

1 **Fine-mapping of nuclear compartments using ultra-deep Hi-C shows that active promoter and**
2 **enhancer elements localize in the active A compartment even when adjacent sequences do not**
3

4 Huiya Gu^{1,13}, Hannah Harris^{2,13}, Moshe Olshansky³, Yossi Eliaz¹, Akshay Krishna², Achyuth Kalluchi²,
5 Mozes Jacobs⁴, Gesine Cauer⁴, Melanie Pham¹, Suhas S.P. Rao^{1,5}, Olga Dudchenko¹, Arina Omer¹, Kiana
6 Mohajeri⁶, Sungjae Kim⁷, Michael H Nichols⁸, Eric S. Davis⁹, Devika Udupa², Aviva Presser Aiden¹, Victor
7 G. Corces⁸, Douglas H. Phanstiel^{9,10}, William Stafford Noble⁴, Jeong-Sun Seo⁷, Michael E. Talkowski^{6,11,12},
8 Erez Lieberman Aiden^{1*}, and M. Jordan Rowley^{2*}

9 1. Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of
10 Medicine, Houston, TX, USA. Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
11 2. Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha,
12 NE, USA.
13 3. Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne,
14 Victoria, Australia.
15 4. Department of Genome Science, University of Washington, Seattle, USA; Paul G. Allen School of
16 Computer science & Engineering, University of Washington, Seattle, USA.
17 5. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
18 6. Massachusetts General Hospital, Boston, MA, USA.
19 7. Precision Medicine Institute, Seoul, 08511, Republic of Korea.
20 8. Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
21 9. Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill,
22 Chapel Hill, NC, USA.
23 10. Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA; Department of
24 Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
25 11. Department of Neurology, Harvard Medical School, Boston, MA, USA.
26 12. Program in Medical Population Genetics and Stanley Center for Psychiatric Research, Broad Institute
27 of MIT and Harvard, Cambridge, MA, USA.
28 13. These authors contributed equally to this work.
29
30

31 **Running Title:** Sub-genic discordant compartments

32 ***co-corresponding authors:** ELA: erez@erez.com; MJR: jordan.rowley@unmc.edu

33 **Keywords:** cohesin, CTCF, enhancers, extrusion, nucleus, transcription

34 **Abstract**

35 Megabase-scale intervals of active, gene-rich and inactive, gene-poor chromatin are known to
36 segregate, forming the A and B compartments. Fine mapping of the contents of these A and B
37 compartments has been hitherto impossible, owing to the extraordinary sequencing depths required to
38 distinguish between the long-range contact patterns of individual loci, and to the computational
39 complexity of the associated calculations. Here, we generate the largest published *in situ* Hi-C map to
40 date, spanning 33 billion contacts. We also develop a computational method, dubbed PCA of Sparse,
41 SUper Massive Matrices (POSSUMM), that is capable of efficiently calculating eigenvectors for sparse
42 matrices with millions of rows and columns. Applying POSSUMM to our Hi-C dataset makes it possible to
43 assign loci to the A and B compartment at 500 bp resolution. We find that loci frequently alternate
44 between compartments as one moves along the contour of the genome, such that the median
45 compartment interval is only 12.5 kb long. Contrary to the findings in coarse-resolution compartment
46 profiles, we find that individual genes are not uniformly positioned in either the A compartment or the B
47 compartment. Instead, essentially all (95%) active gene promoters localize in the A compartment, but
48 the likelihood of localizing in the A compartment declines along the body of active genes, such that the
49 transcriptional termini of long genes (>60 kb) tend to localize in the B compartment. Similarly, nearly all
50 active enhancers elements (95%) localize in the A compartment, even when the flanking sequences are
51 comprised entirely of inactive chromatin and localize in the B compartment. These results are consistent
52 with a model in which DNA-bound regulatory complexes give rise to phase separation at the scale of
53 individual DNA elements.

54

55 **Main**

56 The nucleus of the human genome is partitioned into distinct spatial compartments, such that
57 stretches of active chromatin tend to lie in one compartment, called the A compartment, and stretches
58 of inactive chromatin tends to lie in the other, called the B compartment¹. Compartmentalization was
59 first identified using Hi-C, a method that relies on DNA-DNA proximity ligation to create maps reflecting
60 the spatial arrangement of the genome¹. Loci in the same spatial compartment exhibit relatively
61 frequent contacts in a Hi-C map, even when they lie far apart along a chromosome, or on entirely
62 different chromosomes^{1,2}. Accurate classification of the resulting genome-wide contact patterns
63 requires a large number of contacts to be characterized at each locus. As such, genome-wide
64 compartment profiles have only been generated, in the past, at resolutions ranging from 40 kb – 1 Mb¹
65³. Moreover, extant compartment detection algorithms require operations, such as calculation of
66 principal eigenvectors¹, which are computationally intractable when the underlying matrices have
67 millions of rows and columns – such as high-resolution Hi-C matrices.

68 Although the compartments as a whole are often thought to form as a consequence of phase
69 separation³⁻⁶, the low resolution of compartment profiles has made it difficult to determine the protein
70 mechanisms that underlie this process.

71 Here, we construct an *in situ* Hi-C map in lymphoblastoid cells spanning 42 billion read-pairs and
72 33 billion contacts. This map contains an average of 22,000 contacts for every kilobase of genome
73 sequence. We combine this map with a novel algorithm, dubbed POSSUMM, which greatly accelerates
74 the calculation of the principal eigenvector and the largest eigenvalues of a massive, sparse matrix. This
75 makes it possible to, e.g., calculate the principal eigenvector for correlation matrices containing millions
76 of rows, and billions of nonzero entries. Combining our ultra-deep map with POSSUMM, we find that it
77 is possible to map the contents of the A and B compartments with 500 bp resolution, a 100-fold

78 improvement in resolution. We also show that when we classify loops based on their appearance, at fine
79 resolution, in our ultra-deep map, it becomes possible to distinguish between loops that form by
80 extrusion and those that form via non-extrusion mechanisms.

81

82 **Generation of an ultra-deep in situ Hi-C map in lymphoblastoid cells spanning 33 billion contacts**

83 We produced an ultra-deep Hi-C map using lymphoblastoid cells from a panel of 17 individuals,
84 obtaining over 42 billion PE150 read-pairs. This map was generated by aggregating the results of over
85 150 individual Hi-C experiments. In order to enhance the resolution of the maps, we used a variety of 4-
86 cutter restriction enzymes in the different experiments, thus enhancing the density of cut sites across
87 the genome. Together, these experiments yielded 33 billion contacts after alignment, deduplication, and
88 quality filtering (Table S1). The resulting dataset is far deeper than any prior published Hi-C map. By
89 comparison, the average published Hi-C map contains roughly 300 million contacts; 93% of Hi-C maps in
90 the 4DNucleome database⁷ have less than 1 billion contacts (Fig. S1A, Table S2); and the widely used
91 lymphoblastoid Hi-C map generated in Rao et al. contains 4.9 billion contacts (Fig. 1A).

92 We generated contact matrices at a series of resolutions as fine as 500 bp. These matrices
93 greatly improved the resolution of all features genome-wide, revealing many additional loops and
94 domains (Fig. 1B). This high coverage also enhanced the long-range plaid pattern indicative of
95 compartments (Fig. 1C, S1B), as well as the corresponding compartment domains observed along the
96 diagonal of the map (Fig. 1D, S1C). Critically, because the number of contacts at every locus was greatly
97 increased, with an average of 66,000 contacts incident on each kilobase of the human genome (Fig. 1C,
98 S1B), we were able to distinguish between loci in the A compartment and loci in the B compartment
99 with much finer resolution.

100

101 **Development of PCA of Sparse, SUper Massive Matrices (POSSUMM) and its use to create a genome- 102 wide compartment profile with 500bp resolution.**

103 Extant methods for classifying loci into one compartment or the other typically rely on
104 numerical linear algebra to calculate the principal eigenvector (called, in this context, “the A/B
105 compartment eigenvector”) and the smallest eigenvalues of correlation matrices associated with the Hi-
106 C contact matrix. At 100 kb resolution, these matrices typically have thousands of rows and columns and
107 millions of entries, making them tractable using extant numerical algorithms, such as those
108 implemented by Homer⁸, Juicer⁹, and Cooler¹⁰. However, at kilobase resolution or beyond, these
109 matrices have hundreds of thousands of rows and hundreds of billions of entries, making them
110 intractable using the aforementioned tools. For example, computing an eigenvector for chr1 at 500 bp
111 resolution entails generating a matrix with 250 billion entries and performing a calculation that is
112 projected to require >4.6 TB of RAM for >16 years (Fig. S1D).

113 As such, we developed a method, POSSUMM, for calculating the principal eigenvector and the
114 smallest eigenvalues of a matrix. POSSUMM is based on the power method, which repeatedly multiplies
115 a matrix with itself in order to calculate the principal eigenvector (Fig. 1D). However, POSSUM does not
116 explicitly calculate all of the intermediate matrices required by the power method. Instead, it explicitly
117 calculates only the tiny subset of intermediate values required to obtain the principal eigenvector itself,
118 not requiring dense matrices, which makes it vastly more efficient (Fig. 1D, Fig. S1EF).

119 Using POSSUMM, we assigned loci to the A and B compartment at resolutions up to, and
120 including, 500 bp (Fig. 1C). The calculation of the A/B compartment eigenvector at 500 bp resolution
121 took only 12 minutes, and 13 GB of RAM (Fig. S1D&G). A and B compartments identified by POSSUM
122 accurately detect the segregation of active from inactive chromatin (Fig. S1H-K).

123

124 **The median compartment interval is 12.5 kb long**

125 It is widely thought that compartment intervals (genomic intervals that lie entirely in one
126 compartments) are typically megabases in length and are partitioned into numerous punctate loops and
127 loop domains^{6,11-13}. To explore this phenomenon, we used our fine map of nuclear compartments to
128 examine the frequency with which loci alternate from one compartment to the other. Nearly 99% of
129 compartment intervals were less than 1 Mb in size, and 95% were smaller than 100 kb (Fig. 2A). The
130 median compartment interval was only 12.5 kb, and thousands of compartment intervals were no
131 longer than 5 kb (Fig. S1L). In comparison, the median size of CTCF loops in our map was 360 kb in
132 length, demonstrating that compartment intervals are smaller than individual loops.

133

134 **Kilobase-scale compartment intervals frequently give rise to contact domains**

135 It is well known that long compartment intervals often give rise to contact domains, i.e.,
136 genomic intervals in which all pairs of loci exhibit an enhanced frequency of contact among
137 themselves^{6,14-17} (Fig. 1D). Such contact domains are referred to as compartment domains. We found
138 that even short compartment intervals less than 5 kb frequently give rise to contact domains (Fig. S1M),
139 demonstrating that intervals of chromatin in the same compartment possess the ability to form contact
140 domains regardless of scale.

141

142 **Essentially all active promoter and enhancer elements localize in the A compartment**

143 Next, we compared our fine map of nuclear compartments to ENCODE's catalog of regulatory
144 elements in GM12878 cells. We examined active promoters (defined as 500 bp near the TSS, absence of
145 repressive marks H3K27me3 or H3K9me3, and with ≥ 1 RPKM gene expression in RNA-seq) and found
146 that nearly all lie in the A compartment: out of 9,324 active promoters annotated in GM12878, only 496
147 (5%) were assigned to the B compartment (Fig. 2B - left). We noticed that active promoters in the B
148 compartment had higher values in the principal eigenvector compared to the surrounding regions (Fig.
149 S1N). Indeed, if we use a slightly more stringent threshold (assigning promoters to the B compartment
150 only if the corresponding entry of the principal eigenvector is $<-.001$), we find that only 233 (2.5%) of
151 promoters are assigned to the B compartment. Notably, when 1 Mb resolution compartment profiles
152 are used, the number of active promoters assigned to the B compartment increases 4-fold, to $\sim 21\%$ (Fig.
153 S1O). This is at least in part because the use of coarse resolutions leads to the averaging of interaction
154 profiles from neighboring loci, such that a DNA element in the A compartment might be erroneously
155 assigned to the B compartment if most of the flanking sequence was inactive (Fig. 2C, S2A-G).

156 Similarly, we found that essentially all active proximal enhancers (defined by annotation in
157 DenDB¹⁸, ≤ 10 kb from a TSS, and overlapping H3K27ac but not H3K27me3 & H3K9me3¹⁹) lie in the A
158 compartment (Fig. 2B – middle). Moreover, essentially all active distal enhancers (DenDB¹⁸, >10 kb from
159 a TSS, with H3K27ac, but not H3K27me3 or H3K9me3¹⁹) lie in the A compartment (Fig. 2B – right): out of
160 30,868 active distal enhancers annotated in GM12878, only 1,607 (5%) were assigned to the B

161 compartment. Many of these distal enhancer elements represent small islands of A-compartment
162 chromatin in a sea of inactive, B compartment chromatin (Fig. 2D). This demonstrates that individual
163 DNA elements can escape a neighborhood that is overwhelmingly associated with one compartment in
164 order to localize with a different compartment (Fig. 2C-E, S2H-I). When 1 Mb resolution compartment
165 profiles are used, the number of active distal enhancers assigned to the B compartment increases 4.6-
166 fold, to 23% (Fig. S2J). Again, this is at least in part because the use of coarse resolutions leads to the
167 averaging of interaction profiles from neighboring loci (Fig. S2H&K). Taken together, we find that
168 essentially all active regulatory elements, including both promoters and enhancers, lie in the A
169 compartment, even when immediately neighboring sequences do not.

170

171 **Many genes exhibit discordant compartmentalization, with the TSS in the A compartment and the TTS
172 in the B compartment**

173 When exploring the fine map of nuclear compartmentalization, we noticed many genes where
174 the TSS and TTS localize to opposite compartments (Fig. 3A., see also Fig. 1D, 2C, 2E). These intra-genic
175 compartmental switches are more easily seen at large genes (Fig. 3B, S3AB). We therefore asked if gene
176 size can affect the compartment localization of the TTS. Indeed, average profiles of compartmental
177 status revealed that TSSs were most likely to be in the A compartment (Fig. 3C), but that the likelihood
178 of lying in the A compartment decreases steadily as one examines increasingly distal portions of the
179 gene body, such that the TTSs of large genes are more likely to localize to the B compartment (Fig.
180 3C&D, S3C). This was especially evident if we consider very large genes (Fig. S3D), where the TSS was
181 overwhelmingly in the A compartment, but the TTS was usually in the B compartment.

182 We next asked if genes with discordant compartmentalization (i.e., the TSS was in compartment
183 A, but the TTS was in compartment B) could be explained by different chromatin marks at the TSS vs.
184 TTS. We examined chromatin marks at the TTS in active genes larger than 20 kb and found that
185 diminished levels of active marks at the TTS, specifically RNAPII, H3K4me1, and H3K36me3, were
186 correlated with presence of discordant compartmentalization (Fig. 3E, Fig. S3E). Notably, although
187 repressive chromatin marks are frequently seen at loci in the B compartment, genes with discordant
188 compartmentalization typically lacked such marks at the TTS (Fig. 3E, S3E). We also found that
189 chromatin marks at the TSS were not predictive of whether the gene exhibited discordant
190 compartmentalization (Fig. S3E&F).

191 Finally, we sought to determine if discordant compartmentalization was associated with
192 transcriptional pausing as measured by GRO-Seq. We found that elongating genes longer than 20 kb
193 were more likely to exhibit concordant compartmentalization (Fig. 3F), whereas paused genes were
194 more likely to exhibit discordant compartmentalization (Fig. 3G).

195 Taken together, these data support a model where an active TSS localizes to the A compartment
196 but brings with it only a small portion of the gene body, depending on the elongation status (Fig. 3H).

197

198 **Loop extrusion forms diffuse loops, whereas compartmentalization forms punctate loops**

199 We examined loops in our Hi-C dataset. Using SIP²⁰ and HiCCUPS², we identified 32,970 loops.
200 Ninety-one percent of these loops contained a CTCF-bound motif at both anchors, with a strong
201 preference for the convergent orientation (Fig. S4A).

202 Interestingly, when we examined loops at 1 kb resolution, we noticed that the signal is diffuse
203 (Fig. 4A, S4B), indicative of frequent contacts proximal to the CTCF binding sites (Fig. 4B). The elevated
204 contact frequency decays as the distance from the corresponding anchors increases (Fig. 4C, rainbow) (a
205 loss of signal of c.a. -6% from one bin to the next; i.e. -6%/kb compounding). Curiously, this decay rate is
206 much slower than the decay rate reflected by the diagonal of the Hi-C map (Fig. 4C, S4C – expected) (c.a.
207 -28%/kb), which is thought to reflect the properties of the chromatin polymer. The decay was
208 unchanged as a function of loop size or sequencing depth (Fig. S4DE).

209 We wondered whether this slow decay in contact frequency was seen for loops in other species.
210 We therefore examined hundreds of loops observed in a published high-resolution Hi-C map from
211 *Drosophila melanogaster* Kc167 cells at 1 kb resolution^{14,21} (Fig. 4D&E). Interestingly, the loops in
212 *Drosophila* decayed at a rate (c.a. -20%/kb) that matched the diagonal of the *Drosophila* Hi-C map (c.a. -
213 23%/kb) and was much faster than the rate seen for human CTCF-mediated loops (Fig. 4F). This suggests
214 that CTCF loops create interactions between sequences bound by CTCF, as well as interactions between
215 CTCF bound and adjacent sequences. However, in *Drosophila*, *Pc* loops only create interactions directly
216 between the *Pc* bound sequences.

217 Finally, we examined loops previously identified in *C. elegans*^{20,22,23}. The loop decay was slower
218 (c.a. -11%/kb) than the decay seen at the diagonal (c.a. -24%/kb) (Fig. 4F, green vs. grey), and was more
219 similar to the rate of decay seen for human CTCF-mediated loops than the one observed for *D.*
220 *melanogaster* loops (Fig. 4F, Fig. S4I).

221 It was notable that the type of decay observed (fast or slow) matched the putative mechanism
222 by which the loops formed. CTCF-mediated loops in human are bound by, and dependent on, the SMC
223 complex cohesin (Fig. S4H), and form by cohesin-mediated extrusion²⁴⁻²⁷. Similarly, the loops in *C.*
224 *elegans* are bound by the SMC complex condensin and we previously suggested that they are formed by
225 condensin-mediated loop extrusion^{20,22,23}. Indeed, the interactions between loop-adjacent sequences
226 are in further support of loop formation by extrusion in *C. elegans*. By contrast, *Drosophila* loops are
227 much less likely to be bound by CTCF, cohesin, condensin, or other extrusion-associated proteins¹⁴.
228 Instead, they are bound by the Polycomb complex, *Pc*, and may form by means other than extrusion²⁸⁻³⁰.

229 These findings suggest that the mechanism of loop formation influences whether loops will be
230 punctate or diffuse, with extrusion-mediated loops forming diffuse peaks and compartmentalization-
231 mediated loops forming more punctate features.

232

233 **Diffuse loops enhance the contact frequency of nearby promoter-enhancer interactions**

234 Using Fit-Hi-C³¹, we called promoter-enhancer interactions at 1 kb resolution on human chr1.
235 We examined those interactions where both the promoter and enhancer lie within 100 kb of a loop
236 anchor. In some cases, these interactions lie completely inside the loop, but in others they cross the
237 loop anchor. Both cases exhibited strongly enriched contact frequency as compared to enhancer-
238 promoter interactions that are unrelated to CTCF loops, i.e., near permuted random sites (Fig. 4G).
239 These data suggest that CTCF loops enhance the contact frequency of promoter-enhancer interactions,
240 even when both elements lie outside the loop (Fig. 4H). By contrast, in *Drosophila*, Fit-Hi-C interactions
241 between promoters and enhancers tend to be much shorter (Fig. S4J).

242

243 **Deletion of CTCF's RNA binding domains leads to more punctate loops**

244 Interestingly, we observed some variability in the decay rate for different loops (Fig. S4K). This
245 decay did not correlate strongly with either CTCF motif strength, CTCF ChIP-seq peak strength, or Rad21
246 ChIP-seq peak strength (Fig. S4L-O). Instead, we found that CTCF-mediated loops exhibiting slower decay
247 are associated with higher levels of transcription (Fig. 4I) and chromatin accessibility (Fig. S4P) near the
248 loop anchors. This suggests that nearby transcriptional activity could impact how CTCF interacts with the
249 nearby sequences and / or with the loop extrusion process.

250 The CTCF protein contains 11 zinc finger domains. Recently, it was shown that ZF1 and ZF10 bind
251 to RNA, and that deletion of these two domains causes weakening of loops throughout the genome³².
252 We performed aggregate peak analysis on the published Hi-C in ZF1 and ZF10 mutants³² using “bullseye”
253 plots in order to explore the effect of these deletions on loop decay. Interestingly, we found that loops
254 appeared more punctate in both CTCF RNA binding mutants (Fig. 4J). This effect was especially
255 pronounced in the ZF1 mutant.

256 Taken together, these findings are consistent with a model where CTCF’s RNA-binding domains
257 and the presence of bound RNAs results in more diffuse contacts between loop anchors, and thus to
258 enriched contacts among regulatory elements near the loop.

259

260 **Discussion**

261 By generating a Hi-C map with extraordinary sequencing depth (33 billion PE, or 9.9 terabases of
262 uniquely mapped sequence), we create the first fine-map of nuclear compartmentalization.

263 Our findings demonstrate that compartment intervals and compartment domains can be far
264 smaller than previously appreciated. This contrasts with the common hierarchical model of chromosome
265 organization in which compartments are partitioned into TADs and loops^{6,11-13}. In fact, our results
266 indicate that compartment intervals can be so small that active DNA elements will localize with the A
267 compartment even when surrounded by inactive chromatin localizing in the B compartment (Fig. 5).

268 Strikingly, we find that essentially all distal enhancer elements lie in the A compartment. This
269 contrasts with earlier work, using coarse-resolution maps of compartmentalization, which only report
270 general enrichment of active distal enhancers in the A compartment, rather than as an absolute
271 characteristic of active enhancers^{33,34}. Similarly, many previous studies have reported a coarse
272 enrichment of active genes in the A compartment⁶, yet we find that essentially all active promoters lie in
273 the A compartment.

274 We also observe that the likelihood that a locus lies inside the A compartment declines as one
275 moves away from the promoter, along the gene body. Interestingly, we observe numerous genes with
276 discordant compartmentalization, where the TSS and TTS tend to be in different compartments. This
277 observation suggests that opposing compartments need not correspond to widely separated locations
278 within the nucleus. For instance, recent work indicates that compartments could be phase-separated
279 droplets³⁵, suggesting that the TSS and TTS of a gene with discordant compartmentalization might be
280 physically proximal within the nucleus, in neighboring A and B droplets (Fig. 5).

281 The finding that active promoters – specifically, active TSSs – are overwhelmingly localized in the
282 A compartments; that TTS compartment status correlates with RNAPII levels at the TTS; and that genes
283 with discordant compartmentalization tend to be transcriptionally paused is consistent with a model in
284 which RNAPII drives localization to the A compartment. Although a recent RNAPII degradation study
285 showed little effect on genome organization, these experiments did not achieve the sequencing depth

286 required to perform fine mapping of nuclear compartmentalization, nor to resolve phenomena such as
287 genes with discordant compartmentalization³⁶. Alternatively, other components of the transcription
288 complex that travel along the gene body during transcription elongation may be responsible for
289 mediating interactions that assign sequences to the A compartment. In future studies, it will be of great
290 interest to examine how RNAPII and other components of the transcription complex impact genome
291 organization at the TSS and TTS separately.

292 We note that our data represent averages within the cellular population, and it is unclear where
293 each component lies during the transcriptional process itself. In the future, fine mapping of nuclear
294 compartments in single cells will be needed to decipher these dynamics. Moreover, we note that our
295 study did not attempt to study subcompartments or models with >=3 distinct compartment states^{2,37},
296 which will be an important topic for future analyses.

297 Our ultra-deep Hi-C map also helped identify interesting properties of chromatin loops. In
298 particular, we observe that CTCF-mediated loops are highly diffuse, more so than would be predicted
299 based on polymer behavior alone (Fig. 5). Interestingly, this diffusivity is observed for loops that form by
300 extrusion, such as loops in human^{2,24-27} and *C. elegans*^{20,22,23}, but is not observed for loops that are
301 believed to form by compartmentalization, such as the numerous *Pc*-associated loops observed in
302 *Drosophila*^{14,21,29,30}. Intriguingly, variations in diffusivity between different loops could explain
303 differences in domains signal (See Supplemental Discussion, Fig. S5).

304 *In vitro* studies have found that large chromatin complexes can impede looping factors^{38,39}, and
305 cohesin was shown to build up near transcriptionally active regions⁴⁰. Yet studies have also reported
306 independence of CTCF loops and transcription^{36,41,42}, bringing the relationship between transcription and
307 CTCF looping in question. Recently, it was shown that CTCF RNA-binding domains, ZF1 and ZF10, are
308 important for looping³². Our finding that loop-decay is altered in CTCF RNA-binding mutants supports
309 the argument that transcription can impact fine-scale chromatin organization in mammals, as does the
310 correlation between TTS compartmental domains and elongation status.

311 Our POSSUMM method, a novel numerical linear algebra algorithm for calculating principal
312 eigenvectors, is now available as part of the Juicer pipeline for Hi-C analysis. Our power analyses suggest
313 that fine mapping of nuclear compartments at sub-kilobase resolution becomes possible for maps
314 containing 7 billion contacts or more (See Supplemental Discussion, Fig. S6&S7). As sequencing costs
315 continue to decline, we expect that fine mapping of nuclear compartments will become increasingly
316 common.

317

318 **Methods**

319 *Library Preparation, Initial Processing, and Quality Metrics*

320 Hi-C libraries were prepared according to the published *in-situ* method². The full map represents a
321 mixture of libraries prepared by digestion of various 4-cutter restriction enzymes, MboI, MseI, and NlaIII.
322 Reads were aligned to the hg19 genome, processed, Knight-Ruiz (KR) normalized using Juicer⁹.
323 Subsampled Hi-C maps were created by uniform random selection of read-pairs from the 33.3 billion Hi-
324 C dataset. We provide a script for subsampling Hi-C data at <https://github.com/JRowleyLab/HiCSampler>.

325 *Compartment Analysis*

326 Compartments were identified using the A/B eigenvector of the Hi-C matrix using POSSUM. POSSUMM
327 can be downloaded from: <https://github.com/aidenlab/EigenVector> and is also now implemented in the
328 ENCODE version of the Juicer pipeline: <https://github.com/ENCODE-DCC/hic-pipeline>.

329 **Introduction to PCA of Sparse, SUper Massive Matrices (POSSUM)**

330 We note that the so-called “A/B compartment eigenvector” is simply the eigenvector of A corresponding
331 to its largest eigenvalue, where X is given by the Hi-C contact matrix. This is equivalent to the first
332 principal component in Principal Component Analysis. We note that in our case, X is a large, sparse
333 matrix, containing millions of rows, millions of columns, and tens of billions of nonzero entries (dubbed
334 a “Sparse, SUper Massive Matrix”).

335 Suppose we seek to calculate the largest eigenpairs, λ_i, v_i of A in this case. Although X is sparse, we note
336 that both Y and A are dense matrices. Unfortunately, storing dense matrices with millions of rows and
337 columns in memory is impossible. Hence we cannot use any method for calculating the eigenvectors of
338 A that would require us to explicitly calculate either Y or A. Similarly, traditional sparse matrix methods
339 for eigendecomposition are not usable here, again because A - the correlation matrix we hope to
340 analyze - is a dense matrix.

341 Therefore, in order to calculate eigenvectors for A, we began by implementing a method that makes it
342 possible to calculate the matrix-vector product Av (where v is an arbitrary vector) using a sparse
343 representation of X, i.e., without explicitly computing either A or Y. See POSSUMM details below for a
344 more complete description.

345 Next, we note that there are many methods for calculating eigenvectors in which the input matrix only
346 appears via a matrix-vector product. These include the Power method, the Lanczos method, and their
347 many variants⁴³. Thus, in principle, any of these methods - for which there are many implementations in
348 Fortran, C, C++, Matlab, and R - can be combined with the sparse Av product calculation described
349 above in order to calculate eigenpairs of A. In practice, methods combining these two approaches are
350 not available.

351 To the best of our knowledge, the sole exception is a method in the R package *irlba*, which was released
352 while this study was being performed. The details of this method are unpublished, but the method itself
353 is available at <https://cran.r-project.org/web/packages/irlba/index.html>. However, *irlba* cannot handle
354 cases where X has more than roughly two billion nonzero entries, which is exceeded in the present case.
355 It also does not enable parallelization, which limits performance in highly demanding settings.

356 POSSUMM combines sparse Av product calculation with the power method, is extremely memory-
357 efficient, and enables parallelization via multi-threading.

358 **POSSUMM Details.**

359 To identify compartments from sparse Hi-C matrices, we began by excluding all rows and columns with 0
360 variance. Let X be a matrix with column vectors $X^{(1)}, \dots, X^{(n)}$. Let $Y^{(i)} = (X^{(i)} - c_i)/\sigma_i$ $1 \leq i \leq n$,
361 where c_i is the mean of X_i and σ_i is its standard deviation. Let $Y = (Y^{(1)}, \dots, Y^{(n)})$ be an $n \times n$ matrix with
362 column vectors. The correlation matrix of X is $A = Y^T Y$ where Y^T is transposed Y. Since A is symmetric
363 and positive semi-definite it has n real eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ and n eigenvectors.
364 v_1, \dots, v_n where $A v_i = \lambda_i v_i$.

365 These eigenvectors are a basis of R^n (i.e., a set of vectors which are independent and span the space) if
366 $\lambda_i \neq \lambda_j$ and $v_i \perp v_j$ (i.e., $v_i^T v_j = 0$). To compute v_1 using the power method (a.k.a power iterations),

367 suppose that $\lambda_1 > \lambda_2$ and let x_0 be any nonzero vector in R^n , we define the recursive relation:
368 $x_{k+1} = Ax_k = A^{k+1}x_0$. We can represent x_0 as $x_0 = a_1v_1 + \dots + a_nv_n$ and therefore $A^kx_0 =$
369 $a_1\lambda_1^k v_1 + \dots + a_n\lambda_n^k v_n = \lambda_1^k(a_1v_1 + a_2\left(\frac{\lambda_2}{\lambda_1}\right)^k v_2 + \dots + a_n\left(\frac{\lambda_n}{\lambda_1}\right)^k v_n)$. Once we have estimates of the
370 eigenvector and the two largest eigenvalues, we can estimate the error given that $\|v - v_1\| \leq$
371 $\frac{\|Av - \lambda_1 v\|}{\|\lambda_1 - \lambda_2\|}$. To find an estimate of λ_2 we know that $v_2 \perp v_1$ and $\|v_1\| = 1$. Let x_0 be any vector and let
372 $x_{k+1} = A(x_k - c_k v_1)$ where $c_k = v_1^T x_k$ (and then $(x_k - c_k v_1) \perp v_1$). If $\lambda^{(k)}_2 = \|Ax_k\|/\|x_k\|$ the
373 using the same argument as before $\lambda^{(k)}_2 \rightarrow \lambda_2$ as $k \rightarrow \infty$. This is true even if $\lambda_2 \approx \lambda_3$ (x_k may not
374 converge to v_2 , but λ_2 will converge to λ_2). In this way we have an estimate of λ_1 and λ_2 and may
375 estimate the error in v . Since $A = Y^T Y$, $Ax = Y^T(Yx) = ((Yx)^T Y)^T$, we do not need to compute A
376 (which has the complexity of $O(n^3)$). We used two matrix vector products at every iteration (which
377 have the complexity of the number of nonzero elements in Y which is at most $O(n)$). Moreover, if X is
378 large a naïve multiplication of a vector by a matrix can still take a long time and storing Y may require a
379 large amount of memory. For example, to store human chr1 at 1 kb resolution (where $n \approx 250000$) 500
380 GB of RAM would be required just to store Y . With sparse implementation we recall that $Y =$
381 $(Y^{(1)}, \dots, Y^{(n)})$ where $Y^{(i)} = \frac{x^{(i)} - c_i}{\sigma_i} = \frac{x^{(i)}}{\sigma_i} - \frac{c_i}{\sigma_i}$. While $\frac{x^{(i)}}{\sigma_i}$ is sparse, $\frac{x^{(i)}}{\sigma_i} - \frac{c_i}{\sigma_i}$ is not. In lieu of explicit
382 computation, let $1 = (1, 1, \dots, 1)^T$ then $Y^{(i)} = \frac{x^{(i)}}{\sigma_i} - \frac{c_i}{\sigma_i} 1 1^T$ and then $Y = XS - 1 \cdot 1 \cdot r^T$ where
383 $S = [1/\sigma_1 \dots 1/\sigma_n]_n$ and $r = [c_1/\sigma_1 \dots, c_n/\sigma_n]^T$ and then $Yx = (X \cdot S)x - 1 \cdot r^T \cdot x$. Let $Z = X \cdot S$.
384 Since $r^T x = \sum_{i=1}^n r_i x_i$, $Yx = Zx - (\sum_{i=1}^n x_i r_i) 1$. Since Z is as sparse as X we can do everything with
385 sparse matrices as $x^T Y = x^T Z - (x^T 1)r^T = x^T Z - (\sum_{i=1}^n x_i)r^T$. Projected time and memory usage
386 were calculated by fitting a power decay curve, R^2 of fit = 0.95 for time, and R^2 of fit = 0.98 for memory
387 usage.

388 After compartment calling, chromatin marks were profiled at features that overlap A or B compartments
389 by overlapping with ChIP-seq peaks and by using average signal profiles created by pyBigWig from the
390 deepTools package⁴⁴. ChIP-seq peaks and bigwig files were obtained from the ENCODE Roadmap
391 Epigenomics project⁴⁵. We filtered promoters with bivalent marks as active genes that had 2-fold higher
392 H3K27me3 or H3K9me3 signal compared to the average at promoters. Contiguous compartment domain
393 sizes were calculated by requiring at least two consecutive bins to have the same sign in the
394 eigenvector. To create profiles of A compartmental status along genes, we assigned genes to elongating,
395 mid, and paused. Elongation status was determined by RPKM GRO-seq signal within 250 bp of the TSS
396 compared to the gene body, excluding 500 bp from the TSS. Differences between Promoter – Gene Body
397 GRO-seq signal were ranked and placed into three equal categories considering only genes ≥ 20 kb in
398 size.

399 Loop Analysis

400 Loops were identified by HiCCUPS² or SIP²⁰ at multiple resolutions. For HiCCUPS, we used parameters –
401 m 2000 –r 500,1000,5000,10000 –f .05,.05.05.05. For SIP we used an FDR 0.05 at each resolution with
402 the parameters for resolutions of 500 bp; -d 15 –g 3.0; 1 kb: -d 17 –g 2.5; 5 kb: -d 6 –g 1.5; and 10 kb: -d
403 5 –g 1.3. Loops called by both methods were combined by placing all loops into 10 kb bins, and if
404 HiCCUPS and SIP called the same loop within the 10 kb bin, then only one instance of this loop was kept.
405 Loops in subsampled maps were overlapped with loops called in the full 20.3 billion map if the loop was
406 within +/- 25 kb of each other. Overlap of loops with CTCF was done using a published list of CTCF ChIP-
407 seq peaks and motifs². Central 1 kb bins were assigned to those where we could unambiguously assign a
408 CTCF ChIP-seq peak to a unique bin at motifs in convergent orientation. Only loops with unambiguous

409 CTCF assignment were used in decay analysis. Bullseye plots were created using SIPMeta²⁰ and the
410 decay was calculated as the average at each Manhattan distance (ring) moving away from the central
411 bin. These values were plotted as a ratio to the central bin's signal. The central bin of loops called at AUC
412 values were computed using Simpson's rule. Loops were placed into five equally sized categories
413 (quintiles) based on AUC values. AUC values between WT, ΔZF1, and ΔZF10 were normalized by the
414 diagonal to account for differences in the expected decay. The decay percentage rate of change listed in
415 the main text was calculated by averaging the number of kb between each 10% loss of signal.

416 Fit-Hi-C³¹ interactions were identified in 1 kb bin-pairs with an FDR 0.05. 3D loop models were created
417 with Pastis⁴⁶ using the raw Hi-C matrix. Models were visualized in ChimeraX⁴⁷.

418 Comparison with Other Datasets

419 Hi-C read-pairs from CTCF ΔZF1, ΔZF1, and wild-type were downloaded from GSE125595³² and
420 processed with juicer to the mm10 genome. Hi-C maps from the *D. melanogaster* dm6 genome and the
421 *C. elegans* ce10 genome were obtained from our previously published work^{20,21}. Hi-C maps used in our
422 metric comparison are listed in Tables S2 and S3.

423 Enhancers were downloaded from DENDb¹⁸ and active enhancers were defined as those that overlap
424 with H3K27ac ChIP-seq peaks in GM12878. Histone modification ChIP-seq data was obtained from the
425 ENCODE reference epigenome series (ENCSR977QPF) and RNAPII ChIP-seq peaks were combined from
426 RNAPII, RNAPIISer2ph, and RNAPIISer5ph (ENCSR447YYN and ENCSR000DZK)^{19,48}, with overlapping
427 peaks merged into a single peak. GRO-seq data from GM12878 was downloaded from GSM1480326⁴⁹,
428 and chromHMM states for GM12878 were downloaded from the Roadmap Epigenomics Project⁴⁵.

429

430 Data and Code Availability

431 Hi-C data can be downloaded from ENCODE Accession: ENCSXXXX. Our programs for subsampling,
432 noise estimation, and eigenvector calculation on sparse matrices can be downloaded from
433 <https://github.com/JRowleyLab/HiCSampler>, <https://github.com/JRowleyLab/HiCNoiseMeasurer>, and
434 <https://github.com/aidenlab/EigenVector>. These are open source and include source code as well as
435 implementations in python and C++.

436 References

- 437 1 Lieberman-Aiden, E. *et al.* Comprehensive Mapping of Long-Range Interactions Reveals Folding
438 Principles of the Human Genome. *Science* **326**, 289-293, doi:10.1126/science.1181369 (2009).
- 439 2 Rao, S. S. P. *et al.* A 3D map of the human genome at kilobase resolution reveals principles of
440 chromatin looping. *Cell* **159**, 1665-1680, doi:10.1016/j.cell.2014.11.021 (2014).
- 441 3 Belaghzal, H. *et al.* Liquid chromatin Hi-C characterizes compartment-dependent chromatin
442 interaction dynamics. *Nat Genet* **53**, 367-378, doi:10.1038/s41588-021-00784-4 (2021).
- 443 4 Falk, M. *et al.* Heterochromatin drives compartmentalization of inverted and conventional
444 nuclei. *Nature* **570**, 395-399, doi:10.1038/s41586-019-1275-3 (2019).
- 445 5 Erdel, F. & Rippe, K. Formation of Chromatin Subcompartments by Phase Separation. *Biophys J*
446 **114**, 2262-2270, doi:10.1016/j.bpj.2018.03.011 (2018).
- 447 6 Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. *Nat Rev
448 Genet* **19**, 789-800, doi:10.1038/s41576-018-0060-8 (2018).
- 449 7 Dekker, J. *et al.* The 4D nucleome project. *Nature* **549**, 219-226, doi:10.1038/nature23884
450 (2017).

451 8 Heinz, S. *et al.* Transcription Elongation Can Affect Genome 3D Structure. *Cell* **174**, 1522-1536
452 e1522, doi:10.1016/j.cell.2018.07.047 (2018).

453 9 Durand, N. C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C
454 Experiments. *Cell Systems* **3**, 95-98, doi:10.1016/j.cels.2016.07.002 (2016).

455 10 Abdennur, N. & Mirny, L. A. Cooler: scalable storage for Hi-C data and other genomically labeled
456 arrays. *Bioinformatics* **36**, 311-316, doi:10.1093/bioinformatics/btz540 (2020).

457 11 Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating
458 domains. *Sci Adv* **5**, eaaw1668, doi:10.1126/sciadv.aaw1668 (2019).

459 12 Sikorska, N. & Sexton, T. Defining Functionally Relevant Spatial Chromatin Domains: It is a TAD
460 Complicated. *J Mol Biol* **432**, 653-664, doi:10.1016/j.jmb.2019.12.006 (2020).

461 13 Ea, V., Baudement, M. O., Lesne, A. & Forne, T. Contribution of Topological Domains and Loop
462 Formation to 3D Chromatin Organization. *Genes (Basel)* **6**, 734-750, doi:10.3390/genes6030734
463 (2015).

464 14 Rowley, M. J. *et al.* Condensin II Counteracts Cohesin and RNA Polymerase II in the
465 Establishment of 3D Chromatin Organization. *Cell Rep* **26**, 2890-2903 e2893,
466 doi:10.1016/j.celrep.2019.01.116 (2019).

467 15 Rowley, M. J. *et al.* Evolutionarily Conserved Principles Predict 3D Chromatin Organization.
468 *Molecular Cell* **67**, 837-852, doi:10.1016/j.molcel.2017.07.022 (2017).

469 16 Dong, P. *et al.* 3D Chromatin Architecture of Large Plant Genomes Determined by Local A/B
470 Compartments. *Mol Plant* **10**, 1497-1509, doi:10.1016/j.molp.2017.11.005 (2017).

471 17 Rao, S. *et al.* Cohesin Loss Eliminates All Loop Domains. *Cell* **171**, 305-320, doi:10.1101/139782
472 (2017).

473 18 Ashoor, H., Kleftogiannis, D., Radovanovic, A. & Bajic, V. B. DENdb: database of integrated
474 human enhancers. *Database (Oxford)* **2015**, doi:10.1093/database/bav085 (2015).

475 19 Zhang, J. *et al.* An integrative ENCODE resource for cancer genomics. *Nat Commun* **11**, 3696,
476 doi:10.1038/s41467-020-14743-w (2020).

477 20 Rowley, M. J. *et al.* Analysis of Hi-C data using SIP effectively identifies loops in organisms from
478 C. elegans to mammals. *Genome Res* **30**, 447-458, doi:10.1101/gr.257832.119 (2020).

479 21 Cubeñas-Potts, C. *et al.* Different enhancer classes in Drosophila bind distinct architectural
480 proteins and mediate unique chromatin interactions and 3D architecture. *Nucleic Acids Research*
481 **45**, 1714-1730, doi:10.1093/nar/gkw1114 (2016).

482 22 Anderson, E. C. *et al.* X Chromosome Domain Architecture Regulates *Caenorhabditis elegans*
483 Lifespan but Not Dosage Compensation. *Dev Cell*, doi:10.1016/j.devcel.2019.08.004 (2019).

484 23 Jimenez, D. *et al.* Condensin DC spreads linearly and bidirectionally from recruitment sites to
485 create loop-anchored TADs in *C. elegans*. *BioRxiv* (2021).

486 24 Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. *Nat
487 Rev Mol Cell Biol*, doi:10.1038/s41580-021-00349-7 (2021).

488 25 Fudenberg, G. *et al.* Formation of Chromosomal Domains by Loop Extrusion. Report No.
489 biorxiv;024620v1, (2015).

490 26 Sanborn, A. L. *et al.* Chromatin extrusion explains key features of loop and domain formation in
491 wild-type and engineered genomes. *Proceedings of the National Academy of Sciences of the
492 United States of America*, doi:10.1073/pnas.1518552112 (2015).

493 27 Nichols, M. H. & Corces, V. G. A CTCF Code for 3D Genome Architecture. *Cell* **162**, 703-705,
494 doi:10.1016/j.cell.2015.07.053 (2015).

495 28 Gutierrez-Perez, I. *et al.* Ecdysone-induced 3D chromatin reorganization involves active
496 enhancers bound by Pipsqueak and Polycomb. *Cell Reports* (2019).

497 29 Eagen, K. P., Aiden, E. L. & Kornberg, R. D. Polycomb-mediated chromatin loops revealed by a
498 subkilobase-resolution chromatin interaction map. *Proceedings of the National Academy of
499 Sciences* **114**, 8764-8769, doi:10.1073/pnas.1701291114 (2017).

500 30 Ogiyama, Y., Schuettengruber, B., Papadopoulos, G. L., Chang, J. M. & Cavalli, G. Polycomb-
501 Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development.
502 *Mol Cell* **71**, 73-88, doi:10.1016/j.molcel.2018.05.032 (2018).

503 31 Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data reveals
504 regulatory chromatin contacts. *Genome Res* **24**, 999-1011, doi:10.1101/gr.160374.113 (2014).

505 32 Saldana-Meyer, R. *et al.* RNA Interactions Are Essential for CTCF-Mediated Genome
506 Organization. *Mol Cell* **76**, 412-422 e415, doi:10.1016/j.molcel.2019.08.015 (2019).

507 33 Vilarrasa-Blasi, R. *et al.* Dynamics of genome architecture and chromatin function during human
508 B cell differentiation and neoplastic transformation. *Nat Commun* **12**, 651, doi:10.1038/s41467-
509 020-20849-y (2021).

510 34 Lucic, B. *et al.* Spatially clustered loci with multiple enhancers are frequent targets of HIV-1
511 integration. *Nat Commun* **10**, 4059, doi:10.1038/s41467-019-12046-3 (2019).

512 35 Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N. & Mirny, L. A. Chromatin organization by
513 an interplay of loop extrusion and compartmental segregation. *Proc Natl Acad Sci U S A* **115**,
514 E6697-E6706, doi:10.1073/pnas.1717730115 (2018).

515 36 Jiang, Y. *et al.* Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and
516 Pol III. *Genome Biol* **21**, 158, doi:10.1186/s13059-020-02067-3 (2020).

517 37 Nichols, M. H. & Corces, V. G. Principles of 3D compartmentalization of the human genome. *Cell
518 Rep* **35**, 109330, doi:10.1016/j.celrep.2021.109330 (2021).

519 38 Stigler, J., Çamdere, G. Ö., Koshland, D. E. & Greene, E. C. Single-Molecule Imaging Reveals a
520 Collapsed Conformational State for DNA-Bound Cohesin. *Cell Reports*,
521 doi:10.1016/j.celrep.2016.04.003 (2016).

522 39 Davidson, I. F. *et al.* Rapid movement and transcriptional re-localization of human cohesin on
523 DNA. *The EMBO journal* **35**, 2671-2685, doi:10.15252/embj.201695402 (2016).

524 40 Busslinger, G. A. *et al.* Cohesin is positioned in mammalian genomes by transcription, CTCF and
525 Wapl. *Nature* **544**, 503-507, doi:10.1038/nature22063 (2017).

526 41 You, Q. *et al.* Direct DNA crosslinking with CAP-C uncovers transcription-dependent chromatin
527 organization at high resolution. *Nat Biotechnol*, doi:10.1038/s41587-020-0643-8 (2020).

528 42 Vian, L. *et al.* The Energetics and Physiological Impact of Cohesin Extrusion. *Cell* **175**, 292-294,
529 doi:10.1016/j.cell.2018.09.002 (2018).

530 43 Baglama, J. & Lothar, R. Augmented Implicitly Restarted Lanczos Bidiagonalization Methods.
531 *Siam J Sci Comput* **27**, 19-42 (2005).

532 44 Ramirez, F., Dundar, F., Diehl, S., Gruning, B. A. & Manke, T. deepTools: a flexible platform for
533 exploring deep-sequencing data. *Nucleic Acids Res* **42**, W187-191, doi:10.1093/nar/gku365
534 (2014).

535 45 Roadmap Epigenomics, C. *et al.* Integrative analysis of 111 reference human epigenomes.
536 *Nature* **518**, 317-330, doi:10.1038/nature14248 (2015).

537 46 Cauer, G., Gurkan, Y., Vert, J., Varoquaux, N. & Noble, W. S. Inferring diploid 3D chromatin
538 structures from Hi-C data. *BioRxiv* (2019).

539 47 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
540 *Protein Sci* **27**, 14-25, doi:10.1002/pro.3235 (2018).

541 48 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. *Nature*
542 **489**, 57-74, doi:10.1038/nature11247 (2012).

543 49 Core, L. J. *et al.* Analysis of nascent RNA identifies a unified architecture of initiation regions at
544 mammalian promoters and enhancers. *Nat Genet* **46**, 1311-1320, doi:10.1038/ng.3142 (2014).

545

546 **Acknowledgements**

547 We acknowledge additional members of the ENCODE consortiums Nuclear Architecture Working Group
548 for thought-provoking discussions. Research reported in this publication was supported by a Cornelia de
549 Lange Syndrome Foundation grant and the National Institutes of Health (NIH) under Award Numbers
550 T32-GM067553, R35-GM139408, R35-GM128645, R01-MH115957, and U24-HG009446. E.L.A. was
551 supported by the Welch Foundation (Q-1866), a McNair Medical Institute Scholar Award, an NIH
552 Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375), a US-Israel Binational Science
553 Foundation Award (2019276), the Behavioral Plasticity Research Institute (NSF DBI-2021795), NSF
554 Physics Frontiers Center Award (NSF PHY-2019745), and an NIH CEGS (RM1HG011016-01A1). M.J.R. was
555 supported by the NIH National Institute of General Medical Sciences (NIGMS) Pathway to Independence
556 award R00-GM127671. The content is solely the responsibility of the authors and does not necessarily
557 represent the official views of the NIH.

558 **Author Contributions**

559 H.G prepared Hi-C libraries for sequencing with samples prepared by S.K., K.M., M.E.T., and J.S.S. H.G.,
560 H.H., Y.E., A. Krishna, A. Kalluchi, M.P., S.S.P.R., O.D., D.U., M.H.N., and E.D. contributed ideas and in
561 performing various quality metrics. M.J. and G.C. created 3D loop models. M.O. created POSSUM.
562 D.H.P., V.G.C., W.S.N., E.L.A., and M.J.R. supervised the work and wrote the manuscript. All other analyses
563 were performed by M.J.R.

564 **Ethics Declarations**

565 We declare that the authors have no competing interests in this work.

566

567 **Figure Legends**

568 **Figure 1.** By combining ultra-deep Hi-C and POSSUM, we generated a fine map of nuclear
569 compartmentalization achieving 500bp resolution.

570 A) Schematic representing the total mapped read-pairs in the current study compared to earlier
571 published Hi-C studies.

572 B) Example locus showing Hi-C signal in 500 bp bins in our full map with 20.3 billion intrachromosomal
573 read-pairs (left) and when read-pairs are subsampled to 1 billion (right).

574 C) Example of compartment interactions in a Hi-C map identified by the eigenvector in 500 bp bins
575 (bottom track). Black track displays transcription measured by GRO-seq. Black square represents the
576 region shown in Fig. 1D.

577 D) Zoomed in view of a compartment domain.

578 E) Overview of the power method and POSSUM for calculating the eigenvector. See Methods for details.

579

580 **Figure 2.** Nearly all active TSSs and Enhancers localize to kilobase-scale A compartments
581 A) Cumulative fraction of compartment domain sizes when identified at 500 bp resolution.
582 B) Percentage of active gene promoters, proximal enhancers, and distal enhancers assigned to A (green)
583 or B (purple) compartment domains when identified by the 500 bp compartment eigenvector.
584 C) Example of small compartment domains only identifiable at high-resolution (red asterisks). Log
585 transformed and distance normalized Hi-C map is shown alongside the eigenvector tracks at various bin
586 sizes.
587 D) Examples of active enhancers denoted by H3K27ac and H3K4me1 signal localizing to the A
588 compartment and surrounded by the B compartment.
589 E) Examples of active promoters denoted by GRO-seq signal localizing to the A compartment and
590 surrounded by the B compartment.

591
592 **Figure 3.** Many genes exhibit discordant compartmentalization.
593 A-B) Examples of genes of various sizes where the TSS is in the A compartment while the TTS is in the B
594 compartment. GRO-seq signal is shown as an indicator of the gene's transcription status.
595 C) Scaled average profiles of the A compartment signal (positive eigenvector) relative to the TSS for
596 short (blue), mid-sized (gold), large (pink), and randomly selected (black) genes.
597 D) Percentage of TTSs that localize to the B compartment for genes of various sizes (left).
598 E) ChIP-seq signal at the TTS of discordant A/B genes vs. concordant A/A genes. Genes are sorted by the
599 TTS compartmental signal.
600 F) Scaled average profiles of the A compartment signal (positive eigenvector) relative to the TSS for
601 elongating (blue), mid (red), paused (black), or randomly selected (grey) genes.
602 G) Percentage of TTSs that localize to the B compartment for paused, mid, or elongating genes.
603 H) Top: Simple diagram of A compartment signal relative to gene size. Bottom: Diagram of TSS and TTS
604 localization to the A compartment depending on gene size and elongation status.

605
606 **Figure 4.** CTCF loop-decay enhances proximal interactions and is dependent on RNA-binding domains.
607 A) Example of broad signal enrichment near CTCF loops when binned at 1 kb.
608 B) Average signal at CTCF loops when binned at 10, 5, or 1 kb, centered on convergent CTCF anchors.
609 C) Average Hi-C signal in 1 kb bins at each radial distance away from the CTCF loop anchors (rainbow).
610 Average signal of the diagonal decay is shown for reference (grey) to estimate interactions due to
611 polymeric distance. AUC=area under the curve.
612 D) Example of punctate signal enrichment at P_c loops in *D. melanogaster* when binned at 1 kb.

613 E) Average signal at *D. melanogaster* Pc loops when binned at 10, 5, or 1 kb.

614 F) Average Hi-C signal in 1 kb bins at each radial distance away from human CTCF loop anchors (blue) vs.
615 *D. melanogaster* Pc loops (orange), and *C. elegans* X-chromosome loops (green). Average signal at the *C.*
616 *elegans* Hi-C diagonal is shown for reference (grey). AUC=area under the curve.

617 G) Enrichment of Fit-Hi-C enhancer-promoter interactions within 100 kb of loops inside the loop (blue)
618 or crossing over loop boundaries (green). Values are shown as enrichment vs random regions of equal
619 size and number as loops.

620 H) Diagram of how CTCF loops can shorten distances between enhancers (orange) and promoters (blue)
621 even when both are located outside of the loop.

622 I) Average GRO-seq signal at CTCF loop anchors and neighboring loci for loops divided into 5 distinct
623 decay categories.

624 J) Average Hi-C signal in WT (left), Δ ZF1 (middle), or Δ ZF10 (right) CTCF mutants at CTCF loops. AUC=area
625 under the curve

626

627 **Figure 5** Sub-genic compartmentalization and diffuse CTCF looping organize the human genome.

628 Diagram depicting localization of active enhancers and TSSs to the A compartment, while TTSs are
629 oriented to the B compartment dependent on transcription elongation status. This sub-genic and precise
630 enhancer compartmentalization combines with diffuse CTCF loops to mediate genome organization.

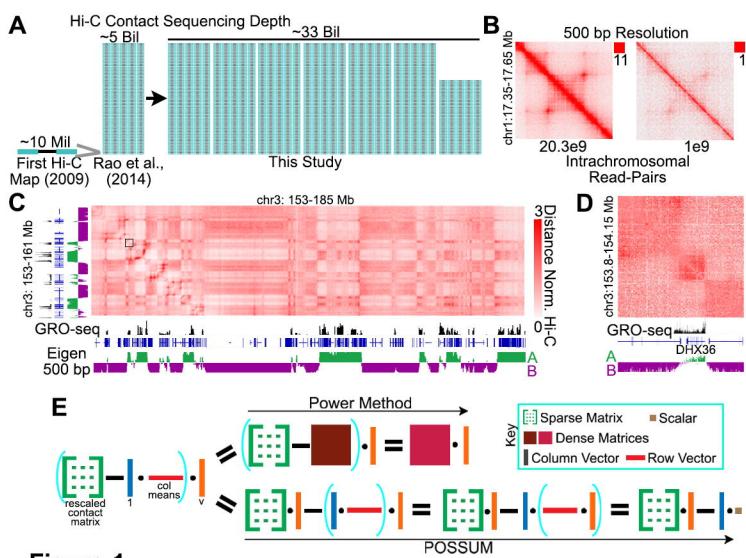


Figure 1

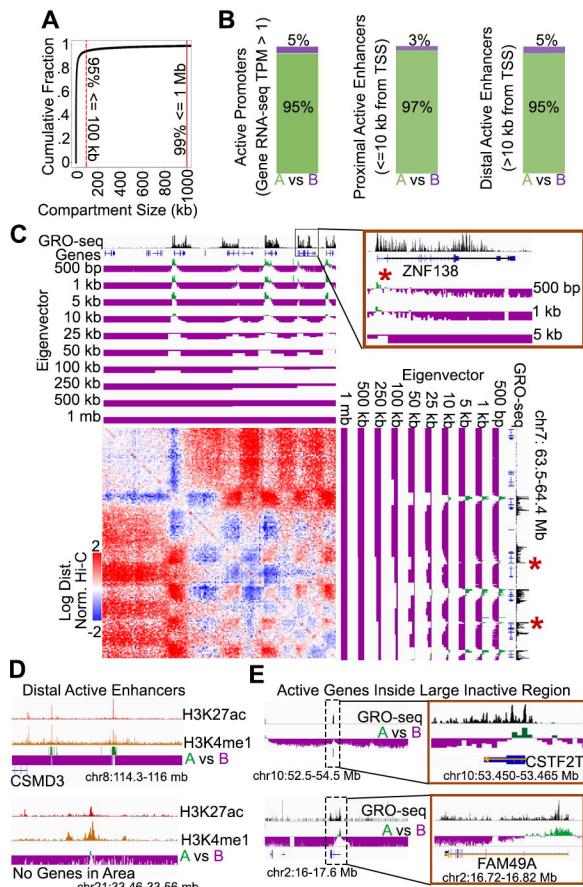


Figure 2

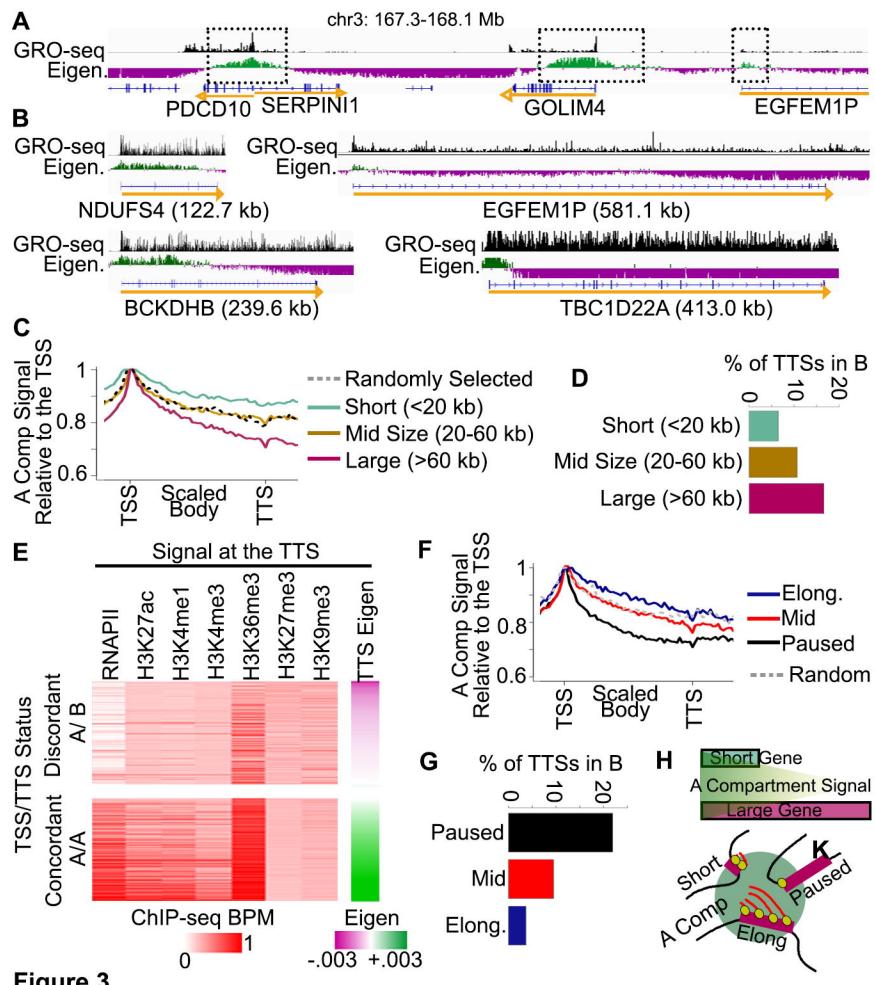


Figure 3

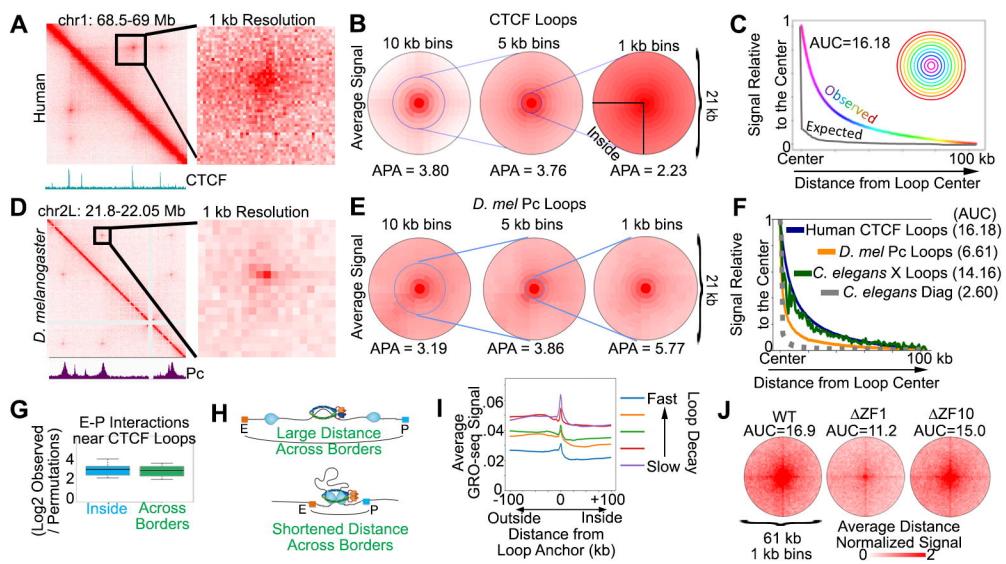


Figure 4

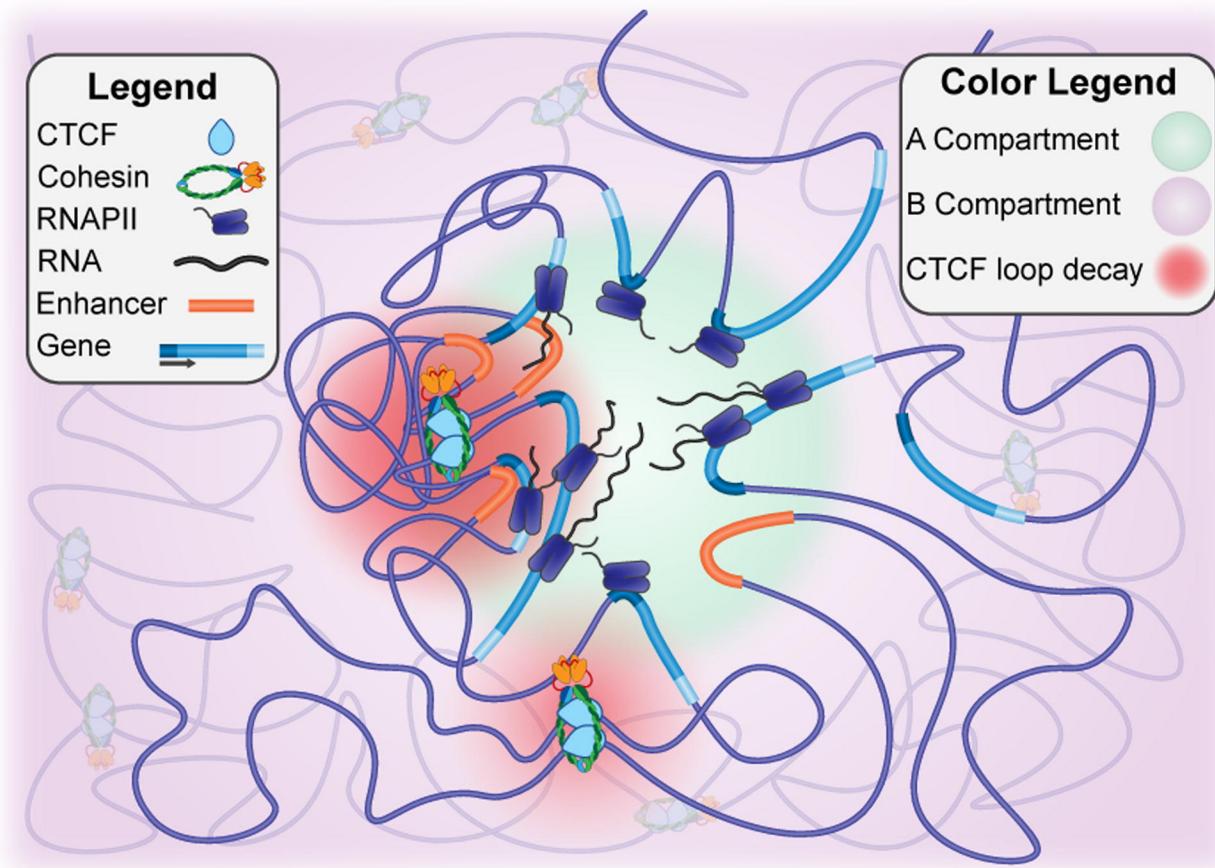


Figure 5