bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467167; this version posted June 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Fine-mapping from summary data with the “Sum of Single
Effects” model

Yuxin Zou', Peter Carbonetto®?, Gao Wang*", Matthew Stephens':?"

1 Department of Statistics, University of Chicago, Chicago, 1L, USA

2 Department of Human Genetics, University of Chicago, Chicago, IL, USA

3 Research Computing Center, University of Chicago, Chicago, IL, USA

4 Department of Neurology and the Gertrude. H. Sergievsky Center, Columbia
University, New York, NY, USA

* wang.gao@columbia.edu
* mstephens@uchicago.edu

Abstract

In recent work, Wang et al introduced the “Sum of Single Effects” (SuSiE) model, and
showed that it provides a simple and efficient approach to fine-mapping genetic variants
from individual-level data. Here we present new methods for fitting the SuSiE model to
summary data, for example to single-SNP z-scores from an association study and
linkage disequilibrium (LD) values estimated from a suitable reference panel. To
develop these new methods, we first describe a simple, generic strategy for extending
any individual-level data method to deal with summary data. The key idea is to replace
the usual regression likelihood with an analogous likelihood based on summary data.
We show that existing fine-mapping methods such as FINEMAP and CAVIAR also
(implicitly) use this strategy, but in different ways, and so this provides a common
framework for understanding different methods for fine-mapping. We investigate other
common practical issues in fine-mapping with summary data, including problems caused
by inconsistencies between the z-scores and LD estimates, and we develop diagnostics to
identify these inconsistencies. We also present a new refinement procedure that
improves model fits in some data sets, and hence improves overall reliability of the
SuSiE fine-mapping results. Detailed evaluations of fine-mapping methods in a range of
simulated data sets show that SuSiE applied to summary data is competitive, in both
speed and accuracy, with the best available fine-mapping methods for summary data.

Author summary

The goal of fine-mapping is to identify the genetic variants that causally affect some
trait of interest. Fine-mapping is challenging because the genetic variants can be highly
correlated, due to a phenomenon called linkage disequilibrium (LD). The most
successful current approaches to fine-mapping frame the problem as a variable selection
problem, and here we focus on one such approach based on the “Sum of Single Effects”
(SuSiE) model. The main contribution of this paper is to extend SuSiE to work with
summary data, which is often accessible when the full genotype and phenotype data are
not. In the process of extending SuSiE, we also developed a new mathematical
framework that helps to explain existing fine-mapping methods for summary data, why
they work well (or not), and under what circumstances. In simulations, we show that
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SuSiE applied to summary data is competitive with the best available fine-mapping
methods for summary data. We also show how different factors such as accuracy of the
LD estimates can affect the quality of the fine-mapping.

Introduction

Fine-mapping is the process of narrowing down genetic association signals to a small
number of potential causal variants [1-4], and it plays an important part in the effort to
understand the genetic causes of diseases [5,6]. However, fine-mapping is a difficult
problem due to the strong and complex correlation patterns (“linkage disequilibrium”,
or LD) that exist among nearby genetic variants. Many different methods and
algorithms have been developed to tackle the fine-mapping problem [2,7-19]. In recent
work, Wang et al [17] introduced a new approach to fine-mapping, SuSiE (short for
“SUm of SIngle Effects”), which has several advantages over existing approaches: it is
more computationally scalable; and it provides a new, simple way to calculate “credible
sets” of putative causal variants [2,20]. However, the algorithms in [17] also have an
important limitation: they require individual-level genotype and phenotype data. In
contrast, many other fine-mapping methods require access only to summary data, such
as z-scores from single-SNP association analyses and an estimate of LD patterns from a
suitable reference panel [7,8,11-13,15,16,21]. Requiring only summary data is useful
because individual-level data are often difficult to obtain, both for practical reasons,
such as the need to obtain many data sets collected by many different researchers, and
for reasons to do with consent and privacy. By comparison, summary data are much
easier to obtain, and many publications share such summary data [22].

In this paper, we introduce new variants of SuSiE for performing fine-mapping from
summary data; we call these variants SuSiE-RSS (RSS stands for “regression with
summary statistics” [23].) Our work exploits the facts that (i) the multiple regression
likelihood can be written in terms of a particular type of summary data, known as
sufficient statistics (explained below), and (ii) these sufficient statistics can be
approximated from the types of summary data that are commonly available (e.g.,
z-scores from single-SNP association tests and LD estimates from suitable reference
panel). In the special case where the sufficient statistics themselves are available the
second approximation step is unnecessary and SuSiE-RSS yields the same results as
SuSiE applied to the original individual-level data; otherwise it yields an approximation.
By extending SuSiE to deal with widely-available summary statistics, SuSiE-RSS
greatly expands the potential applicability of the SuSiE fine-mapping approach.

Although our main goal here is to extend SuSiE to deal with summary data, the
approach we use, and the connections it exploits, are quite general, and could be
applied to extend other individual-level data methods to deal with summary data. This
general approach has two nice features. First it deals simply, and automatically, with
non-invertible LD matrices, which arise frequently in fine-mapping. We argue, both
through theory and example, that it provides a simpler and more effective solution to
this issue than some existing approaches. Second, it shows how individual-level results
can be obtained as a special case of summary-data analysis, by using the sufficient
statistics as summary data.

By highlighting the close connection between the likelihoods for individual-level and
summary data, our work generalizes results of [11], who showed a strong connection
between Bayes Factors, based on specific priors, from individual-level data and
summary data. Our results highlight that this connection is fundamentally due to a
close connection between the likelihoods, and so will apply whatever prior is used (and
indeed, to non-Bayesian approaches that do not use a prior). By focussing on
likelihoods, our analysis also helps clarify the differences and connections between

June 13, 2022

2/25


https://doi.org/10.1101/2021.11.03.467167
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467167; this version posted June 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

existing fine-mapping methods such as FINEMAP v1.1 [12], FINEMAP v1.2 [21] and
CAVIAR [7], which can differ in both the prior and likelihood used.

Finally, we introduce several other methodological innovations for fine-mapping.
Some of these innovations are not specific to SuSiE and could be used to adapt other
statistical methods for individual-level data to deal with summary data. We describe
methods for identifying “allele flips”—alleles that are (erroneously) encoded differently
in the study and reference data—and other inconsistencies in the summary data. (See
also [24] for related ideas.) We illustrate how a single allele flip can lead to inaccurate
fine-mapping results, emphasizing the importance of careful quality control when
performing fine-mapping using summary data. We also introduce a new refinement
procedure for SuSiE that sometimes improves estimates from the original fitting
procedure.

Description of the method

We begin with some background and notation. Let y € RY denote the phenotypes of N
individuals in a genetic association study, and let X € RY*/ denote their
corresponding genotypes at J genetic variants (SNPs). To simplify the presentation, we
assume the y are quantitative and approximately normally distributed, and that both y
and the columns of X are centered to have mean zero, which avoids the need for an
intercept term in (1) below [25]. We elaborate on treatment of binary and case-control
phenotypes in the Discussion below.

Fine-mapping from individual-level data is usually performed by fitting the multiple
linear regression model

y=Xb+e, (1)

where b = (by,...,b;)T is a vector of multiple regression coefficients, e is an N-vector of
error terms distributed as e ~ Ny (0,02Iy), with (typically unknown) residual variance
02 >0, Iy is the N x N identity matrix, and N (u, ) denotes the r-variate normal
distribution with mean p and variance X.

In this multiple regression framework, the question of which SNPs are affecting y
becomes a problem of “variable selection”; that is, identifying which elements of b are
not zero. While many methods exist for variable selection in multiple regression,
fine-mapping has some special features—typically very high correlations among some
columns of X and very sparse b—that make Bayesian methods with sparse priors a
preferred approach (e.g., [7-9]). These methods specify a sparse prior for b, and perform
inference by approximating the posterior distribution p(b | X,vy). In particular, the
evidence for SNP j having a non-zero effect is often summarized by the “posterior
inclusion probability” (PIP),

PIP; :=Pr(b; # 0| X, y). (2)

The Sum of Single Effects (SuSiE) model
The key idea behind SuSiE [17] is to write b as a sum,

L
b= Z by, (3)
=1

in which each vector b; = (bj1,...,b.5)7 is a “single effect” vector; that is, a vector with
exactly one non-zero element. The representation (3) allows that b has at most L
non-zero elements, where L is a user-specified upper bound on the number of effects. (If
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single-effect vectors b; and by have non-zero element at the same SNP j, b will have
fewer than L non-zeros.)

The special case L = 1 corresponds to the assumption that a region has exactly one
causal SNP (which we use as shorthand for a SNP with a non-zero effect); in [17] this
special case is called the “single effect regression” (SER) model. The SER is
particularly convenient because posterior computations are analytically tractable [9];
consequently, despite its clear limitations, the SER has been widely used [2,26-28].

For L > 1, Wang et al [17] introduced a simple model fitting algorithm, which they
called Iterative Bayesian Stepwise Selection (IBSS). In brief, IBSS iterates through the
single-effect vectors [ = 1,..., L, at each iteration fitting b; while keeping the other
single-effect vectors fixed. By construction, each step thus involves fitting an SER,
which, as noted above, is straightforward. Wang et al [17] show that IBSS can be
understood as computing an approximate posterior distribution p(by,...,br, | X,y,02),
and that the algorithm iteratively optimizes an objective function known as the
“evidence lower bound” (ELBO).

Summary data for fine-mapping

Motivated by the difficulties in accessing the individual-level data X,y from most
studies, researchers have developed fine-mapping approaches that work with more
widely available “summary data”. Here we develop methods that use various
combinations of the summary data.

(i) Vectors b= (b,...,bs)T and & = (31,...,5,)7 containing estimates of marginal
association for each SNP j, and corresponding standard errors, from a simple
linear regression:

by = 2Ty (x]), (1)
85 = [(y — 2;b)T(y — 2b))/(NaJa;)] /2. ()

An alternative to b, § is the vector 2 = (1, ..., )T of z-scores:
2= b;/3;. (6)

It is important that all I;, S and 2 be computed from the same N samples. Many
studies provide b and § (see [22] for examples), and many more provide the
z-scores, or data that can be used to compute the z-scores (e.g., 2;, can be

recovered from the p-value and the sign of b; [29]).

(ii) An estimate, R, of the in-sample LD matrix, R. To be precise, R is the J x .J
SNP-by-SNP sample correlation matrix,

R:=D;/*XTXD_!/? (7)

where D, := diag(XTX) is a diagonal matrix that ensures the diagonal entries
of R are all 1. Usually the estimate R is taken to be an “out-of-sample” LD
matrix—that is, the sample correlation matrix of the same J SNPs in a suitable
reference panel, chosen to be genetically similar to the study population, possibly
with additional shrinkage or banding steps to improve accuracy [14].

(iii) Optionally, the sample size N and the sample variance of y. (Since y is centered,
the sample variance of y is simply v, := yTy/N). Knowing these quantities is
obviously equivalent to knowing yTy and IV, so for brevity we will use the latter.
These quantities are not required, but they can be helpful as we will see later.
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Table 1. Summary of SuSiE and SuSiE-RSS, the different data they accept, and the
corresponding likelihoods. In the “likelihood” column, z := D;/ %% is the vector of
adjusted z-scores; see eq. 17). In this summary we assume X,y are standardized, which
is common practice in genetic association studies. Note that when SuSiE-RSS is applied
to sufficient statistics and o2 is estimated (second row), the likelihood is identical to the
likelihood for SuSiE applied the individual-level data (first row). See
https://stephenslab.github.io/susieR/articles/susie_rss.html for an
illustration of how these methods are called in the R package, susieR.

method data type data o2 likelihood algorithm
SuSiE individual X,y fit 4(b,02%) ={(b,0?; X, y) IBSS
SuSiE-RSS sufficient R,2,N fit £(b,0?) = lyy(b,0%; R,2/v/N,1,N) IBSS-ss
SuSiE-RSS summary R,2Z,N 1 ((b)={ls(b,1;R,2/v/N,1,N) IBSS-ss

We caution that if the summary statistics come from a meta-analysis, the summary
statistics should be computed carefully to avoid the pitfalls highlighted in [2/].
Importantly, SNPs that are not analyzed in all the individual studies in the
meta-analysis should not be used in the fine-mapping.

SuSiE with summary data

A key question—and the question central to this paper—is, how do we use summary
data to estimate the coefficients b in a multiple linear regression (1)? And, more
specifically, how do we use them to estimate the single-effect vectors by, ..., by in SuSiE
(3)? Here, we tackle these questions in two steps. First, we consider a special type of
summary data, called “sufficient statistics,” which contain the same information about
the model parameters as the individual-level data X, y. Given such sufficient statistics,
we develop an algorithm that exactly reproduces the results that would be obtained by
running SuSiE on the original data X, y. Second, we consider the case where we have
access to summary data that are not sufficient statistics; these summary data can be
used to approximate the sufficient statistics, and hence approximate the results for
individual-level data.

The IBSS-ss algorithm

The IBSS algorithm of [17] fits the SuSiE model to individual-level data X ,y. The data
enter the SuSiE model only through the likelihood, which from (1) is

1
K(b,cf?;X,y) = (27rc72)*N/2 exp {M

(yTy — QbTXTy+bTXTXb)} . (8)
This likelihood depends on the data only through XTX, XTy, yTy and N, and so these
quantities are sufficient statistics. (Furthermore, these sufficient statistics can be
computed from other combinations of summary data, which are therefore also sufficient
statistics; we discuss on this point further below.) Careful inspection of the IBSS
algorithm in [17] confirms that it depends on the data only through these sufficient
statistics. Thus, by rearranging the computations we obtain a variant of IBSS, called
“IBSS-ss”, that can fit the SuSiE model from sufficient statistics; see S1 Text.

We use IBSS(X, y) to denote the result of applying the IBSS algorithm to the
individual-level data, and IBSS-ss(XTX, X Ty, yTy, N) to denote the results of
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applying the IBSS-ss algorithm to the sufficient statistics. These two algorithms will
give the same result,

IBSS-ss(XTX, X7y, yTy, N) = IBSS(X,y), (9)

however the computational complexity of the two approaches is different. First,
computing the sufficient statistics requires computing the J x J matrix X7 X, which is
a non-trivial computation, requiring O(NN.J?) operations. However, once this matrix has
been computed, IBSS-ss requires O(J?) operations per iteration, whereas IBSS requires
O(NJ) operations per iteration. (The number of iterations should be the same.)
Therefore, when N > J, which is often the case in fine-mapping studies, IBSS-ss will
usually be faster. In practice, choosing between these workflows also depend on whether
or not one prefers to precompute X TX, which can be done conveniently in programs
such as PLINK [30] or LDstore [31]).

SuSiE with summary data: SuSiE-RSS

In practice, sufficient statistics may not be available; in particular, when individual-level
data are unavailable, the matrix X7X is also usually unavailable. A natural approach
to deal with this issue is to approximate the sufficient statistics, then to proceed as if
the sufficient statistics were available by inputting the approximate sufficient statistics
to the IBSS-ss algorithm. We call this approach SuSiE-RSS.

For example, let V,. denote an approximation to the sample covariance
Vie = %X TX, and assume the other sufficient statistics X Ty, yTy, N are available
exactly. (These are easily obtained from commonly available summary data, and R; see
S1 Text.) Then SuSiE-RSS is the result of running the IBSS-ss algorithm on the
sufficient statistics but with NV, replacing X 7X; that is, SuSiE-RSS is
IBSS-ss(N Ve, X7y, yTy, N).

In practice, we found that estimating o2 sometimes produced very inaccurate
estimates, presumably due to inaccuracies in V,. as an approximation to V. (This
problem did not arise when Vm = V,z.) Therefore, when running the IBSS-ss
algorithm on approximate summary statistics, we recommend to fix the residual
variance, 02 = yTy /N, rather than estimate it.

Interpretation in terms of an approximation to the likelihood

We defined SuSiE-RSS as the application the IBSS-ss algorithm to the sufficient
statistics, or approximations to these statistics. Conceptually, this approach combines
the SuSiE prior with an approximation to the likelihood (8).

To formalize this, we write the likelihood (8) explicitly as a function of the sufficient
statistics, defining

N
gss(ba 0'2; Vie, Vay, Vyy, N) = (27T02)_N/2 exp {_22
g

(vyy — 2bTvgy + bTVmb)} , (10)
so that
U(b,0%; X, y) = lss(b, 0% Voo, . X Ty, 7y Ty, N). (11)

Replacing V,, with an estimate Vs is therefore equivalent to replacing the likelihood
(11) with
lrss(b, 0%) ==L (b,0%; Vo, 5 X Ty, 1 yTy, N). (12)

Note that when V,, = V.=, the approximation is exact; that is,
lrss(b,0?) = €(b,0?; X ,y). Thus applying SuSiE-RSS with V. is equivalent to using
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the individual-data likelihood (8), and applying it with Vs is equivalent to using the
approximate likelihood (12). Finally, fixing 0 = +yTy is equivalent to using the
following likelihood:

lrss(b) = lrss(b, % yTy)
= lys(b, 2y Yy Viw, = X Ty, LyTy, N). (13)

General strategy for applying regression methods to summary data

The strategy used here to extend SuSiE to summary data is quite general, and could be
used to extend essentially any likelihood-based multiple regression method for
individual-level data X,y to summary data. Operationally, this strategy involves two
steps: (i) implement an algorithm that accepts as input sufficient statistics, and outputs
the same result as the individual-level data; (ii) apply this algorithm to approximations
of the sufficient statistics computed from (non-sufficient) summary data (optionally,
fixing the residual variance to 02 = yTy/N). Conceptually, this strategy involves
replacing the exact likelihood (18) with an approximate likelihood, either (12) or (13).

Special case when X,y are standardized

In genetic association studies, is common practice to standardize both y and the
columns of X to have unit variance—that is, yTy = N and a:Jchj = N for all
j=1,..., J—before fitting the model (1). (See [32,33] for a discussion on the choice to
standardize.) Standardizing X,y is commonly done in genetic association analysis and
fine-mapping, and results in some simplifications that facilitates connections with
existing methods, so we consider this special case in detail.

When X,y are standardized, the sufficent statistics are easily computed from the
in-sample LD matrix R, the single-SNP z-scores 2z, and the sample size N:

XTX =NR (14)
XTy =Nz (15)
y'y=N, (16)
where we define
z:=D!/?z, (17)

and we define D, to be the diagonal matrix in which the jth diagonal element is

N/(N + %) [21]. Note the elements of D, have the interpretation as being one minus

the estimated PVE (“Proportion of phenotypic Variance Explained”), so we refer to Z

as the vector of the “PVE-adjusted z-scores.” If all the effects are small, the estimated

PVEs will be close to zero, the diagonal of D, will be close to one, and so 2 ~ 2.
Substituting equations (14)—(16) into (11) gives

0(b,0% X,y) = ls(b,0*; R, 2/VN,1,N). (18)

When the in-sample LD matrix R is not available, and is replaced with R~ R, the
SuSiE-RSS likelihood (13) becomes

lrss(b) = l(b,1; R, 2/VN,1,N). (19)

These expressions are summarized in Table 1.
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Connections with previous work

The approach we take here is most closely connected with the approach used in
FINEMAP (versions 1.2 and later) [21]. In essence, FINEMAP 1.2 uses the same
likelihoods (18, 19) as we use here, but the derivations in [21] do not clearly distinguish
the case where the in-sample LD matrix is available from the case where it is not. In
addition, the derivations in [21] focus on Bayes Factors computed with particular priors,
rather than focussing on the likelihood. Our derivations here emphasize that, when the
in-sample LD matrix is available, results from “summary data” can be identical to those
that would have been obtained from individual-level data. And our focus on the
likelihoods draws attention the generality of this strategy; it is not specific to a
particular prior, nor is it specific to the use of Bayesian methods.
Several other previous fine-mapping methods (e.g., [7,8,12,16]) are based on the

following model:

2|z, R~N;(Rz,R), (20)

where z = (z1,...,27)7 is an unobserved vector of scaled effects, sometimes called the
noncentrality parameters (NCPs),

z = b\/ﬁ. (21)

g

(Earlier versions of SuSiE-RSS [34] were also based on this model.) To connect our
method with this approach, note that, when R is invertible, the likelihood (19) is
equivalent to the likelihood for b in the following model:

2|b,R~N;(VNRb,R). (22)

(See S1 Text for additional notes.) This model is also used in Zhu and Stephens [23],
where the derivation was based on the PVE-adjusted standard errors, which gives the
same PVE-adjusted z-scores. This model (22) is essentially the same model as (20) but
with the observed z-scores, 2, replaced with the PVE-adjusted z-scores, z. In other
words, when Ris invertible, these previous approaches are the same as our approach
except that they use the z-scores, 2, instead of the PVE-adjusted z-scores, z. Thus,
where our approach uses the identity X Ty = vV NZ (eq. 15), these previous approaches
are implicitly making the approximation X Ty ~ v/N2. If all effect sizes are small (i.e.,
PVE = 0), then 2 ~ 2, and the approximation will be nearly exact; on the other hand,
if the PVE is not close to zero for some SNPs, then the use of the PVE-adjusted z-scores
is preferred [21]. Note that the PVE-adjusted z-scores require knowledge of N; in rare
cases where N is unknown, replacing zZ with £ may be an acceptable approximation.

Approaches to dealing with a non-invertible LD matrix

One complication that can arise in working directly with models (20) or (22) is that R
is frequently non-invertible. For example, if R is the sample correlation matrix from a
reference panel, R will be non-invertible (i.e., singular) whenever the number of
individuals in the panel is less than J, or whenever any two SNPs are in complete LD in
the panel. In such cases, these models do not have a density (with respect to the
Lebesgue measure). Methods using (20) have therefore required workarounds to deal
with this issue. One approach is to modify (“regularize”) R to be invertible by adding a
small, positive constant to the diagonal [7]. In another approach, the data are
transformed into a lower-dimensional space [35,36], which is equivalent to replacing
R~ with its pseudoinverse (see S1 Text). Our approach circumvents these issues
because the likelihood (19) is defined whether or not R is invertible. (Indeed, it is
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defined even if R is not positive semi-definite, but its use in that case may be
problematic as the likelihood can be unbounded; see also [37].) Our approach has
several advantages over the data transformation approach: it is simpler; it does not
involve inversion or factorization of a (possibly very large) J x J matrix; and it
preserves the property that results under the SER model do not depend on LD (see
Results and S1 Text). Also note that our approach can be combined with modifications
to R, such as adding a small constant to the diagonal. The benefits of regularizing R
are investigated in the experiments below.

New refinement procedure for more accurate CSs

As noted in [17], the IBSS algorithm can sometimes converge to a poor solution (local
optimum of the ELBO). Although this is rare, it can produce misleading results when it
does occur; in particular it can produce false positive CSs (i.e., CSs containing only null
SNPs that have zero effect). To address this issue, we developed a simple refinement
procedure for escaping local optima. The procedure is heuristic, and not guaranteed to
eliminate all convergence issues, but in practice it often helps in those rare cases where
the original IBSS has problems. The refinement procedure applies equally to both
individual-level data and summary data.

In brief, the refinement procedure involves two steps: first, fit a SuSiE model by
running the IBSS algorithm to convergence; second, for each CS identified from the
fitted SuSiE model, rerun IBSS to convergence after first removing all SNPs in the CS
(which forces the algorithm to seek alternative explanations for observed associations),
then try to improve this fit by running IBSS to convergence again, with all SNPs. If
these refinement steps improve the objective function, the new solution is accepted;
otherwise, the original solution is kept. This process is repeated until the refinement
steps no longer make any improvements to the objective. By construction, this
refinement procedure always produces a solution whose objective is at least as good as
the original IBSS solution. For full details, see S1 Text.

Because the refinement procedure reruns IBSS for each CS discovered in the initial
round of model fitting, the computation increases with the number of CSs found. In
data sets with many CSs the refinement procedure may be quite time-consuming.

Other improvements to fine-mapping with summary data

Here we introduce additional methods to improve accuracy of fine-mapping with
summary data. These methods can be applied to other fine-mapping methods as well as
SuSiE.

Regularization to improve consistency of the estimated LD matrix

Accurate fine-mapping requires R to be an accurate estimate of R. When R is
computed from a reference panel, the reference panel should not be too small [31], and
should be of similar ancestry to the study sample. Even when a suitable panel is used,
there will inevitably be differences between R and R. A common way to improve
estimation of covariance matrices is to use regularization [38], replacing R with RA,

Ry :=(1—-\NRy+ A, (23)

where Ry is the sample correlation matrix computed from the reference panel, and
A € ]0,1] controls the amount of regularization. This strategy has previously been used
in fine-mapping from summary data (e.g., [8,37,39]), but in previous work A was usually
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fixed at some arbitrarily small value, or chosen using cross-validation. Here, we estimate
A by maximizing the likelihood under the null (z = 0),

A := argmax N (%;0, (1 — \)Ro + ). (24)
Ae0,1]

The estimated A reflects the consistency between the (PVE-adjusted) z-scores and the
LD matrix Ry; if the two are consistent with one another A will be close to zero.

Detecting and removing large inconsistencies in summary data

Regularizing R can help address subtle inconsistencies between R and R. However,
regularization cannot deal with large inconsistencies in the summary data, which, in our
experience, occur often. One common source of such inconsistencies is an “allele flip” in
which the alleles of a SNP are encoded one way in the study sample (used to compute
%) and in a different way in the reference panel (used to compute R). Large
inconsistencies can also arise from using z-scores that were obtained using different
samples at different SNPs (and should be avoided by performing genotype
imputation [23]). Anecdotally, we have found large inconsistencies like these often cause
SuSiE to converge very slowly and produce misleading results, such as an unexpectedly
large number of CSs, or two CSs containing SNPs that are in strong LD with each other.
We have therefore developed diagnostics to help users detect such anomalous data. (We
note that similar ideas were proposed in the recent paper [40].)

Under model (22), the conditional distribution of Z; given the other PVE-adjusted
z-scores is

Z | RbZ_j ~ N((VNb; — @ _j2_5) /5, 1/Q;), (25)

where Q := R™!, z_; denotes the vector z excluding Z;, and €2, _; denotes the jth row
of € excluding €2;;. This conditional distribution depends on the unknown b;. However,
provided that the effect of SNP j is small (i.e., b; ~ 0), or that SNP j is in strong LD
with other SNPs, which implies 1/€;; ~ 0, we can approximate this by

Z IRz~ N(—Q_jZ_;/95;,1/9;). (26)

An initial quality control check can be performed by plotting the observed Z; against its
conditional expectation in (26), with large deviations potentially indicating anomalous
z-scores. Since computing these conditional expectations involves the inverse of R, this
matrix must be invertible. When R is not invertible, we replace R with the regularized
(and invertible) matrix R, following the steps described above.

Note that while we have written (25) and (26) in terms of the PVE-adjusted
z-scores, Zz, it is valid to use the same expressions for the unadjusted z-scores, 2, so long
as the effect sizes are small. The distribution (26) has been previously used to impute
z-scores [41], and it is also used in DENTIST [40] (although DENTIST uses z-scores
instead of the PVE-adjusted z-scores).

A more quantitative measure of the discordance of Z; with its expectation under the
model can be obtained by computing standardized differences between the observed and

expected values,
ty = Q525 + Q525 /Q5)- (27)

SNPs j with largest (in magnitude) ¢; are most likely to violate the model assumptions,
and are therefore the top candidates for followup. When any such candidates are
detected, the user should check the data pre-processing steps and fix any errors that
cause inconsistencies in summary data. If there is no way to fix the errors, removing the
anomalous SNPs is a possible workaround. Sometimes removing a single SNP is enough
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to resolve the discrepancies—for example, a single allele flip can result in inconsistent
z-scores among many other SNPs in LD with the allele-flip SNP. We have also developed
a likelihood-ratio statistic based on (26) specifically for identifying allele flips; see S1
Text for a derivation of this likelihood ratio and an empirical assessment of its ability to
identify allele-flip SNPs in simulations. After one or more SNPs are removed, one
should consider re-running these diagnostics on the filtered summary data to search for
additional inconsistencies that may have been missed in the first round. Alternatively,
DENTIST provides a more automated approach to filtering out inconsistent SNPs [40].
We caution that computing these diagnostics requires inverting or factorizing a
J x J matrix, and may therefore involve large computational expense—potentially a
greater expense than the fine-mapping itself—when J, the number of SNPs, is large.

Software availability

The SuSiE and SuSiE-RSS methods are implemented in the R package susieR. It is
available for download at https://github.com/stephenslab/susieR, and on CRAN
at https://cran.r-project.org/package=susieR.

Verification and comparison

Fine-mapping with inconsistent summary data and a
non-invertible LD matrix: an illustration

A technical issue that arises when developing fine-mapping methods for summary data
(z-scores and LD matrix) is that the LD matrix is often not invertible. Several
approaches to dealing with this have been suggested, including modifying the LD matrix
to be invertible, transforming the data into a lower-dimensional space, or replacing the
inverse with what is known as the “pseudoinverse” (see “Approaches to dealing with a
non-invertible LD matrix” above). In SuSiE-RSS, we avoid this issue by directly
approximating the likelihood, so SuSiE-RSS does not require the LD matrix to be
invertible. We summarize the theoretical relationships between these methods in S1
Text. Here illustrate the practical advantage of the SuSiE-RSS approach in a toy
example.

Consider a very simple situation with two SNPs, in strong LD, with observed
z-scores 2 = (6,7). Both SNPs are significant, but the second SNP is more significant.
Under the assumption that exactly one of these SNPs has an effect—which allows for
exact posterior computations—the second SNP is the better candidate, and should have
a higher PIP. Further, the PIPs should be unaffected by LD between the SNPs (see S
Text). However, the transformation and pseudoinverse approaches—which are used by
msCAVIAR [42] and in previous fine-mapping analyses [35,36], and are also used in
DENTIST to detect inconsistencies in summary data [410]—do not guarantee that either
of these properties are satisfied. For example, suppose the two SNPs are in complete LD
in the reference panel, so Risa?2x?2 (non-invertible) matrix with all entries equal to 1.
Note that R is inconsistent with the observed 2 because complete LD betweeen SNPs
implies their z-scores should be identical. (This could happen if the LD in the reference
panel used to compute R is slightly different from the LD in the association study.)
The tranformation approach effectively adjusts the observed data Z to be consistent
with the LD matrix before drawing inferences; here it would adjust 2 to 2 = (6.5,6.5),
removing the observed difference between the SNPs and forcing them to be equally
significant, which seems undesirable. The pseudoinverse approach turns out to be
equivalent to the tranformation approach (see S1 Text), and so behaves the same way.
In contrast, our approach avoids this behaviour and correctly maintains the second SNP
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Fig 1. Example illustrating importance of identifying and correcting allele
flips in fine-mapping. In this simulated example, one SNP (red triangle) affects the
phenotype, and one SNP (yellow circle) has a different allele encoding in the study
sample (the data used to compute the z-scores) and the reference panel (the data used
to compute the LD matrix). Panel A shows the z-scores for all 1,002 SNPs. Panel B
summarizes the results of running SuSiE-RSS on the summary data; SuSiE-RSS
identifies a true positive CS (blue circles) containing the true causal SNP and a false
positive CS (green circlesq) that incorrectly contains the mismatched SNP. The
mismatched SNP is also incorrectly estimated to have an effect on the phenotype with
very high probability (PIP = 1.00). The diagnostic plot (Panel C) compares the
observed z-scores against the expected z-scores. In this plot, the mismatched SNP
(yellow circle) shows the largest difference between observed and expected z-scores, and
therefore appears furthest away from the diagonal. After fixing the allele encoding and
recomputing the summary data, SuSiE-RSS identifies a single true positive CS (blue
circles) containing the true-causal SNP (red triangle), and the formerly mismatched
SNP is (correctly) not included in a CS (Panel D). This example is implemented as a
vignette in the susieR package.

as the better candidate; applying SuSiE-RSS to this toy example yields PIPs of 0.001
for the first SNP and 0.998 for the second SNP, and a single CS containing the second
SNP only. To reproduce this result, see the examples accompanying the susie_rss
function in the susieR R package.

Effect of allele flips on accuracy of fine-mapping: an illustration

When fine-mapping is performed using z-scores from a study sample and an LD matrix
from a different reference sample, it is crucial that the same alleles encodings are used
in each sample. In our experience, “allele flips,” in which different allele encoding are
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used in the two samples, are a common source of fine-mapping problems. Here we use a
simple simulation to illustrate this problem, and the steps we have implemented to
diagnose and correct the problem.

We simulated a fine-mapping data set with 1,002 SNPs, in which one out of the
1,002 SNPs was causal, and we deliberately used different allele encodings in the study
sample and reference panel for one of the non-causal SNPs; see 51 Text for more details
on this simulation. The causal SNP is among the SNPs with the highest z-scores (the
red triangle in Fig 1, Panel A), and SuSiE-RSS correctly includes this causal SNP in a
CS (Panel B). However, SuSiE-RSS also wrongly includes the allele-flip SNP in a second
CS (Panel B). This happens because the LD between the allele-flip SNP and other
SNPs is incorrectly estimated. Fig 1, Panel C shows a diagnostic plot comparing each
z-score against its expected value under model (22). The allele-flip SNP stands out as a
likely outlier (yellow circle), and the likelihood ratio calculations identify this SNP as a
likely allele flip: LR = 8.2 x 102 for the allele-flip SNP, whereas all the other 262 SNPs
with z-scores greater than 2 in magnitude have likelihood ratios less than 1. (See S
Text for a more systematic assessment of the use of these likelihood ratio for identifying
allele-flip SNPs.) After correcting the allele encoding to be the same in the study and
reference samples, SuSiE-RSS infers a single CS containing the causal SNP, and the
allele-flip SNP is no longer included in a CS; see Fig 1, Panel D.

Note that these diagnostic tools are not sufficiently accurate to automatically
identify and correct allele flips or other errors. Nonetheless they can be helpful to assist
users with identifying errors in computational pipelines.

Simulations using UK Biobank genotypes

To systematically compare our new methods with existing methods for fine-mapping, we
simulated fine-mapping data sets using the UK Biobank imputed genotypes [43]. The
UK Biobank imputed genotypes are well suited to illustrate fine-mapping with summary
data due to the large sample size, and the high density of available genetic variants after
imputation. We randomly selected 200 regions on autosomal chromosomes for
fine-mapping, such that each region contained roughly 1,000 SNPs (average size: 390
kb). Due to the high density of SNPs, these data sets often contain very strong
correlations among SNPs; on average, a data set contained 30 SNPs with correlation
exceeding 0.9 with at least one other SNP, and 14 SNPs with correlations exceeding 0.99
with at least one other SNP.

For each of the 200 regions, we simulated a quantitative trait under the multiple
regression model (1) with X comprising genotypes of 50,000 randomly selected UK
Biobank samples, and with 1, 2 or 3 causal variants explaining a total of 0.5% of
variation in the trait (total PVE of 0.5%). In total, we simulated 200 x 3 = 600 data
sets. We computed summary data from these real genotypes and the synthetic
phenotypes. To compare how choice of LD matrix affects fine-mapping, we used three
different LD matrices: the in-sample LD matrix computed from the 50,000 individuals
(R), and two out-of-sample LD matrices computed from randomly-sampled reference
panels of 500 or 1,000 individuals, denoted R500 and Rwoo, respectively. The samples
randomly chosen for each reference panel had no overlap with the study sample but
were drawn from the same population, which mimics a situation where the reference
sample is well matched to the study sample.

Refining SuSiE model fits improves fine-mapping performance

We begin by demonstrating the benefits of our new refinement procedure for improving
SuSiE model fits. Fig 2 shows an example drawn from our simulations where the
regular IBSS algorithm converges to a poor solution and our refinement procedure
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Table 2. Runtimes on simulated data sets with in-sample LD matrix.
Average runtimes are taken over 600 simulations. All runtimes are in seconds. All
runtimes include time taken to read the data and write the results to files.

method min. average max.
SuSiE-RSS, estimated o, no refinement 0.65 1.33 18.89
SuSiE-RSS, estimated o, with refinement 1.62 5.50 72.57
SuSiE-RSS, fixed o, no refinement 0.40 1.40 18.61
SuSiE-RSS, fixed o, with refinement 1.44 4.81 62.34
SuSiE-RSS, fixed o, with refinement, L = true 0.37 1.52 4.95
DAP-G 0.66 5.70  371.76
FINEMAP 1.67 16.11 39.27
FINEMAP, L = true 1.00 12.92 42.93
CAVIAR, L = true 3.54 1,516.91 4,831.95

improves the solution. The example has two causal SNPs in moderate LD with one
another, which have opposite effects that partially cancel out each others’ marginal
associations (Panel A). This example is challenging because the SNP with the strongest
marginal association (SMA) is not in high LD with either causal SNP; it is in moderate
LD with the first causal SNP, and low LD with the second causal SNP. Although [17]
showed that the IBSS algorithm can sometimes deal well with such situations, that does
not happen in this case; the IBSS algorithm yields three CSs, two of which are false
positives that do not contain a causal SNP (Panel B). Applying our refinement
procedure solves the problem; it yields a solution with higher objective function
(ELBO), and with two CSs, each containing one of the causal SNPs (Panel C).

Although this sort of problem was not common in our simulations, it occurred often
enough that the refinement procedure yielded a noticeable improvement in performance
across many simulations (Fig 2, Panel D). (In this plot, power and false discovery rate
(FDR) are calculated as FDR := spisp and power := zpiley, where FP, TP, FN, TN
denote, respectively, the number of false positives, true positives, false negatives and
true negatives.) In our remaining experiments we therefore always ran SuSiE-RSS with
refinement.

Impact of LD accuracy on fine-mapping

We performed simulations to compare SuSiE-RSS with several other fine-mapping
methods for summary data: FINEMAP [12,21], DAP-G [14,16] and CAVIAR [7]. These
methods differ in the underlying modeling assumptions, the priors used, and in the
approach taken to compute posterior quantities. For these simulations, SuSiE-RSS,
FINEMAP and DAP-G were all very fast, usually taking no more than a few seconds
per data set (see Table 2 in S1 Text); by contrast, CAVIAR, was much slower because it
exhaustively evaluated all causal SNP configurations. (Other Bayesian fine-mapping
methods for summary data include PAINTOR [8], JAM [15] and CAVIARBF [11].
FINEMAP has been shown [12] to be faster and at least as accurate as PAINTOR and
CAVIARBF. JAM is comparable in accuracy to FINEMAP [15] and is most beneficial
when jointly fine-mapping multiple genomic regions, which we did not consider here.)
We compared methods based on both their posterior inclusion probabilities
(PIPs) [44] and credible sets (CSs) [2,17]. These quantities have different advantages.
PIPs have the advantage that they are returned by most methods, and can be used to
assess familiar quantities such as power and false discovery rates. CSs have the

June 13, 2022

14/25


https://doi.org/10.1101/2021.11.03.467167
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467167; this version posted June 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

A marginal associations B SuSiE-RSS, no refinement

25
SMAC, 17 @ sma
*ASNP 2
o 207 48 0.8 - O]
= o
© .
> 151 . 0.6
Y SNP12s * o
© 10 RIS % 04-
(@] ° o -
le) Sy .
T 57 .;’,'.’o’z!' - 0.2 @SNP2
b d SNP 1
07 T T T T T T 0 T Y* T T T T
0 200 400 600 800 1,000 0 200 400 600 800 1,000
SNP SNP
D SuSiE-RSS power vs. FDR
C SuSIE-RSS with refinement 034
1 ,
SNP 1O 0.25
0.8 O] 024
, o}
o 06 2 0.151
x g
0.4 0.1
NP 2
0.2 @S 0.05
SMA
07 T T T T T T 01
0 200 400 600 800 1,000 0 005 01 015 0.2 0.25 0.3
SNP FDR

Fig 2. Refining SuSiE model fits improves fine-mapping accuracy. Panels A,
B and C show a single example, drawn from our simulations, that illustrates how
refining a SuSiE-RSS model fit improves fine-mapping accuracy. In this example, there
are 1,001 candidate SNPs, and two SNPs (red triangles “SNP 1”7 and “SNP 27”) explain
variation in the simulated phenotype. The strongest marginal association (yellow circle,
“SMA”) is not a causal SNP. Without refinement, the IBSS-ss algorithm (applied to
sufficient statistics, with estimated ¢?) returns a SuSiE-RSS fit identifying three 95%
CSs (blue, green and orange circles); two of the CSs (blue, orange) are false positives
containing no true effect SNP, one of these CSs contains the SMA (orange), and no CS
includes SNP 1. After running the refinement procedure, the fit is much improved, as
measured by the “evidence lower bound” (ELBO); it increases the ELBO by 19.06
(—70837.09 vs. —70818.03). The new SuSiE-RSS fit (Panel C) identifies two 95% CSs
(blue and green circles), each containing a true causal SNP, and neither contains the
SMA. Panel D summarizes the improvement in fine-mapping across all simulations; it
shows power and false discovery rate (FDR) for SuSiE-RSS with and without using the
refinement procedure as the PIP threshold for reporting causal SNPs is varied from 0 to
1. (This plot is the same as a precision-recall curve after flipping the x-axis because
precision = TPTEFP =1—FDR and recall = power.) Circles are drawn at a PIP
threshold of 0.95.

advantage that, when the data support multiple causal signals, the multiple causal
signals is explicitly reflected in the number of CSs reported. Uncertainty in which SNP
are causal is reflected in the size of a CS.

First, we assessed the performance of summary-data methods using the in-sample
LD matrix. With an in-sample LD matrix, SuSiE-RSS applied to sufficient statistics
(with estimated o2) will produce the same results as SuSiE on the individual-level data,
so we did not include SuSiFE in this comparison. The results show that SuSiE-RSS,
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Fig 3. Discovery of causal SNPs using posterior inclusion
probabilities—in-sample LD. Each curve shows power vs. FDR in identifying
causal SNPs when the method (SuSiE-RSS, FINEMAP, DAP-G or CAVIAR) was
provided with the in-sample LD matrix. FDR and power are calculated from 600
simulations as the PIP threshold is varied from 0 to 1. Open circles are drawn at a PIP
threshold of 0.95. Two variants of FINEMAP and three variants of SuSiE-RSS are also
compared: L, the maximum number of estimated causal SNPs, is the true number of
causal SNPs, or larger than the true number; and, for SuSiE-RSS only, the residual
variance o2 is estimated (“sufficient data”) or fixed to 1 (“summary data”). Note that
power and FDR are virtually identical for all three variants of SuSiE-RSS so the three
curves almost fully overlap in Panel A.

FINEMAP and DAP-G have very similar performance, as measured by both PIPs
(Fig 3) and CSs (the “in-sample LD” columns in Fig 4). The main difference between
the methods is that DAP-G produced some “high confidence” (high PIP) false positives,
which hinders its ability to produce very low FDR values. Further, all four methods
produced CSs whose coverage was close to the target level of 95% (Panel A in Fig 4).
Both SuSiE-RSS and FINEMAP require the user to specify an upper bound on the
number of causal SNPs L. Setting this upper bound to the true value (“L = true” in
the figures) only slightly improved their performance, demonstrating that, with an
in-sample LD matrix, these methods are robust to overstating this bound. We also
compared the sufficient-data (estimated o?) and summary-data (fixed o2) variants of
SuSiE-RSS. The performance of the two variants was very similar, likely owing to the
fact that the PVE was close to zero in all simulations, and so ¢ = 1 was not far from
the truth. CAVIAR performed notably less well than the other methods for the PIP
computations. (The CSs computed by CAVIAR are defined differently from CSs
computed by other methods, so we did not include CAVIAR in the CS comparisons.)
Next, we compared the summary data methods using different out-of-sample LD
matrices, again using SuSiE-RSS with in-sample LD (and estimated o?) as a
benchmark. For every method, we computed out-of-sample LD matrices using two
different panel sizes (n = 500,1000) and three different values for the regularization
parameter, A (no regularization, A = 0; weak regularization, A = 0.001; and the
regularization level A estimated from the data as described in Methods). As might be
expected, the performance of SuSiE-RSS, FINEMAP and DAP-G all degraded with
out-of-sample LD compared with in-sample LD; see Fig 5 and Fig 4. Notably, the CSs
no longer met the 95% target coverage (Panel A in Fig 4). In all cases, performance was
notably worse with the smaller reference panel, which highlights the importance of using
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Fig 4. Assessment of 95% credible sets from SuSiE-RSS, FINEMAP and
DAP-G with different LD estimates. Two variants of SuSiE-RSS were also
compared: when the residual variance o2 was estimated (“sufficient data”), or fixed to 1
(“summary data”). We evalulate CSs using: (A) coverage, the proportion of CSs that
contain a true causal SNP; (B) power, the proportion of true causal SNPs included in a
CS; (C) median number of SNPs in each CS; and (D) median purity, where “purity” is
defined as the smallest absolute correlation among all pairs of SNPs within a CS.
Following [17], we discarded any CSs with purity less than 0.5. These statistics are
taken as the mean (A, B) or median (C, D) over all simulations; error bars in A and B
show two times the standard error. The target coverage of 95% is shown as a dotted
horizontal line in Panel A.

a sufficiently large reference panel [31]. Regarding regularization, SuSiE-RSS and
DAP-G performed similarly at all levels of regularization, and so do not appear to
require regularization; in contrast, FINEMAP required regularization with an estimated
regularization level A to compete with SuSiE-RSS and DAP-G. Since estimating the
regularization level is somewhat computationally burdensome, SuSiE-RSS and DAP-G
have an advantage in this situation. All three methods benefited more from increasing
the size of the reference panel than from regularization, again emphasizing the
importance of sufficiently large reference panels. Interestingly, CAVIAR’s performance
was relatively insensitive to choice of LD matrix; however the other methods clearly
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Fig 5. Discovery of causal SNPs using posterior inclusion
probabilities—out-of-sample LD. Plots compare power vs. FDR of fine-mapping
methods with different LD matrices, across 600 simulations, as the PIP threshold is
varied from 0 to 1. Open circles indicate results at PIP threshold of 0.95. Each plot
compares performance of one method (CAVIAR, DAP-G, FINEMAP or SuSiE-RSS)
when provided with different LD estimates: in-sample (R = R), or out-of-sample LD
from a reference panel with either 1,000 samples (R = Rwoo) or 500 samples

(R = R500). For out-of-sample LD, different levels of the regularization paremeter A are
also compared: A = 0; A = 0.001; and estimated X\ (see Methods). Panels C-F show
results for two variants of FINEMAP and SuSiE-RSS: in Panels C and E, the maximum
number of causal SNPs, L, is set to the true value (L = true); in Panels D and F, L is
set larger than the true value (L = 4 for FINEMAP; L = 10 for SuSiE-RSS). In each
panel, the dotted black line shows the results from SuSiE-RSS with in-sample LD and
estimated o2, which provides a baseline for comparison (note that all the other
SuSiE-RSS results were generated by fixing o2 to 1, which is the recommended setting
for out-of-sample LD). Some power vs. FDR curves may not be visible in the plots
because they overlap almost completely with another curve, such as some of the
SuSiE-RSS results at different LD regularization levels.
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outperformed CAVIAR with the larger (n = 1,000) reference panel.

The fine-mapping results with out-of-sample LD matrix also expose another
interesting result: if FINEMAP and SuSiE-RSS are provided with the true number of
causal SNPs (L = true), their results improve (Fig 5, Panels C vs. D, Panels E vs. F).
This improvement is particularly noticeable for the small reference panel (light green
lines). We interpret this result as indicating a tendency of these methods to react to
misspecification of the LD matrix by sometimes including additional (false positive)
signals. Specifying the true L reduces their tendency to do this because it limits the
number of signals that can be included. This suggests that restricting the number of
causal SNPs, L, may make fine-mapping results more robust to misspecification of the
LD matrix (even for methods that are robust to overstating L when the LD matrix is
accurate). Alternatively, priors or penalties that favor smaller L may also help. Indeed,
when none of the methods are provided with information about the true number of
causal SNPs, DAP-G slightly outperforms FINEMAP and SuSiE-RSS, possibly
reflecting a tendency for DAP-G to favour models with smaller numbers of SNPs (either
due to the differences in prior or differences in approximate posterior inference). Further
study of this issue may lead to methods that are more robust to misspecified LD.

Fine-mapping causal SNPs with larger effects

So far, we have evaluated the performance of fine-mapping methods in simulations when
the simulated effects of the causal SNPs were small (total PVE of 0.5%). This was
intended to mimic the typical situation encountered in genome-wide association
studies [45,46]. Here we scrutinize the performance of fine-mapping methods when the
effects of the causal SNPs are much larger, which might be more representative of the
situation in expression quantitative trait loci (eQTL) studies [47-49]. FINEMAP and
SuSiE—and therefore SuSiE-RSS with sufficient statistics—are expected to perform
well in this setting [17,21], but, as mentioned above, some summary-data methods make
the (implicit) assumption that the effects are small (see “Connections with previous
work”), and this assumption may affect performance in settings where this assumption
is violated.

To assess the ability of the fine-mapping methods to identify causal SNPs with larger
effects, we performed an additional set of simulations, again using the UK Biobank
genotypes, except that here we simulated the 1-3 causal variants so that they explained,
in total, a much larger proportion of variance in the trait (PVE of 10% and 30%). To
evaluate these methods at roughly the same level of difficulty (i.e., power), we
simulated these fine-mapping data sets with much smaller sample sizes
(n = 2,500 and 800, respectively).

The results of these high-PVE simulations are summarized in Fig 6. As expected,
SuSiE-RSS with in-sample LD matrix performed consistently better than the other
methods, which use an out-of-sample LD matrix, and therefore provides a baseline
against which other methods can be compared. Overall, increasing PVE tended to
increase variation in performance among the methods. In all PVE settings, SuSiE-RSS
with out-of-sample LD was among the top performers, and it most clearly outperformed
other methods in the highest PVE setting (30% PVE), where all of FINEMAP, DAP-G,
and CAVIAR showed a notable decrease in performance. For DAP-G and CAVIAR,
this decrease in performance was expected due to their implicit modeling assumption
that the effect sizes are small. For FINEMAP, this drop in performance was unexpected,
since FINEMAP uses the PVE-adjusted z-scores to account for larger effects. Although
this situation is unusual in fine-mapping studies—it is unusual for a handful of SNPs to
explain such a large proportion of variance in the trait—we examined these FINEMAP
results more closely to understand why this was happening. (Also, see
https://stephenslab.github.io/finemap/large_effect.html for a step-by-step
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Fig 6. Discovery of causal SNPs using posterior inclusion
probabilities—out-of-sample LD and larger effects. Each curve shows power vs.
FDR for identifying causal SNPs with different effect sizes (total PVE of 0.5%, 10% and
30%). Each panel summarizes results from 600 simulations; FDR and power are
calculated from the 600 simulations as the PIP threshold is varied from 0 to 1. Open
circles depict power and FDR at a PIP threshold of 0.95. In addition to comparing
different methods (SuSiE-RSS. FINEMAP, DAP-G, CAVIAR), two variants of
FINEMAP and SuSiE-RSS are also compared: when L, the maximum number of
estimated causal SNPs, is set to the true number of causal SNPs; and when L is larger
than the true number. SuSiE-RSS with estimated residual variance o2 and in-sample
LD (dotted black line) is shown as a “best case” method against which other methods
can be compared. All other methods are given an out-of-sample LD matrix computed
from a reference panel with 1,000 samples, with no regularization (A = 0). The
simulation results for 0.5% PVE (top-left panel) are the same as the results shown in
previous plots (Fig 3, Fig 5), but presented differently to faciliate comparison with the
results of the higher-PVE simulations. Note that the higher-PVE simulations used
smaller sample sizes so that power is roughly equal in each panel.

example illustrating this result.) First, we confirmed that this performance drop only

occurred with an out-of-sample LD matrix; with an in-sample LD matrix, FINEMAP’s
performance was very similar to SuSiE-RSS’s with an in-sample LD matrix (results not
shown). A partial explanation for the much worse performance with out-of-sample LD

June 13, 2022

20/25


https://doi.org/10.1101/2021.11.03.467167
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.03.467167; this version posted June 13, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

was that FINEMAP often overestimated the number of causal SNPs; in 17% of the
simulations, FINEMAP assigned highest probability to configurations with more causal
SNPs than the true number. By contrast, SuSiE-RSS overestimated the number of
causal SNPs (i.e., the number of CSs) in only 1% of the simulations. Fortunately, in
settings where causal SNPs might have larger effects, FINEMAP’s performance can be
greatly improved by telling it the true number of causal SNPs (“L = TRUE”), which is
consistent with our earlier finding that restricting L in SuSiE-RSS and FINEMAP can
improve fine-mapping with an out-of-sample LD matrix.

Discussion

We have presented extensions of the SuSiE fine-mapping method to acccommodate
summary data, with a focus on marginal z-scores and an out-of-sample LD matrix
computed from a reference panel. Our approach provides a general template for how to
extend any full-data regression method to analyse summary data: develop a full-data
algorithm that works with sufficient statistics, then apply this algorithm directly to
summary data. Although it is simple, as far as we are aware this template is novel, and
it avoids the need for any special treatment of non-invertible LD matrices.

In simulations, we found that our new method, SuSiE-RSS, is competitive in both
accuracy and computational cost with the best existing methods for fine-mapping from
summary data, DAP-G and FINEMAP. Whatever method is used, our results
underscore the importance of accurately computing out-of-sample LD from an
appropriate and large reference panel (see also [31]). Indeed, for the best performing
methods, performance depended more on choice of LD matrix than on choice of method.
We also emphasize the importance of computing z-scores at different SNPs from the
exact same samples, using genotype imputation if necessary [50]. It is also important to
ensure that alleles are consistently encoded in study and reference samples.

Although our derivations and simulations focused on z-scores computed from
quantitative traits with a simple linear regression, in practice it is common to apply
summary data fine-mapping methods to z-scores computed in other ways, e.g., using
logistic regression on a binary or case-control trait, or using linear mixed models to deal
with population stratification and relatedness. The multivariate normal assumption on
z-scores, which underlies all the methods considered here, should also apply to these
settings, although as far as we are aware theoretical derivation of the precise form (20)
is lacking in these settings (although see [12,51,52]). Since the model (20) is already
only an approximation, one might expect that the additional effect of such issues might
be small, particularly compared with the effect of allele flips or small reference panels.
Nonetheless, since our simulations show that model misspecification can hurt
performance of existing methods, further research to improve robustness of
fine-mapping methods to model misspecification would be welcome.
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Supporting information

S1 Fig. Likelihood ratio for detecting allele flips. These plots summarize the
likehood ratios LR; for SNPs j in simulated fine-mapping data sets, separately for
allele-flip SNPs with an effect (top row, right-hand side) and without an effect on the
trait (top row, left-hand side), and for SNPs without a flipped allele that affect the trait
(middle row, right-hand side) and do not affect the trait (middle row, left-hand side).
The two histograms in the bottom row show likelihood ratios after restricting to SNPs
with z-scores greater than 2 in magnitude. The bar heights in the histograms in the
middle and bottom rows are drawn on the logarithmic scale to better visualize the
smaller numbers of SNPs with likelihood ratios greater than 1 (i.e., logLR; > 0).

S1 Text. Detailed methods. More description of the methods, including: the single
effect regression (SER) model with summary statistics; the IBSS-ss algorithm;
computing the sufficient statistics; approaches to dealing with a non-invertible LD
matrix; estimation of A in the regularized LD matrix; likelihood ratio for detecting allele
flips; SuSiE refinement procedure; detailed calculations for toy example; and more
details on the simulations.
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