultiVelo provides fundamental insights into79

the mechanisms by which epigenomic changes regulate gene expression during cell fate transitions.80

2 Results81

2.1 MultiVelo: A Mechanistic Model of Gene Expression Incorporating Chromatin82

Accessibility83

MultiVelo describes the process of gene expression as a system of three ordinary differential equations (ODEs)84

characterized by a set of switch time and rate parameters (Fig. 1A). The time-varying levels of chromatin85

accessibility (c), unspliced pre-mRNA (u), and spliced mature mRNA (s) are related by ODEs describing86

the rates of chromatin opening (αco) and closing (αcc), RNA transcription (α), RNA splicing (β), and RNA87

degradation or nuclear export (γ). We assume that chromatin opening rapidly leads to full accessibility and88

similarly that chromatin closing rapidly leads to full inaccessibility, a model supported by the datasets we89

analyzed (Fig. S3A and S3B). The single chromatin accessibility value (c) for a gene is calculated by summing90

all accessibility peaks linked to the gene; we tested multiple strategies for calculating c and found that they91

do not significantly change the results (Fig. S2). Each gene has distinct rate parameters describing its unique92

kinetics. We assume that the transcription rate is proportional to the chromatin accessibility c(t) and thus is93
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time-varying, and we model the distinct phases or states k that a cell traverses as its time t advances. There94

are two states each for chromatin accessibility (c) and RNA (u, s): chromatin opening, chromatin closing,95

transcriptional induction, and transcriptional repression. Each state begins at an associated switch time (tc,96

ti, and tr; chromatin opening begins at to = 0) and converges to an associated steady state value as t → ∞.97

The rate parameters and switch times are estimated for each gene using the three-dimensional phase portrait98

of (c, u, s) triplets observed across a set of single cells. The state k and time t for each cell are determined by99

projecting the cell to the nearest point on the curve described by the ODEs.100

The mathematical formulation of the MultiVelo model immediately leads to two important insights101

about the relationship between chromatin accessibility and transcription during the gene expression process.102

First, there are multiple mathematically feasible combinations of chromatin accessibility and RNA transcription103

states. That is, chromatin can be either opening or closing while transcription is being either induced or104

repressed. This means that multiple orders of events are possible: chromatin closing can occur either before105

or after transcriptional repression begins (Fig. 1B). We refer to the first ordering (chromatin closing begins106

before transcriptional repression) as Model 1 and the second ordering as Model 2. Note that there are other107

mathematically possible orderings where transcription occurs before chromatin opening, but these are not108

biologically plausible, and we do not find convincing evidence that they occur in the datasets we analyzed109

(Fig. S3C).110

The second insight from MultiVelo’s mathematical model is that two distinct types of discordance111

between chromatin accessibility and transcription can occur. At the beginning of the gene expression process,112

chromatin opens before transcription initiates. This creates a time interval during which c(t) is positive but113

u(t) and s(t) are both zero (Fig. 1C). We refer to this phenomenon as priming. In addition, at the end of the114

gene expression process, chromatin closing and transcriptional repression can occur at different times. This115

creates a time interval in which chromatin accessibility and gene expression move in opposite directions (Fig.116

1D), a phenomenon we refer to as decoupling. The lengths of time during which priming and decoupling occur117

depend on the specific rate parameters for each gene, and thus can vary widely across genes. In between118

priming and decoupling intervals, when chromatin is open and transcription is active, the system converges119

to a steady state in which chromatin and RNA levels are coupled; similarly, when transcription is inactive120

and chromatin is closed, the system is in a stable repression state. These are the two stable states that121

differentiated cells presumably occupy most of the time.122

MultiVelo infers and quantifies these phenomena of multiple orders and types of discordance through123

the ODE parameters estimated from single-cell data. First, the switch times (tc, ti, and tr) indicate when124

chromatin closing, transcriptional induction, and transcriptional repression begin. Thus, the lengths of priming125

and decoupling phases are estimated by the model: ∆tpriming = ti − to = ti and ∆tdecoupling = tr − tc.126

Furthermore, because each cell is assigned latent time (t) and latent state (k) values, MultiVelo determines127

whether each cell is in a primed, decoupled, or coupled phase for each gene (Fig. 1E). Thus, we refer to128

the four possible states as primed (red), coupled on (orange), decoupled (green), and coupled off (blue).129

Second, the parameters fitted by MultiVelo can be used to determine, for each gene, whether its observed130

(c, u, s) values are best fit by Model 1 or Model 2 (Fig. 1F-G). Intuitively, it is possible to distinguish these131

models because Model 1 genes achieve their highest accessibility values during the transcriptional induction132

phase, while Model 2 genes reach maximum accessibility during the transcriptional repression phase (Fig.133

1F-G).134

2.2 MultiVelo Accurately Fits Simulated Data135

We performed simulations to determine whether MultiVelo can recover rate parameters and switch times and136

distinguish Model 1 from Model 2 in the presence of noise (Fig. S1). The results indicate that MultiVelo137

accurately fits noisy data and can recover the underlying parameters. In addition, we found that MultiVelo138

distinguishes between Model 1 and Model 2 with high accuracy (98.5% of the simulated genes were correctly139

assigned based on model likelihood). We also confirmed that it is possible to distinguish Model 1 vs. Model 2140

genes before fitting the ODE parameters by simply comparing the number of cells in the top quantiles above141

and below the steady-state line (95.8% of the simulated genes were correctly assigned).142
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Fig. 1. Schematic of MultiVelo approach. A. System of three ordinary differential equations summarizes the
temporal relationship among c, u, and s values during the gene expression process. B. Two different models (abbreviated
as M1 and M2) describe two potential orderings of chromatin and RNA state changes. Chromatin accessibility starts to
drop before transcriptional repression begins in M1, and the reverse happens in M2. C. Priming occurs when chromatin
opens before transcription initiates. D. Decoupling occurs when chromatin closing and transcription repression begin
at different times (example shown for Model 1). E. Phase portraits predicted by the ODE model, showing the four
possible states each gene can occupy. Gene expression and chromatin accessibility are coupled in the orange and blue
states, and decoupled in the red and green states. F-G. Simulated (c, u, s) values for a Model 1 (F) and a Model 2
(G) gene.
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2.3 MultiVelo Distinguishes Two Models of Gene Expression Regulation in Embryonic Mouse143

Brain144

We first applied MultiVelo to 10X Multiome data from the embryonic mouse brain (E18). MultiVelo accurately145

fit the observed chromatin accessibility, unspliced pre-mRNA, and spliced mRNA counts across the population146

of brain cells, identifying 426 genes whose patterns fit the model with high likelihood. The resulting velocity147

vectors and latent time values inferred by MultiVelo accurately recover the known trajectory of mammalian148

cortex development. Specifically, radial glia (RG) cells in the outer subventricular zone (OSVZ) give rise to149

neurons, astrocytes, and oligodendrocytes12,13,14. Cortical layers are formed in an inside-out fashion during150

neuron migration with new-born cells moving to upper layers and older cells staying in deeper layers15. RG151

cells can divide into intermediate progenitor cells (IPCs) that serve as neural stem cells and further generate152

various mature excitatory neurons in different layers16,17.153

Incorporating both chromatin accessibility and gene expression improves the accuracy of velocity154

estimation compared to RNA-only models such as scVelo (Fig. 2A). In particular, the RNA-only model155

predicts biologically implausible backflows inside upper layer neurons (Fig. 2B). Cell cycle scores18,7 indicate156

that the developmental process begins with a cycling population (Fig. 2C) near RG, confirming the latent157

time inferred by MultiVelo. MultiVelo and scVelo use similar parameter settings and estimation algorithms,158

suggesting that the epigenomic data provides important additional information about the past and future159

states of a cell, beyond what is available from transcriptomic data alone.160

We expect the addition of chromatin accessibility to be most helpful for distinguishing cell states161

where chromatin remodeling and gene expression are out of sync, such as when a gene’s promoters and162

enhancers have begun to open but little transcription has occured. Two clear examples are Eomes and Tle4,163

canonical markers of IPCs and deep layer neurons19,20,21,22. RNA transcripts from these genes are highly164

expressed in only one or two specific cell types. The remaining cells are densely clustered near the origin of the165

(u, s) phase portrait, making it difficult for RNA velocity methods to distinguish their relative order (Fig. 2D).166

However, the chromatin accessibility of these genes begins to rise before the gene expression, revealing gradual167

changes that are not visible from gene expression alone. To put it another way, incorporating chromatin168

allows us to infer 3D velocity vectors indicating each cell’s predicted differentiation for each gene, better169

resolving cellular differences than the 2D phase portraits from RNA alone.170

MultiVelo identifies clear examples of genes that are best described by either Model 1 and Model 2171

in this dataset. Comparing the phase portraits of the genes assigned to Model 1 and Model 2 shows clear172

differences in the timing of maximum chromatin accessibility, consistent with the model predictions (Fig. 2E).173

Model 1 genes such as Satb2 reach maximum chromatin accessibility during the transcriptional induction174

phase (above the diagonal steady-state line on the phase portrait6), while the accessibility of Model 2 genes175

like Gria2 is highest during the transcriptional repression phase (below the diagonal steady-state line). The176

distinction between Model 1 and Model 2 is also evident when inspecting pairwise phase portraits of c, u and177

c, s (Fig. 2F). However, the models cannot be distinguished by inspecting the RNA information alone in a178

phase portrait of u, s; the distinction requires the additional information from chromatin.179

We further investigated the Model 1 and Model 2 genes to see if they have any characteristic180

properties. Gene ontology (GO) analysis showed that M2 genes are significantly enriched for terms related to181

the cell cycle, such as “positive regulation of cell cycle”, “mitotic cell cycle”, and “regulation of cell cycle phase182

transition”. Furthermore, Model 2 genes tend to achieve their highest spliced expression earlier in latent time183

than Model 1 genes (p = 9× 10−7, Wilcoxon rank-sum one-sided test; Fig. 2G). We hypothesize that cells184

may use Model 2 for rapid, transient activation of genes that do not need to maintain expression, whereas185

Model 1 may be useful for genes that need to be stably expressed.186

We next looked at how often each type of gene expression kinetics (induction only, repression only,187

Model 1, or Model 2) occurred. Most of the highly variable genes show both induction and repression phases188

(a complete trajectory), and for genes that only have partial trajectories, induction-only phase portraits189

appear more often than repression-only (29.5% vs 2.4% of variable genes; Fig. 2H). Note that, because Model190

1 and Model 2 make the same predictions during the induction phase, we cannot distinguish Model 1 vs.191
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Model 2 for induction-only genes. Among the genes with both an induction and repression phase, the majority192

are best explained by Model 1 (41.4% of variable genes), while the remainder are best fit by Model 2 (26.7%193

of variable genes). The fact that Model 1 is more common is consistent with the expectation that chromatin194

state changes generally precede mRNA expression changes.195

Whether genes have complete or partial kinetics, MultiVelo fits ODE parameters that describe196

the three dimensional trajectory of their chromatin accessibility and gene expression dynamics (Fig. 2I).197

By modeling a time-varying transcription rate, MultiVelo is able to better capture the different types198

of curvatures in the RNA phase portraits (Fig. S4B), whereas the RNA-only model cannot capture such199

curvature differences23. Genes with different model assignments and kinetics do not show significant differences200

in likelihood or total counts, indicating that technical artifacts do not account for the phenomena (Fig.201

S4C).202

2.4 MultiVelo Identifies Epigenomic Priming and Decoupling in Embryonic Mouse203

Brain204

An exciting property of MultiVelo is its ability to quantify the discordance and concordance between205

chromatin accessibility and gene expression within differentiating cells. Specifically, MultiVelo infers switch206

time parameters that identify the intervals during which each gene is in one of the four possible states (primed,207

coupled on, decoupled, and coupled off; see Fig. 1E). We next investigated whether these inferred states208

and time intervals can accurately capture the interplay between epigenomic and transcriptomic changes in209

embryonic mouse brain cells.210

MultiVelo identifies clear examples of each of the four states in the 10X Multiome data (Fig. 3A).211

For example, Grin2b is an induction-only gene with expression increasing toward the neuronal fate, so only212

induction states–primed and coupled on–were predicted for this gene (Fig. 3A, left). The phase portrait of213

Nfix, a Model 1 gene, possesses a complete trajectory shape and was labeled with all four states (Fig. 3A,214

middle). Conversely, Epha5 is a Model 2 gene, and its accessibility continues to rise throughout the whole215

time range without an observed closing phase, so it only occupies the coupled on and decoupled states (Fig.216

3A, right).217

The state assignments can be confirmed qualitatively by plotting accessibility (c) and expression218

(u and s) on UMAP coordinates and examining them side-by-side (Fig. 3B). Visually, we observe that the219

colors of the c and u UMAP plots match when the state assignments are coupled on or coupled off, and220

the differences in color occur when the assigned states are primed or decoupled. For example, the largest221

discrepancy between Robo2 RNA expression and chromatin accessibility occurs in the circled region, which222

is predicted to be in the decoupled state (Fig. 3B, top). Robo2 is a Model 1 gene; after chromatin closing223

begins, expression stays at a relatively high level, even though its accessibility has already experienced a224

drop toward the maturing neurons. Similarly, the accessibility of Gria2 differs from RNA in the decoupled225

state (Fig. 3B, middle). The chromatin accessibility of Gria2, a Model 2 gene, continues to increase beyond226

the transcriptional induction phase. Furthermore, the gene Grin2b shows a clear example of the chromatin227

priming phase, during which chromatin opens prior to RNA production (Fig. 3B, bottom).228

Plotting c, u, and s along the inferred time t for each gene allows us to inspect the state transitions in229

detail (Fig. 3C). First, the u(t) and s(t) values for Robo2 show two inflection points during the transcriptional230

repression phase, corresponding to the transitions from coupled on to decoupled states and from decoupled231

to coupled off states (Fig. 3C, top). This pattern suggests that the distinct effects of chromatin closing and232

transcriptional repression are visible in u(t) and s(t). In other words, MultiVelo predicts that for Robo2,233

chromatin closing decreases the overall transcription rate as RNA level begins to drop immediately following234

the chromatin switch. The subsequent switch of transcription rate from positive to zero causes a second235

inflection, leading to even more rapid down-regulation of RNA expression. The plots of c(t), u(t), and s(t)236

for Gria2 show the opposite trend: c continues to rise even after the switch to transcriptional repression,237

causing c and u to move in opposite directions during the decoupled state (Fig. 3C, middle). In Grin2b’s long238

priming phase, c(t) begins to rise while u(t) and s(t) stay at zero (Fig. 3C, bottom).239
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Fig. 2. MultiVelo reveals two distinct mechanisms of gene regulation. A. UMAP coordinates with stream
plot of velocity vectors (left) and latent time (right) from MultiVelo. B. Stream plot of velocity vectors estimated from
RNA only by scVelo. C. Cell cycle score indicating active dividing and cycling population (arrow). D. Chromatin
values better separate differentiating cells when chromatin opening precedes transcription. E. RNA phase portraits
(u vs. s) colored by c values show clear differences between Model 1 (left) and Model 2 (right) genes. F. Additional
phase portraits for the genes shown in E. G. Heatmaps of Model 1 and Model 2 gene expressions as a function of
latent time. Color represents smoothed spliced counts. Model 2 genes tend to achieve highest expression earlier in
latent time than Model 1 genes. H. Relative proportion of each type of kinetics across all fitted genes (n=865). Note
that genes with partial kinetics (induction-only or repression-only) cannot be identified as Model 1 or Model 2. I.
MultiVelo predicts 3D velocity vectors, which can be visualized as three-dimensional arrow plots.
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Because MultiVelo fits rate and switch time parameters for each gene, our analysis provides an240

opportunity to observe general trends in gene regulation. First, to determine whether the states of different241

genes are temporally coordinated, we counted the number of high-likelihood genes in each state per cell.242

There is indeed a cascade of state transitions through the neuronal clusters; multiple genes per cell are often243

simultaneously in the priming or decoupling states (Fig. 3D). Second, we looked for trends in the switch244

time and rate parameters. We placed each gene’s induction/repression cycle on a time scale between 0 and 1245

and found that the coupled on and coupled off states account for a larger proportion of the gene expression246

process than the primed and decoupled states (Fig. 3E). This makes sense, because even if genes experience247

some level of decoupling and time lag between the two modalities, chromatin accessibility and gene expression248

should still be generally correlated24,25,26,27. The median primed interval length is 21% of the overall time,249

and the median decoupled interval length is 19% of the overall time. Furthermore, we can rank genes by how250

long their priming and decoupling intervals are to find examples of discordance between accessibility and251

expression (Fig. S4D). Additionally, we found that chromatin generally opens and closes at similar rates:252

the median ratio between inferred chromatin closing rate (αcc) and chromatin opening rate (αco) is almost253

exactly 1 (Fig. 3F).254

2.5 MultiVelo Quantifies Epigenomic Priming in SHARE-seq Data from Mouse Hair255

Follicle256

A recent study9 used SHARE-seq to investigate the rapid proliferation of transit-amplifying cells (TAC) in257

hair follicle tissue, which give rise to several mature effector cells, including inner root sheath (IRS) and258

layers of hair shaft: cuticle, cortical layer, and medulla28. When applied to this dataset, MultiVelo correctly259

identified direction of differentiation from TACs to IRS and hair shaft cells (Fig. 4A), consistent with the260

diffusion map29 analysis reported in the initial paper9. Latent time predicted the TACs to be the root261

cells–agreeing with biological expectation–whereas velocity analysis using RNA alone failed to capture the262

hair-shaft differentiation direction (Fig. 4B). We observed significantly more induction-only and fewer Model263

2 genes in this dataset compared to mouse brain (Fig. 4C).264

One of the key results of the original SHARE-seq paper was the identification of genes where265

promoter and enhancer chromatin accessibility presaged gene expression, a phenomenon the authors termed266

“chromatin potential". The clearest example of this phenomenon was Wnt3, which encodes a paracrine267

signaling molecule and is important in controlling hair growth30. Indeed, UMAP plots colored by accessibility,268

and unspliced and spliced mRNA expression show a clear time delay across modalities (Fig. 4D). We next269

examined the other genes identified in the SHARE-seq paper. Our fitted models show that MultiVelo faithfully270

captured the dynamics of each gene and provide clear illustrations of priming and decoupling regions (Fig.271

4E). For instance, Wnt3 and Dsc1 show induction-only patterns and a priming state at the beginning while272

Cux1, Dlx3, and Cobll1 have both induction and repression states with a short decoupling period in the273

middle.274

To further quantify the temporal relationship between accessibility, unspliced expression, and spliced275

expression, we used dynamic time warping (DTW)31 to align the time series values for each molecular layer.276

DTW nonlinearly warps two time series to maximize their similarity and identify possible lagged correlation.277

DTW results on Wnt3 show that the optimal warping function maps each point on the c time series forward278

in time, consistent with chromatin accessibility preceding gene expression (Fig. 4F, top). Unspliced and279

spliced expression show a similar pattern but with a shorter time delay (Fig. 4F, middle). Because DTW280

maps each time point on the earlier curve to a time point on the later curve, the time lag at each point281

in time can be computed by subtracting the times of the matched points (Fig. 4F, bottom). This analysis282

shows that both the delay between c and s and the delay between u and s remain positive throughout the283

observed time. In addition, the delay between c and s is longer than the delay between u and s throughout284

the observed range, with the maximum c and s delay reaching 0.6 (out of a total time range of 1).285
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Fig. 3. MultiVelo quantifies epigenomic priming and decoupling in embryonic mouse brain A. 3D phase
portraits overlaid with MultiVelo fits (solid lines) and inferred states (colors). Each point represents the (c, u, s) values
observed for one gene in one cell. B. UMAP plots colored by c (Left), u (Middle, and state assignments (Right) for
genes predicted by MultiVelo to have significant priming or decoupling intervals. Regions with priming or decoupling
are circled. C. Observed values for c (Left), u (Middle) and s (Right) plotted as a function of latent time and
colored by state assignment. Vertical lines indicate inferred switch times. D. UMAP plots colored by the number of
genes in each cell assigned to each of the four states. E. Box plots summarizing the lengths of each of the four states
across all fitted genes. F. Box plot summarizing the ratio between chromatin closing rate αcc and opening rate αco

across all fitted genes.
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Fig. 4. MultiVelo quantifies epigenomic priming in mouse skin. A. UMAP coordinates with stream plot
of velocity vectors (Left) and latent time (Right:) from MultiVelo. B. Velocity streamplot from RNA-only model
(scVelo). C. Relative proportion of each type of kinetics across all fitted genes (n=960). D. UMAP coordinates colored
by c (Left), u (Middle) and s (Right) values for Wnt3. E. Examples of genes showing priming or decoupling.
Observed c (Left), u (Middle) and s (Right) values plotted as a function of latent time and colored by state
assignment. Vertical lines indicate inferred switch times. F. Dynamic time warping alignment of c and s values (Top)
and u and s values (Middle) forWnt3. Dotted gray lines indicate corresponding time points after alignment. Bottom:
instantaneous time lags computed by subtracting times of aligned time points from the previous two panels.
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2.6 MultiVelo Reveals Early Epigenomic and Transcriptomic Changes in Human286

Hematopoietic Stem and Progenitor Cells287

Hematopoietic progenitors consist of stem-like cell populations that rapidly and continuously differentiate288

into various intermediate and mature blood cell types with progressively reduced self-renewal potential as289

they enter more lineage-restricted states32,26.290

We cultured purified human CD34+ cells for 7 days, then sequenced them using the 10X Multiome291

platform. We obtained 11,605 high-quality cells post-filtering with both single-nucleus RNA-seq and ATAC-292

seq data. Using previously described marker genes33,34,35,36, we identified clusters resembling many of the293

populations of early blood development (Fig. S5A), including HSCs, multi-potent progenitors (MPP), lymphoid-294

primed multipotent progenitors (LMPP), granulocyte-macrophage progenitors (GMP), and megakaryocyte-295

erythrocyte progenitors (MEP). We also identified clusters resembling early granulocytes, erythrocytes,296

dendritic cells (DC), and platelets.297

Blood cell differentiation is a challenging system to model with RNA velocity23, but we find that298

incorporating chromatin information significantly improves the local consistency and biological accuracy of299

predicted cell directions (Fig. 5A). In comparison, velocity vectors inferred from RNA alone do not accurately300

reflect the known differentiation hierarchy of HSPCs. As with the mouse brain, MultiVelo predicts Model 1 to301

be more common than Model 2 in this dataset; induction-only is the third most common gene class (Fig. 5B).302

The median lengths of observed primed and decoupled intervals are shorter than those of the coupled phases303

(Fig. 5C). These patterns are consistent with what we observed in the mouse brain dataset, suggesting a304

possible common underlying biological mechanism.305

As with the mouse brain dataset, Model 2 genes in the HSPC dataset are significantly enriched306

for GO terms related to the cell cycle. The terms “regulation of mitotic cell cycle”, “regulation of mitotic307

metaphase/anaphase transition”, and “regulation of mitotic sister chromatid separation” are all enriched308

in Model 2 genes at FDR < 0.002. If we examine the separate trajectories toward myeloid, erythroid, and309

platelet lineages, many G2/M phase marker genes18 show clear Model 2 patterns, with highest chromatin310

accessibility after expression begins to drop (examples shown in Fig. 5D).311

We further investigated whether Model 1 and Model 2 genes differ in their histone modification312

profiles. Because classically defined subpopulations of HSPCs can be sorted using FACS, bulk ChIP-seq data313

are available for some of the cell subsets in our analysis. Using these bulk datasets37, we compared the levels314

of H3K4me3, H3K4me1, and H3K27ac in FACS-purified HSCs at chromatin accessibility peaks linked to315

Model 1 vs. Model 2 genes (Fig. S5C). We found that Model 2 genes show significantly higher H3K4me3316

(p = 0.016, one-sided Wilcoxon rank-sum test), a mark of active promoters. In contrast, Model 1 genes show317

somewhat higher H3K4me1 (p = 0.097), a primed enhancer mark. Both models show similar H3K27ac (an318

active enhancer marker) (p = 0.48) in HSCs.319

The gene models fit by MultiVelo reveal many examples of priming (Fig. 5E). Several terminal320

cell-type specific markers show induction-only dynamics with an increase in chromatin accessibility followed321

by increasing gene expression (AZU1 in GMP, HBD in erythrocytes, HDC in granulocytes, LYZ in DC322

progenitors, and PF4 in the megakaryocyte (MK) progenitors direction)38,36. In HSPCs, we again see some323

clear examples of long priming periods, such as in LYZ and PF4.324

Plotting velocities allows us to examine local chromatin and RNA trends in more detail (Fig. 5F).325

While the chromatin shows most potential (highest velocity) at the beginning for these genes, for RNA, stem326

cell populations such as HSC, MPP, MEP, and GMP show increased potential during their differentiation327

process towards one lineage. More differentiated cell types lose the ability to maintain such potential and328

gradually approach equilibrium (zero velocity), even though expression is still increasing somewhat. Note that329

even though the overall expression elevates, and velocities stay positive, local acceleration can still switch330

signs. MultiVelo is able to capture such rich information about the direction and rate of differentiation due to331

the joint mathematical modeling of chromatin and mRNA. Adding the chromatin significantly enriches the332

information available from RNA, as can be seen by inspecting RNA-only phase portraits (Fig. 5G).333
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Fig. 5. MultiVelo identifies priming in hematopoietic stem cells. A. UMAP coordinates with stream plot of
velocity vectors inferred by MultiVelo (Left) and an RNA-only model (scVelo). Cell types were annotated based on
marker gene expression (Fig. S5A). B. Relative proportion of each type of kinetics across all fitted genes (n=936).
C. Box plots summarizing the lengths of each of the four states across all fitted genes. D. Several G2/M cell cycle
phase markers show Model 2 expression pattern towards different lineages. E. Examples of genes showing priming or
decoupling. Observed c, u, and s values plotted as a function of latent time and colored by cell type. F. Corresponding
velocity vectors of the same genes as in E. Cell velocities and times have been smoothed by RNA neighbors. Note that
all velocity values are non-negative, and the lowest velocities are not necessarily at 0. G: RNA phase portraits of the
same genes as in E-F.
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2.7 MultiVelo Relates Transcription Factors, Polymorphic Sites, and Gene Expression in334

Developing Human Brain335

We next applied MultiVelo to a recently published 10X Multiome dataset from developing human cortex39. As336

with the embryonic mouse brain dataset, MultiVelo inferred velocity vectors consistent with known patterns337

of brain cell development (Fig. 6A). MultiVelo correctly inferred a cycling population of cells near radial glia338

as the cell type earliest in latent time. In contrast, velocity vectors inferred without chromatin information339

predicted incongruous backflows in intermediate progenitor cells and upper layer excitatory neurons (Fig.340

6B).341

As with the mouse brain dataset, we identified clear examples of both Model 1 and Model 2 genes342

(Fig. 6C), though fewer genes are predicted to follow Model 2 in the human dataset (Fig. 6D). Interestingly,343

MEF2C, a Model 2 gene, is predicted by the RNA-only model to have a mostly repressive phase, likely344

because the “width" of the u− s phase portrait is narrow. However, the addition of chromatin information345

allows the correct prediction that the gene has both induction and repression phases (Fig. S6A).346

A key benefit of MultiVelo is its ability to place cells onto a latent time scale inferred from both347

chromatin and expression data. We reasoned that latent time can identify time lags between expression and348

accessibility of loci other than just those immediately near a gene. For example, latent time can be used to349

calculate the length of time between the expression of a transcription factor (TF) and the accessibility of its350

binding sites (Fig. 6E and Fig. S6B-C). To do this, we used chromVar40 to calculate, for each cell, the total351

accessibility of the peaks with binding sites for each TF, subsetting to only the TFs variably expressed in the352

dataset. We then used dynamic time warping (DTW)31 to align the time series expression of each TF with353

the accessibility of its binding sites. This revealed a consistent pattern, in which the time of the highest RNA354

expression of the transcription factor preceded the time of corresponding high accessibility of downstream355

targets. UMAP plots colored by TF expression and binding site accessibility visually confirmed this pattern.356

The median time lag across all expressed TFs was positive, indicating TF expression precedes binding site357

accessibility in most cases (Fig. 6F). We cannot conclusively determine the mechanisms underlying these358

time lags without additional data. However, post-transcriptional and post-translational regulation, factors359

that affect the activity of chromatin remodeling complexes, and intercellular signaling could all contribute to360

this phenomenon.361

Latent time inferred by MultiVelo is also useful for relating the chromatin accessibility of disease-362

related variant loci to the expression of nearby genes. We collected a list of 6968 single-nucleotide polymor-363

phisms (SNPs) and their linked genes implicated by genome-wide association studies of psychiatric diseases,364

including bipolar disorder and schizophrenia. We further subset these SNPs to those overlapping chromatin365

accessibility peaks linked to the genes fit by our model, a total of 757 SNPs. Many of these variants occur near366

neuronal transcription factors and other developmentally important genes. We then calculated the chromatin367

accessibility, per cell, of a 400 b.p. window centered around each SNP. Using MultiVelo’s latent time, we368

determined the time of maximum accessibility for each SNP and the time lag between SNP accessibility369

and the maximum expression of its linked gene (Fig. 6G). This analysis revealed 3 major groups of SNPs,370

distinguished by whether their maximum accessibility occurred early or late in latent time and before or371

after the expression of the linked gene. UMAP plots of the SNP accessibility and linked gene expression372

confirm that these groups of SNPs have qualitatively distinct profiles. These groupings are significant for373

understanding the functions of the SNPs; for example, a SNP that is accessible only early in latent time likely374

plays a bigger role in developing cells than in fully differentiated cells. Similarly, a SNP whose accessibility375

precedes a gene’s expression is more likely to participate in regulating its expression than a SNP whose376

accessibility lags behind.377

3 Discussion378

In summary, MultiVelo accurately recovers cell lineages and quantifies the length of priming and decoupling379

intervals in which chromatin accessibility and gene expression are temporarily out of sync. Our model380

accurately fits single-cell multi-omic datasets from embryonic mouse brain, mouse dorsal skin, embryonic381

human brain, and human hematopoietic stem cells. Furthermore, our model identifies two classes of genes that382
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Fig. 6. MultiVelo infers epigenome and transcriptome dynamics in embryonic human brain. A. UMAP
coordinates with stream plot of velocity vectors (Left) and latent time (Right) from MultiVelo. B. Velocity streamplot
from RNA-only model (scVelo). C. RNA phase portraits (u vs. s) colored by c values show clear differences between
Model 1 (ROBO2 ) and Model 2 (MEF2C ) genes. Arrows indicate where chromatin closing begins. D. Relative
proportion of each type of kinetics across all fitted genes (n=747). E. Dynamic time warping alignment of TF gene
expression and the accessibility of predicted binding sites for four TFs. Dotted gray lines indicate corresponding
time points after alignment. Inset UMAPs colored by TF expression and motif accessibility are shown for two of the
TFs, EGR1 and PBX3. F. Quantiles of TF motif time lags inferred by DTW across all expressed TFs. The median
time lag across TFs is positive at most times, indicating that TF expression generally precedes motif accessibility. G.
Classification of SNPs according to the relationship between maximum accessibility time and time of maximum linked
gene expression. The contour lines indicate density, and 3 main groups of SNPs are visible. Inset UMAP plots are
shown for one example SNP from each group.
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differ in the relative order of chromatin closing and transcriptional repression, and we find clear examples of383

both mechanisms across all of the tissues we investigated. We anticipate that MultiVelo will provide insights384

into epigenomic regulation of gene expression across a range of biological settings, including normal cell385

differentiation, reprogramming, and disease.386

4 Methods387

4.1 Previous Approaches: RNA velocity388

In the original RNA velocity model, the proposed system of differential equations for RNA splicing is as389

follows390

du

dt
= α(t)− β(t)u(t) (1)

391

ds

dt
= β(t)u(t)− γ(t)s(t) (2)

where u is unspliced RNA, s is spliced RNA, and α, β, γ are transcription, splicing, and degradation rate392

respectively. Assuming constant transcription and degradation rates, the rate equation parameters can be393

normalized by β and are reduced to394

du

dt
= α− u(t) (3)

395

ds

dt
= u(t)− γ′s(t) (4)

In steady-state cell populations, the amount of spliced mRNA does not change: ds
dt

= 0. Therefore, γ′ = u
s

396

and α = u. The ratio γ′ can be calculated using a simple linear regression that fits cells with expression397

values in upper and lower quantiles. RNA velocity is then defined as v = ds
dt

.398

Bergen et al. developed a dynamical RNA velocity model (scVelo) by extending the original equations399

to include time and cell state latent variables, capturing transient states between steady states.400

du(t)

dt
= α(k) − βu(t) (5)

401

ds(t)

dt
= βu(t)− γs(t) (6)

where k indicates one of the four transcription states: induction (k = 1), repression (k = 0), and two associated402

steady states (k = ss1 and k = ss0).403

This system of differential equations can be solved analytically as follows:404

u(t) = u0e
−βτ +

α(k)

β
(1− e−βτ ) (7)

405

s(t) = s0e
−γτ +

α(k)

γ
(1− e−γτ ) +

α(k) − βu0

γ − β
(e−γτ − e−βτ ) (8)

where u0 and s0 are initial values, and τ = t − t
(k)
0 is the time interval from the start of the induction or406

repression state.407

The analytical solution converges to the steady-state values as τ −→ ∞:408

(u(k)
∞

, s(k)
∞

) = (
α(k)

β
,
α(k)

γ
) (9)

Because the equations involve the latent time variable τ , scVelo uses an expectation maximization algorithm409

to iteratively estimate latent time and the parameters of the ODE θ = (α(k), β, γ), as well as state starting410

time t
(k)
0 . Cells are assigned to latent times by approximately inverting the ODE solution.411
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4.2 Differential Equation Model of Gene Expression Incorporating Chromatin412

Accessibility413

To incorporate chromatin accessibility measurements into a differential equation model of gene expression,414

we assume that the rate of transcription for a gene is influenced by the accessibility of its promoter and415

enhancers. For simplicity, we model a single value c, which is the sum of accessibility at the promoter and416

linked peaks for a gene. Unlike gene expression, which can theoretically grow without bound, it is possible in417

principle for chromatin to be fully open or fully closed at a particular locus. Thus, we normalize chromatin418

accessibility to [0, 1], and assume that c approaches 1 with rate of change proportional to αco > 0 during the419

opening phase and approaches 0 with rate of change proportional to αcc > 0 during the closing phase. Our420

biological motivation for this mathematical formulation can be summarized as follows: impulses of remodeling421

signals cause chromatin to begin opening or closing rapidly at first. However, biochemical constraints such as422

the structures of histone complexes and their inter-molecular interactions gradually slow the rate of opening423

or closing so that c asymptotically approaches full accessibility or inaccessibility (Fig. S3A). Empirically, we424

find that the observed c(t) values in single-cell multi-omic dataset show this qualitative behavior (Fig. S3B).425

We define a new system of differential equations to reflect these modeling assumptions:426

dc(t)

dt
= −αccc(t) or

dc(t)

dt
= αco − αcoc(t) (10)

If we assume that the chromatin opening and closing kinetics are mirror images of each other, only a single427

chromatin rate parameter αc > 0 is required, and the system of equations simplifies to:428

dc(t)

dt
= kcαc − αcc(t) (11)

429

du(t)

dt
= α(k)c(t)− βu(t) (12)

430

ds(t)

dt
= βu(t)− γs(t) (13)

where431

kc =

{

1, if chromatin is opening

0, if chromatin is closing

As with the RNA velocity model, we define chromatin velocity as dc
dt

. The parameter kc allows for different432

dynamics during chromatin opening (k = 1) and chromatin closing (k = 0), analogous to how the transcription433

rate αk in the dynamical RNA velocity model varies between transcriptional induction and repression phases434

(k = 1 and k = 0). The system of differential equations can be solved analytically to obtain:435

c(t) = kc − (kc − c0)e
−αcτ (14)

436

u(t) = u0e
−βτ +

α(k)kc
β

(1− e−βτ ) +
(kc − c0)α

(k)

β − αc

(e−βτ − e−αcτ ) (15)

437

s(t) = s0e
−γτ +

α(k)kc
γ

(1− e−γτ )

+
β

γ − β
(
α(k)kc

β
− u0 −

(kc − c0)α
(k)

β − αc

)(e−γτ − e−βτ )

+
β

γ − αc

(kc − c0)α
(k)

β − αc

(e−γτ − e−αcτ )

(16)

where c0, u0, and s0 are the initial values of one of the four states, and τ = t− t0 is the time interval from438

the start of that state. Note that the analytical solution is the same even if we assume different opening and439

closing rates, if we simply use440

αc =

{

αco, if kc = 1

αcc, if kc = 0
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Similar to RNA velocity, the origin of the trajectory is (0, 0, 0) (whether observed or not), and initial441

values of the next state can be obtained by solving the expected values at the switch interval using equations442

for the previous state. The range of chromatin values is restricted to [0,1] to span from fully closed to fully443

open chromatin accessibility. As such, the hypothetical steady states for chromatin accessibility c
(kc)
∞ , as time444

approaches infinity on each interval, is simply 0 for closing state and 1 for opening state. The steady-state445

values for each state become446

(c(kc)
∞

, u(k)
∞

, s(k)
∞

) = (kc,
α(k)kc

β
,
α(k)kc

γ
) (17)

Because the model includes separate latent variables for chromatin state kc and RNA state k, there447

are multiple potential orders of chromatin remodeling states and transcription states. We label these possible448

orders as Model 0 (M0), Model 1 (M1), and Model 2 (M2):449

M0: (kc = 1, k = 0) −→ (kc = 0, k = 0) −→ (kc = 0, k = 1) −→ (kc = 0, k = 0)450

M1: (kc = 1, k = 0) −→ (kc = 1, k = 1) −→ (kc = 0, k = 1) −→ (kc = 0, k = 0)451

M2: (kc = 1, k = 0) −→ (kc = 1, k = 1) −→ (kc = 1, k = 0) −→ (kc = 0, k = 0)452

We reason that it is biologically implausible for chromatin to be closed when transcription initiates, because453

it is difficult or impossible for a gene with inaccessible chromatin to be transcribed. Thus, we implement the454

capability to fit Model 0 if desired, but fit only Model 1 and Model 2 by default. Model 1 and Model 2 are455

both biologically plausible, and these different orders have biologically meaningful interpretations. We refer456

to Model 1 as delayed transcriptional repression and Model 2 as delayed chromatin repression. Within each457

model, a trajectory is defined by a set of eight core parameters θ, including three phase switching time points458

(transcriptional initiation time ti, chromatin closing time tc, and transcriptional repression time tr) and five459

rate parameters (chromatin opening rate αco, chromatin closing rate αcc, transcription rate α, splicing rate β,460

and RNA degradation rate γ). There is also a fourth possible switch time to at which chromatin opening461

begins, but by excluding Model 0 we can assume that to = 0 for all genes.462

4.3 Model Likelihood463

We can formulate a probabilistic model to calculate the likelihood of the observed data for a gene under464

particular ODE parameters θ. To do this, we simply assume that the observations are independent and465

identically distributed, and that the residuals are also normally distributed with mean given by the deterministic466

ODE solution and diagonal covariance. Because we scale the c, u, and s values, we can further assume that467

the variance is the same in all directions. That is, if we define the ODE prediction as f(ti, θ) = x̂i = (ĉi, ûi, ŝi),468

then the distribution of the observed data xi = (ci, ui, si) for each gene is:469

xi ∼ N (f(ti, θ), σ
2
I) (18)

The negative log likelihood of all n observations is then470

− logL(θ) =
3

2
log(2πσ2) +

1

2nσ2

n
∑

i=1

∥xi − f(ti, θ)∥
2 (19)

We can infer the ODE parameters θ by maximum likelihood estimation, which is equivalent to471

minimizing the mean-squared error. The maximum likelihood estimate of σ2 is the sample variance of the472

residuals along each coordinate. We can then rank genes by their likelihood to identify the genes best fit by473

the ODE model. We can also determine which model best explains the c, u, s values observed for a particular474

gene by comparing the mean squared error (MSE) under Model 1 and Model 2.475

4.4 Parameter Estimation and Latent Time Inference by Expectation Maximization476

Both the cell times t and the ODE parameters are unknown, so we perform expectation-maximization to477

simultaneously infer them. The E-step involves determining the expected value of latent time for each cell given478
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the current best estimate of the ODE parameters. Because inverting the three-dimensional ODEs analytically479

is not straightforward, we perform this time estimation by finding the time whose ODE prediction is nearest480

each data point, selecting the time from a vector of uniformly spaced time points (see Implementation481

Detail section). In the M-step, we find the ODE parameters that maximize the data likelihood (equivalent to482

minimizing MSE) given the current time estimates for each cell. We use the Nelder-Mead simplex algorithm483

to minimize MSE.484

4.5 Model Pre-Determination and Distinguishing Genes with Partial and Complete485

Dynamics486

A gene does not have to complete a full trajectory within the measured cell population. In fact, for487

differentiating cells, we found that it is not uncommon for a gene to possess only an induction or repression488

phase, especially for differentially expressed cell-type marker genes. The three types of gene expression489

patterns (induction only, repression only, and complete trajectory) can be directly inferred before fitting a490

model, thus avoiding ambiguous assignments near RNA phase transition points.491

We used a combination of two methods for this purpose. The first method directly results from the492

assumptions of RNA velocity: given a steady-state fit, cells in the induction phase reside above the fitted493

steady-state line while cells in the repression phase reside below the steady-state line. Thus, the ratio of sum494

of squared distances (SSE) of cells on either side of the steady-state line is an indicator that can be used to495

determine the direction of the trajectory.496

The second method incorporates low-dimensional coordinates (e.g., from PCA or UMAP) as global497

information. We use UMAP coordinates by default, because these are often precomputed for visualization.498

Assuming that a gene possesses a complete trajectory, then at lower quantiles of its unspliced-spliced499

phase portrait, these cells are expected to have a bimodal pairwise distance pattern in the low-dimensional500

representation. Such a bimodal pattern indicates dissimilar populations, as some of these cells are in the501

early phase of induction, while the others have reached the late phase of repression. In contrast, for partial502

trajectories, cells at lower quantiles of the RNA phase portrait will have similar low-dimensional coordinates.503

Similarly, the unimodal or bimodal pattern can also be derived from the assumption that noise is normally504

distributed along the trajectory given by the ODE solution. We thus used a Gaussian mixture model to505

test if the distribution of pairwise distances among cells in a gene’s lower quantile region is unimodal or506

bimodal, designating the trajectory being partial or complete, respectively. In order to be classified as a507

complete trajectory, the distance of the means between two Gaussians under bimodal distribution must508

exceed the globally measured variation (one standard deviation by default) of all pair-wise distances on the509

low-dimensional coordinates for cells that express that gene, and the weight of the second, usually smaller510

Gaussian must pass a certain threshold (0.2 by default). The final assignment of partial or complete trajectory511

utilizes a combination of both methods (steady-state line ratio and bimodality), with the first method given512

priority.513

Additionally, whether a gene is better explained by Model 1 or Model 2 can be determined without514

actually fitting parameters under both models. To see how, note that the chromatin closing phase precedes515

transcriptional repression in Model 1 but succeeds transcriptional repression in Model 2. This implies that the516

highest chromatin accessibility values occur during the transcriptional induction phase for Model 1 genes but517

during the repression phase for Model 2 genes. Thus, the ratio of top chromatin values across the steady-state518

line can be used to determine whether each gene is best described by Model 1 or Model 2 before actually519

fitting the parameters. We implement this model pre-determination as a default to speed up computation,520

but users can alternatively opt to fit both models and compare their losses instead.521

4.6 Parameter Initialization522

Parameters specifically related to RNA (α, β, γ, and the RNA switch time interval) are initialized based523

on steady-state model as in scVelo. The rescaling factor for chromatin accessibility is initialized to 1, as the524

maximum observed accessibility is likely some value in-between 0 and 1. Other parameters can be found in525

Implementation Detail section below.526
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We also initialize a scale factor for u. Here we show that its value is closely related to the roundness527

of the U-S portrait under steady-state assumptions. First, u and s are both normalized to the range [0, 1].528

Next, points of steady-state rate are found on the induction phase529

α− βu1

βu1 − γs1
= γ

α− u1

u1 − γs1
= γ

α− u1 = γu1 − γ2s1

u1 =
α+ γ2s1
γ + 1

u1 =
a+ a2s1
a+ 1

(20)

where a is an unknown scalar and equals to the expected maximum of rescaled u. And similarly on the530

repression phase531

−βu2

βu2 − γs2
= γ

−u2

u2 − γs2
= γ

−u2 = γu2 − γ2s2

u2 =
γ2s2
γ + 1

u2 =
a2s2
a+ 1

(21)

Then if we assume u1 = u2 = 1
2 of maximum unspliced count, meaning the line connecting u1 and u2 is532

parallel to s-axis and at the same time, crosses the middle point of u (due to symmetry), then:533

a+ a2s1 = a2s2

s2 − s1 =
1

a

(22)

The rescale factor for u is therefore s2 − s1 around middle of u when s is normalized to range of [0, 1].534

u/(1/a) = a ∗ u and s are then used to initialize other parameters. Note that value of a is then further535

optimized during fitting.536

4.7 Implementation Detail537

A key implementation detail is how to estimate each cell’s latent time given the ODE solution from the538

current parameters. Inverting the ODE solution is analytically challenging due to the complexity arising from539

a system of 3 ODEs. Thus, rather than pursuing an exact or approximate analytical solution to calculate540

time, we simply maintain a set of anchor points uniformly spaced in time. For each cell, we then identify the541

nearest anchor point and assign the cell’s time to the time of the anchor point. In more detail, we calculate542

the (c, u, s) values of the ODE solution at a specified number of uniformly distributed time points. Then we543

calculate pairwise distances from the observed cells to these anchor points. The shortest distance represents544

the residuals to the inferred trajectory, and the time of the anchor point is assigned to the cell. We found545

that 500-1000 points are sufficient to capture the full trajectory dynamics. We restrict the time range to span546

from 0 to 20 hrs, consistent with scVelo’s default setting.547

After determining trajectory direction and model to fit, expression values are shifted so that the548

minimum value starts from zero, then they are scaled but not centered. RNA rate parameters are initialized549

based on the steady-state model: α is initialized as the mean of top-percentile u values to represent a gene’s550
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overall transcription potential7. The splicing rate β is initialized to 1–consistent with the steady-state model551

heuristic–and the degradation rate γ is obtained through linear regression of the top-percentile (u, s) values6.552

Chromatin rate αc is initialized as −log(1− chigh)/tsw3 where chigh is the mean accessibility of those cells553

with accessibility above average of all cells for that gene, and tsw3 is the chromatin closing switch time in554

the current grid search iteration. We initialize the RNA switch-off time using the explicit time-inversion555

procedure described in scVelo’s method. To initialize the RNA switch-on time and chromatin switch-off time,556

we search over a grid of times 2 hrs apart. The best initial switch time combinations are chosen based on557

mean squared error loss.558

To fit and optimize parameters, we minimize the negative log likelihood (equivalent to MSE loss)559

using the Nelder-Mead downhill simplex method41, implemented in the scipy minimize function. The Nelder-560

Mead algorithm performs a series of transformations on the model parameters, including reflection, shrinking,561

and expansion to improve the fitting results. When fitting induction-only trajectories, only the first two562

phases (chromatin priming phase and coupled induction phase) are aligned to observations. When fitting563

repression-only trajectories, only the later two phases are fitted. To improve convergence speed, we minimize564

with respect to subsets of parameters at any time, holding the others fixed. This is similar to a block565

coordinate descent strategy. Within each iteration, we first update parameters exclusive to c, then parameters566

related to u, and finally parameters affecting s. We found that 5-10 iterations are sufficient for convergence567

in most cases. To ensure that the switch times occur in the proper order (e.g., transcriptional induction568

precedes transcriptional repression), we opted to use switch intervals rather than switch time-points as actual569

parameters. Thus a model is guaranteed to be valid if all parameters are positive, with no other constraints570

needed.571

The trajectory constructed using a set of rate parameters is represented by a set of uniformly572

distributed anchor time-points. By using the uniform distribution, we assume cells have equal prior probability573

to be measured at any given time-point. The local sparsity of cells is determined by model parameters. We574

used KD-tree42 from scipy to search for the closest anchor to each observation and its corresponding distance.575

Using anchor points also allows the model to mimic the expected local sparsity of cells along the fitted576

trajectories by encouraging anchors to concentrate near where cells concentrate in order to reduce small577

distance offsets caused by discrete representation of the trajectory.578

After fitting the models, because genes with partial fitted trajectories result in a shorter total579

observed time-range–violating the assumption that all genes share one time scale–the rate parameter set580

and the switch times are scaled down and up, respectively, so that time ranges from 0 to 20 hr. (Note that581

multiplying the time and dividing the rates by the same constant will result in identical trajectories.) This582

ensures that the time parameters from all genes are comparable. Switch times are shifted backward in time if583

the observable start of the trajectory happens later than 0 hr.584

The optimized rate parameters and time assignments are plugged back into the system of ODEs to585

obtain velocities for chromatin accessibility, unspliced RNA, and spliced RNA for each cell. Our multi-omic586

velocity method is implemented in python. Many internal functions in our method have been accelerated587

with Numba. Distances, time assignments, and velocity vectors are smoothed among nearest neighbors to588

mitigate the effect of measurement stochasticity.589

Because multi-omic velocity is an upstream extension of the original RNA velocity model, it can be590

easily reduced to the RNA-only model by setting chromatin to be fully open (constant of 1) throughout the591

entire trajectory. Fitting this RNA-only model is then very similar to running the multi-omic model, but592

there will be no notion of the Model 1 and Model 2 distinction.593

4.8 Post-fitting Analyses594

Bergen et al.7 have developed great downstream analyses methods for RNA velocity in the scVelo toolkit.595

Because our method is a direct extension of the dynamical model to multi-omic data, many of scVelo’s596

methods can be applied with only a change of arguments. Our main method replaces the scVelo func-597

tions tl.recover_dynamics and tl.velocity. In this paper, scVelo’s tl.velocity_graph with total-normalized598
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spliced velocity vectors computed from our multi-omic method was used to obtain a transition matrix599

between cells based on cosine similarity between a cell’s velocity vector and expression differences. We used600

pl.velocity_embedding_stream to embed and plot velocity streams onto UMAP coordinates. Computation of601

global latent time among cells and genes is implemented in tl.latent_time.602

We performed Dynamic Time Warping using the dtw R package43,44. First, the accessibilities or603

expressions of cells were aggregated to 20 equal-sized bins based on either their gene time (for Wnt3 in the604

skin dataset) or latent time (for human brain motifs), and then maximum-normalized to the same range of605

[0, 1]. For motifs, a rolling mean of three-bin was applied to the RNA and motif counts to smooth the curves.606

We then added a zero to each end of the time series to ensure that the starting and ending values of each time607

series matched. Then we used dtw to find the best alignment–local for Wnt3 or global for motifs–between608

the two time series with Euclidean distance penalty. We then calculated time lags by simply subtracting the609

times of the aligned points. When many-to-one mappings occurred in global alignments, we averaged the610

time lags across all points mapped to the same time. For SNP time analysis, both the SNP accessibilities and611

log RNA expressions were aggregated to 100 equal-sized bins. We then calculated the time lag as the time612

difference between the time bins with highest values in the two modalities.613

4.9 Generation of Simulated Data614

1000 genes were simulated with various rate parameters, switch times, time sequences, and models (1 and 2).615

αc, α, β, and γ values were generated from multivariate log-normal distributions with mean -2, 2, 0, 0 and616

variance 0.5, 1, 0.3, and 0.3, with a small covariance of 0.01 between αc, α and β. Four switch intervals were617

random chosen from [1,4], [1,9], [1,9], and [1,9], and scaled to give a time range from 0-20 hrs. The model618

(Model 1 vs. Model 2) was sampled uniformly at random. Cell times were sampled from a Poisson distribution.619

Noise was added to each cell with diagonal covariances of [max(c)2/90, max(u)2/90, max(s)2/90]. The620

accuracy of loss-based and predetermined model decisions were separately computed.621

4.10 Preprocessing of data, weighted nearest neighbors, and smoothing622

10X embryonic E18 mouse brain Filtered expression matrix for ATAC-seq, feature linkage file, as well623

as position-sorted RNA alignment (BAM) file of E18 mouse embryonic brain data of around 5k cells were624

downloaded from 10X Genomics website (CellRanger ARC 1.0.0). Total, unspliced and spliced RNA reads625

were separately quantified using the Velocyto run10x command. The resulting loom file was read into python626

as an AnnData object and preprocessed with scanpy and scVelo to perform filtering, normalization, and627

nearest neighbor assignment. Next, clusters were computed using the Leiden45 algorithm. Cell-types were628

manually annotated based on expression of known marker genes46,47,48,49. We then excluded interneurons,629

Cajal-Retzius, and microglia cell populations for our downstream analyses, because these cell types are not630

actively differentiating. We then re-processed the raw counts of subset clusters, which consists of more than631

3k remaining cells, with scVelo. The unspliced and spliced reads were neighborhood smoothed (averaged) by632

scVelo’s pp.moments method with 30 principal components among 50 neighbors. The downloaded feature633

linkage file contains correlation information for gene-peak pairs of genomic features across cells. We first634

collected all distal putative enhancer peaks (not in promoter or gene body regions) with g 0.5 correlation with635

either promoter accessibility or gene expression that were annotated to the same gene or within 10kb of that636

gene. We then aggregated these enhancer peaks with 10X annotated promoter peaks for the corresponding637

genes, as a single chromatin accessibility modality to boost chromatin signal. These aggregated accessibility638

values were then normalized using the term frequency–inverse document frequency (TF-IDF) method24. (Note639

that during fitting, chromatin values are normalized to [0, 1], so using other total-count based normalization640

will produce identical results.) Due to the increased sparsity of ATAC-seq data, the neighborhood graph641

and clustering results based solely on peaks is often noisy and unreliable. Seurat group recently developed642

a method to compute neighborhood assignments for simultaneously measured multi-modality data in the643

Seurat V4 toolkit, which they called weighted nearest neighbor (WNN)50. The WNN method learns weights644

of each cell in either modality based on its predictive power by neighboring cells in each of the modalities, so645

that both RNA and ATAC information can be incorporated when assigning neighbors. We used 50 WNNs646

obtained from Seurat for each cell to smooth the aggregated and normalized chromatin peak values. Our WNN647
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analysis followed the recommended steps in Seurat V4 vignette for 10X RNA + ATAC. We thus obtained648

three matrices containing chromatin accessibility, unspliced, and spliced counts. Shared cell barcodes and649

genes were filtered among matrices and resulted in 3365 cells and 936 highly variable genes, these matrices650

were then used for dynamical modeling.651

SHARE-seq mouse skin (hair follicle) data The quantified ATAC-seq expression matrix, raw ATAC-652

seq fragments file, and cell annotations of SHARE-seq mouse skin dataset9 were downloaded from GEO:653

GSE140203. The RNA alignment BAM file as well as UMAP coordinates for TAC, IRS, Medulla, and Hair654

Shaft Cuticle/Cortex cell populations used in the SHARE-seq manuscript were obtained directly from the655

authors. We run Velocyto to quantify unspliced and spliced counts, and the RNA AnnData object was656

further preprocessed with scanpy/scVelo for the four cell types of interest. In R, the chromatin fragment657

file was used to construct a gene activity matrix by aggregating peaks onto gene coordinates using the658

GeneActivity function in Signac. Domain of regulatory chromatin (DORCs) is defined as chromatin regions659

that contain clusters of peaks that are highly correlated with gene expressions in SHARE-seq’s analysis. A list660

of computed DORCs coordinates was downloaded from its supplementary material section. These coordinates661

were output to the bed format, and we extracted fragments together with their corresponding cell barcodes662

that overlap with these DORCs regions. A peak expression matrix for DORCs was constructed with Liger’s663

makeFeatureMatrix method. The gene activity and DORCs counts were then merged in python to form a664

single chromatin modality. Similar to brain data, this matrix underwent TF-IDF normalization and WNN665

smoothing. A total of 6436 cells and 962 genes participated in the downstream analyses.666

Human hematopoietic stem and progenitor cell (HSPC) Purified human CD34+ cells were purchased667

from the Fred Hutch Hematology Core B. Freshly thawed cells were maintained at 37ºC with 5% CO2 in668

Stemspan II medium supplemented with 100 ng/ml stem cell factor, 100 ng/ml thrombopoietin, 100 ng/ml669

Flt3 ligand (all from Stemcell Technologies), and 100 ng/ml insulin-like growth factor binding protein 2670

(R&D Systems) for seven days. HSPCs were prepared according to the manufacturer’s “10X Genomics Nuclei671

Isolation Single Cell multiome ATAC + Gene Expression Sequencing” demonstrated protocol. Briefly, cells672

were washed in PBS supplemented with 0.04% BSA and sorted using the Sony SH800 cell sorter (Sony673

Biotechnologies). Nuclei were isolated following the “Low Cell Input Nuclei Isolation” sub-protocol and674

immediately processed using the Chromium Next GEM Single Cell Multiome + Gene Expression kit.675

10X filtered expression matrices, Velocyto computed unspliced and spliced counts, and feature676

linkage and peak annotation files from CellRanger ARC 2.0.0 were read into python to construct RNA677

and ATAC AnnData objects. Filtering, normalization, and variable-gene selection were performed following678

scVelo’s online tutorial. Because HSPCs are rapidly proliferating, we noticed systematic differences in cell679

cycle stage across the set of cells. The cell-cycle scores for both G2M and S phases, computed using scVelo’s680

tl.score_genes_cell_cycle function were then regressed out of the RNA expression matrices with scanpy’s681

pp.regress_out function (Fig. S5B). Note that the regression did not change unspliced and spliced counts.682

Then gene expression scaling was performed. ATAC peaks were aggregated and normalized using the same683

procedure as described for the 10X mouse brain. Joint filtering between RNA and ATAC resulted in 11605 cells684

and 1000 genes. RNA expression was smoothed by scVelo’s pp.moments with 30 principle components and 50685

neighbors. Leiden found 11 clusters. Cell types were assigned based on canonical HSPC markers51,52,53,54,55.686

The chromatin accessibility matrix was WNN smoothed with 50 neighbors computed using Seurat. Then687

the RNA and ATAC objects were input to our dynamical function with default parameters. We relaxed688

the likelihood threshold for velocity genes (used for computing the velocity graph) to 0.02 compared to the689

default of 0.05 due to noisiness of this dataset.690

To find complete genes in each of the lineages from HSC towards GMP (myeloid), erythrocytes, and691

platelets, we subset cells of each specific lineage and select known complete genes as those genes that have692

higher unspliced and spliced expressions in the progenitor populations leading to each of the terminal cell693

types. We then ran the model predetermination algorithm based on peak chromatin accessibility as described694

in the previous section. The genes predicted as Model 1 and Model 2 for each lineage are then merged with695
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duplicates removed, and we performed gene ontology enrichment analysis (GOrilla56) using all sequenced696

genes as the background set.697

Preprocessed bulk ChIP-seq peaks of H3K4me3, H3K4me1, and H3K27ac for CD34+ HSPC were698

downloaded from GSE7067737. Peaks were mapped to genes with Homer57. Known complete genes in the699

myeloid and erythroid lineages were grouped together, and predicted M1 and M2 genes were extracted. Scores700

of peaks associated with the same genes were aggregated. Wilcoxon rank-sum test was used to compute701

significance.702

Human cerebral cortex We obtained the multiome RNA, unspliced, spliced, and ATAC-seq peak files from703

the authors. The ATAC peak matrix contains consensus peaks of non-overlapping uniform 500bp length. After704

initial clustering, we observed a severe batch effect in one of the three samples. We thus decided to removed705

this third sample and perform all downstream analyses with the two remaining samples (dc2r2_r1 and706

dc2r2_r2). We re-named the clusters from the original paper as follows based on marker gene expression: RG707

→ RG/Astro, nIPC/GluN1 → nIPC/ExN, GluN3 → ExM, GluN2 → ExUp, GluN4 and GluN5 → ExDp47.708

Peaks were annotated to genes with Homer57. We considered peaks within 10000bp of transcription start709

sites as promoter peaks. A list of peak-gene links and correlations were downloaded from the supplementary710

material and aggregated to promoter peaks if the correlation exceeded 0.4. After filtering the RNA and ATAC711

matrices, 4693 cells and 919 genes were left and input to model fitting. TF motif profiles were computed with712

chromVAR40 on the JASPAR2020 database58 using all consensus peaks. The background-corrected deviation713

z-scores were used as normalized motif accessibilities, and the values were smoothed with WNN. Then TF714

genes appearing in the variable gene list (after internal filtering by the dynamical function) were extracted715

for time-lag analysis, which resulted in 30 known motifs. All mental or behavioural disorder associated SNPs716

(EFO_0000677) were downloaded from the Ensembl GWAS Catalog. The list contains 6968 SNPs, and filtering717

for overlap with consensus peaks linked to the top genes resulted in 757 SNPs. Each SNP’s accessibility was718

quantified as the count of all ATAC fragments that overlap a 400 b.p. bin centered on the SNP location. The719

accessibility matrix was normalized by library size and smoothed by WNN neighbors.720

5 Code and Data Availability721

MultiVelo is implemented in Python. The package is available on GitHub (https://github.com/welch-722

lab/MultiVelo) and PyPI. The newly sequenced 10X Multiome HSPC sample will also be uploaded to723

dbGAP and GEO.724
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