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Summary

The targeted deletion, replacement, integration, or inversion of DNA sequences at
specified locations in the genome could be used to study or treat many human genetic
diseases. Here, we describe twin prime editing (twinPE), a method for the programmable
replacement or excision of DNA sequence at endogenous human genomic sites without
requiring double-strand DNA breaks. TwinPE uses a prime editor (PE) protein and two prime
editing guide RNAs (pegRNAs) that template the synthesis of complementary DNA flaps on
opposing strands of genomic DNA, resulting in the replacement of endogenous DNA
sequence between the PE-induced nick sites with pegRNA-encoded sequences. We show
that twinPE in human cells can perform precise deletions of at least 780 bp and precise
replacements of genomic DNA sequence with new sequences of at least 108 bp. By
combining single or multiplexed twinPE with site-specific serine recombinases either in
separate steps or in a single step, we demonstrate targeted integration of gene-sized DNA
plasmids (>5,000 bp) into safe-harbor loci including AAVS1, CCR5, and ALB in human cells.
To our knowledge, these results represent the first RNA-programmable insertion of gene-
sized DNA sequences into targeted genomic sites of unmodified human cells without
requiring double-strand breaks or homology-directed repair. Twin PE combined with
recombinases also mediated a 40,167-bp inversion at /DS that corrects a common Hunter
syndrome allele. TwinPE expands the capabilities of precision gene editing without requiring
double-strand DNA breaks and synergizes with other tools to enable the correction or

complementation of large or complex pathogenic alleles in human cells.
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Disease-associated human genetic variants arise through a variety of sequence
changes, ranging from single-base pair substitutions to mega base-scale duplications,
deletions and rearrangements'3. Gene editing approaches that can install, correct, or
complement these pathogenic variants in human cells have the potential to advance our
understanding of human genetic disease and could also lead to the development of new
therapeutics*°. Several mammalian cell gene editing approaches based on CRISPR-Cas
systems have been developed over the past decade®, including nucleases’?, base
editors'®"! and prime editors'?, each of which has the potential to address a subset of known
pathogenic sequence changes.

CRISPR-Cas nucleases such as Cas9 can be used to disrupt genes through the
generation of double-strand DNA breaks (DSBs) that lead to stochastic indels. In addition,
paired Cas9 nuclease strategies have been developed for the targeted deletion of genomic
DNA sequences ranging from ~50 to >100,000 base pairs in length'3. By providing a linear
donor DNA sequence, targeted insertion of new DNA sequences can be performed at single
cut sites or between paired cut sites through end-joining or homology-directed repair (HDR)
processes'# 1.

While versatile in some ways, single-nuclease and paired-nuclease editing
approaches have substantial drawbacks. HDR is inefficient compared to the generation of
uncontrolled mixtures of indels in the vast majority of cell types'®'”. Likewise, the use of
paired nucleases for targeted deletion also generates multiple byproducts, including the
desired deletion accompanied by undesired indels, indels at individual DSB sites without the
desired deletion, undesired inversion of the intervening sequence between DSB sites, and
unintended integration of exogenous DNA sequence at DSB sites'®18. In addition, the precise
location of the deletions is restricted by PAM availability, which dictates the location of
nuclease-mediated DNA cutting. Similar restrictions and byproducts exist for DNA donor
knock-in, which typically occurs without control of sequence orientation when homology-
independent approaches are used'* and is accompanied by efficient indel byproduct
generation'®. Finally, the simultaneous generation of multiple DSBs at on-target or off-target
sites can promote large deletions?%?2, chromosomal rearrangements such as
translocations?®, and chromothripsis?4. The tendency of DSBs to generate large mixtures of
undesired byproducts and chromosomal changes?®>2’ poses considerable challenges when
applying nuclease-based editing strategies for the excision, replacement, or insertion of
larger DNA sequences, especially in therapeutic settings.
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Base editors can be used to precisely install CG-to-T+A'? or A=T-to-G+C'" transition
mutations, or C*G-to-G+C transversion mutations?®-3° without requiring DSBs®. Prime editors
can precisely install any of the twelve possible base pair substitutions as well as small
insertions and deletions without requiring DSBs'2. In their original form, however, these DSB-
free editing technologies cannot be directly used to efficiently install edits that alter hundreds
or thousands of base pairs, such as large deletions, gene-sized insertions, large
replacements, or large inversions.

Prime editing has been shown to be capable of making precise insertions of up to ~40
bp and deletions of up to ~80 bp with PE2 and PE3 systems in human cells with high ratios of
desired edits to byproducts'2. While prime editing offers the flexibility to replace one DNA
segment with a new sequence, PE2 and PE3 systems have not yet been able to mediate
larger insertions and deletions of the size of typical exons or gene coding sequences, and the
presumed mechanism of simple prime editing reactions makes these larger DNA changes
difficult by requiring long pegRNA reverse transcription templates and long-range DNA
polymerization. In contrast, site-specific DNA recombinases have the ability to perform DNA
excision, inversion, integration, or exchange of large DNA sequences in mammalian cells®'2,
The longstanding challenge of reprogramming site-specific recombinases®-3¢, however, has
limited their use for precision gene editing applications.

Here, we report the development of twin prime editing (twinPE), which enables the
deletion, substitution, or insertion of larger DNA sequences at targeted endogenous genomic
sites with high efficiencies in human cells. In addition to these capabilities, twinPE can also
be used to integrate one or more recombinase recognition sites with high efficiency at
targeted sites in the human genome. These recognition sites can then be used as substrates
for site-specific serine recombinases to enable the targeted integration of gene-sized DNA
segments, or the targeted inversion of gene-sized genomic DNA sequences. The twinPE and
recombinase reagents can be delivered either stepwise, or simultaneously to enable one-step
targeted integration or inversion of large DNA segments at endogenous genomic loci.

Results
Twin prime editing strategy

Prime editing uses a prime editor protein comprising a fusion of a catalytically impaired
Cas9 nickase and a wild-type (PE1) or engineered (PE2) MMLYV reverse transcriptase (RT)
enzyme, and a prime editing guide RNA (pegRNA) that both specifies the target genomic site
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and encodes the desired edit'?. Upon target site recognition, PEspegRNA complexes nick the
PAM-containing DNA strand and directly reverse transcribe the pegRNA’s RT template into
genomic DNA using the nicked strand as a primer. Following reverse transcription, the newly
synthesized 3’ flap containing the edited sequence invades the adjacent DNA to replace the
redundant 5’ flap sequence. The opposing nonedited strand is then repaired using the edited
DNA strand as a template. This proposed prime editing pathway presents at least two
opportunities for cellular DNA repair to reject the desired edit and revert the DNA sequence to
its original form: during 3’ flap annealing and ligation, and during heteroduplex resolution.

We hypothesized that bypassing potentially disfavored steps in DNA repair might allow
prime editing to occur with increased efficiency and enable new classes of targeted gene
edits in mammalian cells. We envisioned a twin prime editing (twinPE) strategy that uses a
pair of pegRNAs, each of which targets a different DNA strand and templates the synthesis of
a 3’ flap that is complementary to the 3’ flap templated by the other pegRNA (Fig. 1a). We
hypothesized that if the newly synthesized DNA strands were highly dissimilar to the
endogenous target site, the complementary 3’ flaps would preferentially hybridize with each
other to create an intermediate containing annealed 3’ overhangs of new DNA sequence and
annealed 5’ overhangs of original DNA sequence (Fig. 1a). As both edited strands are
synthesized by prime editor complexes, there is no requirement for invasion of the target site
by edit-containing flap strands, or for the edit to be copied to the complementary DNA strand.
Excision of the original DNA sequence (annealed 5’ overhangs), filling in of gaps by
polymerases, and ligation of the pair of nicks would result in the replacement of the
endogenous sequence between the nick sites with the paired 3’ flap sequences (Fig. 1a).
Due to the flexibility in template design, the edit could in principle insert a new DNA

sequence, delete a portion of original DNA sequence, or replace a portion of original DNA.

TwinPE-mediated large sequence replacement and deletion

To test the twinPE strategy, we initially targeted the HEK293T site 3 locus (hereafter
referred to as HEK3) in HEK293T cells to replace 90 bp of endogenous sequence with a 38-
bp Bxb1 recombinase attB substrate sequence® (Fig. 1b). For each protospacer, three
pegRNAs were designed with RT templates that contained 30, 34, or 38 nt of the 38-bp attB
sequence (Fig. 1c). Pairwise combinations of these pegRNAs are predicted to generate 3’
flaps with overlapping complementarity ranging from 22 to 38 bp (Fig. 1¢). When both
pegRNAs were transfected into HEK293T cells along with PE2, we observed highly efficient
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attB site insertion, with some combinations of pegRNAs yielding >80% conversion to the
desired product (Fig. 1c). A similar strategy for the replacement of the 90-bp endogenous
sequence with the 50-bp Bxb1 attP attachment sequence also achieved high editing
efficiencies up to 58% (Fig. 1c¢). Notably, it was not necessary for either pegRNA to encode
the full insertion sequence, since partially overlapping complementary flaps enabled full-
length attB or attP sequence incorporation. However, 3’ flaps with greater overlap led to
slightly higher editing efficiencies and fewer indels for insertion of the Bxb1 attB and attP
sequences at HEK3 (Fig. 1c).

Independent of our efforts, Shendure and co-workers®® and Gao and co-workers®®
reported elegant dual-pegRNA prime editing systems that can be used to perform precise
large deletions (up to 710 bp) in human cells or improve base substitution and small insertion
or deletion edits in plant cells, respectively. For each of these strategies, the templated 3’ flap
sequence is homologous to the target site DNA sequence to facilitate DNA repair for
incorporation of the edit (Fig. 2a). In contrast, twinPE was designed to bypass the need for
any homologous DNA sequence in the pegRNA RT template, thus offering more template
sequence flexibility and the freedom to mediate larger insertions.

Next, we tested if twinPE could support the insertion of DNA sequences larger than
the <44-bp insertions previously demonstrated'? using PE2 or PE3 prime editing systems.
First, we examined PE3-mediated insertions of FKBP12 coding fragments ranging from 12 to
108 bp. Targeting the HEKS3 locus with PE3 in HEK293T cells, we achieved moderate editing
efficiencies for the shorter 12-bp and 36-bp insertions (32% and 17%, respectively), but very
little desired product for the 108-bp insertion (0.80%) (Fig. 2b). By contrast, twinPE enabled
16% insertion efficiency for the 108-bp fragment with concomitant deletion of 90 bp of HEK3
sequence, a 20-fold improvement over a the 108-bp insertion with PE3. Similarly, twinPE was
2- to 4-fold more efficient than PE3 for inserting a 108-bp FKBP12 cDNA fragment at CCR5
(Extended Data Fig. 1). Finally, 113-bp and 103-bp insertions containing pairs of Bxb1
recombinase sites (attB—-27 bp spacer-attP or attB-27 bp spacer—attB) were installed with
similar efficiencies (11% and 9.7%, respectively) at CCR5 using twinPE (Extended Data Fig.
1). These results demonstrate the ability of twinPE to mediate larger insertions than have
been previously demonstrated with PE2 and PE3 systems.

One potential application of the twinPE strategy is the replacement of exonic coding
sequence with recoded DNA sequence that maintains the protein sequence and has the
potential to correct any combination of mutations between target twinPE-induced nick sites.
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Such a capability raises the possibility of using a single pegRNA set and prime editor to
correct any of a variety of pathogenic mutations within a stretch of DNA, potentially
addressing multiple cohorts of animal models or patients. To test this approach, we targeted
PAH, encoding phenylalanine hydroxylase. Mutations within PAH cause the genetic
metabolic disorder phenylketonuria (PKU)*°. We tested the ability of twin PE to recode
portions of PAH exon 4 and exon 7, which commonly harbor mutations in PKU patients, in
HEK293T cells. By testing different flap overlap lengths using engineered pegRNAs
(epegRNAs) containing a 3’ evoPreQ1 motif*!, we achieved the desired sequence recoding
with average efficiencies of up to 23% for a 46-bp recoding and up to 27% for a longer
overlapping 64-bp recoding in exon 7, and up to 9.4% average efficiency for a 64-bp recoding
of exon 4 (Fig. 2c and Extended Data Fig. 2). Additional exons in PAH could also be recoded,
albeit with lower efficiency (Extended Data Fig. 2). These results demonstrate that twinPE
can replace stretches of dozens of nucleotides in human cells with a single pair of pegRNAs.

In addition to insertion and replacement of DNA sequences, twinPE may also mediate
precise deletions more effectively than previously described methods. Paired-nuclease
deletion strategies generate deletions of sequence between the two DSBs and are thus
restricted by PAM availability. In addition, desired deletions are accompanied by undesired
indel and inversion byproducts. In contrast, twinPE has the potential to generate deletions
with greater flexibility and precision due to the lack of required DSBs and the ability to write
additional DNA sequence at the twinPE-induced nick sites. To assess twinPE for precise
deletions, we compared three strategies using paired pegRNAs: a “single-anchor” (SA)
twinPE strategy, which fixes the deletion junction at one of the two nick sites; a “hybrid-
anchor” (HA) twinPE strategy, which allows flexible deletion junctions between the nick sites;
and, the PrimeDel (PD) strategy recently reported by Shendure and coworkers®, which
generates deletions between the nick sites with the option of inserting additional DNA
sequence (Fig. 2d). Each strategy differs in the relationship of the sequences of the two flaps
and thus in the positioning of the deletion with respect to the nick sites (Fig. 2d).

Targeting the HEK3 site in HEK293T cells and using the single-anchor strategy, 13-nt
complementary flaps were used to delete 77 bp of sequence adjacent to one of the pegRNA-
induced nick sites with 15% efficiency and 2.1% indels (Fig. 2e, SA-A77), and 34-nt
complementary flaps were used to precisely excise 56 bp of sequence with 19% efficiency
and 4.2% indels (Fig. 2e, SA-A56). Using the hybrid-anchor strategy, we deleted 64 bp
between the pegRNA-induced nick sites such that the product retains 13 bp of sequence 3’ of
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each nick with 12% efficiency and 5.5% indels (Fig. 2e, HA-A64). Finally, we tested the
PrimeDel strategy for the deletion of 90 bp between the pegRNA-induced nick sites, which
occurred with 40% efficiency and 1.6% indels (Fig. 2e, PD-A90). The higher efficiency of the
PrimeDel strategy may arise from its ability to disrupt the PAM sequences on both strands,
which likely increases deletion efficiency by limiting target re-engagement that can lead to
indels or re-nicking of the prime-edited strand. Editing efficiencies could be improved for all
three approaches by 1.5-fold to 2.5-fold upon the addition of the evoPreQ1 motif the 3’ end of
the resulting epegRNAs*! (Fig. 2e). Together, these data show that twinPE offers a strategy
for performing targeted deletions with high flexibility and high product purity that does not rely
on the availability of nuclease cut sites.

In a final application of twinPE to mediate targeted deletions, we targeted a
therapeutically relevant locus, DMD. Pathogenic DMD alleles, which are responsible for
Duchenne muscular dystrophy, commonly contain large deletions in regions containing exons
that result in frameshifted mRNA transcripts*2. Because production of nearly full-length
dystrophin protein without replacement of deleted exons can lead to partial rescue of protein
function*?, deletion of a second exon to restore the reading frame has been proposed as a
potential therapeutic strategy**. We examined three twinPE deletion strategies along with a
previously reported Cas9 nuclease deletion strategy for excising exon 51 in DMD*®. Using
single-anchor twinPE deletion approaches, we observed 28% average efficiency for the
deletion of a 780-bp sequence containing exon 51 in DMD (Fig. 2f). While the paired sgRNA
Cas9 nuclease strategy for deleting 818 bp achieved higher deletion efficiency (averaging
50% precise deletion) compared to twinPE strategies, paired Cas9 nuclease-mediated
deletion was also accompanied by much higher indel levels of 45% (33% desired deletion
with additional indels, plus 12% indels without the desired deletion) compared to twinPE,
which averaged 4% total indels (Fig. 2f).

Exon 51 of DMD could also be excised using alternative spacer pairs that generate a
627-bp deletion with the PrimeDel strategy (30% average efficiency) or by using twinPE to
replace a 589-bp sequence with a 38-bp Bxb1 attB sequence (up to 40% average efficiency)
(Fig. 2f). These experiments show that twinPE and PrimeDel are capable of generating large
deletions at therapeutically relevant loci in human cells with far fewer indel byproducts
compared to paired Cas9 nuclease strategies.

Both standard prime editing and twinPE require complementarity between the pegRNA
spacer and target DNA sequence for Cas9 targeting and nicking, complementarity between
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the pegRNA PBS and the nicked genomic DNA primer for initiation of reverse transcription,
and complementarity between the newly synthesized 3’ DNA flap and a local DNA sequence
(adjacent DNA for standard PE, the second 3’ flap for twinPE) for productive prime editing.
These three DNA hybridization requirements may explain the observation of reduced off-
target prime editing compared to that of Cas9 nuclease reported by our group and others'246
2. To examine potential off-target editing by twinPE, we amplified and sequenced four
previously characterized off-target loci for one of the HEK3 spacer sequences following
treatment by eight different sets of twinPE reagents targeting HEK3 (SA-A77, SA-A56, HA-
A64, and PD-A90 with standard pegRNAs and epegRNAs). For each of the eight twinPE
treatments, no detectable off-target edits or indels were detected at any of the four off-target
sites beyond background levels in untreated control samples (Supplementary Table 5).

Targeted DNA integration at safe harbor loci with twinPE and Bxb1 integrase

Although twinPE can perform larger insertion edits than PES, the upper limit of
sequence insertion with twinPE is insufficient to integrate gene-sized DNA fragments of
thousands of base pairs. Having successfully inserted Bxb1 recombinase substrate
sequences into endogenous human genomic sites with high efficiency using twinPE, we
sought to combine twinPE with serine recombinases for the site-specific integration of DNA
cargo (Fig. 3a). Researchers have previously used Bxb1 recombinase to integrate
exogenous DNA ranging in size from single genes to entire genetic circuits into genomically-
integrated attB and attP DNA sequences in a variety of cultured mammalian cells®3%* and in
Drosophila®. To identify sites for DNA cargo integration, we first tested twinPE-mediated
insertion of Bxb1 attB and attP attachment sequences at established human genome safe
harbor loci in HEK293T cells. We screened 19 spacer pairs targeting the CCR5 locus for
insertion of the 38-bp Bxb1 attB sequence (Extended Data Fig. 3). Optimal pegRNAs for six
spacer pairs achieved >50% editing efficiency of perfectly edited alleles with 3.9-5.4% indel
byproducts (Fig. 3b). Likewise, 32 pegRNA pairs targeting the AAVS1 locus were screened
for insertion of the 50-bp Bxb1 attP sequence (Extended Data Fig. 4), of which 17 optimal
spacer combinations achieved >50% efficiency of perfectly edited alleles with a median of
6.6% indels (Fig. 3c). Notably, twinPE outperformed PE3 for the replacement of endogenous
sequence at CCR5 in HEK293T cells with Bxb1 recombinase attB sites. TwinPE yielded 62%
perfectly edited alleles with 3.3% indels at one CCR5 site, and 67% perfectly edited alleles
with 4.3% indels at a second CCRS5 site, compared to 3.3% perfectly edited alleles with 0.1%
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indels at the first site and 25% perfectly edited alleles with 1.8% indels at the second site by
PE3 (Extended Data Fig. 5). These results demonstrate that twinPE can be used to insert
recombinase substrate sequences at safe harbor loci in human cells with high efficiency.

Next, we examined if twinPE-incorporated attB or attP sequences could serve as
target substrates for the BxB1-mediated integration of DNA plasmids containing partner attP
or attB sequences. First, we used twinPE to generate single-cell HEK293T clones bearing
homozygous attB site insertions at the CCR5 locus. Transfection of this clonal HEK293T cell
line with a plasmid expressing Bxb1 recombinase and a 5.6-kB attP-containing donor DNA
plasmid yielded an average of 12-17% integration events per genome of the 5.6-kB plasmid
at the target CCR5 site as measured by ddPCR and comparison with an ACTB reference
(Extended Data Fig. 6). This efficiency is consistent with previously reported Bxb1-mediated
plasmid integration efficiencies in mammalian cells®®.

Encouraged by these results, we explored whether twinPE-mediated recombinase site
insertion and Bxb1 recombinase-mediated DNA donor integration could be achieved by
delivering all necessary components in a single transfection step. Encouragingly, our initial
efforts to transfect HEK293T cells with plasmids encoding PE2, both pegRNAs, BxB1, and a
5.6-kB donor plasmid resulted in 1.4—-6.8% knock-in efficiency as measured by ddPCR (Fig.
3d). The anticipated junction sequences containing the expected attL and attR recombination
products were confirmed by amplicon sequencing, with very high product purities ranging
from 91.6-99.8% average attL or attR junctions without indels (median = 99.0%) (Extended
Data Fig. 6).

In an effort to improve one-step plasmid integration efficiency with twinPE and Bxb1
recombinase, we tested the twinPE-mediated incorporation of either attB or attP attachment
sites, Bxb1 attachment sites containing the canonical GT central dinucleotide core sequence
or an alternative GA dinucleotide core sequence®®, and pegRNAs encoding varying flap
overlap lengths. We found that one-step twinPE and Bxb1-mediated plasmid integration
performed better when integrating the attB site compared to the attP site, especially when
pegRNAs encoded the full-length attB or attP sequence (3.3% vs. 0.5% desired integration,
Fig. 3e). In addition, we observed that integrations with attB and attP attachment sites
containing the canonical GT core sequence generally led to higher knock-in efficiencies
compared to those using the alternative GA core sequences (Fig. 3e). Notably, attachment

sites containing canonical and alternative core sequences are orthogonal to one another,
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allowing simultaneous knock-in of an aftB-GT donor at an attP-GT site in AAVS1 and GA
dinucleotide donors at GA attachment sites in CCR5 (Extended Data Fig. 6).

Reducing the extent of flap overlap between pegRNA-encoded recombinase
sequences also improved single-transfection plasmid integration efficiency from 3.3+£0.2%
with 38 base pairs of overlap to 5.5+£0.6% with 20 base pairs of overlap when inserting attB,
or from 0.55£0.1% with 50 base pairs of overlap to 4.1+0.8% with 30 base pairs of overlap
when inserting attP (Fig. 3e). Similar twinPE editing efficiencies were observed for inserting
attB sequences with long (38-bp) or short (20-bp) flap overlaps. However, products of
recombination between attP-containing donor DNA and pegRNA-encoding plasmid were
observed when using the 38-bp overlapping pegRNA pair but were not detected when using
the 20-bp flap overlap pegRNA pair (Extended Data Fig. 6). Therefore, enhanced integration
efficiency with partially overlapping flaps may arise from reducing or eliminating usage of the
pegRNA-expressing plasmid DNA as a substrate for Bxb1 recombinase.

We next evaluated plasmid integration at the ALB locus, which is being used clinically
for therapeutic transgene expression in hepatocytes®”%°. As a result of high albumin
production by the liver, therapeutic transgene integration at the ALB locus in a relatively small
percentage of hepatocytes in principle could achieve therapeutic levels of protein expression
for many loss-of-function diseases®’. In the case of Factor IX transgene expression,
increasing circulating protein levels to just 1% of normal levels has shown a therapeutic effect
for the treatment of hemophilia®®. We devised a twinPE-enabled strategy targeting intron 1 of
ALB in which Bxb1 recombinase mediates the integration of circular DNA containing a splice
acceptor sequence followed by the cDNA for a protein of interest. Following integration,
splicing of the albumin secretion signal encoded in exon 1 to the therapeutic transgene
coding sequence would enable its expression and secretion.

We screened pegRNA pairs for the twinPE-mediated insertion of attB within intron 1 of
ALB (Fig. 3f) and identified a spacer combination that achieved 43% correct insertion of the
attB sequence. Single-transfection integration of a mock donor plasmid (a promoter-less copy
of EGFP and PuroR-T2A-BFP under control of the EF1a promoter; 5.6-kB total) at this locus
was achieved with 1.3% efficiency in HEK293T cells (Fig. 3g). In Huh7 cells, we observed
34% correct insertion of the attB sequence (Fig. 3f) and achieved single transfection knock-in
efficiency of 2.6%. Interestingly, knock-in at ALB in Huh7 cells was more efficient than knock-
in at CCR5 (2.6% vs. 1.1%), despite CCR5 knock-in being more efficient than ALB knock-in
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in HEK293T cells (Fig. 3g). The transfection of Huh7 cells with plasmids encoding Bxb1, PE2,
an attP-containing donor harboring a splice acceptor followed by the cDNA for human factor
IX (hFIX) exons 2-8, and pegRNAs programming the insertion of Bxb1 attB at intron 1 of ALB
led to detectable levels of hFIX in conditioned media, whereas no hFIX was detected when
the pegRNAs targeted CCR5 instead of ALB (Extended Data Fig. 7). Collectively, these
results establish a new method for the insertion of gene-sized DNA sequences into targeted
genomic loci in previously unmodified human cells without double strand breaks or HDR.

To assess the possibility of unintended Bxb1-mediated donor integration or sequence
modifications at endogenous off-target sites in the human genome, we studied five Bxb1
pseudo-sites for further characterization. Pseudo-sites were selected based on the presence
of a minimal Bxb1 recognition motif identified by high-resolution recombinase specificity
profiling (ACNACNGNNNNNNCNGTNGT) that is common to both attP and attB substrates®’.
Additionally, candidate pseudo-sites required a central GT dinucleotide to match that of the
donor DNA plasmid used in our experiments, as corresponding central dinucleotides are
necessary for recombination between attB and aitP®2. To search for undesired sequence
modifications, we performed targeted amplicon sequencing for each of the five nominated
pseudo-sites from seven different samples that had been treated with a 5.6-kb donor DNA
plasmid, twinPE reagents targeting CCR5 or AAVS1, and Bxb1 recombinase. For all pseudo-
sites amplified from treated samples, we observed undetectable levels of indels (<0.1%) or
near-background levels of indels as compared to untreated controls (Extended Data Fig. 7).
To capture donor DNA plasmid integration events at the nominated pseudo-sites, we
attempted to PCR amplify predicted integration junctions from treated genomic DNA samples.
For each sample and pseudo-site target, we observed no PCR product corresponding to off-
target donor integration, while amplicons reporting on the presence of on-target donor
integration were readily observed in all cases (Extended Data Fig. 7). These results
demonstrate that twinPE+Bxb1 can mediate precise donor integration at the intended target
site without generating detected levels of undesired donor integration or sequence alteration
at predicted Bxb1 pseudo-sites in the human genome.

TwinPE and recombinase-mediated large inversions

Large structural variants are found in many human pathogenic alleles, such as the
large 600-kb inversion at the F8locus that causes ~50% of severe hemophilia A cases®.
Inspired by the high efficiency of recombinase attachments site insertions using twinPE, we
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reasoned that multiplexing the insertion of both attB and attP Bxb1 attachment sites could be
used to correct more complex genetic variants by unidirectional deletion or inversion of the
intervening DNA sequence. We first tested whether twinPE and Bxb1 can revert an inverted
H2B-EGFP coding sequence that is stably integrated into the HEK293T genome via lentivirus
transduction (Extended Data Fig. 8). After transfection of the reporter cells with twinPE and
Bxb1, we observe up to 19% GFP positive cells by flow cytometry, indicating successful
inversion (Extended Data Fig. 8).

To test the combined twinPE-recombinase inversion approach on a therapeutically
relevant locus, we performed a 40-kb inversion between /DS and its pseudogene IDS2.
Inversions between these sites have been observed in ~13% of Hunter syndrome patients®,
and characterization of the breakpoints in pathogenic alleles revealed that the inversion often
occurs within a recombination hotspot that is present in both /DS and IDS2%*. We targeted
regions flanking these recombination hotspots to insert attB and attP sequences, which when
oriented in opposing directions can be used as substrates for unidirectional inversion by Bxb1
recombinase to correct the pathogenic allele (Fig. 4a). After screening pegRNA spacer pairs
and optimizing pegRNA sequence features, we found pegRNA pairs that are capable of
inserting attB or attP attachment sites at the left and right targeted sites with 70% and 74%
efficiency, respectively in HEK293T cells (Fig. 4b).

Next, we explored multiplexing twinPE-mediated insertion of both attB and attP
attachment sites with Bxb1 recombinase-mediated inversion of the 40-kb sequence in IDS
and /IDS2. Initially, we explored sequential DNA transfections with twinPE components
followed by Bxb1 recombinase. A first set of pegRNAs (set 1) was tested that installs a
reverse-oriented attP sequence in intron 3 of IDS2 and a forward-oriented attB sequence in
intron 7 of IDS. In addition, a second set of pegRNAs (set 2) was used to install a forward-
oriented attP sequence in IDS2 and a reverse-oriented attB sequence in IDS. We observed
52% or 55% attP sequence insertion and 28% or 31% attB sequence insertion for multiplexed
editing with pegRNA set 1 and set 2, respectively (Fig. 4c). When edited cells were
subsequently transfected with Bxb1 recombinase, we observed a significantly decreased
percentage of amplified alleles containing attP and attB sequence compared to mock
transfection controls (p-value < 0.05), suggesting that some edited alleles were used as
substrates for Bxb1-mediated recombination (Fig. 4c). Amplification of the anticipated
inversion junctions followed by amplicon sequencing revealed the presence of both attL and
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attR Bxb1 recombination products with product purity at or above 80% at both junctions (Fig.
4d).

To carry out one-step twinPE and Bxb1-mediated inversion and circumvent unwanted
recombination between pegRNA plasmid DNA, we nucleofected all-RNA components
comprising PE2 mRNA, synthetic pegRNAs from set 1, and Bxb1 mRNA. Using amplicon
sequencing, we captured the expected inverted allele junctions containing attR and attL
sequences (Extended Data Fig. 9). To quantify inversion efficiency, we designed a reverse
primer that can bind to an identical sequence in both the non-inverted and inverted alleles
and therefore amplify both edits using the same primer pair (Extended Data Fig. 9). We
observed 7.7-9.6% and 2.1-2.6% inversion efficiency for sequential and one-step methods,
respectively (Fig. 4e). Collectively, these data suggest that combining twinPE with site-
specific serine recombinases can be used to correct a common 39-kb inversion found in
Hunter syndrome alleles and may eventually serve as a therapeutic strategy for correcting

other large or complex pathogenic gene variants.

Discussion

We developed a twin prime editing approach that can be used to replace, insert, or
delete DNA sequences at targeted locations in the genomes of human cells. First, we
showed that twinPE can efficiently replace endogenous genomic DNA sequences with
exogenous sequences containing Bxb1 attB or attP recombination sites with observed editing
efficiencies of >80% at HEK3 and >40% in four different genomic loci in HelLa, U20S, and
K562 cells (Extended Data Fig. 10). An active RT is required to achieve these edits, as Cas9
nickase (H840A) and Cas9 nickase fused to an inactivated RT (K103L/R110S) both failed to
generate the desired edits at all sites tested, in contrast to efficient editing with twinPE
(Extended Data Fig. 10c). We further used twinPE to recode portions of exon sequences
within PAH, which in principle could be used to correct multiple pathogenic variants
associated with different phenylketonuria patient cohorts using a single prime editor and
pegRNA pair. Moreover, since twinPE does not require pegRNAs with RT templates that
possess homology to the target site, a feature that is typically required for standard prime
editing, and because each RT template does not need to possess the entire replacement
sequence, twinPE pegRNAs can encode larger insertions for a given RT template length,
including the insertion of a 108-bp sequence with 16% efficiency using twinPE, representing
a 20-fold improvement over PES.
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We also established precise and flexible twinPE deletion strategies, which make use
of the programmability of 3’ flap sequences that can be used to fully specify deletion
junctions. Previously, this was a limitation of nuclease-based deletions strategies, which are
largely limited to deletions between the cut sites and therefore nuclease accessibility. Using
twinPE, we tested three deletion strategies, including the previously reported PrimeDel
strategy®®. TwinPE achieved precise deletions of up to 780-nt in DMD sequences including
the deletion of exon 51 with up to 28% efficiency and 4% total indels. Although Cas9
nuclease-mediated deletion at this site can achieve 50% deletion efficiency, Cas9 nuclease
generates 45% indels in the process. TwinPE thus may be especially useful for applications
in which uncontrolled indel byproducts are undesired.

Although efficient targeting of both DNA protospacers is likely necessary for achieving
efficient twinPE, we observed only weak correlations between in silico predictions of Cas9
spacer activity and observed twinPE editing efficiencies (Supplementary Note 3). This poor
correlation could arise from other determinants of twinPE efficiency beyond the protospacer,
including RT template and PBS choice. While PBS optimization was important for high editing
efficiency at many sites, we did not observe an optimal PBS melting temperature across the
pegRNA designs in this study. A correlation between prime editing efficiency and the distance
between pegRNA-induced nicks was observed, which may suggest an optimal spacing of 50
to 100 bp, although many exceptions exist (Supplementary Note 3). Finally, the use of
epegRNAs instead of canonical pegRNAs improved twinPE editing efficiency in many cases
(Fig. 2c, 2e, and Extended Data Fig. 9c). Therefore, empirical testing of epegRNA pairs will
continue to be important to optimize the efficiency of twinPE.

When combined with site-specific serine recombinase enzymes, twinPE can also
support the integration of large DNA cargo, or the inversion of DNA sequence. To enable
targeted integration of gene-sized DNA plasmids, we combined twinPE and Bxb1
recombinase in a single transfection and successfully inserted a 5.6-kb DNA donor plasmid
into the genome of human cells at safe harbor loci AAVS1, CCR5, and ALB with up to 6.8%,
6.1%, and 2.6% efficiency, respectively. Notably, Bxb1-mediated knock-in of an aftP donor
into a HEK293T clonal cell line bearing homozygous attB integration peaked at 17% in our
hands, consistent with observations from others®. Given that twinPE-mediated insertions of
attB and attP sequences already can exceed 80%, improving the activity of Bxb1 integrase is
likely the best opportunity to enhance overall donor knock-in efficiencies. As Bxb1 has been

used to insert up to 27 kB in mammalian cells®*, even larger insertions may be possible.
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Notably, the orthogonality of dinucleotide core sequences may enable gene-sized insertions
to be multiplexed to allow simultaneous targeting of two loci with two different donors.

The methods developed here should be applicable for genome engineering and could
be applied in the future for the targeted integration of therapeutic genes. TwinPE and Bxb1-
mediated recombination offer advantages over other approaches. The serine integrase
phiC31%° and fusions of zinc fingers or dCas9 to the catalytic domain of Gin
recombinase3®%%6” have been used to integrate or excise DNA at endogenous pseudo-sites
in the human genome, but the extensive sequence preferences inherent to these
recombinases greatly limits the number of targetable genomic loci to a minute fraction of
genomic loci. The programmable integration of attachment sites by twinPE overcomes many
of these challenges by enabling insertion of cognate recombinase recognition sequences at
any PE-targetable locus. By comparison to nuclease-based methods, the twinPE and
recombinase approach avoids the generation of DSBs, which typically lead to uncontrolled
mixtures of by products’®, and can also lead to chromosomal rearrangements??,
chromothripsis?, large deletions?®-??, and p53 activation®>?’. Integration orientation using
twinPE and Bxb1 recombinase is strictly controlled by the directionality of the attB and attP
sequences®, in contrast to uncontrolled integration orientation using homology-independent
repair'#. Methods that leverage HDR also enable control of sequence orientation, and can
achieve efficiencies on the order of 5-10% without drug selection or suppression of NHEJ8879,
but HDR is less efficient than NHEJ in most cell types and typically requires DSBs'617.
Methods have also been developed for making targeted gene-sized insertions through paired
nicking of the genome and a donor cassette’"-"2. These approaches do not require double
strand breaks, but remain reliant on HDR and supportive cell types’2.

We used twinPE multiplex insertion of aftP and attB with Bxb1 to correct a large
sequence inversion at /DS and IDS2 associated with Hunter syndrome, resulting in precise
inversion of 40 kB in IDS with 9.6% editing efficiency via sequential transfection and 2.6%
editing efficiency via one-step RNA nucleofection (Fig. 4e). Although zinc finger nuclease,
TALEN, and Cas9 nucleases-based approaches have achieved targeted DNA sequence
inversions previously’3”%, DSBs-induced repair pathways also generate undesired products
and can lead to de-novo structural variants, including deletion of the targeted DNA sequence.
TwinPE and Bxb1 circumvented the issues of nuclease-induced DSBs and enable
comparable (19% by TwinPE+Bxb1 vs. 23% by Cas9”° for a 1.2-kb inversion) or higher
inversion efficiencies (9.6% by TwinPE+Bxb1 for 40-kb vs. 1.4% by TALEN’* for a 140-kb
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inversion) through a precise series of reactions that circumvent the uncontrolled nature of
DSB repair.

TwinPE thus expands the capabilities of prime editing to include targeted deletion,
replacement, integration, or inversion of larger DNA sequences at specified locations in the
genome. By combining twinPE and Bxb1, we achieved gene-size DNA integration and
inversion without double-strand breaks, which may provide a strategy to potentially treat
genetic diseases arising from loss-of-function or complex structural mutations. Except for
spacer sequences and the 8-13 base pairs needed to prime reverse transcription, pegRNAs
and donor plasmids in our method do not require homology to the genome. Additional
research is needed to fully understand the cellular determinants of twinPE outcomes.
Performing large cellular screens to unveil DNA repair components that suppress or enhance
twinPE editing efficiency could illuminate mechanistic details that further improve this
approach. Future studies on orchestrating twinPE and Bxb1 activity through engineering
either or both components could augment the scope and efficiency of twinPE and

recombinase editing in mammalian cells.
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Figure 1 | Overview of twinPE and twinPE-mediated sequence replacement. (a) TwinPE
systems target genomic DNA sequences that contain two protospacer sequences on
opposite strands of DNA. PE2-pegRNA complexes target each protospacer, generate a
single-stranded nick, and reverse transcribe the pegRNA-encoded template containing the
desired insertion sequence. After synthesis and release of the 3’ DNA flaps, a hypothetical
intermediate exists possessing annealed 3’ flaps containing the edited DNA sequence and
annealed 5’ flaps containing the original DNA sequence. Excision of the original DNA
sequence contained in the 5’ flaps, followed by ligation of the 3’ flaps to the corresponding
excision sites, generates the desired edited product. (b) Example of twinPE-mediated
replacement of a 90-bp sequence in HEK3 with a 38-bp Bxb1 attB sequence. (¢) Evaluation
of twinPE in HEK293T cells for the installation of the 38-bp Bxb1 attB site as shown in (b) or
the 50-bp Bxb1 aftP site at HEK3 using pegRNAs that template varying lengths of the
insertion sequence. pegRNA names indicate spacer (A or B) and length of RT template.
Values and error bars reflect the mean and s.d. of three independent biological replicates.
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Figure 2 | Targeted sequence insertion, deletion, and recoding with twinPE in human
cells. (a) Schematic diagram illustrating designs and edits generated for twinPE, PrimeDel3®
and paired pegRNAs®’. Shaded gray boxes indicate regions where DNA is excised, green
lines indicate the incorporation of heterologous DNA sequence, red and blue lines indicate
regions of sequence homology (red to red, blue to blue), and yellow lines indicate regions
with small edits. PrimeDel can introduce but does not require introduction of heterologous
sequence (green). (b) Insertion of FKBP coding sequence fragments with PES3 (12 bp, 36 bp,
108 bp) or twinPE (108 bp) at HEK3 in HEK293T cells. (¢) Recoding of sequence within
exons 4 and 7 in PAH in HEK293T cells using twinPE. A 64-bp target sequence in exon 4
was edited using 24, 36, or 59 bp of overlapping flaps, a 46-bp target sequence in exon 7
was edited using 22 or 42 bp of overlapping flaps, or a 64-bp sequence in exon 7 was edited
using 24 or 47 bp of overlapping flaps. Editing activity was compared using standard
pegRNAs or epegRNAs containing 3’ evoPreQ1 motifs. (d) Schematic diagram showing three
distinct dual-flap deletion strategies that were investigated for carrying out targeted deletions.
The “Single-anchor (SA)” twinPE strategy allows for flexible deletion starting at an arbitrary
position 3’ of one nick site and ending at the other nick site. The “Hybrid-anchor (HA)” twinPE
strategy allows for flexible deletion of sequence at arbitrarily chosen positions between the
two nick sites. The “PrimeDel (PD)” strategy of Shendure and co-workers tested here allows
for deletion of the sequence starting at one nick site and ending at another nick site. Shaded
gray boxes indicate regions where DNA is excised, red and blue lines indicate regions of
sequence homology (red to red, blue to blue). (e) Deletion of sequences at HEK3 in
HEK293T cells using the SA-twinPE, HA-twinPE, or PD strategies targeting the same
protospacer pair. Editing activity was compared using standard pegRNAs or epegRNAs
containing 3’ evoPreQ1 motifs. (f) Deletion of exon 51 sequence at the DMD locus in
HEK293T cells using SA-twinPE, PD, paired Cas9 nuclease, or twinPE-mediated attB
sequence replacement. A unique molecular identifier (UMI) protocol was applied to remove
PCR bias (see Supplementary Note 1). Values and error bars in (b-f) reflect the mean and
s.d. of three independent biological replicates.
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Figure 3 | Site-specific genomic integration of DNA cargo with twinPE and Bxb1
recombinase in human cells. (a) Schematic diagram of twinPE and Bxb1 recombinase-
mediated site-specific genomic integration of DNA cargo. (b) Screening of twinPE pegRNA
pairs for insertion of the Bxb1 attB sequence at the CCR5 locus in HEK293T cells. (c)
Screening of twinPE pegRNA pairs for installation of the Bxb1 attP sequence at the AAVST
locus in HEK293T cells. (d) Single transfection knock-in of 5.6-kb DNA donors using twinPE
pegRNA pairs targeting CCR5 (red) or AAVST (blue). The twinPE pegRNAs install attB at
CCR5 or attP at AAVS1. Bxb1 integrates a donor bearing the corresponding attachment site
into the genomic attachment site. The number of integration events per 100 genomes is
defined as the ratio of the target amplicon spanning the donor-genome junction to a reference
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amplicon in ACTB, as determined by ddPCR. (e) Optimization of single-transfection
integration at CCR5 using the A531+B584 spacers for the twinPE pegRNA pair. Identity of
the templated edit (aftB or attP), identity of the central dinucleotide (wild-type GT or
orthogonal mutant GA), and length of the overlap between flaps were varied to identify
combinations that supported the highest integration efficiency. % knock-in quantified as in (d).
(f) Pairs of pegRNAs were assessed for their ability to insert Bxb1 attB into the first intron of
ALB. Protospacer sequences (277 and 358) are constant across the pegRNA pairs. The
pegRNAs vary in their PBS lengths (variant b or c). The 277¢/358c pair that performs best in
HEK293T cells can also introduce the desired edit in Huh7 cells. (g) Comparison of single
transfection knock-in efficiencies at CCR5 and ALB in HEK293T and Huh7 cell lines. %
knock-in quantified as in (d). Values and error bars reflect the mean and s.d. of three
independent biological replicates.


https://doi.org/10.1101/2021.11.01.466790
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.01.466790; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

a DNA recombination DNA recombination b IDS and IDS2, twinPE,
hot spot hot spot Bxb1 aﬂ‘l; Igggsqlg‘tB il?sertion,
Centromere Telomere 100- cells
Exon 9 8 v/7 654321 // 2 3 \ . [l /DS2 correct edit (w/o indels)
CIET T [T I e /{/ O] £2 g gI’D(fff’”ec‘ed”(“’/"'”de's)
) ndels
| IDS ‘ IDS2 ﬁ% %
1) TwinPE-mediated pseudogene S5 601 i ‘E
winPE-mediate: ; = : ’
attB and attP TwinPE § B
insertion o i ertion attP insertion gzqf_, 40
joa]
Exon 9 8/ 765 4321 // 2 3 \4 g%zo
2 |
CIT AT AT I /{/ NEENIN B FE
FLL o [ o | |9
0,
2) Bxb1-mediated Bxb1 Spacer1 A1 A1 A1 A1 A1 A1 A4 A4 C2 C2 C2 C2
40-kb inversion attl attR Spacer2 B2 B2 B3 B3 B4 B4 B7 B7 Di D1 D2 D2
/ \ aftPfwd - + - + - + - + - - - -
Exon9 8 3.2\ 1234567 attPrev + — 4+ — 4+ — 4+ - o o _ _
CIT TN AT N\ OOOTOITmm] atBfwd - - - - - — - — 4+ - &+ -
A\ attB-rev. - - - - - - - - - 4+ = 4
IDS and IDS2, twinPE [[] Correct attP (w/o indels) IDS and IDS2,
+ sequential transfection of Bxb1, M Correct attB (w/o indels) twinPE+Bxb1 40-kb inversion,
HEK293T cells [ Indels PCR of predicted sequential transfection, HEK293T cells

inversion junctions

* * p=0.015 [l Correct attR (w/o indels)
, p=0.018 ’ )
- — attR o [ Correct attL (w/o indels)
£8 gg — * p=0.008 — £% @ Indels
2o . p=0.002 E— os[__J__]ms2 £ 100
88 ~ t9
e oc 75
g’_f_f attl ‘c"g S
g3 —h gE 50
oy os _WM_Jws BF
25 D Eﬁ 25
T3 =g
E_qc’ N @ &N @ N 2} N 2} < £ 0= c _-c ==
= 2 3 B Q 2 2 8 9 58 TS Ts %5 U
= = = = Amplicon = 35 TG 85 BB
Bxb1 + + - - + + - - sequencing <5 <5 <5 <5
pd z z zZ
b v / Vv / g 2 &% &=
gs g% gc g°®
pegRNA set 1 pegRNA set 2 L g g L
e
IDS and IDS2, twinPE+Bxb1 40-kb inversion,
P1 P2 e sequential or single-transfection, HEK293T cells
= . . .
) —h IDS2 =g 157 I Correct aftR junction (w/o indels)
Wild-type » 0 S A
alleie poge W Correct attL junction (w/o indels)
DS ~ ~_ o=
P2 P3 =0 101
C =
5%
[Ce)
py a8 P2 aﬁf IDS2 32 5
[ "Q A [$]
TwinPE L9
edited 3| | | g5
allele IDS )| ) § '_:E 0 c c c ¢ c c c ¢ c c c <
P2 P3 2 2 9 9 2 9 9 9 2 8 9 e
© © © © © © © © T © © ©
C c C C C = C C = c C C
22 2 3 22 22 22 2 2
pr M p2 AR Ips2 rgry ¥EErE EE Y
Inverted ses® ses® \Em}sm
allele l l
pegRNA Mock pegRNA Mock  pegRNA Mock
IDS | < setl set2 set1
P2 P3 N J J
Y Y
Sequential Single-transfection

twinPE+Bxb1 plasmids twinPE+Bxb1 RNA

Figure 4 | Site-specific large genomic sequence inversion with twinPE and Bxb1
recombinase in human cells. (a) Schematic diagram of DNA recombination hot spots in
IDS and IDS2 that lead to pathogenic 39-kb inversions, and the combined twinPE-Bxb1

strategy for installing or correcting the IDS inversion. (b) Screen of pegRNA pairs at /DS and
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IDS2 for insertion of attP or attB recombination sites. (¢) DNA sequencing analysis of the IDS
and /IDS2 loci after twinPE-mediated insertion of attP or attB sequences, with or without
subsequent transfection with Bxb1 recombinase. P-values were derived from a Student’s
two-tailed ttest. (d) 40,167-bp /DS inversion product purities at the anticipated inversion
junctions after twinPE-mediated attachment site installation and sequential transfection with
Bxb1 recombinase. (e) Analysis of inversion efficiency by amplicon sequencing at /DS and
IDS2 loci after sequential transfection or single-step transfection of twinPE editing
components and Bxb1 recombinase. Values and error bars reflect the mean and s.d. of three
independent biological replicates for (b, ¢ and d) and two or three independent biological
replicates for (e).
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Methods

General methods. DNA amplification was conducted by PCR using Phusion U Green
Multiplex PCR Master Mix (ThermoFisher Scientific) or Q5 Hot Start High-Fidelity 2x Master
Mix (New England BioLabs) unless otherwise noted. DNA oligonucleotides were obtained
from Integrated DNA Technologies. Plasmids expressing sgRNAs were constructed by
ligation of annealed oligonucleotides into BsmBI-digested acceptor vector as previously
described'?.Plasmids expressing pegRNAs were constructed by Gibson assembly or Golden
Gate assembly as previously described'?. Sequences of sgRNA and pegRNA constructs
used in this work are listed in Supplementary Table 1. All vectors for mammalian cell
experiments were purified using Plasmid Plus Midiprep kits (Qiagen), PureYield plasmid
miniprep kits (Promega), or QlAprep Spin Miniprep kits. Synthetic pegRNAs were ordered
from IDT without HPLC purification.

General mammalian cell culture conditions. HEK293T (ATCC CRL-3216), U20S (ATTC
HTB-96), K562 (CCL-243), and HeLa (CCL-2) cells were purchased from ATCC and cultured
and passaged in Dulbecco’s Modified Eagle’s Medium (DMEM) plus GlutaMAX
(ThermoFisher Scientific), McCoy’s 5A Medium (Gibco), RPMI Medium 1640 plus GlutaMAX
(Gibco), or Eagle’s Minimal Essential Medium (EMEM, ATCC), respectively, each
supplemented with 10% (v/v) fetal bovine serum (Gibco, qualified) and 1x
Penicillin+Streptomycin (Corning). All cell types were incubated, maintained, and cultured at
37 °C with 5% CO:s2. Cell lines were authenticated by their respective suppliers and tested
negative for mycoplasma.

HEK293T, HelLa, and Huh?7 tissue culture transfection protocol and genomic DNA
preparation. HEK293T cells were seeded on 48-well poly-D-lysine coated plates (Corning).
16-24 h post-seeding, cells were transfected at approximately 60% confluency with 1 pL of
Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s protocols and
either: 750 ng of PE2 plasmid DNA, 125 ng of pegRNA 1 plasmid DNA, and 125 ng of
pegRNA 2 plasmid DNA (for twinPE transfections); 750 ng of PE2 plasmid DNA, 250 ng of
pegRNA plasmid DNA, and 83 ng of sgRNA plasmid DNA (for PE3 transfections); or, 750 ng
of Cas9 plasmid DNA and 125 ng of sgRNA 1 plasmid DNA, and 125 ng of sgRNA 2 plasmid
DNA (for paired Cas9 nuclease transfections). Unless otherwise stated, cells were cultured 3
days following transfection, after which the media was removed, the cells were washed with
1x PBS solution (Thermo Fisher Scientific), and genomic DNA was extracted by the addition
of 150 pL of freshly prepared lysis buffer (10 mM Tris-HCI, pH 7.5; 0.05% SDS; 25 pg/mL
Proteinase K (ThermoFisher Scientific)) directly into each well of the tissue culture plate. The
genomic DNA mixture was incubated at 37 °C for 1-2 h, followed by an 80 °C enzyme
inactivation step for 30 min. Primers used for mammalian cell genomic DNA amplification are
listed in Supplementary Table 2. For HeLa cell transfections, cells were grown and seeded in
96-well plates (Falcon Catalog #353075). 16-24 h post-seeding, cells were transfected 0.75
uL of TransIT-HeLaMONSTER transfection reagent (Mirus) using 190 ng of PE2-P2A-Blast
plasmid DNA, 31.5 ng of pegRNA 1 plasmid DNA, and 31.5 ng of pegRNA 2 plasmid DNA
(for twinPE transfections). 24 h after transfection, cells were treated with blasticidin to a final
concentration of 10 pg/mL. Genomic DNA isolation was performed as described above for
HEK293T cells using 50 pL of lysis buffer. Huh7 cells were seeded at 150,000 cells per well
in poly-D-lysine coated 24-well plates (Corning). 16-24 h post-seeding, cells were transfected
with 2 pL of Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer’s
protocols and up to 800 ng of plasmid DNA (same ratios as in HEK293T transections
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described above, scaled proportionally). Genomic DNA isolation was performed as described
above for HEK293T transfections.

High-throughput DNA sequencing of genomic DNA samples. Genomic sites of interest
were amplified from genomic DNA samples and sequenced on an lllumina MiSeq as
previously described with the following modifications'®. Briefly, amplification primers
containing lllumina forward and reverse adapters (Supplementary Table 2) were used for a
first round of PCR (PCR 1) amplifying the genomic region of interest. 25-uL PCR 1 reactions
were performed with 0.5 pM of each forward and reverse primer, 1 puL of genomic DNA
extract and 12.5 pL of Phusion U Green Multiplex PCR Master Mix. PCR reactions were
carried out as follows: 98 °C for 2 min, then 30 cycles of [98 °C for 10 s, 61 °C for 20 s, and
72 °C for 30 s], followed by a final 72 °C extension for 2 min. Unique lllumina barcoding
primer pairs were added to each sample in a secondary PCR reaction (PCR 2). Specifically,
25 pL of a given PCR 2 reaction contained 0.5 uM of each unique forward and reverse
lllumina barcoding primer pair, 1 uL of unpurified PCR 1 reaction mixture, and 12.5 pL of
Phusion U Green Multiplex PCR 2x Master Mix. The barcoding PCR 2 reactions were carried
out as follows: 98 °C for 2 min, then 12 cycles of [98 °C for 10 s, 61 °C for 20 s, and 72 °C for
30 s], followed by a final 72 °C extension for 2 min. PCR products were evaluated analytically
by electrophoresis in a 1.5% agarose gel. PCR 2 products (pooled by common amplicons)
were purified by electrophoresis with a 1.5% agarose gel using a QlAquick Gel Extraction Kit
(Qiagen), eluting with 40 pL of water. DNA concentration was measured by fluorometric
quantification (Qubit, ThermoFisher Scientific) or gPCR (KAPA Library Quantification Kit-
lllumina, KAPA Biosystems) and sequenced on an Illlumina MiSeq instrument according to
the manufacturer’s protocols.

Sequencing reads were demultiplexed using MiSeq Reporter (lllumina). Alignment of
amplicon sequences to a reference sequence was performed using CRISPRess0278. For alll
prime editing yield quantification, prime editing efficiency was calculated as: % of [# of reads
with the desired edit that do not contain indels] + [# of total reads]. For quantification of
editing, CRISPResso02 was run in HDR mode using the desired allele as the expected allele
(e flag), and with “discard_indel_reads” on. Any sequence containing an indels with respect
to the allele to which it aligns was counted separately and did not contribute to the correctly
edited allele percentage. The percent editing was quantified as the number of non-discarded
reads aligning to the anticipated edited allele (not containing indels) divided by the total
number of sequencing reads (which includes those aligned to reference with or without indels
and those aligned to the desired edit with or without indels). Indels were quantified as the
total number of discarded reads (from either the original or edited allele alignments) divided
by the total number of sequencing reads. Editing yield was then calculated as: [# of non-
discarded HDR aligned reads] + [total reads]. Indel yields were calculated as: [# of indel-
containing discarded reads] + [total reads].

Unique molecular identifiers (UMIs) were applied to quantify the deletion efficiency and
assess PCR bias (see Supplementary Note 1 for discussion) in a three-step PCR protocol.
Briefly, in the first step of linear amplification, 1 uL of genomic DNA extract was linearly
amplified by 0.1 uM of only the forward primer containing a 15-nt or 16-nt UMI with Phusion U
Green Multiplex PCR Master Mix in a 25-pL reaction (10 cycles of 98 °C for 1 min, 61 °C for
25 s, and 72 °C for 1 min). The PCR products were then purified by 1.6X AmPure beads
(Beckman Coulter) and eluted in 20 pL of QIAGEN elution buffer. In the second step, 1 or 2
uL of purified linearly amplified PCR products were then amplified for 30 cycles with 0.5 pM of
each forward and reverse primer with Phusion U Green Multiplex PCR mix in a 25-pL
reaction as described above. In this case, the forward primer anneals to the P5 lllumina
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adaptor sequence located at the 5’ of the UMI primer and upstream of the UMI sequence. For
the DMD locus library preparation, the PCR products were purified by 1X AmPure beads and
eluted in 25 L of elution buffer. In the third step, the purified PCR products (1 pL) were
amplified for 12 cycles as described above for adding unique lllumina barcodes and adaptors.
To assess large deletions at the DMD locus, the top band (unedited large amplicon) and
bottom band (edited amplicons with deletions) were excised separately from a 1.5% agarose
gel and loaded on two separate MiSeq runs to avoid biased clustering of amplicons. For
library preparation at other loci, 1 uL of PCR product was used directly for the barcoding PCR
step without 1X AmPure beads purification. For UMI-based PCR bias assessment described
in Supplementary Note 1, the editing efficiency was calculated from the libraries prepared
following the UMI protocols analyzed with UMI-deduplication or without UMI-deduplication.

Raw sequencing reads were UMI deduplicated using AmpUMI”’. For paired-end
reads, SeqKit’® was used to concatenate (merge without overlap) R1s with the reverse
complement of R2s. The concatenated R1+R2s were UMI deduplicated using the UMI at the
5" end of R1. UMI-deduplicated R1s or concatenated R1+R2s were analyzed using
CRISPResso02. For analyzing concatenated R1+R2s, an appropriate concatenated reference
amplicon sequence was provided to minimize sequencing alignment artifacts due to the
concatenation.

Nucleofection of U20S and K562. Nucleofection was performed in all experiments that
used K562 and U20S cells. 200,000 cells were used per nucleofection. Counted cells were
pelleted and washed with PBS, then resuspended in nucleofection solution following the
recommendation of Lonza SE Cell Line 4D-Nucleofector Kit. After nucleofection of the
cells, the cells were allowed to incubate in the cuvette at room temperature for 10 minutes.
After this time, the contents of the cuvette were transferred to a 48 well plate containing
pre-warmed (37 "C) media. Genomic DNA was extracted and prepared for lllumina MiSeq
preparation as described above.

Single-step twinPE and Bxb1-mediated DNA donor knock-in and inversions. For single-
step knock-in, HEK293T cells were transfected with 500 ng of PE2 plasmid DNA, 50 ng of
each pegRNA plasmid DNA (two in total), 200 ng of codon-optimized Bxb1 plasmid DNA, and
200 ng of DNA donor using Lipofectamine 2000 as described above. For multiplex knock-in,
HEK293T cells were transfected with 200 ng of PE2 plasmid, 50 ng of each pegRNA plasmid
DNA (four in total), 300 ng of Bxb1 plasmid DNA, and 150 ng of each DNA donor (two in
total). Donor plasmid sequences can be found in Supplementary Sequences 1. The codon-
optimized Bxb1 gene was purchased from Genscript and can be found in Supplementary
Sequence 2. It was assembled into a pCMV expression vector using standard molecular
cloning techniques.

For inversion experiments, sequential plasmid transfection and single-step mRNA
nucleofection were performed. In the sequential plasmid transfection experiment, HEK293T
cells were transfected with 750 ng of PE2 plasmid DNA, 62.5 ng of each pegRNA plasmid
DNA (four in total) using Lipofectamine 2000 as described above. After three days, cells were
detached and plated in 24-well plates, then serially passaged for about seven days. 48-well
plates were seeded with 20,000 cells per well and transfected 16-24 h later with
Lipofectamine 2000 and 500 ng of BxB1 plasmid DNA. Genomic DNA was extracted and
prepared for lllumina MiSeq as described above. For single-step mRNA nucleofection,
200,000 HEK293T cells were nucleofected with 1,000 ng of PE2 mRNA, 30 pmol each of
synthetic pegRNAs (4 pegRNAs in total), and 750 ng of BxB1 mRNA using 20 uL of Lonza
buffer and cells with program CM-130. Cells were recovered with 80 uL of pre-warmed (37
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°C) media for five minutes. 25-pL samples from the nucleofection cuvette were then added to
each well of the 48-well plate and incubated at 37 °C for 72 hours prior to isolation of
genomic DNA as described above.

Droplet digital PCR analysis of knock-in efficiency. Genomic DNA from crude cell lysates
was column purified (Zymo) and DNA concentrations were determined by Nanodrop (Thermo
Scientific). Droplet digital PCR was used to determine the abundance of an amplicon
containing the genome-donor junction in comparison to a reference gene (ACTB). 100-200
ng of DNA was added to a reaction mixture containing ddPCR Supermix for Probes (Bio-Rad,
1863026), HindllI-HF (0.25 units/uL, New England BioLabs, R3104L), ACTB primers and
probes (Supplementary Table 3; 900 nM each primer, 250 nM probe) and genome-donor
junction primers and probes (Supplementary Table 3; 900 nM each primer, 250 nM probe)
according to the manufacturer’'s protocol. Droplets were generated using a QX200 Manual
Droplet Generator (Bio-Rad, 186-4002). Digital droplet PCR was performed as follows: 95 °C
for 10 min, then 50 cycles of 94 °C for 30 seconds, 58 °C for 2 min. Following PCR cycles, a
final incubation was conducted at 98 °C for 10 min. Droplets were read by a QX200 Droplet
Reader (Bio-Rad, 1864001) and data were analyzed using QuantaSoft (Bio-Rad).

FIX expression from ALB locus in Huh7 cells. Huh7 cells were transfected with 160 ng of
Bxb1 plasmid DNA, 160 ng of donor plasmid DNA (atftP-splice acceptor-cDNA of F9 exons 2-
8), 400 ng of prime editor plasmid DNA, and pegRNAs plasmid DNA for installation of attB in
the first intron of ALB or at CCR5 (40 ng each). Three days post-transfection, cells were
passaged and allowed to grow to confluence. Their media was changed, and they were left to
condition the fresh media, with aliquots taken at days 4, 7, and 10. Factor IX concentration in
conditioned media was measured by ELISA (Innovative Research Human Total Factor IX
ELISA Kit, IHUFIXKTT).

Lentivirus production, GFP reporter cell line construction, and flow cytometry
analysis. The lentiviral transfer vector described in Extended Data Figure 9 and
Supplementary Sequence 3 was assembled using standard molecular cloning techniques.
The lentivirus was produced as previously described”2%. Briefly, a T-75 flask of rapidly
dividing HEK293T cells (ATCC; Manassas, VA, USA) were transfected at 80-90% confluence
with lentivirus helper plasmids pVSV-G and psPAX2 in along with the constructed lentiviral
transfer vector using FUGENE HD (Promega) according to the manufacturer’s protocol. After
48 hours, supernatant was collected, centrifuged at 3,000 x g for 15 minutes to remove
cellular debris, and filtered using a 0.45-um PVDF filter. Filtered supernatant was
concentrated using the PEG-it Virus Precipitation Solution (System Biosciences) according to
the manufacturer’s instructions. The resulting pallet was resuspended in Opti-MEM (Thermo
Fisher Scientific) using 1% of the original medium volume. Resuspended pellet was used to
transduce the HEK293T cells with multiplicity of infection. Successfully transduced cells that
had stable GFP reporter integration were selected with 2.5 pg/mL puromycin for more than 3
passages and then seeded into 48-well plates for transfection with PE2 plasmid DNA (750
ng), four AAVS1-targeting pegRNAs (62.5 ng each) for multiplexed attP and attB insertion,
and Bxb1 plasmid DNA (100 ng, 200 ng, 500 ng, or 1000 ng) in a single transfection step.
Cells were then collected after three days and analyzed by CytoFLEX S Flow Cytometer
(Beckman Coulter) and FlowdJo v10.

Production of PE2 and Bxb1 mRNA.
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The mRNA was produced using the previously reported protocol*!8!. Briefly, the PE2 editor
and codon optimized Bxb1 coding sequences were cloned into a plasmid encoding a mutated
T7 promoter that cannot initiate with mononucleotides. This plasmid was used as template in
a PCR reaction (PhusionU 2X Master Mix) using PAGE-purified primers (IDT) Forward: 5’-
TCGAGCTCGGTACCTAATACGACTCACTATAAGG-3 and Reverse: 5'-
rrrrerrrrererererererreererrrererrrrrrererrrrrerrrrerrrrrrrrrel
TTTTTTTTTTTTITTTITTITTITTITTITITI T TTITTITTITTITITTITTITTITTITTITTITTTITTITTITTITTCTTCCTAC
TCAGGCTTTATTCAAAGACCA-3’, and the resulting PCR product was purified and used as
template for in vitro transcription. The HiScribe T7 High-Yield RNA Synthesis Kit (New
England BioLabs) was used according to the company’s recommended instruction but with
full substitution of N1-methyl-pseudouridine for uridine and co-transcriptional capping with
CleanCap AG (TriLink Biotechnologies). RNA was precipitated with lithium chloride (2.5 M
final concentration), the pellet was washed with ice cold 70% ethanol, and then resuspended
in water.

Data availability

High-throughput sequencing data have been deposited to the NCBI Sequence Read Archive
database under accession PRINA770428.
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Extended Data Figure 1 | Twin prime editing mediates sequence replacements at
CCRb5. (a) Replacement of endogenous sequence within CCR5 region 1 with a 108-bp
fragment of FKBP12 cDNA using twinPE (FKBP12 sequence oriented in the forward
direction,) or PE3 (FKBP12 sequence oriented in the reverse direction). For PE3 editing,
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pegRNA RT templates were designed to encode 108 base pairs of FKBP12 cDNA sequence
and one of three different target-site homology sequence lengths. For PE3 edits, each
pegRNA was tested with three nicking sgRNAs. (b) Replacement of endogenous sequence
within CCR5 region 2 with a 108-bp fragment of FKBP12 cDNA sequence using twinPE
(FKBP12 sequence oriented in the forward direction) or PE3 (FKBP12 sequence oriented in
the reverse direction). As in (a), PE3 edits were tested with pegRNAs containing RT
templates that were designed to encode 108 base pairs of FKBP12 cDNA sequence and one
of three different target-site homology sequence lengths. For PE3 edits, each pegRNA was
tested with three nicking sgRNAs. Values and error bars reflect the mean and s.d. of three
independent biological replicates. (¢) Transfection of HEK293T cells with a pair of pegRNAs
targeting CCR5 leads to replacement of 53 base pairs of endogenous sequence with 113
base pairs (attB—[27-bp spacer]-attP) or 103 base pairs (attB-[27-bp spacer]-attB) of
exogenous sequence. Values and error bars reflect the mean and s.d. of three independent
biological replicates.
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Extended Data Figure 2 | Recoding of PAH exon sequences in HEK293T cells via

twinPE. Screen of pegRNA pairs targeting PAH for recoding of

7,and (c) exons 9

3

10, 11,

(

a) exons 2,4 and 5,
and 12. RT templates of pegRNAs encoded partially recoded

(b) exon

exonic sequence to optimize orthogonality to the endogenous gene sequence. For each
spacer pair, nine pegRNA combinations were tested using three PBS variants for each
spacer in a three-by-three matrix, with RT templates encoding the recoded exonic sequence,
which was held constant for given spacer pairs. Sequences of pegRNAs are listed in
Supplementary Table 1. Sequences of recoded exonic sequences are listed in
Supplementary Table 4. Values in (a), (b) and exon 9 in (c) reflect single biological
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replicates. Values for exons 10, 11 and 12 in (c) reflect the mean of three independent
biological replicates.
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Extended Data Figure 3 | Installation of a 50-bp Bxb1attP site at AAVS1 with twinPE.
Spacer pairs targeting the AAVST locus were designed for twinPE-mediated insertion of the
Bxb1 attP attachment site. For each spacer, three pegRNAs were designed having three
different PBS lengths and a fixed RT template that encodes a portion (43-44 bp) of the Bxb1
attP sequence. Sequences of pegRNAs are listed in Supplementary Table 1. For each
spacer pair, a three-by-three matrix of pegRNA combinations was tested by plasmid DNA co-
transfection with PE2 in HEK293T cells. Each pegRNA pair is specified below the x-axis.
Values reflect single biological replicates.
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spacer pair, a three-by-three matrix of pegRNA combinations was tested by plasmid DNA co-
transfection with PE2 in HEK293T cells. Each pegRNA pair is specified below the x-axis.

Bxb1 aftB attachment site. For each spacer, three pegRNAs were designed having three
Values reflect single biological replicates.

different PBS lengths and a fixed RT template that encodes the full-length Bxb1 attB
sequence (38 bp). Sequences of pegRNAs are listed in Supplementary Table 1. For each

Extended Data Figure 4 | Installation of a 38-bp Bxb1 atiB site at CCR5 with twinPE.
Spacer pairs targeting the CCR5 locus were designed for twinPE-mediated insertion of the
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Extended Data Figure 5 | Comparison of twinPE and PE3 for Bxb1 attB insertion at
CCR5. (a) Replacement of endogenous sequence within CCR5 region 1 with the Bxb1 attB
site using twinPE or PES. For PES3 editing systems, pegRNA RT templates were designed to
encode the Bxb1 attB sequence and one of three different target-site homology sequence
lengths. For PES edits, each pegRNA was tested with three nicking sgRNAs. (b)
Replacement of endogenous sequence within CCR5 region 2 with the Bxb1 attB sequence
using twinPE or PE3. As in (a), PE3 edits were tested with pegRNAs containing RT templates
that were designed to encode the Bxb1 attB sequence and one of three different target-site
homology sequence lengths and tested with three nicking sgRNAs. Values and error bars
reflect the mean and s.d. of three independent biological replicates.
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Extended Data Figure 6 | TwinPE combined with Bxb1 recombinase for targeted knock-
in of donor DNA plasmids. (a) Bxb1-mediated DNA donor knock-in in clonal HEK293T cell
lines. Transfection of a HEK293T clonal cell line containing homozygous attB site insertion at
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CCR5 with varying amounts of Bxb1-expressing plasmid and aftP-containing donor DNA
plasmid. Knock-in efficiency was quantified by ddPCR. Values and error bars reflect the
mean and s.d. of two independent biological replicates. (b) Assessment of genome-donor
junction purity by high-throughput sequencing. Genomic DNA from single-transfection knock-
in experiments was amplified with a forward primer that binds the genome and a reverse
primer that binds within the donor plasmid (Supplementary Table 2). Values and error bars
reflect the mean and s.d. of three independent biological replicates. (¢) Assessment of
genome-donor junction purity at the other junction by high-throughput sequencing as
performed in (b). (d) Multiplexed single-transfection knock-in at AAVS1 and CCR5. HEK293T
cells were transfected with plasmids encoding PE2, Bxb1, a pair of pegRNAs for the insertion
of attP at AAVST, an attB-donor, a pegRNA pair for the insertion of one of four attachment
sites (attB, attB-GA, attP, or attP-GA) at CCR5, and a corresponding donor. Knock-in was
observed at both target loci under all four conditions. Insertion of aftP at AAVST and attB at
CCRS5 gave the lowest knock-in efficiencies overall (0.2% at AAVS1T, 0.4% at CCR5).
Insertion of aftP at both sites yielded the highest levels of knock-in at AAVST (1.8%) but low
levels (0.2%) at CCR5. When an orthogonal edit (attB-GA or aftP-GA) was introduced at
CCR5, AAVS1 knock-in was 0.7-0.8%. Higher knock-in at CCR5 was observed with attB-GA
(1.4%) than with attP-GA (0.4%), consistent with our single locus knock-in results. Values
and error bars reflect the mean and s.d. of three independent biological replicates. (e) and (f)
Effects of reducing pegRNA overlap on twinPE efficiency and donor/pegRNA recombination.
(e) The editing efficiencies of pairs of pegRNAs for insertion of Bxb1 attB at CCR5 were
measured by high-throughput sequencing. The pairs differed in the amount of overlap shared
between their flaps, from 38 bp (full-length attB sequence) down to 20 bp. Editing efficiency
of the pairs with shorter overlaps was comparable to the pair with full-length overlap. Values
and error bars reflect the mean and s.d. of three independent biological replicates. (f)
Assessment of recombination between attB-containing pegRNA plasmids and attP-containing
donor plasmids. Following transfection of HEK293T cells with the indicated samples, isolated
DNA was amplified with a forward primer that binds the pegRNA expression plasmid
(TTGAAAAAGTGGCACCGAGT) and a reverse primer that binds the donor plasmid
(CTCCCACTCATGATCTA). A positive 256-bp PCR band confirms recombination between
the two plasmids. When the pegRNA encodes full-length attB (38-bp) or a truncated version
of attB with 30-bp of overlap between flaps, a band is observed; however, recombination is
not observed when the pegRNAs encode a truncated attB with only 20-bp of flap overlap.
The “No PE2” control uses the 38-bp overlap pegRNA pair. No recombination is observed in
the absence of Bxb1 or if the donor and pegRNA plasmids both bear aftB (Mismatch, “M”).
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Extended Data Figure 7 | Expression of human Factor IX from the ALB promoter
following twinPE-recombinase knock-in and characterization of Bxb1 off-target editing.
(a) Huh7 cells were transfected with Bxb1, donor (attP-splice acceptor-cDNA of F9 exons 2-
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8), PE2, and pegRNAs for installation of attB in the first intron of ALB or at CCR5. Three days
post-transfection, cells were split and allowed to grow to confluence. Their media was
changed, and they were left to condition the fresh media, with aliquots taken at days 4, 7, and
10. Factor IX was present at detectable levels by ELISA (dashed line represents the lower
limit of detection) in two of three samples treated with ALB pegRNAs at Day 4, and in all
samples treated with ALB pegRNAs at Day 7 and Day 10. Factor IX was never detected in
the conditioned media of any samples treated with CCR5 pegRNAs. Values and error bars
reflect the mean and s.d. of two or three independent biological replicates. (b) Targeted
amplicon sequencing was performed for each of the five nominated pseudo-sites (OT1-OT5)
from seven different samples treated with 5.6-kb donor DNA plasmid, twinPE reagents
targeting CCR5 or AAVS1, and Bxb1 recombinase. The indels in all five pseudo-sites are
either below the limit of detection (<0.1%) or near-background compared to untreated
controls. (¢) To capture potential donor plasmid integration events at nominated pseudo-
sites, primers were used to amplify predicted integration junctions. The gel depicts PCR
reactions performed for each off-target site as indicated in the above legend. Confirmation of
on-target donor integration from the samples is shown in the right-most column of the gel. In
(b) and (c), two or three independent biological replicates were performed.
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Extended Data Fig. 8 | TwinPE and Bxb1-mediated inversion in HEK293T GFP reporter
cells. (a) The lentiviral fluorescent reporter construct used to assess inversion efficiency with
twinPE and Bxb1 recombinase. The reporter contains an EF1a promoter followed by an
inverted H2B-EGFP coding sequence that is flanked by partial AAVS71 DNA sequence, an
internal ribosome entry site (IRES), and a puromycin resistance gene. Successful installation
of opposite-facing attB (left) and aftP (right) sequences at the AAVST target sequences and
subsequent inversion by Bxb1 corrects the orientation of GFP for functional expression. (b)
The fluorescent reporter construct was stably integrated into HEK293T cells via lentiviral
transduction and puromycin selection. The polyclonal GFP reporter cell line was then
transfected with twinPE plasmid components (PE2 and four pegRNAs) and varying amounts
of Bxb1 plasmid for single-transfection inversion. Cells were analyzed by flow cytometry and
gated for live single cells. Quantification of GFP positive cells by flow cytometry. Values and
error bars reflect the mean and s.d. of two independent biological replicates.
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Extended Data Fig. 9 | TwinPE and Bxb1 recombinase-mediated inversion between IDS
and IDS2. (a) Assessment of the inverted /DS junction purity by high-throughput sequencing
in HEK293T cells. Frequency of expected junction sequences containing attR and atiL
recombination products after twinPE and BxB1-mediated single-step inversion. The product
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purities range from 81-89%. Values and error bars reflect the mean and s.d. of three
independent biological replicates. (b) Schematic diagram of the designed PCR strategies for
quantifying /DS inversion efficiency. Primer pair 1 (green forward and blue reverse primer)
can amplify the unedited alleles (403 bp), twinPE-edited alleles (337 bp), and the inverted
alleles (326 bp) at junction 1 in a single PCR reaction. Due to the size difference, a UMI
protocol was applied to eliminate PCR bias during quantification of inversion efficiency.
Similarly, using primer pair 2 (red forward and blue reverse primer), the unedited alleles (346
bp), twinPE-edited alleles (326 bp), and inverted alleles (320 bp) at junction 2 can be
amplified in a single PCR reaction. Amplicons can then be sequenced by standard high-
throughput sequencing protocols for amplicon sequencing. (¢) Screening of pegRNA pairs for
the insertion of Bxb1 atftB and attP sequences at IDS and IDS2. TwinPE editing was tested
with standard pegRNAs and epegRNAs containing a 3’ evoPreQ1 motif. Values and error
bars reflect the mean and s.d. of three independent biological replicates.
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Cas9 nickase and PE2-dead RT variants. (a) TwinPE-mediated endogenous sequence
replacement with Bxb1 aftB attachment site in CCR5 region 2 in HEK293T cells. (b) TwinPE-
mediated endogenous sequence replacement with attP, attB, or 22-nt DNA sequences in
multiple human cell lines. Six different pegRNA pairs targeting five loci were tested in
HEK293T, HelLa, U20S and K562 cells. HEK293T and HelLa cell were transfected with PE2
and pegRNA plasmids via Lipofectamine 2000 (Thermo Fisher) and TransIT-HeLaMonster
(Mirus), respectively. U20S and K562 cells were nucleofected using Lonza 4D-Nucleofector
and SE kit. DNA loci and the specified insertion edits are shown in the x-axis. (¢) HEK293T
cells were transfected with twinPE pegRNA pairs and either Cas9-H840A nickase (nCas9),
PE2-dRT (a PE2 variant that contains K103L and R110S inactivating mutations to the RT
domain), or PE2. Treatment with either nCas9 or PE2-dRT did not result in desired edits,
while PE2 installed the specified edits as indicated. Values and error bars in (a) and (c)
reflect the mean and s.d. of three independent biological replicates. Values and error bars in
(b) reflect the mean and s.d. of at least two independent biological replicates.
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