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ABSTRACT 15 

Recent developments in spatial transcriptomics (ST) technologies have enabled the profiling of 16 

transcriptome-wide gene expression while retaining the location information of measured genes 17 

within tissues. Moreover, the corresponding high-resolution hematoxylin and eosin-stained 18 

histology images are readily available for the ST tissue sections. Since histology images are easy 19 

to obtain, it is desirable to leverage information learned from ST to predict gene expression for 20 

tissue sections where only histology images are available. Here we present HisToGene, a deep 21 

learning model for gene expression prediction from histology images. To account for the spatial 22 

dependency of measured spots, HisToGene adopts Vision Transformer, a state-of-the-art method 23 

for image recognition. The well-trained HisToGene model can also predict super-resolution gene 24 

expression. Through evaluations on 32 HER2+ breast cancer samples with 9,612 spots and 785 25 

genes, we show that HisToGene accurately predicts gene expression and outperforms ST-Net 26 

both in gene expression prediction and clustering tissue regions using the predicted expression. 27 

We further show that the predicted super-resolution gene expression also leads to higher 28 

clustering accuracy than observed gene expression. Gene expression predicted from HisToGene 29 

enables researchers to generate virtual transcriptomics data at scale and can help elucidate the 30 

molecular signatures of tissues.	  31 
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INTRODUCTION 32 

Knowledge of the spatial organization of cells and the spatial variation of gene expression in 33 

tissues is important in understanding the complex transcriptional architecture of multicellular 34 

organisms. For example, in a heterogeneous tissue such as tumor, cancer cells can differ vastly 35 

from each other in their gene expression profiles and cellular properties due to residing in distinct 36 

tumor microenvironments. Recent advances in spatial transcriptomics (ST) technologies have 37 

made it possible to profile gene expression while retaining the spatial location information of the 38 

measured genes within tissues (1-6). Applications of the ST technologies in diverse tissues and 39 

diseases have transformed our views of transcriptome complexity (7-9). A popular ST technology 40 

is based on spatial barcoding followed by next-generation sequencing in which transcriptome-41 

wide gene expression is measured in gene capture locations, referred to as spatially barcoded 42 

spots. Such ST technologies include Spatial Transcriptomics (10), 10x Genomics Visium, SLIDE-43 

seq (11), SLIDE-seq2 (12), and many others (13,14). Data from such spatial barcoding-based 44 

technology typically include a high-resolution hematoxylin and eosin (H&E)-stained histology 45 

image of the tissue section from which the gene expression data are obtained. 46 

	47 

Although ST offers rich information, such data are still expensive to generate, which prevents the 48 

applications of ST in large-scale studies. On the other hand, H&E-stained histology images are 49 

easier and cheaper to obtain than ST and are routinely generated in clinics. It is desirable to 50 

leverage information learned from ST to predict gene expression from histology images. Such 51 

predictions can generate virtual ST data, which will enable the study of spatial variations of gene 52 

expression at scale. Indeed, several studies have shown that tumor related genes are highly 53 

correlated with histological features, suggesting that gene expression can be predicted from 54 

histology images. HE2RNA (15), a model based on the integration of multiple data modes, is 55 

trained to systematically predict gene expression profiles from whole-slide images without the 56 
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reliance on expert annotation. ST-Net (16) predicts spatially variable gene expression from 57 

histology images using a supervised convolutional neural network (CNN) trained from breast 58 

cancer ST data. 59 

 60 

While these methods have shown promising performance, they are not short of limitations. 61 

HE2RNA was developed for bulk RNA sequencing and lacks the ability to learn from ST data. 62 

While ST-Net is specifically designed for ST, it does not model the spatial location information of 63 

each measured spot in their CNN model. Since gene expression often displays local patterns, 64 

which are often manifested in the histology images, it is necessary to explicitly model the spatial 65 

location information when predicting gene expression. Although CNN-based models have 66 

dominated the field of computer vision for years, different parts of an image must be processed 67 

in the same way regardless of their position. This intrinsic bias in CNN makes it less ideal for ST 68 

data. However, this bias has been recently alleviated by Vision Transformer (17), which internally 69 

utilizes self-attention mechanism for divided image patches and has shown strong performance 70 

on many tasks, including medical image classification, segmentation (18), and registration (19). 71 

 72 

To utilize these advances in Vision Transformer, we developed HisToGene, an attention-based 73 

model that aims to predict gene expression from H&E-stained histology images based on the 74 

relationship between histological features and gene expression features learned from a training 75 

ST dataset. To account for the spatial dependency of measured spots in ST, HisToGene employs 76 

a modified Vision Transformer model, which can naturally model the positional relationship 77 

between spots through appropriate positional embedding. Compared to ST-Net (16), our 78 

attention-based model considers the spot dependency together with histological features when 79 

predicting gene expression. After model training, HisToGene can further predict super-resolution 80 

gene expression by averaging predicted gene expression from densely sampled histology image 81 

patches. To the best of our knowledge, it is the first time that gene expression can be predicted 82 
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at such high resolution based on histology images. Gene expression predicted from HisToGene 83 

enables researchers to generate virtual transcriptomics data at scale and can help elucidate the 84 

molecular signatures of tissues. 85 

 86 

MATERIALS AND METHODS 87 

Overview of HisToGene 88 

HisToGene takes a ST dataset, possibly with multiple tissue sections obtained from different 89 

subjects, as input for model training. For each tissue section in the ST data, it starts by extracting 90 

patches from the histology image according to the spatial coordinates and size of each spot in 91 

the ST data. The patch embedding and position embedding are then aggregated by learnable 92 

linear layers through a modified Vision Transformer model. Next, HisToGene utilizes multi-head 93 

attention layers to generate latent embeddings (Figure. 1a). With the well-trained model, 94 

HisToGene can predict gene expression for each sampled patch from the histology image in a 95 

test dataset that only has histology images. Furthermore, using a dense image patch sampling 96 

strategy, HisToGene can predict super-resolution gene expression with 4 times of the original 97 

patch/spot level resolution by default (Figure. 1b), but the resolution can be increased to an even 98 

higher level when using more densely sampled patches. 99 

	100 

Data preprocessing 101 

HisToGene involves a training step and a prediction step. The training step takes a ST dataset 102 

as input, which includes histology images, the gene expression data, and the spatial coordinates 103 

for the spatial barcodes. In the training stage, it uses the histology images and the spatial 104 

coordinates of the spatially barcoded spots as input, and the corresponding spatial gene 105 

expression data as labels. The spatial gene expression data are stored in an � × � matrix of 106 
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unique molecular identifier (UMI) counts with � spots and � genes. The coordinates of the spots 107 

are stored in an � × 2 matrix indicating the (�, �) location of each spot. 108 

 109 

For the histology image, we extract patches according to the size and location of each spot. We 110 

assemble all patches in a tissue section and flatten them into an � × (3 ×� ×�) matrix as the 111 

input for the Vision Transformer, where 3 is the number of channels, and � and � represent the 112 

width and height of the patch. In our experiment on the HER2+ breast cancer dataset (20), � =113 

� = 112 pixels, which correspond to the diameter of each spot in the ST data.  114 

 115 

For the spatial gene expression data, we first identify common genes across all tissue sections in 116 

the training ST data. We then select the top 1,000 highly variable genes in each tissue section 117 

and eliminate genes that are expressed in less than 1,000 spots across all tissue sections. The 118 

gene expression values in each spot are normalized such that the UMI count for each gene is 119 

divided by the total UMI counts across all genes in that spot, multiplied by 1,000,000, and then 120 

transformed to a natural log scale. 121 

 122 

The modified Vision Transformer model for gene expression prediction 123 

Model architecture 124 

Vision Transformer has been widely used in computer vision for image recognition and 125 

outperformed other state-of-the-art methods in the ImageNet Large-Scale Visual Recognition 126 

Challenge. The standard Vision Transformer model splits an image into a fixed number of 127 

patches. However, in ST data, the number of spots that cover the captured tissue area is not 128 

fixed. This property is similar to problems in natural language processing in which the lengths of 129 

sentences are also variant. To accommodate variable numbers of spots in ST, we redesign the 130 

encoding part of the Vision Transformer model with details described below. 131 
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	132 

Encoding of histology image and position features 133 

After preprocessing, we use a learnable linear layer �! to transform the histology image features 134 

from an � × (3 ×� ×�) matrix �! to an � × 1024 matrix �!, i.e., �! = �! ç �!. Another part of 135 

the input is the � × 2 matrix, which represents the (�, �) coordinates of each spot in the ST data. 136 

The �-coordinate information is represented by an � × 1 vector, which is transformed into a one-137 

hot encoding matrix �"  with size � × (� , where �  is the maximum number of � -coordinates 138 

among all tissue sections. For the HER2+ breast cancer dataset, � = 30 . Next, we use a 139 

learnable linear layer �" * R#$×&$'( to transform �" into an � × 1024 matrix �", i.e., �" = �" ç140 

�" . Similar transformations are performed for the �-coordinate vector to obtain an � × 1024 141 

encoding matrix �). Finally, we obtain the embedding matrix by summing up the image feature 142 

encoding matrix, the �-coordinate encoding matrix, and the �-coordinate encoding matrix, 143 

� = �! + �" + �). 144 

This embedding matrix is used as the input for the multi-head attention layers as described below. 145 

	146 

Multi-Head Attention layers 147 

The Multi-Head Attention module can automatically learn the attention for a "sequence". In 148 

language data, the "sequence" is sequence of words in a sentence. In ST data, the "sequence" 149 

is a sequence of spots/patches in a tissue section. The multi-head attention is a linear combination 150 

of multiple attention heads, 151 

MultiHead(�,�, �) = [/���&, & , /���*]�$, 152 

where �$ is a learnable 1024 × 1024 parameter matrix that is used to aggregate the attention 153 

heads, � is the number of heads, and �,�, � represent Query, Key, and Value. In our model, the 154 

input matrix is the � × 1024 embedding matrix � obtained in the previous step. The attention 155 

mechanism is defined as 156 
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head+ = 	Attention	O��+
, , ��+

- , ��+
.P	157 

	Attention(�,�, �) = softmaxR���

S�0T�	158 

where �+
, ,�+

- ,	and �+
. are all learnable 1024 × 1024 parameter matrices. The shape of the input 159 

for the attention is	� × 1024. In the attention operation, we have two parts, softmax U���
34"

V and	�. 160 

The former part is called Attention Map, whose shape is � × �. The latter part is the Value of the 161 

self-attention mechanism, where � = � = �. Each column of the Attention Map represents the 162 

attention weight contributed from other spots. The Attention Map provides useful information on 163 

how the model works. The result of the attention operation is an � × 1024 matrix. We use the 164 

output of each multi-head Attention layer as the input for the next layer and repeat this calculation 165 

sequentially. 166 

 167 

Details of the model implementation 168 

We implement the HisToGene model using PyTorch with the following hyper-parameters: learning 169 

rate is 10-5, the number of training epochs is 100, drop-out ratio is 0.1, the number of Multi-Head 170 

Attention layers is 8, and the number of attention heads is 16. 171 

 172 

Predicting gene expression at super-resolution 173 

The above trained Vision Transformer model can predict gene expression from histology images 174 

with spot level resolution as the training ST data only contain gene expression measured within 175 

spatially barcoded spots. However, since the histology image does not have tissue gaps, it is 176 

possible to densely sample histology image patches and use predicted gene expression from 177 

overlapping patches to estimate gene expression at a resolution that is higher than the original 178 

spot. This is analogous to natural language processing, where the Transformer is trained using 179 

short sentences but can make predictions for long sentences. In our case, the <sentence= is the 180 
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sequence of <spots=. Therefore, using the trained model, we can predict the expression for more 181 

<spots= within a tissue section.  182 

 183 

The key for our super-resolution gene expression prediction lies in the dense sampling scheme 184 

of the histology image patches. First, we uniformly sample patches from the tissue area according 185 

to a grid with size of each cell determined by the spot size in the training ST data. For example, 186 

in the HER2+ breast cancer dataset, each patch is 112×112 pixels. We sample patches from the 187 

histology image such that the entire tissue area is covered by non-overlapping patches of size 188 

112×112 pixels. By sampling the patches this way, each sub-patch is covered by 4 patches. Using 189 

the trained model, we can predict the gene expression for each sampled patch. For each sub-190 

patch, its gene expression is predicted by the average of the predicted expressions for the 4 191 

patches that cover it. Since the size of each sub-patch is only ¼ of the original patch, this sampling 192 

scheme can increase the gene expression resolution by 4 times. We note that our sampling 193 

scheme can be easily modified to increase gene expression prediction resolution to a higher level. 194 

 195 

RESULTS 196 

Overview of evaluations 197 

To evaluate the performance of HisToGene, we analyzed the HER2+ breast cancer dataset (20), 198 

which includes 36 tissue sections collected from 8 HER2+ breast cancer patients. We retained 199 

32 sections from 7 patients that have at least 180 spots per section in the analysis. To evaluate 200 

the gene expression prediction accuracy, we conducted leave-one-out (32-fold) cross validation. 201 

Specifically, for each section, we used the other 31 sections to train the model and make spatial 202 

gene expression predictions for that section. To select genes for prediction, we first considered 203 

the top 1,000 highly variable genes for each section and then filtered those that were expressed 204 

in less than 1,000 spots across all tissue sections. This filtering left with 9,612 spots and 785 205 
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genes for model training. We compared HisToGene with ST-Net for gene expression prediction. 206 

Since the source codes of ST-Net released by the authors are not maintained, we were not able 207 

to analyze the HER2+ breast cancer data using their codes. For comparison, we used our own 208 

implementation of ST-Net. 209 

	210 

HisToGene enables super-resolution gene expression prediction and consistently 211 

outperforms ST-Net 212 

Since there are no tissue gaps in a histology image, it is possible to densely sample patches from 213 

the image, predict gene expression for each sampled patch, and then use the average of the 214 

predicted expression from overlapping patches to predict the gene expression for the overlapping 215 

tissue area. This allows us to increase the gene expression prediction resolution as the 216 

overlapping area among patches is much smaller than the size of the original patch. By averaging 217 

predicted gene expression across spatially close patches also reduces prediction uncertainty. 218 

Based upon this intuition, we implemented a super-resolution gene expression prediction 219 

algorithm in which the modified Vision Transformer in HisToGene can take image patches with 220 

variable lengths as input. With the patterned dense sampling of image patches shown in Figure 221 

1b, we can increase the gene expression prediction resolution by 4 times. Using a similar 222 

patterned image patch sampling scheme, the gene expression prediction resolution can be 223 

increased by 9 times, 25 times, or higher. 224 

 225 

For illustration, we sampled in the image patches such that the gene expression resolution 226 

prediction is increased by 4 times. An ideal super-resolution gene expression prediction method 227 

should increase the gene expression resolution while retaining the original expression pattern at 228 

the patch level, i.e, spot level, as this will ensure no artificial patterns are introduced during the 229 

super-resolution gene expression prediction. To evaluate whether HisToGene has this property, 230 

we obtained the patch/spot level gene expression from the super-resolution expression predicted 231 
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by HisToGene. Specifically, we summed up the expression values for 4 adjacent sub-patches to 232 

<recover= the patch/spot-level gene expression. Results obtained from this super-resolution 233 

expression <recovered= approach were denoted by HisToGene*. We conducted the leave-one-234 

out cross validation for the 32 tissue sections in the HER2+ breast cancer dataset. For each tissue 235 

section, we calculated the correlations between the observed gene expression and the predicted 236 

gene expression. Figure 2a shows that among the 32 tissue sections, HisToGene* predicted 237 

patch/spot level gene expression has significantly higher correlations with the observed spot-level 238 

gene expression than HisToGene for 19 (59%) sections, whereas HisToGene has significantly 239 

higher correlations than HisToGene* for 6 (19%) sections. These results indicate that with the 240 

densely sampled image patches as input in the trained prediction model, we can not only increase 241 

gene expression prediction resolution, but also the patch/spot-level gene expression prediction 242 

accuracy. Such increased accuracy is due to the flexibility of the attention mechanism in handling 243 

longer sequences of image patches, which makes the prediction benefit from information in 244 

additional batches included in the longer sequences. The increased accuracy is also due to the 245 

use of average predicted expression across nearby patches as the random error of the mean is 246 

less than that of an individual prediction.  247 

 248 

We also performed gene expression prediction using ST-Net but found its predictions generally 249 

yielded low correlations with the observed expression. In fact, for most of the tissue sections, the 250 

mean correlations are around zero, and the correlations are not much better even for patient B in 251 

which both HisToGene and HisToGene* yielded much higher correlations. We suspect the 252 

relatively poor performance of ST-Net is due to its failure in considering the spatial dependency 253 

of spots when building the prediction model. As such, patches obtained from different patients are 254 

treated in the same way. As reported in the original study (20), there are strong subject-to-subject 255 

differences among patients, thus ignoring such differences would lead to less accurate prediction. 256 

By contrast, the modified Vision Transformer in HisToGene considers a tissue section as the 257 
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modeling unit, thus the histology and gene expression relationships are learned within each tissue 258 

section, which helps alleviate the subject-to-subject differences among patients. These results 259 

demonstrate the importance of considering the spatial dependency of spots when training the 260 

prediction model. 261 

 262 

To show that both HisToGene and HisToGene* can predict biologically meaningful information, 263 

we conducted gene set enrichment analysis using fgsea (21). Inspired by iPath (22), which sorts 264 

genes by positive values, for each approach, we ranked the genes by the average -log10 p-values 265 

across all 32 tissue sections, where the p-value for each tissue section was obtained by testing 266 

whether the correlation between the observed and the predicted expression values was 267 

significantly different from zero. We used the top 100 genes to calculate the enrichment score for 268 

each pathway from the C2 canonical pathways in MSigDB (23). Then, the significance for each 269 

pathway was assessed by permutations (n=10,000) of the gene list. The enrichment analysis 270 

results demonstrate that the highly correlated genes in HisToGene and HisToGene* are enriched 271 

in breast-cancer-related pathways (Figure 2b). For example, HisToGene*9s top enriched 272 

pathways include human thyroid stimulating hormone pathway and REACTOME integration of 273 

energy metabolism pathway. Previous studies have reported that thyroid hormones are 274 

associated with the risk of breast cancer (24), and energy metabolism is a hallmark of cancer 275 

cells and links with the breast cancer brain metastases (25). By contrast, the top enriched 276 

pathways for ST-Net show less relevance with breast cancer.  277 

 278 

Visualization of the predicted gene expression 279 

To gain a better understanding of the predicted gene expression, we next selected the top 280 

predicted genes obtained from each method for visualization. For each gene in a tissue section, 281 

we calculated the correlation between the observed and the predicted expression values and 282 

tested whether the correlation is significantly different from zero. We then ranked the genes by 283 
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the average -log10 p-values across all 32 tissue sections. Figure 3a (Supplementary Table 1) 284 

shows the top 4 genes (GNAS, MYL12B, FASN, and CLDN4) predicted by HisToGene, where 285 

the expression for the best predicted tissue section by HisToGene was visualized. GNAS (mean 286 

R = 0.32) encodes the stimulatory G-protein alpha subunit and regulates the production of the 287 

second messenger cyclic AMP. Elevated expression of GNAS has been found in several tumors 288 

including breast cancer and promotes breast cancer cell proliferation (26). MYL12B (mean R = 289 

0.27) encodes a myosin regulatory subunit that plays an important role in the regulation of non-290 

muscle cell contractile activity via its phosphorylation. A recent study showed that the activity of 291 

myosin II in cancer cells drives tumor progression, where the activation of myosin II in non-muscle 292 

cells is regulated by phosphorylation of a regulatory light chain such as MYL12B (27). FASN 293 

(mean R = 0.27) encodes a key enzyme that is involved in the biogenesis of membrane lipids in 294 

proliferating cells and is closely associated with the occurrence and development of tumors (28). 295 

Inhibition of FASN induces apoptosis in breast cancer cells, making it a potential therapeutic 296 

target for breast cancer (29). CLDN4 (mean R = 0.26) encodes a tight junction protein that is 297 

required for cell adhesion. It is frequently expressed in primary breast cancers, especially in their 298 

metastases, thus is a promising membrane bound molecular imaging and drug target for breast 299 

cancer (30-32). As a comparison, we also included the predicted gene expression obtained from 300 

HisToGene*, the super-resolution gene expression (denoted by HisToGene_SR), and ST-Net. 301 

Although the mean -log10 p-values for genes obtained from HisToGene* are not as significant as 302 

HisToGene, the general predicted expression patterns are similar to HisToGene, and for the 303 

selected tissue sections, the correlations are similar in magnitude to HisToGene. By contrast, the 304 

ST-Net predicted expression shows little correlation with the observed expression. 305 

 306 

Figure 3b (Supplementary Table 2) shows the top 4 genes (GNAS, FN1, MYL12B, and FASN) 307 

predicted by HisToGene*, 3 of them (GNAS, MYL12B, and FASN) were also predicted by 308 

HisToGene as the top genes. FN1 is a gene that shows higher correlation in HisToGene* (mean 309 
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R = 0.24) than in HisToGene (mean R = 0.22). FN1 encodes fibronectin, a glycoprotein that is 310 

present in a soluble dimeric form in plasma, and in a dimeric or multimeric form at the cell surface 311 

and in extracellular matrix. Fibronectin is involved in cell adhesion and migration processes, and 312 

high expression of FN1 is associated with breast cancer invasion and metastasis (33). 313 

Interestingly, although FASN is among the top 4 best predicted genes by both HisToGene* (mean 314 

R = 0.24) and HisToGene (mean R = 0.27), the best predicted tissue sections are different. For 315 

the best tissue section predicted by HisToGene* (R = 0.47), the HisToGene correlation is 0.42, 316 

only slightly worse than HisToGene*, whereas the correlation obtained from ST-Net prediction is 317 

close to 0. In general, we found that HisToGene* has higher correlations than HisToGene, 318 

whereas the correlations for ST-Net are often close to 0. For GNAS, FN1, MYL12B, and FASN, 319 

we further examined the super-resolution gene expression prediction, which revealed fine grained 320 

spatial expression patterns that are missed in the original patch/spot level gene expression 321 

prediction. 322 

 323 

As a comparison, we also visualized the top 4 genes (IGHM, PPP1R1B, IGLC2, and PNMT) 324 

predicted by ST-Net (Supplementary Figure 1 and Supplementary Table 3). The average 325 

correlations for these 4 genes are much lower than the top 4 genes predicted by HisToGene and 326 

HisToGene*. 327 

  328 

HisToGene predicted gene expression can recover pathologists annotated spatial 329 

domains 330 

Next, we examined if the predicted gene expression can be used to recover the pathologists 331 

annotated spatial domains. The HER2+ breast cancer data included 6 tissue sections with 332 

pathologists9 annotation, which allowed us to further evaluate if the predicted gene expression 333 

patterns are biologically meaningful. If the predictions are useful in revealing the underlying 334 

biology, we would expect the clusters obtained using the predicted gene expression to agree well 335 
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with the pathologists annotated spatial domains. We performed K-Means clustering using the 336 

predicted gene expression obtained from HisToGene, HisToGene*, and ST-Net. The clustering 337 

results were evaluated using Adjusted Rand Index (ARI) by treating pathologists annotated spatial 338 

domains as the ground truth. As a comparison, we also performed clustering analysis using the 339 

observed gene expression for each tissue section.  340 

 341 

Figure 4 shows the clustering results and the corresponding ARIs for each method and the results 342 

obtained using the observed gene expression. Among the 6 tissue sections with pathologists9 343 

annotation, HisToGene* yielded the highest ARIs for 4 sections (B1, C1, D1, and F1), and for 344 

sections D1 and F1, the HisToGene*9s ARIs are much higher than those obtained from the 345 

observed gene expression and ST-Net. For E1, ST-Net had the highest ARI. For G2, the observed 346 

gene expression had the highest ARI. Clustering analysis using observed gene expression is a 347 

commonly conducted task in spatial transcriptomics (34-36). Interestingly, HisToGene* had even 348 

higher ARIs than the observed gene expression for 4 out of the 6 tissue sections. Since 349 

HisToGene* is based on the aggregated super-resolution gene expression, we next performed 350 

clustering analysis using the super-resolution gene expression, denoted by HisToGene_SR. 351 

Although we cannot directly calculate the ARIs for HisToGene_SR, visual examination indicates 352 

that the clustering results agreed well with the pathologists annotated spatial domains, with the 353 

tumor region clearly separated from the background. 354 

	355 

Understanding the HisToGene prediction with attention map 356 

It is intriguing that the predicted super-resolution gene expression led to higher clustering ARIs 357 

than the observed gene expression. We next sought to investigate how the super-resolution gene 358 

expression prediction works. Attention is a key feature in HisToGene9s modified Vision 359 

Transformer model. To understand how attention contributes to the HisToGene predicted gene 360 
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expression, we examined the attention maps. HisToGene9s modified Vision Transformer model 361 

has 8 layers and each layer has 16 heads, leading to 128 attention maps. For visualization, we 362 

randomly chose the attention map from the first, fourth, and eighth layer, which represent the 363 

shallow, median, and deep layers.	Figure 5 shows three representative attention maps when 364 

HisToGene predicts the expression for a given target spot (the yellow spot in each plot) under the 365 

original spot level resolution and the super-resolution settings. The results indicate that 1) in the 366 

shallow layer, the modified Vision Transformer model mainly pays attention to the target spot; 2) 367 

in the median layer, the model starts to pay attention to some distant spots, and the pattern is 368 

especially clear in the super-resolution setting; 3) in the deep layer, the model pays more attention 369 

to distant spots that are tumor related. During the model training process, HisToGene can 370 

adaptively change the scale of weights when the input sample size changes; for example, the 371 

average weight of the super-resolution attention is about 1/10 of the original-resolution attention. 372 

It is also evident that in the super-resolution setting, the model utilizes more refined information 373 

provided by the neighboring patches. The difference in the attention weights for input with different 374 

sample sizes explains why the gene expression prediction for the same image patch can be 375 

different when the number of patches is different.	376 

	377 

DISCUSSION 378 

In this paper, we presented HisToGene, a deep learning method that predicts super-resolution 379 

gene expression from histology images in tumors. Trained in a ST dataset, HisToGene models 380 

the spatial dependency in gene expression and histological features among spots through a 381 

modified Vision Transformer model. HisToGene has been evaluated in 32 heterogeneous HER2+ 382 

breast cancer tissue sections with 9,612 spots and 785 genes obtained from different patients. 383 

Our results consistently show that HisToGene outperformed ST-Net in the spot level gene 384 

expression prediction. Additionally, HisToGene can predict gene expression at super-resolution, 385 
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a feature that ST-Net does not have. To the best of our knowledge, HisToGene is the first method 386 

for super-resolution gene expression prediction using histology images. The subsequent 387 

clustering analysis using predicted gene expression also shows that HisToGene consistently 388 

yielded higher ARIs than ST-Net, and for many of the tissue sections that we analyzed, the ARIs 389 

were even higher than those obtained from the observed gene expression. This is likely due to 390 

the use of attention, which has the ability to naturally learn from neighborhood. Since the predicted 391 

gene expression is based on the histology images, which do not have tissue gaps, it is possible 392 

that the consideration of all captured tissue areas in the prediction helped recover expression 393 

patterns that are not captured in the observed gene expression. 394 

 395 

Compared to ST-Net, HisToGene benefits from the consideration of spots9 dependency and the 396 

advanced network architecture, which makes HisToGene robust to heterogeneity among patients. 397 

Being robust to batch effects, especially the systematic differences between the training and 398 

testing data is an advantage of HisToGene because due to experimental and technical 399 

constraints, batch effects are often unavoidable in real studies. HisToGene is robust to 400 

heterogeneity among patients due to the following reasons. First, the multi-head attention matrix 401 

in HisToGene utilizes the histological features from all spots, implying that when predicting the 402 

gene expression for one spot, image features from neighboring spots also contribute. 403 

Furthermore, the attention matrix is updated during the training stage, which ensures appropriate 404 

adjustment of the neighboring spots9 contributions. Second, HisToGene predicts the gene 405 

expression for all spots within a tissue section together. These mechanisms enable HisToGene 406 

to model the relationship between histology images and the spatial gene expression data for an 407 

entire tissue section, hence minimizing batch effects in histology and gene expression features 408 

when learning their relationships. By contrast, CNN-based models such as ST-Net consider each 409 

spot independently, making these models more sensitive to batch effects. 410 

 411 
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HisToGene is computationally fast. To show the computational advantages of HisToGene, we 412 

compared its running time for training 31 tissue sections of HER2+ dataset with ST-Net. Our 413 

experiment was conducted on CentOS 7 with 24 cores Intel Xeon 8260 CPU and a single NVIDIA 414 

V100 (32GB) GPU. On overage, it took HisToGene 11 minutes but 27 minutes for ST-Net. 415 

 416 

We mainly focused our analyses on the HER2+ breast cancer dataset in this paper, because this 417 

dataset involves a relatively large number of tissue sections and patients. It provides an 418 

opportunity to evaluate the performance of HisToGene and ST-Net in the presence of patient 419 

heterogeneity. To show the generalizability of HisToGene to other data, we also analyzed a 420 

cutaneous squamous cell carcinoma (cSCC) dataset (37), which includes 12 tissue sections 421 

obtained from 4 patients, with each patient having 3 sections. Unlike the HER2+ breast cancer 422 

dataset, where all tissue sections were generated using the same ST platform, the 12 tissue 423 

sections in the cSCC data were generated using a mixture of the relatively low-resolution Spatial 424 

Transcriptomics and the more recent 10x Visium platforms. Using the same filtering criteria as the 425 

HER2+ breast cancer dataset, 6,630 spots and 134 genes remained for model training and 426 

prediction in the cSCC dataset. We also conducted the leave-one-out cross-validation experiment 427 

in this dataset, and the results are shown in Supplementary Note 1. Due to the relatively small 428 

number of tissue sections and patients and the platform heterogeneity among the 12 tissue 429 

sections, neither HisToGene nor ST-Net can reliably predict the gene expression with high 430 

accuracy. However, HisToGene still yielded higher prediction accuracy than ST-Net. While the 431 

requirement of a relatively large training set is a potential limitation of deep learning-based models 432 

such as HisToGene, we anticipate that as more and more training ST data become available in 433 

the near future, the performance and robustness of HisToGene can be further improved. 434 

 435 
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FIGURE LEGENDS 450 

Figure 1. Workflow of HisToGene. a, The modified Vision Transformer in HisToGene starts from 451 

sequences of extracted patches from histology images in the training ST dataset. Added by the 452 

position embedding obtained from the spatial coordinates of the spots, the patch embedding goes 453 

through the Multi-Head Attention layers and is transformed by a linear layer. The final output of 454 

the modified Vision Transformer is the spatial gene prediction. This modified Vision Transformer 455 

will be trained based on the observed gene expression in the training ST dataset.  b, Using the 456 

trained model, HisToGene can predict super-resolution gene expression. HisToGene first predicts 457 

gene expression for each sampled patch from the histology image in a test dataset that only has 458 

histology images. Using a dense image patch sampling strategy, HisToGene then predicts the 459 

super-resolution gene expression by averaging the predicted gene expression among 460 

overlapping patches. With the patch sampling strategy shown in b, the resolution is increased 4 461 

times, but the resolution can be increased to an even higher level when using more densely 462 

sampled patches. 463 

 464 

Figure 2. Evaluation of gene expression prediction for the HER2+ breast cancer dataset. a, 465 

Boxplot of the Pearson correlations between the predicted and observed gene expression for the 466 

785 genes predicted by HisToGene, HisToGene*, and ST-Net. HisToGene* is based on the 467 

recovered patch/spot level gene expression obtained from the super-resolution gene expression 468 

prediction, denoted by HisToGene_SR. b, Enrichment analysis for the top 100 predicted genes 469 

by HisToGene, HisToGene*, and ST-Net. 470 

 471 

Figure 3. Visualization of the top predicted genes in the HER2+ breast cancer dataset. a, 472 

Relative expression of the top 4 genes predicted by HisToGene. The genes were selected based 473 

on the average -log10 p-values across all 32 tissue sections, where the p-value for each tissue 474 
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section was obtained by testing whether the correlation between the predicted and observed gene 475 

expression was significantly different from zero. For each of the 4 genes, the tissue section that 476 

had the smallest p-value by HisToGene was selected for visualization. HisToGene* was based 477 

on the recovered patch/spot level gene expression obtained from the super-resolution gene 478 

expression prediction, denoted by HisToGene_SR. b, Relative expression of the top 4 genes 479 

predicted by HisToGene*. The genes were selected based on the average -log10 p-values across 480 

all 32 tissue sections, where the p-value for each tissue section was obtained by testing whether 481 

the correlation between the predicted and observed gene expression was significantly different 482 

from zero. For each of the 4 genes, the tissue section that had the smallest p-value by 483 

HisToGene* was selected for visualization. HisToGene* was based on the recovered patch/spot 484 

level gene expression obtained from the super-resolution gene expression prediction, denoted by 485 

HisToGene_SR. 486 

 487 

Figure 4. Clustering analysis using predicted gene expression in the HER2+ breast cancer 488 

dataset. 6 of the 32 tissue sections had pathologists9 annotation which allowed us to evaluate 489 

whether the predicted gene expression can reveal the pathologists annotated spatial domains. 490 

The first column shows the histology image with the pathologists9 annotation, where the red lines 491 

represent invasive cancer, green lines represent breast glands, yellow lines represent immune 492 

infiltrate, and the blue lines represent connective tissue. The remaining columns show the 493 

clustering results generated from the observed, ST-Net predicted gene expression, HisToGene 494 

predicted gene expression, HisToGene* predicted gene expression, and HisToGene_SR using 495 

K-Means clustering algorithm (k=4). Clustering accuracy was evaluated by the Adjusted Rand 496 

Index (ARI) between the pathology annotations and the clusters obtained from the predicted gene 497 

expression. 498 
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 499 

Figure 5. Attention maps in HisToGene9s modified Vision Transformer. Displayed are the 500 

attention weights in the modified Vision Transformer when making gene expression predictions 501 

for the target spot (the yellow spot in each figure) in the HER2+ breast cancer dataset. The first 502 

row shows the attention maps when predicting the gene expression at the original patch/spot 503 

level. The second row shows the attention maps when predicting the gene expression at the 504 

super-resolution level.  505 
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 506 

DATA AVAILABILITY 507 

We analyzed two publicly available ST datasets. These data were acquired from the following 508 

websites or accession numbers: (1) human HER2-positive breast tumor ST data 509 

(https://github.com/almaan/her2st); (2) human cutaneous squamous cell carcinoma 10x Visium 510 

data (GSE144240).  511 

 512 

SOFTWARE AVAILABILITY 513 

An open-source implementation of HisToGene can be downloaded from  514 

https://github.com/maxpmx/HisToGene  515 
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