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ABSTRACT

Recent developments in spatial transcriptomics (ST) technologies have enabled the profiling of
transcriptome-wide gene expression while retaining the location information of measured genes
within tissues. Moreover, the corresponding high-resolution hematoxylin and eosin-stained
histology images are readily available for the ST tissue sections. Since histology images are easy
to obtain, it is desirable to leverage information learned from ST to predict gene expression for
tissue sections where only histology images are available. Here we present HisToGene, a deep
learning model for gene expression prediction from histology images. To account for the spatial
dependency of measured spots, HisToGene adopts Vision Transformer, a state-of-the-art method
for image recognition. The well-trained HisToGene model can also predict super-resolution gene
expression. Through evaluations on 32 HER2+ breast cancer samples with 9,612 spots and 785
genes, we show that HisToGene accurately predicts gene expression and outperforms ST-Net
both in gene expression prediction and clustering tissue regions using the predicted expression.
We further show that the predicted super-resolution gene expression also leads to higher
clustering accuracy than observed gene expression. Gene expression predicted from HisToGene
enables researchers to generate virtual transcriptomics data at scale and can help elucidate the

molecular signatures of tissues.
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INTRODUCTION

Knowledge of the spatial organization of cells and the spatial variation of gene expression in
tissues is important in understanding the complex transcriptional architecture of multicellular
organisms. For example, in a heterogeneous tissue such as tumor, cancer cells can differ vastly
from each other in their gene expression profiles and cellular properties due to residing in distinct
tumor microenvironments. Recent advances in spatial transcriptomics (ST) technologies have
made it possible to profile gene expression while retaining the spatial location information of the
measured genes within tissues (1-6). Applications of the ST technologies in diverse tissues and
diseases have transformed our views of transcriptome complexity (7-9). A popular ST technology
is based on spatial barcoding followed by next-generation sequencing in which transcriptome-
wide gene expression is measured in gene capture locations, referred to as spatially barcoded
spots. Such ST technologies include Spatial Transcriptomics (10), 10x Genomics Visium, SLIDE-
seq (11), SLIDE-seq2 (12), and many others (13,14). Data from such spatial barcoding-based
technology typically include a high-resolution hematoxylin and eosin (H&E)-stained histology

image of the tissue section from which the gene expression data are obtained.

Although ST offers rich information, such data are still expensive to generate, which prevents the
applications of ST in large-scale studies. On the other hand, H&E-stained histology images are
easier and cheaper to obtain than ST and are routinely generated in clinics. It is desirable to
leverage information learned from ST to predict gene expression from histology images. Such
predictions can generate virtual ST data, which will enable the study of spatial variations of gene
expression at scale. Indeed, several studies have shown that tumor related genes are highly
correlated with histological features, suggesting that gene expression can be predicted from
histology images. HE2RNA (15), a model based on the integration of multiple data modes, is

trained to systematically predict gene expression profiles from whole-slide images without the
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reliance on expert annotation. ST-Net (16) predicts spatially variable gene expression from
histology images using a supervised convolutional neural network (CNN) trained from breast

cancer ST data.

While these methods have shown promising performance, they are not short of limitations.
HE2RNA was developed for bulk RNA sequencing and lacks the ability to learn from ST data.
While ST-Net is specifically designed for ST, it does not model the spatial location information of
each measured spot in their CNN model. Since gene expression often displays local patterns,
which are often manifested in the histology images, it is necessary to explicitly model the spatial
location information when predicting gene expression. Although CNN-based models have
dominated the field of computer vision for years, different parts of an image must be processed
in the same way regardless of their position. This intrinsic bias in CNN makes it less ideal for ST
data. However, this bias has been recently alleviated by Vision Transformer (17), which internally
utilizes self-attention mechanism for divided image patches and has shown strong performance

on many tasks, including medical image classification, segmentation (18), and registration (19).

To utilize these advances in Vision Transformer, we developed HisToGene, an attention-based
model that aims to predict gene expression from H&E-stained histology images based on the
relationship between histological features and gene expression features learned from a training
ST dataset. To account for the spatial dependency of measured spots in ST, HisToGene employs
a modified Vision Transformer model, which can naturally model the positional relationship
between spots through appropriate positional embedding. Compared to ST-Net (16), our
attention-based model considers the spot dependency together with histological features when
predicting gene expression. After model training, HisToGene can further predict super-resolution
gene expression by averaging predicted gene expression from densely sampled histology image

patches. To the best of our knowledge, it is the first time that gene expression can be predicted
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83 at such high resolution based on histology images. Gene expression predicted from HisToGene
84  enables researchers to generate virtual transcriptomics data at scale and can help elucidate the
85  molecular signatures of tissues.

86

87 MATERIALS AND METHODS

88  Overview of HisToGene

89  HisToGene takes a ST dataset, possibly with multiple tissue sections obtained from different
90 subjects, as input for model training. For each tissue section in the ST data, it starts by extracting
91 patches from the histology image according to the spatial coordinates and size of each spot in
92  the ST data. The patch embedding and position embedding are then aggregated by learnable
93 linear layers through a modified Vision Transformer model. Next, HisToGene utilizes multi-head
94  attention layers to generate latent embeddings (Figure. 1a). With the well-trained model,
95 HisToGene can predict gene expression for each sampled patch from the histology image in a
96 test dataset that only has histology images. Furthermore, using a dense image patch sampling
97  strategy, HisToGene can predict super-resolution gene expression with 4 times of the original
98  patch/spot level resolution by default (Figure. 1b), but the resolution can be increased to an even

99  higher level when using more densely sampled patches.

100

101  Data preprocessing

102  HisToGene involves a training step and a prediction step. The training step takes a ST dataset
103  as input, which includes histology images, the gene expression data, and the spatial coordinates
104  for the spatial barcodes. In the training stage, it uses the histology images and the spatial
105  coordinates of the spatially barcoded spots as input, and the corresponding spatial gene

106  expression data as labels. The spatial gene expression data are stored in an N x D matrix of
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107  unique molecular identifier (UMI) counts with N spots and D genes. The coordinates of the spots
108  are stored in an N x 2 matrix indicating the (x, y) location of each spot.

109

110  For the histology image, we extract patches according to the size and location of each spot. We
111  assemble all patches in a tissue section and flatten them into an N x (3 X W x H) matrix as the
112 input for the Vision Transformer, where 3 is the number of channels, and W and H represent the
113 width and height of the patch. In our experiment on the HER2+ breast cancer dataset (20), W =
114  H = 112 pixels, which correspond to the diameter of each spot in the ST data.

115

116  For the spatial gene expression data, we first identify common genes across all tissue sections in
117  the training ST data. We then select the top 1,000 highly variable genes in each tissue section
118 and eliminate genes that are expressed in less than 1,000 spots across all tissue sections. The
119  gene expression values in each spot are normalized such that the UMI count for each gene is
120  divided by the total UMI counts across all genes in that spot, multiplied by 1,000,000, and then
121  transformed to a natural log scale.

122

123 The modified Vision Transformer model for gene expression prediction

124 Model architecture

125  Vision Transformer has been widely used in computer vision for image recognition and
126  outperformed other state-of-the-art methods in the ImageNet Large-Scale Visual Recognition
127  Challenge. The standard Vision Transformer model splits an image into a fixed number of
128  patches. However, in ST data, the number of spots that cover the captured tissue area is not
129  fixed. This property is similar to problems in natural language processing in which the lengths of
130  sentences are also variant. To accommodate variable numbers of spots in ST, we redesign the

131  encoding part of the Vision Transformer model with details described below.
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132

133 Encoding of histology image and position features

134  After preprocessing, we use a learnable linear layer W, to transform the histology image features
135 froman N x (3 x W x H) matrix F;, to an N x 1024 matrix E,, i.e., E;, = F; - W;,.. Another part of
136  the inputis the N x 2 matrix, which represents the (x, y) coordinates of each spot in the ST data.
137  The x-coordinate information is represented by an N x 1 vector, which is transformed into a one-
138  hot encoding matrix P, with size N X m, where m is the maximum number of x-coordinates
139 among all tissue sections. For the HER2+ breast cancer dataset, m = 30. Next, we use a
140  learnable linear layer W, € R30*1924 tg transform P, into an N x 1024 matrix E,, i.e., E, = P, -
141  W,. Similar transformations are performed for the y-coordinate vector to obtain an N x 1024
142 encoding matrix E,,. Finally, we obtain the embedding matrix by summing up the image feature
143 encoding matrix, the x-coordinate encoding matrix, and the y-coordinate encoding matrix,

144 E=E,+E,+E,

145  This embedding matrix is used as the input for the multi-head attention layers as described below.
146

147 Multi-Head Attention layers

148  The Multi-Head Attention module can automatically learn the attention for a "sequence". In
149  language data, the "sequence" is sequence of words in a sentence. In ST data, the "sequence"
150 is asequence of spots/patches in a tissue section. The multi-head attention is a linear combination
151  of multiple attention heads,

152 MultiHead(Q, K, V) = [heady, ..., head,,|W,

153  where W, is a learnable 1024 x 1024 parameter matrix that is used to aggregate the attention
154  heads, n is the number of heads, and Q, K,V represent Query, Key, and Value. In our model, the
155  input matrix is the N x 1024 embedding matrix E obtained in the previous step. The attention

156 mechanism is defined as
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157 head; = Attention (QW?, KWX,vwY)
. QK"

158 Attention(Q, K, V) = softmax F | /4
k

159  where W?, WX, and W are all learnable 1024 x 1024 parameter matrices. The shape of the input

T
160  for the attention is N x 1024. In the attention operation, we have two parts, softmax (%) and V.

Jdr

161  The former part is called Attention Map, whose shape is N x N. The latter part is the Value of the
162  self-attention mechanism, where Q = K = V. Each column of the Attention Map represents the
163  attention weight contributed from other spots. The Attention Map provides useful information on
164  how the model works. The result of the attention operation is an N x 1024 matrix. We use the
165  output of each multi-head Attention layer as the input for the next layer and repeat this calculation
166  sequentially.

167

168  Details of the model implementation

169  We implement the HisToGene model using PyTorch with the following hyper-parameters: learning
170  rate is 107, the number of training epochs is 100, drop-out ratio is 0.1, the number of Multi-Head
171  Attention layers is 8, and the number of attention heads is 16.

172

173  Predicting gene expression at super-resolution

174  The above trained Vision Transformer model can predict gene expression from histology images
175  with spot level resolution as the training ST data only contain gene expression measured within
176  spatially barcoded spots. However, since the histology image does not have tissue gaps, it is
177  possible to densely sample histology image patches and use predicted gene expression from
178  overlapping patches to estimate gene expression at a resolution that is higher than the original
179  spot. This is analogous to natural language processing, where the Transformer is trained using

180  short sentences but can make predictions for long sentences. In our case, the “sentence” is the


https://doi.org/10.1101/2021.11.28.470212
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.28.470212; this version posted November 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

181  sequence of “spots”. Therefore, using the trained model, we can predict the expression for more
182  “spots” within a tissue section.

183

184  The key for our super-resolution gene expression prediction lies in the dense sampling scheme
185  of the histology image patches. First, we uniformly sample patches from the tissue area according
186  to a grid with size of each cell determined by the spot size in the training ST data. For example,
187 inthe HER2+ breast cancer dataset, each patch is 112x112 pixels. We sample patches from the
188  histology image such that the entire tissue area is covered by non-overlapping patches of size
189  112x112 pixels. By sampling the patches this way, each sub-patch is covered by 4 patches. Using
190 the trained model, we can predict the gene expression for each sampled patch. For each sub-
191  patch, its gene expression is predicted by the average of the predicted expressions for the 4
192  patches that cover it. Since the size of each sub-patch is only Yz of the original patch, this sampling
193  scheme can increase the gene expression resolution by 4 times. We note that our sampling

194  scheme can be easily modified to increase gene expression prediction resolution to a higher level.

195

196 RESULTS

197  Overview of evaluations

198  To evaluate the performance of HisToGene, we analyzed the HER2+ breast cancer dataset (20),
199  which includes 36 tissue sections collected from 8 HER2+ breast cancer patients. We retained
200 32 sections from 7 patients that have at least 180 spots per section in the analysis. To evaluate
201  the gene expression prediction accuracy, we conducted leave-one-out (32-fold) cross validation.
202  Specifically, for each section, we used the other 31 sections to train the model and make spatial
203  gene expression predictions for that section. To select genes for prediction, we first considered
204  the top 1,000 highly variable genes for each section and then filtered those that were expressed

205 in less than 1,000 spots across all tissue sections. This filtering left with 9,612 spots and 785


https://doi.org/10.1101/2021.11.28.470212
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.28.470212; this version posted November 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

206  genes for model training. We compared HisToGene with ST-Net for gene expression prediction.
207  Since the source codes of ST-Net released by the authors are not maintained, we were not able
208  to analyze the HER2+ breast cancer data using their codes. For comparison, we used our own
209  implementation of ST-Net.

210

211 HisToGene enables super-resolution gene expression prediction and consistently
212 outperforms ST-Net

213 Since there are no tissue gaps in a histology image, it is possible to densely sample patches from
214  the image, predict gene expression for each sampled patch, and then use the average of the
215  predicted expression from overlapping patches to predict the gene expression for the overlapping
216  tissue area. This allows us to increase the gene expression prediction resolution as the
217  overlapping area among patches is much smaller than the size of the original patch. By averaging
218  predicted gene expression across spatially close patches also reduces prediction uncertainty.
219 Based upon this intuition, we implemented a super-resolution gene expression prediction
220  algorithm in which the modified Vision Transformer in HisToGene can take image patches with
221  variable lengths as input. With the patterned dense sampling of image patches shown in Figure
222 1b, we can increase the gene expression prediction resolution by 4 times. Using a similar
223  patterned image patch sampling scheme, the gene expression prediction resolution can be
224 increased by 9 times, 25 times, or higher.

225

226  For illustration, we sampled in the image patches such that the gene expression resolution
227  prediction is increased by 4 times. An ideal super-resolution gene expression prediction method
228  should increase the gene expression resolution while retaining the original expression pattern at
229  the patch level, i.e, spot level, as this will ensure no artificial patterns are introduced during the
230  super-resolution gene expression prediction. To evaluate whether HisToGene has this property,

231  we obtained the patch/spot level gene expression from the super-resolution expression predicted

10
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232 by HisToGene. Specifically, we summed up the expression values for 4 adjacent sub-patches to
233 “recover” the patch/spot-level gene expression. Results obtained from this super-resolution
234 expression “recovered” approach were denoted by HisToGene*. We conducted the leave-one-
235  outcross validation for the 32 tissue sections in the HER2+ breast cancer dataset. For each tissue
236  section, we calculated the correlations between the observed gene expression and the predicted
237  gene expression. Figure 2a shows that among the 32 tissue sections, HisToGene* predicted
238  patch/spot level gene expression has significantly higher correlations with the observed spot-level
239  gene expression than HisToGene for 19 (59%) sections, whereas HisToGene has significantly
240  higher correlations than HisToGene* for 6 (19%) sections. These results indicate that with the
241  densely sampled image patches as input in the trained prediction model, we can not only increase
242 gene expression prediction resolution, but also the patch/spot-level gene expression prediction
243 accuracy. Such increased accuracy is due to the flexibility of the attention mechanism in handling
244 longer sequences of image patches, which makes the prediction benefit from information in
245  additional batches included in the longer sequences. The increased accuracy is also due to the
246  use of average predicted expression across nearby patches as the random error of the mean is
247  less than that of an individual prediction.

248

249  We also performed gene expression prediction using ST-Net but found its predictions generally
250  yielded low correlations with the observed expression. In fact, for most of the tissue sections, the
251  mean correlations are around zero, and the correlations are not much better even for patient B in
252 which both HisToGene and HisToGene* yielded much higher correlations. We suspect the
253  relatively poor performance of ST-Net is due to its failure in considering the spatial dependency
254 of spots when building the prediction model. As such, patches obtained from different patients are
255  treated in the same way. As reported in the original study (20), there are strong subject-to-subject
256  differences among patients, thus ignoring such differences would lead to less accurate prediction.

257 By contrast, the modified Vision Transformer in HisToGene considers a tissue section as the

11
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258  modeling unit, thus the histology and gene expression relationships are learned within each tissue
259  section, which helps alleviate the subject-to-subject differences among patients. These results
260  demonstrate the importance of considering the spatial dependency of spots when training the
261  prediction model.

262

263  To show that both HisToGene and HisToGene* can predict biologically meaningful information,
264  we conducted gene set enrichment analysis using fgsea (21). Inspired by iPath (22), which sorts
265  genes by positive values, for each approach, we ranked the genes by the average -log10 p-values
266  across all 32 tissue sections, where the p-value for each tissue section was obtained by testing
267  whether the correlation between the observed and the predicted expression values was
268  significantly different from zero. We used the top 100 genes to calculate the enrichment score for
269  each pathway from the C2 canonical pathways in MSigDB (23). Then, the significance for each
270  pathway was assessed by permutations (n=10,000) of the gene list. The enrichment analysis
271  results demonstrate that the highly correlated genes in HisToGene and HisToGene* are enriched
272  in breast-cancer-related pathways (Figure 2b). For example, HisToGene*'s top enriched
273  pathways include human thyroid stimulating hormone pathway and REACTOME integration of
274  energy metabolism pathway. Previous studies have reported that thyroid hormones are
275  associated with the risk of breast cancer (24), and energy metabolism is a hallmark of cancer
276  cells and links with the breast cancer brain metastases (25). By contrast, the top enriched
277  pathways for ST-Net show less relevance with breast cancer.

278

279  Visualization of the predicted gene expression

280  To gain a better understanding of the predicted gene expression, we next selected the top
281  predicted genes obtained from each method for visualization. For each gene in a tissue section,
282  we calculated the correlation between the observed and the predicted expression values and

283  tested whether the correlation is significantly different from zero. We then ranked the genes by

12
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284  the average -log10 p-values across all 32 tissue sections. Figure 3a (Supplementary Table 1)
285  shows the top 4 genes (GNAS, MYL12B, FASN, and CLDN4) predicted by HisToGene, where
286  the expression for the best predicted tissue section by HisToGene was visualized. GNAS (mean
287 R =0.32) encodes the stimulatory G-protein alpha subunit and regulates the production of the
288  second messenger cyclic AMP. Elevated expression of GNAS has been found in several tumors
289  including breast cancer and promotes breast cancer cell proliferation (26). MYL12B (mean R =
290  0.27) encodes a myosin regulatory subunit that plays an important role in the regulation of non-
291  muscle cell contractile activity via its phosphorylation. A recent study showed that the activity of
292 myosin Il in cancer cells drives tumor progression, where the activation of myosin Il in non-muscle
293  cells is regulated by phosphorylation of a regulatory light chain such as MYL12B (27). FASN
294  (mean R = 0.27) encodes a key enzyme that is involved in the biogenesis of membrane lipids in
295  proliferating cells and is closely associated with the occurrence and development of tumors (28).
296 Inhibition of FASN induces apoptosis in breast cancer cells, making it a potential therapeutic
297  target for breast cancer (29). CLDN4 (mean R = 0.26) encodes a tight junction protein that is
298  required for cell adhesion. It is frequently expressed in primary breast cancers, especially in their
299  metastases, thus is a promising membrane bound molecular imaging and drug target for breast
300 cancer (30-32). As a comparison, we also included the predicted gene expression obtained from
301 HisToGene*, the super-resolution gene expression (denoted by HisToGene_SR), and ST-Net.
302  Although the mean -log10 p-values for genes obtained from HisToGene* are not as significant as
303 HisToGene, the general predicted expression patterns are similar to HisToGene, and for the
304 selected tissue sections, the correlations are similar in magnitude to HisToGene. By contrast, the
305  ST-Net predicted expression shows little correlation with the observed expression.

306

307  Figure 3b (Supplementary Table 2) shows the top 4 genes (GNAS, FN1, MYL12B, and FASN)
308 predicted by HisToGene*, 3 of them (GNAS, MYL12B, and FASN) were also predicted by

309 HisToGene as the top genes. FN1 is a gene that shows higher correlation in HisToGene* (mean

13
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310 R =0.24) than in HisToGene (mean R = 0.22). FN1 encodes fibronectin, a glycoprotein that is
311  presentin a soluble dimeric form in plasma, and in a dimeric or multimeric form at the cell surface
312  and in extracellular matrix. Fibronectin is involved in cell adhesion and migration processes, and
313  high expression of FN71 is associated with breast cancer invasion and metastasis (33).
314  Interestingly, although FASN is among the top 4 best predicted genes by both HisToGene* (mean
315 R =0.24) and HisToGene (mean R = 0.27), the best predicted tissue sections are different. For
316 the best tissue section predicted by HisToGene* (R = 0.47), the HisToGene correlation is 0.42,
317  only slightly worse than HisToGene*, whereas the correlation obtained from ST-Net prediction is
318 close to 0. In general, we found that HisToGene* has higher correlations than HisToGene,
319  whereas the correlations for ST-Net are often close to 0. For GNAS, FN1, MYL12B, and FASN,
320  we further examined the super-resolution gene expression prediction, which revealed fine grained
321  spatial expression patterns that are missed in the original patch/spot level gene expression
322  prediction.

323

324  As a comparison, we also visualized the top 4 genes (IGHM, PPP1R1B, IGLC2, and PNMT)
325  predicted by ST-Net (Supplementary Figure 1 and Supplementary Table 3). The average
326  correlations for these 4 genes are much lower than the top 4 genes predicted by HisToGene and
327  HisToGene*.

328

329 HisToGene predicted gene expression can recover pathologists annotated spatial
330 domains

331 Next, we examined if the predicted gene expression can be used to recover the pathologists
332  annotated spatial domains. The HER2+ breast cancer data included 6 tissue sections with
333  pathologists’ annotation, which allowed us to further evaluate if the predicted gene expression
334  patterns are biologically meaningful. If the predictions are useful in revealing the underlying

335  biology, we would expect the clusters obtained using the predicted gene expression to agree well
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336  with the pathologists annotated spatial domains. We performed K-Means clustering using the
337  predicted gene expression obtained from HisToGene, HisToGene*, and ST-Net. The clustering
338 results were evaluated using Adjusted Rand Index (ARI) by treating pathologists annotated spatial
339  domains as the ground truth. As a comparison, we also performed clustering analysis using the
340  observed gene expression for each tissue section.

341

342 Figure 4 shows the clustering results and the corresponding ARIs for each method and the results
343  obtained using the observed gene expression. Among the 6 tissue sections with pathologists’
344  annotation, HisToGene* yielded the highest ARIs for 4 sections (B1, C1, D1, and F1), and for
345  sections D1 and F1, the HisToGene*s ARIs are much higher than those obtained from the
346  observed gene expression and ST-Net. For E1, ST-Net had the highest ARI. For G2, the observed
347  gene expression had the highest ARI. Clustering analysis using observed gene expression is a
348  commonly conducted task in spatial transcriptomics (34-36). Interestingly, HisToGene* had even
349  higher ARIs than the observed gene expression for 4 out of the 6 tissue sections. Since
350 HisToGene* is based on the aggregated super-resolution gene expression, we next performed
351 clustering analysis using the super-resolution gene expression, denoted by HisToGene_ SR.
352  Although we cannot directly calculate the ARIs for HisToGene_SR, visual examination indicates
353 that the clustering results agreed well with the pathologists annotated spatial domains, with the
354 tumor region clearly separated from the background.

355

356 Understanding the HisToGene prediction with attention map

357 It is intriguing that the predicted super-resolution gene expression led to higher clustering ARIs
358 than the observed gene expression. We next sought to investigate how the super-resolution gene
359  expression prediction works. Attention is a key feature in HisToGene’s modified Vision

360 Transformer model. To understand how attention contributes to the HisToGene predicted gene

15


https://doi.org/10.1101/2021.11.28.470212
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.28.470212; this version posted November 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

361 expression, we examined the attention maps. HisToGene’s modified Vision Transformer model
362 has 8 layers and each layer has 16 heads, leading to 128 attention maps. For visualization, we
363 randomly chose the attention map from the first, fourth, and eighth layer, which represent the
364  shallow, median, and deep layers. Figure 5 shows three representative attention maps when
365 HisToGene predicts the expression for a given target spot (the yellow spot in each plot) under the
366  original spot level resolution and the super-resolution settings. The results indicate that 1) in the
367  shallow layer, the modified Vision Transformer model mainly pays attention to the target spot; 2)
368 in the median layer, the model starts to pay attention to some distant spots, and the pattern is
369 especially clear in the super-resolution setting; 3) in the deep layer, the model pays more attention
370  to distant spots that are tumor related. During the model training process, HisToGene can
371  adaptively change the scale of weights when the input sample size changes; for example, the
372  average weight of the super-resolution attention is about 1/10 of the original-resolution attention.
373 ltis also evident that in the super-resolution setting, the model utilizes more refined information
374  provided by the neighboring patches. The difference in the attention weights for input with different
375 sample sizes explains why the gene expression prediction for the same image patch can be

376  different when the number of patches is different.

377

378 DISCUSSION

379 In this paper, we presented HisToGene, a deep learning method that predicts super-resolution
380  gene expression from histology images in tumors. Trained in a ST dataset, HisToGene models
381 the spatial dependency in gene expression and histological features among spots through a
382  modified Vision Transformer model. HisToGene has been evaluated in 32 heterogeneous HER2+
383  breast cancer tissue sections with 9,612 spots and 785 genes obtained from different patients.
384  Our results consistently show that HisToGene outperformed ST-Net in the spot level gene

385  expression prediction. Additionally, HisToGene can predict gene expression at super-resolution,
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386  afeature that ST-Net does not have. To the best of our knowledge, HisToGene is the first method
387  for super-resolution gene expression prediction using histology images. The subsequent
388 clustering analysis using predicted gene expression also shows that HisToGene consistently
389  yielded higher ARIs than ST-Net, and for many of the tissue sections that we analyzed, the ARIs
390 were even higher than those obtained from the observed gene expression. This is likely due to
391 the use of attention, which has the ability to naturally learn from neighborhood. Since the predicted
392  gene expression is based on the histology images, which do not have tissue gaps, it is possible
393 that the consideration of all captured tissue areas in the prediction helped recover expression
394  patterns that are not captured in the observed gene expression.

395

396 Compared to ST-Net, HisToGene benefits from the consideration of spots’ dependency and the
397  advanced network architecture, which makes HisToGene robust to heterogeneity among patients.
398  Being robust to batch effects, especially the systematic differences between the training and
399 testing data is an advantage of HisToGene because due to experimental and technical
400 constraints, batch effects are often unavoidable in real studies. HisToGene is robust to
401  heterogeneity among patients due to the following reasons. First, the multi-head attention matrix
402 in HisToGene utilizes the histological features from all spots, implying that when predicting the
403 gene expression for one spot, image features from neighboring spots also contribute.
404  Furthermore, the attention matrix is updated during the training stage, which ensures appropriate
405 adjustment of the neighboring spots’ contributions. Second, HisToGene predicts the gene
406  expression for all spots within a tissue section together. These mechanisms enable HisToGene
407  to model the relationship between histology images and the spatial gene expression data for an
408 entire tissue section, hence minimizing batch effects in histology and gene expression features
409  when learning their relationships. By contrast, CNN-based models such as ST-Net consider each
410  spot independently, making these models more sensitive to batch effects.

411
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412  HisToGene is computationally fast. To show the computational advantages of HisToGene, we
413  compared its running time for training 31 tissue sections of HER2+ dataset with ST-Net. Our
414  experiment was conducted on CentOS 7 with 24 cores Intel Xeon 8260 CPU and a single NVIDIA
415 V100 (32GB) GPU. On overage, it took HisToGene 11 minutes but 27 minutes for ST-Net.

416

417  We mainly focused our analyses on the HER2+ breast cancer dataset in this paper, because this
418 dataset involves a relatively large number of tissue sections and patients. It provides an
419  opportunity to evaluate the performance of HisToGene and ST-Net in the presence of patient
420  heterogeneity. To show the generalizability of HisToGene to other data, we also analyzed a
421  cutaneous squamous cell carcinoma (cSCC) dataset (37), which includes 12 tissue sections
422  obtained from 4 patients, with each patient having 3 sections. Unlike the HER2+ breast cancer
423  dataset, where all tissue sections were generated using the same ST platform, the 12 tissue
424  sections in the cSCC data were generated using a mixture of the relatively low-resolution Spatial
425  Transcriptomics and the more recent 10x Visium platforms. Using the same filtering criteria as the
426 HER2+ breast cancer dataset, 6,630 spots and 134 genes remained for model training and
427  prediction in the cSCC dataset. We also conducted the leave-one-out cross-validation experiment
428  in this dataset, and the results are shown in Supplementary Note 1. Due to the relatively small
429  number of tissue sections and patients and the platform heterogeneity among the 12 tissue
430  sections, neither HisToGene nor ST-Net can reliably predict the gene expression with high
431  accuracy. However, HisToGene still yielded higher prediction accuracy than ST-Net. While the
432 requirement of a relatively large training set is a potential limitation of deep learning-based models
433  such as HisToGene, we anticipate that as more and more training ST data become available in
434  the near future, the performance and robustness of HisToGene can be further improved.

435
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450 FIGURE LEGENDS

451  Figure 1. Workflow of HisToGene. a, The modified Vision Transformer in HisToGene starts from
452  sequences of extracted patches from histology images in the training ST dataset. Added by the
453  position embedding obtained from the spatial coordinates of the spots, the patch embedding goes
454  through the Multi-Head Attention layers and is transformed by a linear layer. The final output of
455  the modified Vision Transformer is the spatial gene prediction. This modified Vision Transformer
456  will be trained based on the observed gene expression in the training ST dataset. b, Using the
457  trained model, HisToGene can predict super-resolution gene expression. HisToGene first predicts
458  gene expression for each sampled patch from the histology image in a test dataset that only has
459 histology images. Using a dense image patch sampling strategy, HisToGene then predicts the
460  super-resolution gene expression by averaging the predicted gene expression among
461  overlapping patches. With the patch sampling strategy shown in b, the resolution is increased 4
462  times, but the resolution can be increased to an even higher level when using more densely
463  sampled patches.

464

465  Figure 2. Evaluation of gene expression prediction for the HER2+ breast cancer dataset. a,
466  Boxplot of the Pearson correlations between the predicted and observed gene expression for the
467 785 genes predicted by HisToGene, HisToGene*, and ST-Net. HisToGene* is based on the
468  recovered patch/spot level gene expression obtained from the super-resolution gene expression
469  prediction, denoted by HisToGene_SR. b, Enrichment analysis for the top 100 predicted genes
470 by HisToGene, HisToGene*, and ST-Net.

471

472  Figure 3. Visualization of the top predicted genes in the HER2+ breast cancer dataset. a,
473  Relative expression of the top 4 genes predicted by HisToGene. The genes were selected based

474  on the average -log10 p-values across all 32 tissue sections, where the p-value for each tissue
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475  section was obtained by testing whether the correlation between the predicted and observed gene
476  expression was significantly different from zero. For each of the 4 genes, the tissue section that
477  had the smallest p-value by HisToGene was selected for visualization. HisToGene* was based
478 on the recovered patch/spot level gene expression obtained from the super-resolution gene
479  expression prediction, denoted by HisToGene_SR. b, Relative expression of the top 4 genes
480  predicted by HisToGene*. The genes were selected based on the average -log10 p-values across
481  all 32 tissue sections, where the p-value for each tissue section was obtained by testing whether
482  the correlation between the predicted and observed gene expression was significantly different
483  from zero. For each of the 4 genes, the tissue section that had the smallest p-value by
484  HisToGene* was selected for visualization. HisToGene* was based on the recovered patch/spot
485 level gene expression obtained from the super-resolution gene expression prediction, denoted by
486  HisToGene SR.

487

488  Figure 4. Clustering analysis using predicted gene expression in the HER2+ breast cancer
489 dataset. 6 of the 32 tissue sections had pathologists’ annotation which allowed us to evaluate
490  whether the predicted gene expression can reveal the pathologists annotated spatial domains.
491  The first column shows the histology image with the pathologists’ annotation, where the red lines
492  represent invasive cancer, green lines represent breast glands, yellow lines represent immune
493 infiltrate, and the blue lines represent connective tissue. The remaining columns show the
494  clustering results generated from the observed, ST-Net predicted gene expression, HisToGene
495  predicted gene expression, HisToGene* predicted gene expression, and HisToGene_SR using
496  K-Means clustering algorithm (k=4). Clustering accuracy was evaluated by the Adjusted Rand
497  Index (ARI) between the pathology annotations and the clusters obtained from the predicted gene

498  expression.
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Figure 5. Attention maps in HisToGene’s modified Vision Transformer. Displayed are the
attention weights in the modified Vision Transformer when making gene expression predictions
for the target spot (the yellow spot in each figure) in the HER2+ breast cancer dataset. The first
row shows the attention maps when predicting the gene expression at the original patch/spot
level. The second row shows the attention maps when predicting the gene expression at the

super-resolution level.
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506

507 DATA AVAILABILITY

508  We analyzed two publicly available ST datasets. These data were acquired from the following
509  websites or accession numbers: (1) human HER2-positive breast tumor ST data
510  (https://github.com/almaan/her2st); (2) human cutaneous squamous cell carcinoma 10x Visium
511  data (GSE144240).

512

513 SOFTWARE AVAILABILITY

514  An open-source implementation of HisToGene can be downloaded from

515  https://github.com/maxpmx/HisToGene
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