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Fine-mapping of nuclear compartments using ultra-deep Hi-C shows that active promoter and 1 

enhancer elements localize in the active A compartment even when adjacent sequences do not 2 
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Abstract 34 

Megabase-scale intervals of active, gene-rich and inactive, gene-poor chromatin are known to 35 
segregate, forming the A and B compartments. Fine mapping of the contents of these A and B 36 
compartments has been hitherto impossible, owing to the extraordinary sequencing depths required to 37 
distinguish between the long-range contact patterns of individual loci, and to the computational 38 
complexity of the associated calculations. Here, we generate the largest published in situ Hi-C map to 39 
date, spanning 33 billion contacts. We also develop a computational method, dubbed PCA of Sparse, 40 
SUper Massive Matrices (POSSUMM), that is capable of efficiently calculating eigenvectors for sparse 41 
matrices with millions of rows and columns. Applying POSSUMM to our Hi-C dataset makes it possible to 42 
assign loci to the A and B compartment at 500 bp resolution. We find that loci frequently alternate 43 
between compartments as one moves along the contour of the genome, such that the median 44 
compartment interval is only 12.5 kb long. Contrary to the findings in coarse-resolution compartment 45 
profiles, we find that individual genes are not uniformly positioned in either the A compartment or the B 46 
compartment. Instead, essentially all (95%) active gene promoters localize in the A compartment, but 47 
the likelihood of localizing in the A compartment declines along the body of active genes, such that the 48 
transcriptional termini of long genes (>60 kb) tend to localize in the B compartment. Similarly, nearly all 49 
active enhancers elements (95%) localize in the A compartment, even when the flanking sequences are 50 
comprised entirely of inactive chromatin and localize in the B compartment. These results are consistent 51 
with a model in which DNA-bound regulatory complexes give rise to phase separation at the scale of 52 

individual DNA elements. 53 

  54 

Main 55 

The nucleus of the human genome is partitioned into distinct spatial compartments, such that 56 
stretches of active chromatin tend to lie in one compartment, called the A compartment, and stretches 57 
of inactive chromatin tends to lie in the other, called the B compartment1. Compartmentalization was 58 
first identified using Hi-C, a method that relies on DNA-DNA proximity ligation to create maps reflecting 59 
the spatial arrangement of the genome1. Loci in the same spatial compartment exhibit relatively 60 
frequent contacts in a Hi-C map, even when they lie far apart along a chromosome, or on entirely 61 
different chromosomes1,2. Accurate classification of the resulting genome-wide contact patterns 62 
requires a large number of contacts to be characterized at each locus. As such, genome-wide 63 
compartment profiles have only been generated, in the past, at resolutions ranging from 40 kb – 1 Mb1-64 
3. Moreover, extant compartment detection algorithms require operations, such as calculation of 65 
principal eigenvectors1, which are computationally intractable when the underlying matrices have 66 

millions of rows and columns – such as high-resolution Hi-C matrices.  67 

Although the compartments as a whole are often thought to form as a consequence of phase 68 
separation3-6, the low resolution of compartment profiles has made it difficult to determine the protein 69 

mechanisms that underlie this process.  70 

Here, we construct an in situ Hi-C map in lymphoblastoid cells spanning 42 billion read-pairs and 71 
33 billion contacts. This map contains an average of 22,000 contacts for every kilobase of genome 72 
sequence. We combine this map with a novel algorithm, dubbed POSSUMM, which greatly accelerates 73 
the calculation of the principal eigenvector and the largest eigenvalues of a massive, sparse matrix. This 74 
makes it possible to, e.g., calculate the principal eigenvector for correlation matrices containing millions 75 
of rows, and billions of nonzero entries. Combining our ultra-deep map with POSSUMM, we find that it 76 
is possible to map the contents of the A and B compartments with 500 bp resolution, a 100-fold 77 
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improvement in resolution. We also show that when we classify loops based on their appearance, at fine 78 
resolution, in our ultra-deep map, it becomes possible to distinguish between loops that form by 79 
extrusion and those that form via non-extrusion mechanisms.  80 

 81 

Generation of an ultra-deep in situ Hi-C map in lymphoblastoid cells spanning 33 billion contacts 82 

We produced an ultra-deep Hi-C map using lymphoblastoid cells from a panel of 17 individuals, 83 
obtaining over 42 billion PE150 read-pairs. This map was generated by aggregating the results of over 84 
150 individual Hi-C experiments. In order to enhance the resolution of the maps, we used a variety of 4-85 
cutter restriction enzymes in the different experiments, thus enhancing the density of cut sites across 86 
the genome. Together, these experiments yielded 33 billion contacts after alignment, deduplication, and 87 
quality filtering (Table S1). The resulting dataset is far deeper than any prior published Hi-C map. By 88 
comparison, the average published Hi-C map contains roughly 300 million contacts; 93% of Hi-C maps in 89 
the 4DNucleome database7 have less than 1 billion contacts (Fig. S1A, Table S2); and the widely used 90 
lymphoblastoid Hi-C map generated in Rao et al. contains 4.9 billion contacts (Fig. 1A). 91 

We generated contact matrices at a series of resolutions as fine as 500 bp. These matrices 92 
greatly improved the resolution of all features genome-wide, revealing many additional loops and 93 
domains (Fig. 1B). This high coverage also enhanced the long-range plaid pattern indicative of 94 
compartments (Fig. 1C, S1B), as well as the corresponding compartment domains observed along the 95 
diagonal of the map (Fig. 1D, S1C). Critically, because the number of contacts at every locus was greatly 96 
increased, with an average of 66,000 contacts incident on each kilobase of the human genome (Fig. 1C, 97 
S1B), we were able to distinguish between loci in the A compartment and loci in the B compartment 98 
with much finer resolution. 99 

 100 

Development of PCA of Sparse, SUper Massive Matrices (POSSUMM) and its use to create a genome-101 

wide compartment profile with 500bp resolution. 102 

Extant methods for classifying loci into one compartment or the other typically rely on 103 
numerical linear algebra to calculate the principal eigenvector (called, in this context, “the A/B 104 
compartment eigenvector”) and the smallest eigenvalues of correlation matrices associated with the Hi-105 
C contact matrix. At 100 kb resolution, these matrices typically have thousands of rows and columns and 106 
millions of entries, making them tractable using extant numerical algorithms, such as those 107 
implemented by Homer8, Juicer9, and Cooler10. However, at kilobase resolution or beyond, these 108 
matrices have hundreds of thousands of rows and hundreds of billions of entries, making them 109 
intractable using the aforementioned tools. For example, computing an eigenvector for chr1 at 500 bp 110 
resolution entails generating a matrix with 250 billion entries and performing a calculation that is 111 
projected to require >4.6 TB of RAM for >16 years (Fig. S1D). 112 

As such, we developed a method, POSSUMM, for calculating the principal eigenvector and the 113 
smallest eigenvalues of a matrix. POSSUMM is based on the power method, which repeatedly multiplies 114 
a matrix with itself in order to calculate the principal eigenvector (Fig. 1D). However, POSSUM does not 115 
explicitly calculate all of the intermediate matrices required by the power method. Instead, it explicitly 116 
calculates only the tiny subset of intermediate values required to obtain the principal eigenvector itself, 117 
not requiring dense matrices, which makes it vastly more efficient (Fig. 1D, Fig. S1EF).  118 
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Using POSSUMM, we assigned loci to the A and B compartment at resolutions up to, and 119 
including, 500 bp (Fig. 1C). The calculation of the A/B compartment eigenvector at 500 bp resolution 120 
took only 12 minutes, and 13 GB of RAM (Fig. S1D&G). A and B compartments identified by POSSUM 121 

accurately detect the segregation of active from inactive chromatin (Fig. S1H-K).  122 

 123 

The median compartment interval is 12.5 kb long 124 

It is widely thought that compartment intervals (genomic intervals that lie entirely in one 125 
compartments) are typically megabases in length and are partitioned into numerous punctate loops and 126 
loop domains6,11-13. To explore this phenomenon, we used our fine map of nuclear compartments to 127 
examine the frequency with which loci alternate from one compartment to the other. Nearly 99% of 128 
compartment intervals were less than 1 Mb in size, and 95% were smaller than 100 kb (Fig. 2A). The 129 
median compartment interval was only 12.5 kb, and thousands of compartment intervals were no 130 
longer than 5 kb (Fig. S1L). In comparison, the median size of CTCF loops in our map was 360 kb in 131 
length, demonstrating that compartment intervals are smaller than individual loops.  132 

 133 

Kilobase-scale compartment intervals frequently give rise to contact domains  134 

It is well known that long compartment intervals often give rise to contact domains, i.e., 135 
genomic intervals in which all pairs of loci exhibit an enhanced frequency of contact among 136 
themselves6,14-17 (Fig. 1D). Such contact domains are referred to as compartment domains. We found 137 
that even short compartment intervals less than 5 kb frequently give rise to contact domains (Fig. S1M), 138 
demonstrating that intervals of chromatin in the same compartment possess the ability to form contact 139 
domains regardless of scale. 140 

 141 

Essentially all active promoter and enhancer elements localize in the A compartment  142 

Next, we compared our fine map of nuclear compartments to ENCODE’s catalog of regulatory 143 
elements in GM12878 cells. We examined active promoters (defined as 500 bp near the TSS, absence of 144 
repressive marks H3K27me3 or H3K9me3, and with >= 1 RPKM gene expression in RNA-seq) and found 145 
that nearly all lie in the A compartment: out of 9,324 active promoters annotated in GM12878, only 496 146 
(5%) were assigned to the B compartment (Fig. 2B - left). We noticed that active promoters in the B 147 
compartment had higher values in the principal eigenvector compared to the surrounding regions (Fig. 148 
S1N). Indeed, if we use a slightly more stringent threshold (assigning promoters to the B compartment 149 
only if the corresponding entry of the principal eigenvector is <-.001), we find that only 233 (2.5%) of 150 
promoters are assigned to the B compartment. Notably, when 1 Mb resolution compartment profiles 151 
are used, the number of active promoters assigned to the B compartment increases 4-fold, to ~21% (Fig. 152 
S1O). This is at least in part because the use of coarse resolutions leads to the averaging of interaction 153 
profiles from neighboring loci, such that a DNA element in the A compartment might be erroneously 154 

assigned to the B compartment if most of the flanking sequence was inactive (Fig. 2C, S2A-G).  155 

Similarly, we found that essentially all active proximal enhancers (defined by annotation in 156 
DenDB18, <=10 kb from a TSS, and overlapping H3K27ac but not H3K27me3 & H3K9me319) lie in the A 157 
compartment (Fig. 2B – middle). Moreover, essentially all active distal enhancers (DenDB18, >10 kb from 158 
a TSS, with H3K27ac, but not H3K27me3 or H3K9me319) lie in the A compartment (Fig. 2B – right): out of 159 
30,868 active distal enhancers annotated in GM12878, only 1,607 (5%) were assigned to the B 160 
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compartment. Many of these distal enhancer elements represent small islands of A-compartment 161 
chromatin in a sea of inactive, B compartment chromatin (Fig. 2D). This demonstrates that individual 162 
DNA elements can escape a neighborhood that is overwhelmingly associated with one compartment in 163 
order to localize with a different compartment (Fig. 2C-E, S2H-I). When 1 Mb resolution compartment 164 
profiles are used, the number of active distal enhancers assigned to the B compartment increases 4.6-165 
fold, to 23% (Fig. S2J). Again, this is at least in part because the use of coarse resolutions leads to the 166 
averaging of interaction profiles from neighboring loci (Fig. S2H&K).Taken together, we find that 167 
essentially all active regulatory elements, including both promoters and enhancers, lie in the A 168 

compartment, even when immediately neighboring sequences do not.  169 

 170 

Many genes exhibit discordant compartmentalization, with the TSS in the A compartment and the TTS 171 
in the B compartment 172 

When exploring the fine map of nuclear compartmentalization, we noticed many genes where 173 
the TSS and TTS localize to opposite compartments (Fig. 3A., see also Fig. 1D,2C,2E). These intra-genic 174 
compartmental switches are more easily seen at large genes (Fig. 3B, S3AB). We therefore asked if gene 175 
size can affect the compartment localization of the TTS. Indeed, average profiles of compartmental 176 
status revealed that TSSs were most likely to be in the A compartment (Fig. 3C), but that the likelihood 177 
of lying in the A compartment decreases steadily as one examines increasingly distal portions of the 178 
gene body, such that the TTSs of large genes are more likely to localize to the B compartment (Fig. 179 
3C&D, S3C). This was especially evident if we consider very large genes (Fig. S3D), where the TSS was 180 
overwhelmingly in the A compartment, but the TTS was usually in the B compartment.  181 

We next asked if genes with discordant compartmentalization (i.e., the TSS was in compartment 182 
A, but the TTS was in compartment B) could be explained by different chromatin marks at the TSS vs. 183 
TTS. We examined chromatin marks at the TTS in active genes larger than 20 kb and found that 184 
diminished levels of active marks at the TTS, specifically RNAPII, H3K4me1, and H3K36me3, were 185 
correlated with presence of discordant compartmentalization (Fig. 3E, Fig. S3E). Notably, although 186 
repressive chromatin marks are frequently seen at loci in the B compartment, genes with discordant 187 
compartmentalization typically lacked such marks at the TTS (Fig. 3E, S3E).  We also found that 188 
chromatin marks at the TSS were not predictive of whether the gene exhibited discordant 189 
compartmentalization (Fig. S3E&F).  190 

Finally, we sought to determine if discordant compartmentalization was associated with 191 
transcriptional pausing as measured by GRO-Seq. We found that elongating genes longer than 20 kb 192 
were more likely to exhibit concordant compartmentalization (Fig. 3F), whereas paused genes were 193 

more likely to exhibit discordant compartmentalization (Fig. 3G).  194 

Taken together, these data support a model where an active TSS localizes to the A compartment 195 

but brings with it only a small portion of the gene body, depending on the elongation status (Fig. 3H). 196 

 197 

Loop extrusion forms diffuse loops, whereas compartmentalization forms punctate loops 198 

We examined loops in our Hi-C dataset. Using SIP20 and HiCCUPS2, we identified 32,970 loops. 199 
Ninety-one percent of these loops contained a CTCF-bound motif at both anchors, with a strong 200 

preference for the convergent orientation (Fig. S4A).  201 
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Interestingly, when we examined loops at 1 kb resolution, we noticed that the signal is diffuse 202 
(Fig. 4A, S4B), indicative of frequent contacts proximal to the CTCF binding sites (Fig. 4B). The elevated 203 
contact frequency decays as the distance from the corresponding anchors increases (Fig. 4C, rainbow) (a 204 
loss of signal of c.a. -6% from one bin to the next; i.e. -6%/kb compounding). Curiously, this decay rate is 205 
much slower than the decay rate reflected by the diagonal of the Hi-C map (Fig. 4C, S4C – expected) (c.a. 206 
-28%/kb), which is thought to reflect the properties of the chromatin polymer. The decay was 207 

unchanged as a function of loop size or sequencing depth (Fig. S4DE).  208 

We wondered whether this slow decay in contact frequency was seen for loops in other species. 209 
We therefore examined hundreds of loops observed in a published high-resolution Hi-C map from 210 
Drosophila melanogaster Kc167 cells at 1 kb resolution14,21 (Fig. 4D&E). Interestingly, the loops in 211 
Drosophila decayed at a rate (c.a. -20%/kb) that matched the diagonal of the Drosophila Hi-C map (c.a. -212 
23%/kb) and was much faster than the rate seen for human CTCF-mediated loops (Fig. 4F). This suggests 213 
that CTCF loops create interactions between sequences bound by CTCF, as well as interactions between 214 
CTCF bound and adjacent sequences. However, in Drosophila, Pc loops only create interactions directly 215 

between the Pc bound sequences. 216 

Finally, we examined loops previously identified in C. elegans
20,22,23. The loop decay was slower 217 

(c.a. -11%/kb) than the decay seen at the diagonal (c.a. -24%/kb) (Fig. 4F, green vs. grey), and was more 218 
similar to the rate of decay seen for human CTCF-mediated loops than the one observed for D. 219 

melanogaster loops (Fig. 4F, Fig. S4I).  220 

It was notable that the type of decay observed (fast or slow) matched the putative mechanism 221 
by which the loops formed. CTCF-mediated loops in human are bound by, and dependent on, the SMC 222 
complex cohesin (Fig. S4H), and form by cohesin-mediated extrusion24-27. Similarly, the loops in C. 223 
elegans are bound by the SMC complex condensin and we previously suggested that they are formed by 224 
condensin-mediated loop extrusion20,22,23. Indeed, the interactions between loop-adjacent sequences 225 
are in further support of  loop formation by extrusion in C. elegans.  By contrast, Drosophila loops are 226 
much less likely to be bound by CTCF, cohesin, condensin, or other extrusion-associated proteins14. 227 

Instead, they are bound by the Polycomb complex, Pc, and may form by means other than extrusion28-30.  228 

These findings suggest that the mechanism of loop formation influences whether loops will be 229 
punctate or diffuse, with extrusion-mediated loops forming diffuse peaks and compartmentalization-230 
mediated loops forming more punctate features. 231 

 232 

Diffuse loops enhance the contact frequency of nearby promoter-enhancer interactions 233 

Using Fit-Hi-C31, we called promoter-enhancer interactions at 1 kb resolution on human chr1. 234 
We examined those interactions where both the promoter and enhancer lie within 100 kb of a loop 235 
anchor. In some cases, these interactions lie completely inside the loop, but in others they cross the 236 
loop anchor. Both cases exhibited strongly enriched contact frequency as compared to enhancer-237 
promoter interactions that are unrelated to CTCF loops, i.e., near permutated random sites (Fig. 4G). 238 
These data suggest that CTCF loops enhance the contact frequency of promoter-enhancer interactions, 239 
even when both elements lie outside the loop (Fig. 4H). By contrast, in Drosophila, Fit-Hi-C interactions 240 
between promoters and enhancers tend to be much shorter (Fig. S4J). 241 

 242 

Deletion of CTCF’s RNA binding domains leads to more punctate loops 243 
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 Interestingly, we observed some variability in the decay rate for different loops (Fig. S4K). This 244 
decay did not correlate strongly with either CTCF motif strength, CTCF ChIP-seq peak strength, or Rad21 245 
ChIP-seq peak strength (Fig. S4L-O). Instead, we found that CTCF-mediated loops exhibiting slower decay 246 
are associated with higher levels of transcription (Fig. 4I) and chromatin accessibility (Fig. S4P) near the 247 
loop anchors. This suggests that nearby transcriptional activity could impact how CTCF interacts with the 248 

nearby sequences and / or with the loop extrusion process.  249 

The CTCF protein contains 11 zinc finger domains. Recently, it was shown that ZF1 and ZF10 bind 250 
to RNA, and that deletion of these two domains causes weakening of loops throughout the genome32. 251 
We performed aggregate peak analysis on the published Hi-C in ZF1 and ZF10 mutants32 using “bullseye” 252 
plots in order to explore the effect of these deletions on loop decay. Interestingly, we found that loops 253 
appeared more punctate in both CTCF RNA binding mutants (Fig. 4J). This effect was especially 254 

pronounced in the ZF1 mutant.  255 

Taken together, these findings are consistent with a model where CTCF’s RNA-binding domains 256 
and the presence of bound RNAs results in more diffuse contacts between loop anchors, and thus to 257 
enriched contacts among regulatory elements near the loop.  258 

 259 

Discussion 260 

By generating a Hi-C map with extraordinary sequencing depth (33 billion PE, or 9.9 terabases of 261 

uniquely mapped sequence), we create the first fine-map of nuclear compartmentalization.  262 

Our findings demonstrate that compartment intervals and compartment domains can be far 263 
smaller than previously appreciated. This contrasts with the common hierarchical model of chromosome 264 
organization in which compartments are partitioned into TADs and loops6,11-13. In fact, our results 265 
indicate that compartment intervals can be so small that active DNA elements will localize with the A 266 
compartment even when surrounded by inactive chromatin localizing in the B compartment (Fig. 5).  267 

Strikingly, we find that essentially all distal enhancer elements lie in the A compartment. This 268 
contrasts with earlier work, using coarse-resolution maps of compartmentalization, which only report 269 
general enrichment of active distal enhancers in the A compartment, rather than as an absolute 270 
characteristic of active enhancers33,34. Similarly, many previous studies have reported a coarse 271 
enrichment of active genes in the A compartment6, yet we find that essentially all active promoters lie in 272 
the A compartment.  273 

We also observe that the likelihood that a locus lies inside the A compartment declines as one 274 
moves away from the promoter, along the gene body. Interestingly, we observe numerous genes with 275 
discordant compartmentalization, where the TSS and TTS tend to be in different compartments. This 276 
observation suggests that opposing compartments need not correspond to widely separated locations 277 
within the nucleus. For instance, recent work indicates that compartments could be phase-separated 278 
droplets35, suggesting that the TSS and TTS of a gene with discordant compartmentalization might be 279 
physically proximal within the nucleus, in neighboring A and B droplets (Fig. 5).  280 

The finding that active promoters – specifically, active TSSs – are overwhelmingly localized in the 281 
A compartments; that TTS compartment status correlates with RNAPII levels at the TTS; and that genes 282 
with discordant compartmentalization tend to be transcriptionally paused is consistent with a model in 283 
which RNAPII drives localization to the A compartment. Although a recent RNAPII degradation study 284 
showed little effect on genome organization, these experiments did not achieve the sequencing depth 285 
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required to perform fine mapping of nuclear compartmentalization, nor to resolve phenomena such as 286 
genes with discordant compartmentalization36. Alternatively, other components of the transcription 287 
complex that travel along the gene body during transcription elongation may be responsible for 288 
mediating interactions that assign sequences to the A compartment. In future studies, it will be of great 289 
interest to examine how RNAPII and other components of the transcription complex impact genome 290 

organization at the TSS and TTS separately.  291 

We note that our data represent averages within the cellular population, and it is unclear where 292 
each component lies during the transcriptional process itself. In the future, fine mapping of nuclear 293 
compartments in single cells will be needed to decipher these dynamics. Moreover, we note that our 294 
study did not attempt to study subcompartments or models with >=3 distinct compartment states2,37, 295 
which will be an important topic for future analyses. 296 

Our ultra-deep Hi-C map also helped identify interesting properties of chromatin loops. In 297 
particular, we observe that CTCF-mediated loops are highly diffuse, more so than would be predicted 298 
based on polymer behavior alone (Fig. 5). Interestingly, this diffusivity is observed for loops that form by 299 
extrusion, such as loops in human2,24-27 and C. elegans

20,22,23, but is not observed for loops that are 300 
believed to form by compartmentalization, such as the numerous Pc-associated loops observed in 301 
Drosophila

14,21,29,30. Intriguingly, variations in diffusivity between different loops could explain 302 

differences in domains signal (See Supplemental Discussion, Fig. S5). 303 

In vitro studies have found that large chromatin complexes can impede looping factors38,39, and 304 
cohesin was shown to build up near transcriptionally active regions40. Yet studies have also reported 305 
independence of CTCF loops and transcription36,41,42, bringing the relationship between transcription and 306 
CTCF looping in question. Recently, it was shown that CTCF RNA-binding domains, ZF1 and ZF10, are 307 
important for looping32. Our finding that loop-decay is altered in CTCF RNA-binding mutants supports 308 
the argument that transcription can impact fine-scale chromatin organization in mammals, as does the 309 

correlation between TTS compartmental domains and elongation status.  310 

Our POSSUMM method, a novel numerical linear algebra algorithm for calculating principal 311 
eigenvectors, is now available as part of the Juicer pipeline for Hi-C analysis. Our power analyses suggest 312 
that fine mapping of nuclear compartments at sub-kilobase resolution becomes possible for maps 313 
containing 7 billion contacts or more (See Supplemental Discussion, Fig. S6&S7). As sequencing costs 314 
continue to decline, we expect that fine mapping of nuclear compartments will become increasingly 315 

common. 316 

 317 

Methods 318 

Library Preparation, Initial Processing, and Quality Metrics 319 

Hi-C libraries were prepared according to the published in-situ method2. The full map represents a 320 
mixture of libraries prepared by digestion of various 4-cutter restriction enzymes, MboI, MseI, and NlaIII. 321 
Reads were aligned to the hg19 genome, processed, Knight-Ruiz (KR) normalized using Juicer9. 322 
Subsampled Hi-C maps were created by uniform random selection of read-pairs from the 33.3 billion Hi-323 
C dataset. We provide a script for subsampling Hi-C data at https://github.com/JRowleyLab/HiCSampler. 324 

Compartment Analysis 325 
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Compartments were identified using the A/B eigenvector of the Hi-C matrix using POSSUM. POSSUMM 326 

can be downloaded from: https://github.com/aidenlab/EigenVector and is also now implemented in the 327 

ENCODE version of the Juicer pipeline: https://github.com/ENCODE-DCC/hic-pipeline. 328 

Introduction to PCA of Sparse, SUper Massive Matrices (POSSUM) 329 

We note that the so-called “A/B compartment eigenvector” is simply the eigenvector of A corresponding 330 
to its largest eigenvalue, where X is given by the Hi-C contact matrix. This is equivalent to the first 331 
principal component in Principal Component Analysis. We note that in our case, X is a large, sparse 332 
matrix, containing millions of rows, millions of columns, and tens of billions of nonzero entries (dubbed 333 
a “Sparse, SUper Massive Matrix”).  334 

Suppose we seek to calculate the largest eigenpairs, �� , ��  of A in this case. Although X is sparse, we note 335 
that both Y and A are dense matrices. Unfortunately, storing dense matrices with millions of  rows and 336 
columns in memory is impossible. Hence we cannot use any method for calculating the eigenvectors of 337 
A that would require us to explicitly calculate either Y or A. Similarly, traditional sparse matrix methods 338 
for eigendecomposition are not usable here, again because A - the correlation matrix we hope to 339 
analyze - is a dense matrix. 340 

Therefore, in order to calculate eigenvectors for A, we began by implementing a method that makes it 341 
possible to calculate the matrix-vector product Av (where v is an arbitrary vector) using a sparse 342 
representation of X, i.e., without explicitly computing either A or Y. See POSSUMM details below for a 343 
more complete description. 344 

Next, we note that there are many methods for calculating eigenvectors in which the input matrix only 345 
appears via a matrix-vector product. These include the Power method, the Lanczos method, and their 346 
many variants43. Thus, in principle, any of these methods - for which there are many implementations in 347 
Fortran, C, C++, Matlab, and R - can be combined with the sparse Av product calculation described 348 
above in order to calculate eigenpairs of A. In practice, methods combining these two approaches are 349 
not available. 350 

To the best of our knowledge, the sole exception is a method in the R package irlba, which was released 351 
while this study was being performed. The details of this method are unpublished, but the method itself 352 
is available at https://cran.r-project.org/web/packages/irlba/index.html. However, irlba cannot handle 353 
cases where X has more than roughly two billion nonzero entries, which is exceeded in the present case. 354 

It also does not enable parallelization, which limits performance in highly demanding settings.  355 

 POSSUMM combines sparse Av product calculation with the power method, is extremely memory-356 
efficient, and enables parallelization via multi-threading. 357 

POSSUMM Details. 358 

To identify compartments from sparse Hi-C matrices, we began by excluding all rows and columns with 0 359 

variance. Let � be a matrix with column vectors ���� , … , ����. Let ���� � ����� 	 
��/
�   1 �  � �  �, 360 

where 
� is the mean of ��  and 
� is its standard deviation. Let � � �����, … , ����� be an n x n matrix with 361 
column vectors. The correlation matrix of � is � � ��� where �� is transposed �. Since A is symmetric 362 
and positive semi-definite it has n real eigenvalues �� � �� � �  �  �� � 0 and � eigenvectors. 363 

��, … , �� where ��� �  ����. 364 

These eigenvectors are a basis of Rn (i.e., a set of vectors which are independent and span the space) if 365 

�� � ��  and �� �  �� (i.e., ��
��� � 0). To compute �� using the power method (a.k.a power iterations), 366 
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suppose that �� � ��and let �	 be any nonzero vector in R
n, we define the recursive relation: 367 

�
�� � ��
 � �
���	. We can represent �	 as �	 � ���� � � � ���� and therefore �
�	 �368 

����

�� � � � ����
 �� �  ��


����� �  �� ���

��
�



�� � � � �� ���

��
�



���. Once we have estimates of the 369 

eigenvector and the two largest eigenvalues, we can estimate the error given that �|� 	 ��|� �370 

|������|

�
�� – ��
�

. To find an estimate of �� we know that �� �  ��and ||��|| � 1. Let �	be any vector and let 371 

�
�� � ���
 	 

��� where 

 � ��
��
  (and then ��
 	 

��� �  ���. If ��
�� � �|��
|�/||�
|| the 372 

using the same argument as before ��
�� ! �� as " ! ∞. This is true even if �� $ �� (�
  may not 373 
converge to ��, but ��wil converge to ��). In this way we have an estimate of �� and �� and may 374 
estimate the error in �. Since � � ���, �� � ������ � ���������, we do not need to compute A 375 

(which has the complexity of %�����. We used two matrix vector products at every iteration (which 376 
have the complexity of the number of nonzero elements in Y which is at most O(n)). Moreover, if � is 377 
large a naïve multiplication of a vector by a matrix can still take a long time and storing � may require a 378 
large amount of memory. For example, to store human chr1 at 1 kb resolution (where � $ 250000) 500 379 
GB of RAM would be required just to store �. With sparse implementation we recall that � �380 

����� , … , ����� where ���� � �����	����

��
� ����

��
	 ��

��
 . While 

����

��
 is sparse, 

����

��
	 ��

��
 is not. In lieu of explicit 381 

computation, let 1 � �1,1, … ,1�� then ���� � ����

��
	 ��

��
11 and then � � �( 	 1 · 1 · *� where 382 

( � +1/
� , 1/
�-� and * � +
�/
� . , … , 
�/
�-� and then �� � �� · (�� 	 1 · *� · �. Let / � � · (. 383 

Since *�� � ∑ *��� , �� � /��
��� 	 �∑ �� *��1�

��� . Since Z is as sparse as X we can do everything with 384 
sparse matrices as  ��� �  ��/ 	 ���1�*� � ��/ 	 �∑ �� �*��

��� . Projected time and memory usage 385 
were calculated by fitting a power decay curve, R2 of fit = 0.95 for time, and R2 of fit = 0.98 for memory 386 

usage. 387 

After compartment calling, chromatin marks were profiled at features that overlap A or B compartments 388 
by overlapping with ChIP-seq peaks and by using average signal profiles created by pyBigWig from the 389 
deepTools package44. ChIP-seq peaks and bigwig files were obtained from the ENCODE Roadmap 390 
Epigenomics project45. We filtered promoters with bivalent marks as active genes that had 2-fold higher 391 
H3K27me3 or H3K9me3 signal compared to the average at promoters. Contiguous compartment domain 392 
sizes were calculated by requiring at least two consecutive bins to have the same sign in the 393 
eigenvector. To create profiles of A compartmental status along genes, we assigned genes to elongating, 394 
mid, and paused. Elongation status was determined by RPKM GRO-seq signal within 250 bp of the TSS 395 
compared to the gene body, excluding 500 bp from the TSS. Differences between Promoter – Gene Body 396 
GRO-seq signal were ranked and placed into three equal categories considering only genes >= 20 kb in 397 

size.  398 

Loop Analysis 399 

Loops were identified by HiCCUPS2 or SIP20 at multiple resolutions. For HiCCUPS, we used parameters –400 
m 2000 –r 500,1000,5000,10000 –f .05,.05.05.05. For SIP we used an FDR 0.05 at each resolution with 401 
the parameters for resolutions of 500 bp; -d 15 –g 3.0; 1 kb: -d 17 –g 2.5; 5 kb: -d 6 –g 1.5; and 10 kb: -d 402 
5 –g 1.3. Loops called by both methods were combined by placing all loops into 10 kb bins, and if 403 
HiCCUPS and SIP called the same loop within the 10 kb bin, then only one instance of this loop was kept. 404 
Loops in subsampled maps were overlapped with loops called in the full 20.3 billion map if the loop was 405 
within +/- 25 kb of each other. Overlap of loops with CTCF was done using a published list of CTCF ChIP-406 
seq peaks and motifs2. Central 1 kb bins were assigned to those where we could unambiguously assign a 407 
CTCF ChIP-seq peak to a unique bin at motifs in convergent orientation. Only loops with unambiguous 408 
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CTCF assignment were used in decay analysis. Bullseye plots were created using SIPMeta20 and the 409 
decay was calculated as the average at each Manhattan distance (ring) moving away from the central 410 
bin. These values were plotted as a ratio to the central bin’s signal. The central bin of loops called at AUC 411 
values were computed using Simpson’s rule. Loops were placed into five equally sized categories 412 
(quintiles) based on AUC values. AUC values between WT, ΔZF1, and ΔZF10 were normalized by the 413 
diagonal to account for differences in the expected decay. The decay percentage rate of change listed in 414 

the main text was calculated by averaging the number of kb between each 10% loss of signal.  415 

Fit-Hi-C31 interactions were identified in 1 kb bin-pairs with an FDR 0.05. 3D loop models were created 416 
with Pastis46 using the raw Hi-C matrix. Models were visualized in ChimeraX47.  417 

Comparison with Other Datasets 418 

Hi-C read-pairs from CTCF ΔZF1, ΔZF1, and wild-type were downloaded from GSE12559532 and 419 

processed with juicer to the mm10 genome. Hi-C maps from the D. melanogaster dm6 genome and the 420 

C. elegans ce10 genome were obtained from our previously published work20,21. Hi-C maps used in our 421 

metric comparison are listed in Tables S2 and S3. 422 

Enhancers were downloaded from DENdb18 and active enhancers were defined as those that overlap 423 
with H3K27ac ChIP-seq peaks in GM12878. Histone modification ChIP-seq data was obtained from the 424 
ENCODE reference epigenome series (ENCSR977QPF) and RNAPII ChIP-seq peaks were combined from 425 
RNAPII, RNAPIISer2ph, and RNAPIISer5ph (ENCSR447YYN and ENCSR000DZK)19,48, with overlapping 426 
peaks merged into a single peak. GRO-seq data from GM12878 was downloaded from GSM148032649, 427 

and chromHMM states for GM12878 were downloaded from the Roadmap Epigenomics Project45.  428 

 429 

Data and Code Availability 430 

Hi-C data can be downloaded from ENCODE Accession: ENCSXXXXX. Our programs for subsampling, 431 
noise estimation, and eigenvector calculation on sparse matrices can be downloaded from 432 
https://github.com/JRowleyLab/HiCSampler, https://github.com/JRowleyLab/HiCNoiseMeasurer, and 433 
https://github.com/aidenlab/EigenVector. These are open source and include source code as well as 434 
implementations in python and C++.  435 
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 566 

Figure Legends 567 

Figure 1. By combining ultra-deep Hi-C and POSSUMM, we generated a fine map of nuclear 568 

compartmentalization achieving 500bp resolution. 569 

A) Schematic representing the total mapped read-pairs in the current study compared to earlier 570 

published Hi-C studies.  571 

B) Example locus showing Hi-C signal in 500 bp bins in our full map with 20.3 billion intrachromosomal 572 

read-pairs (left) and when read-pairs are subsampled to 1 billion (right). 573 

C) Example of compartment interactions in a Hi-C map identified by the eigenvector in 500 bp bins 574 

(bottom track). Black track displays transcription measured by GRO-seq. Black square represents the 575 

region shown in Fig. 1D. 576 

D) Zoomed in view of a compartment domain. 577 

E) Overview of the power method and POSSUM for calculating the eigenvector. See Methods for details.  578 

 579 
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Figure 2. Nearly all active TSSs and Enhancers localize to kilobase-scale A compartments 580 

A) Cumulative fraction of compartment domain sizes when identified at 500 bp resolution. 581 

B) Percentage of active gene promoters, proximal enhancers, and distal enhancers assigned to A (green) 582 

or B (purple) compartment domains when identified by the 500 bp compartment eigenvector. 583 

C) Example of small compartment domains only identifiable at high-resolution (red asterisks). Log 584 

transformed and distance normalized Hi-C map is shown alongside the eigenvector tracks at various bin 585 

sizes.  586 

D) Examples an active enhancers denoted by H3K27ac and H3K4me1 signal localizing to the A 587 

compartment and surrounded by the B compartment.  588 

E) Examples an active promoters denoted by GRO-seq signal localizing to the A compartment and 589 

surrounded by the B compartment. 590 

 591 

Figure 3. Many genes exhibit discordant compartmentalization. 592 

A-B) Examples of genes of various sizes where the TSS is in the A compartment while the TTS is in the B 593 

compartment. GRO-seq signal is shown as an indicator of the gene’s transcription status.  594 

C) Scaled average profiles of the A compartment signal (positive eigenvector) relative to the TSS for 595 

short (blue), mid-sized (gold), large (pink), and randomly selected (black) genes.  596 

D) Percentage of TTSs that localize to the B compartment for genes of various sizes (left).  597 

E) ChIP-seq signal at the TTS of discordant A/B genes vs. concordant A/A genes. Genes are sorted by the 598 

TTS compartmental signal.  599 

F) Scaled average profiles of the A compartment signal (positive eigenvector) relative to the TSS for 600 

elongating (blue), mid (red), paused (black), or randomly selected (grey) genes.  601 

G) Percentage of TTs that localize to the B compartment for paused, mid, or elongating genes. 602 

H) Top: Simple diagram of A compartment signal relative to gene size. Bottom: Diagram of TSS and TTS 603 

localization to the A compartment depending on gene size and elongation status.  604 

 605 

Figure 4. CTCF loop-decay enhances proximal interactions and is dependent on RNA-binding domains.  606 

A) Example of broad signal enrichment near CTCF loops when binned at 1 kb.  607 

B) Average signal at CTCF loops when binned at 10, 5, or 1 kb, centered on convergent CTCF anchors. 608 

C) Average Hi-C signal in 1 kb bins at each radial distance away from the CTCF loop anchors (rainbow). 609 

Average signal of the diagonal decay is shown for reference (grey) to estimate interactions due to 610 

polymeric distance. AUC=area under the curve. 611 

D) Example of punctate signal enrichment at Pc loops in D. melanogaster when binned at 1 kb. 612 
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E) Average signal at D. melanogaster Pc loops when binned at 10, 5, or 1 kb. 613 

F) Average Hi-C signal in 1 kb bins at each radial distance away from human CTCF loop anchors (blue) vs. 614 

D. melanogaster Pc loops (orange), and C. elegans X-chromosome loops (green). Average signal at the C. 615 

elegans Hi-C diagonal is shown for reference (grey). AUC=area under the curve. 616 

G) Enrichment of Fit-Hi-C enhancer-promoter interactions within 100 kb of loops inside the loop (blue) 617 

or crossing over loop boundaries (green). Values are shown as enrichment vs random regions of equal 618 

size and number as loops. 619 

H) Diagram of how CTCF loops can shorten distances between enhancers (orange) and promoters (blue) 620 

even when both are located outside of the loop. 621 

I) Average GRO-seq signal at CTCF loop anchors and neighboring loci for loops divided into 5 distinct 622 

decay categories. 623 

J) Average Hi-C signal in WT (left), ΔZF1 (middle), or ΔZF10 (right) CTCF mutants at CTCF loops. AUC=area 624 

under the curve 625 

 626 

Figure 5 Sub-genic compartmentalization and diffuse CTCF looping organize the human genome. 627 

Diagram depicting localization of active enhancers and TSSs to the A compartment, while TTSs are 628 

oriented to the B compartment dependent on transcription elongation status. This sub-genic and precise 629 

enhancer compartmentalization combines with diffuse CTCF loops to mediate genome organization. 630 
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