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Abstract

Alternative splicing is a core biological process that enables profound and essential diversification of gene
function. Short-read RNA sequencing approaches fail to resolve RNA isoforms and therefore primarily enable
gene expression measurements - an isoform unaware representation of the transcriptome. Conversely, full-length
RNA sequencing using long-read technologies are able to capture complete transcript isoforms, but their utility
is deeply constrained due to throughput limitations. Here, we introduce MAS-ISO-seq, a technique for
programmably concatenating cDNAs into single molecules optimal for long-read sequencing, boosting the
throughput >15 fold to nearly 40 million cDNA reads per run on the Sequel Ile sequencer. We validated
unambiguous isoform assignment with MAS-ISO-seq using a synthetic RNA isoform library and applied this
approach to single-cell RNA sequencing of tumor-infiltrating T cells. Results demonstrated a >30 fold boosted
discovery of differentially spliced genes and robust cell clustering, as well as canonical PTPRC splicing patterns
across T cell subpopulations and the concerted expression of the associated hnRNPLL splicing factor. Methods
such as MAS-ISO-seq will drive discovery of novel isoforms and the transition from gene expression to transcript
isoform expression analyses.

Main

While RNA sequencing has dramatically accelerated our understanding of biology, accurate quantification and
discovery of RNA isoforms, especially at single-cell resolution, remains a steep challenge!. Alternative splicing
is a core regulatory process that modulates the structure, expression, and localization of proteins through
differential exon and/or UTR splicing during transcript maturation in eukaryotes. Beyond being an integral
component of cellular/organismal development and homeostatic maintenance, alternative splicing is implicated
in a wide range of pathologies with hallmark isoforms being linked to cardiovascular, neurological, and
immunological diseases>*. Additionally, mutated and/or dysregulated splicing factors make up a major class of
phenotypic alterations associated with tumor progression and therapeutic resistance?.

High-throughput full-length RNA isoform identification and quantification remain elusive goals for single-cell
and bulk studies as the necessary read lengths (>5 kb) and depths (>2x107 reads) are not easily attainable by
existing sequencing platforms (Supplementary Fig. 1). For example, short-read sequencing platforms (e.g.
Illumina) achieve more than sufficient throughput (>1x10° reads) but are hindered by limited read lengths (50-
600 bp) which are inadequate to span the majority of human transcripts (~ 1.6 £ 1.1 kb, Supplementary Fig. 2).
As a result, individual short reads often fail to span successive splice sites, impairing efforts to correctly identify
alternative transcript isoforms®. A recently developed short-read sequencing approach, Smart-seq3, enhances
isoform detection by enabling single-molecule reconstruction via integration of reads from products with the same
5 unique molecular identifier (UMI)®. However, due to the 5> coverage bias of Smart-seq3, the vast majority of
transcript molecules are only partially reconstructed, resulting in poor isoform identification and discovery.
Conversely, the long-read platforms Oxford Nanopore (ONT) and Pacific Biosciences (PacBio) enable full-length
RNA isoform sequencing but suffer from comparatively low read throughput at high costs. Early limitations in
raw base calling accuracy on long-read platforms (error rates of 10-15%) have been significantly mitigated by
circularized consensus sequencing (CCS, also referred to as HiFi) and consensus generation strategies for
individual library molecules’®. On the PacBio Sequel Ile platform, consensus base quality reaches Phred-scale
quality of ~Q30 around 10 circular passes, with subsequent consensus reads providing marginal further gains. For
the current Sequel Ile instrument and SMRT Cell 8M chemistry, the optimal library size for reaching ~10 circular
passes is 15-20 kb. As the length register of transcripts is on average substantially shorter (100 bp-5 kb), CCS of
individually circularized cDNA molecules yields an excessive number of circular passes (50-60), effectively
wasting sequencing potential (Supplemental Fig. 3).

To maximize the sequencing throughput on the PacBio platform, we developed a method for the programmable
concatenation of DNA fragments into long composite sequence library molecules, Multiplexed Arrays
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Sequencing (MAS-seq, Fig. 1a). When MAS-seq is used for sequencing transcript isoforms, we term the approach
MAS-ISO-seq. The protocol begins by depleting TSO priming artifacts via streptavidin/biotin selection. Purified
cDNAs then undergo parallel PCRs, which serve to both increase cDNA yield and append reaction specific deoxy-
uracil (dU) containing barcode adapters. Through the use of dU digestion followed by barcode-directed ligation
of cDNAs, MAS-ISO-seq generates long concatenated cDNA arrays with a narrow length distribution that allows
for both accurate consensus sequencing and more optimal capacity utilization of the PacBio long-read platform.
To drive accurate and specific hybridization, the ligation barcode adapters are designed to be 15 bp in length with
each having a hamming distance of 11 from all other barcodes’. In combination with upstream depletion of TSO
priming artifacts via streptavidin/biotin selection, MAS-ISO-seq boosts the sequencing throughput to
approximately 40 million full-length transcripts per SMRT Cell 8M flow cell, a >15-fold increase over CCS
corrected read counts (Fig. 1b).

To demonstrate the throughput gain and utility of MAS-ISO-seq, we performed a 15-member cDNA ligation
from two 5’ single-cell gene expression cDNA libraries (10x Genomics) of tumor-infiltrating CD8+ T cells. As
expected, we observed a narrowly distributed ~15-fold increase in cDNA library size after ligation
(Supplementary Fig. 4). MAS-ISO-seq libraries underwent standard CCS library preparation and were sequenced
on the PacBio Sequel Ile. Sequenced libraries exhibited corrected read length and circular pass count distributions
more comparable to whole-genome CCS data than the standard isoform sequencing method, Iso-Seq, as expected
due to longer concatenated library lengths (Supplementary Fig. 5).
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Fig. 1: MAS-ISO-seq workflow and experimental validation using synthetic RNA isoforms. (a) Schematic of the MAS-
ISO-seq intramolecular cDNA multiplexing workflow. (b) Sankey diagram reporting MAS-ISO-seq run yield of sample 1
at various stages of processing. (¢) Observed ERCC concentrations as measured in MAS-ISO-seq and Smart-seq3
experiments vs. reference concentrations (R-squared > 0.95 for both). (d) Log-ratio of observed to reference concentrations
of short and long SIRV isoforms in SIRV-Set 4 vs. transcript length for Smart-seq3 and MAS-ISO-seq. (e) Isoform
identification confusion matrix for SIRV isoforms as measured by Smart-seq3 reconstructions and (f) MAS-ISO-seq reads.

The sequential pattern of distinct MAS-ISO-seq adapters provides landmarks for effective cDNA segmentation
as well as constraints for detecting malformed or otherwise defective sequences. MAS-ISO-seq adapters also
enable utilization of CCS uncorrected reads which are otherwise discarded. To exploit these signals, we developed
a composite profile hidden Markov model, Longbow, for the probabilistic annotation and optimal segmentation
of each MAS-ISO-seq read via maximum a posteriori state path. Longbow is robust to the presence of a high per-
base error rate (Methods). Across both single-cell MAS-ISO-seq libraries, 98.9-99.0% of CCS corrected reads
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and 43.0-50.3% of CCS uncorrected reads were found to segment consistently. To maximize precision,
segmentation results inconsistent with our expected array structure (i.e. off-subdiagonal elements of the matrices
in Supplementary Fig. 6a,b) were filtered out (Supplementary Fig. 6¢,d). A plurality of filtered reads (Sample 1:
31.14%, Sample 2: 38.18%) were found to contain fully-formed 15-element arrays. Arrays with fewer than 15
cDNAs were more prevalent in uncorrected reads than corrected (Supplementary Fig. 7,8). Nonetheless, the vast
majority of demultiplexed reads from these partial arrays post-filtering still contained consecutive adapter
sequences, a poly(A) tail, and had a high mapping quality to the genome (95.53%, Supplementary Fig. 7,8). After
final filtering and segmentation across both samples, we obtained ~22-29M CCS-corrected transcripts (a ~12-14
fold yield increase over the number of CCS corrected reads) and ~10-13M CCS-uncorrected transcripts (an
additional ~4-8 fold increase) for a total 16-22 fold increase as compared to standard CCS corrected reads (Fig.
1b, Supplementary Fig. 9).

To validate the ability of MAS-ISO-seq to faithfully capture full-length RNA isoforms, we performed full-length
RNA sequencing of the Lexogen SIRV-Set 4, a synthetic mixture of Spike-In RNA Variants (SIRVs) containing
69 RNA isoforms of varying lengths and equal molarity across 7 “genes”, 15 long 4-12kb SIRVs, and 92 ERCC
RNA standards with concentration spanning 6 orders of magnitude'. Smart-seq3 sequencing of the SIRV-Set 4
library was performed in parallel to compare short-read isoform reconstructions to our high-throughput long-read
sequencing approach. While quantification of ERCC standards was broadly similar overall between both
protocols (Fig. 1c), long isoforms showed markedly reduced length bias in MAS-ISO-seq and Iso-Seq vs. Smart-
seq3 (Fig. 1d, Supplementary Fig. 10). Smart-seq3 isoform reconstructions exhibited substantial ambiguity in
assigning reconstructed transcripts to a specific known isoform (~43% error rate) (Fig. 1e). In contrast, MAS-
ISO-seq allows direct identification of transcript isoforms without the need for in silico reconstruction, and hence
leads to virtually unambiguous isoform assignment (~0.4% error rate, Fig. 1f).

To characterize the performance of MAS-ISO-seq for single-cell RNA sequencing, we performed 10x Genomics
5’ single-cell gene expression on tumor-infiltrating CD8+ T cells. Using the standard 5’ single-cell gene
expression protocol, we generated both standard short-read and MAS-ISO-seq long-read libraries from the same
full-length cDNA library. After conventional QC filtering steps and removal of doublets and primary tumor cells
(Methods), we obtained 6,260 CD8+ T cells containing median 3,211 UMIs/cell (short read data) and 1,538
UMIs/cell (long read data). Sequencing saturation was higher for the short-read run, 3.71 reads/UMI (short) vs.
1.37 reads/UMI (long). Despite large discrepancies in sequencing depth between short and long-read approaches
and quantification methodologies (Methods), cell clustering and gene expression were highly concordant (Fig.
2a, adjusted Rand index = 0.78; Fig. 2b, concordant gene count saturation curves; Supplementary Fig. 11, R-
squared = 0.85). A common set of T cell transcriptional states ranging from stem cell-like to terminally
differentiated were observed in both datasets.

Leveraging the distinct splicing patterns of CD45 (PTPRC) over the course of T cell differentiation, we performed
orthogonal validations of CD45 isoform expression at the protein level using CITE-seq and compared them to the
mRNA levels measured with MAS-ISO-seq!!. CD45 isoform expression between these two modalities was highly
concordant (Fig. 2c). Notably, mRNA measurements were more granular in their ability to resolve the multiple
CD45 isoforms present (RO, RA, RAB, RB, RBC) as compared to the antibody-based CITE-seq approach. This
is due to the single epitope specificity of antibodies which do not enable discrimination of closely related
isoforms!2. For example, the CD45 RA antibody cannot distinguish between CD45 RA and RAB. Pseudotime
analysis revealed a continuum of T cell states leading from stem cell-like to activated to terminally differentiated.
Canonical CD45 isoform expression and its associated splicing factor, hnRNPLL!!, tracked clearly along this
differentiation trajectory (Fig. 2d-f).
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Fig. 2: Single-cell isoform-resolved sequencing of primary human CD8+ T cells with MAS-ISO-seq. (a) UMAP
embedding of single-cell gene expression of 6,260 CD8+ T cells from short or long-read analyses; the long-read UMAP is
annotated with the cell identities determined from the short-read data. (b) Scatter plot of unique gene or transcript counts in
cells vs. UMI counts for short-read (Illumina) and long-read (MAS-ISO-seq). (¢) CD45 (PTPRC) isoform analysis using
either CITE-seq or MAS-ISO-seq. (d) Force directed graph of CD8+ T cells with insets depicting pseudotime progression
and differential CD45 isoform expression along the pseudotime axis. (e) Levels of isoforms along pseudotime and in each
cluster. (f) Expression of hnRNPLL along the pseudotime progression; (g) Downsampling analysis of MAS-ISO-seq reads;
(top) evolution of UMAP embedding vs. depth; (middle) adjusted Rand index (ARI) between short-reads reference
annotations and downsampled long reads vs. depth; (bottom) number of statistically significant differentially spliced genes
vs. depth.

To quantify the impact of the sequencing depth gained by MAS-ISO-seq on cell typing and identification of
differential spliced genes, we performed an in silico downsampling analysis from a single MAS-ISO-seq run. We
processed each dataset identically using the same pipeline and computed the adjusted Rand index (ARI) between
the cell clustering of the subsampled long-read dataset and the full short-read dataset as reference. We also
determined the number of differentially spliced genes across the T cell subtypes for each dataset (Methods).
Compared to the read depth expected from an Iso-Seq run (1.6M full-length transcripts), the throughput gain
afforded by MAS-ISO-seq translates to 44% increase and saturation of ARI between short-read and long-read
single-cell clustering and remarkably, 34-fold gain in identifying differentially spliced genes (multiple hypothesis
testing correction with FDR < 0.05) (Fig. 2g; cluster-resolved results given in Supplementary Fig. 12). Notably,
a plurality of the differentially spliced (DS) genes were distinct from the set of differentially expressed (DE) genes
(Supplementary Fig. 13).

In summary, we detail and validate MAS-ISO-seq, a cDNA concatemerization method that boosts throughput of
the PacBio long-read sequencing platform >15-fold to approximately 40 million reads per run. Using synthetic
RNA isoforms as a ground truth library, we demonstrate that MAS-ISO-seq is far superior in confidently
identifying RNA isoforms as compared to short-read approaches. Further, we leveraged MAS-ISO-seq to perform
single-cell RNA isoform sequencing on human tumor-infiltrating CD8+ T cells. We validated our ability to
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accurately identify isoforms by resolving canonical CD45 isoform expression differences across the range of
observed cell states and orthogonal protein isoform-based measurements. Through downsampling analyses, we
demonstrate that the additional throughput afforded by MAS-ISO-seq enables robust cell clustering into known
T cell differentiation states and substantially boosts the identification of differentially spliced genes. A related
approach, HIT-scISOseq, leverages palindromic adapter sequences to drive ligation of an indeterminate number
of ¢cDNAs, enabling approximately 10 million transcript reads's. While producing four-fold lower yield as
compared to MAS-ISO-seq, HIT-scISOseq additionally lacks the sequential array structure that MAS-ISO-seq
exploits for accurate segmentation and identification of malformed arrays. Other concatenation approaches for
targeted DNA sequencing exist which use Gibson Assembly or Golden Gate Assembly for array formation. These
methods also demonstrate considerably lower throughput and lack the error robustness of MAS-seq arrays'*!>,

Challenges impacting the RNA isoform sequencing field as a whole include cDNA synthesis artifacts, incomplete
transcriptome references, and inaccurate transcriptome assembly software. We believe that the read throughput
afforded by approaches such as MAS-ISO-seq will lower barriers to data generation and facilitate solving these
related problems. The compatibility of MAS-ISO-seq with archived single-cell cDNA libraries from short-read
platforms extensively applied in cell atlasing studies is poised to immediately facilitate isoform discovery and
reference generation with cell type annotations at scale. Furthermore, MAS-ISO-seq will augment efforts related
to fusion identification, neoantigen discovery, and TCR/BCR repertoire sequencing. Given the modular and
scalable nature of the workflow, MAS-ISO-seq is positioned to co-evolve with long-read sequencing platforms,
enabling even greater throughput as read lengths, yield, and per-base accuracy increase.

Methods

Patients consent and sample collection

Patients CD8" T cells analyzed in this study were collected under the Dana-Farber/Harvard Cancer Center
Institutional Review Board (DF/HCC protocol 11-181), and provided written informed consent prior to tissue
collection.

Single-cell and SIRV ¢DNA library preparation

Sample dissociation and FACS Sorting of CD3"CD8" T cells: Using the human tumor dissociation kit
(Miltenyi Biotec; Cat# 130-095-929), freshly isolated tumors were digested to obtain a single cell suspension.
Tissue was placed into a 1.5mL Eppendorf tube containing 420uL of DMEM with 10% FCS, 42uL of enzyme
H, 21uL of enzyme R, and SpL enzyme A (provided with the kit). The tissue was minced using surgical scissors,
and an additional 512uL of DMEM with 10% FCS was added to the tube (total volume of 1ml). Next the tissue
was incubated for 15 min at 37°C, 350 rpm in a thermomixer (Eppendorf; F1.5). After incubation, the tissue was
further digested using a 1 ml syringe plunger over a 50um filter (Sysmex; Cat# 04-004-2327), making sure to
wash the filter with media. Using ACK buffer (Gibco; Cat# A1049201), RBC lysis was performed and the sample
was finally resuspended in DMEM with 10% FCS in order to count and determine the viability of the cells using
a manual hemocytometer (Bright-line; Cat# 1492). Cells were then washed twice with cold PBSx1 and the cells
were incubated with live/dead Zombie Violet Dye (Biolegend, 423114) for 15 min at RT as suggested by the
manufacturer. The cells were then washed and resuspended with 1X PBS containing 1.5% FCS for cell surface
labelling using a standard protocol for a 30 min at 4°C. A antibody panel was used to identify and sort the
CD3"CD8" T cell population: Human TrueStain FcX (Biolegend; Cat# 422302), PE anti-human CD45
(Biolegend; Cat# 304008), FITC anti-human CD3 (Biolegend; Cat# 317306), APC/Cyanine7 anti-human
CD235a (Biolegend; Cat# 349116), and APC anti-human CD8a (Biolegend; Cat# 300912). Sorting of single live
CD3"CD8+ T cells (gating on Zombie'®¥, hCD235a", hCD45", hCD3*, hCD8") was performed using a Sony
MAO900 cell sorter. Cells were sorted into a 15mL tube containing DMEM with 10% FCS. After sorting, tubes
with sorted cells were vortexed briefly, spun down at 1500rpm, 4°C for 5 minutes, resuspended, and counted for
yield.
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TotalSeq-C staining and Single-cell RNA sequencing procedure. Sorted CD3"CD8" T cells were washed and
resuspended with staining buffer (PBSx1 + FCS 2.5% + 2mM EDTA). Next TruStain FcX (FC blocker,
Biolegend; Cat# 422301) was added and the sample was incubated for 10 min at 4°C. After incubation with FcX
blocker, the cells were washed with staining buffer once and spun down at 1500rpm, 4°C for 5 minutes. The cells
were then incubated for 20 min at 4°C with the TotalSeq-C antibody mix: TotalSeq - C0048 anti-human CD45
Antibody (Biolegend; Cat# 368545), TotalSeq - C0103 anti-mouse/human CD45R/B220 (Biolegend; Cat#
103273), TotalSeq - C0087 anti-human CD45RO (Biolegend; Cat# 304259), and TotalSeq - C0063 anti-human
CD45RA (Biolegend; Cat# 304163). Before adding the surface antibody mix, equal volumes of each antibody
were combined and the mix was spun at 14,000rpm for Smin to remove aggregates. After staining the cells were
washed twice with staining buffer, and a final wash was completed in DMEM with 10% FCS before counting.
Single-cell RNA libraries were generated using the 10x Genomics Chromium Single Cell V(D)J Reagent Kit
using 5’ v1 chemistry with Feature Barcode technology for Cell Surface Protein (10x Genomics; Cat# 1000080).
After each step, cDNA generation, gene expression libraries, and cell surface protein libraries samples quality
was assessed using the Qubit dsDNA high sensitivity kit (Invitrogen; Cat# Q32854) and the high sensitivity BioA
DNA kit (Agilent; Cat# 5067-4626). Samples that passed quality control were sequenced on a NextSeq 500
sequencer (Illumina), using pair-end reads, with 26 reads for read 1 and 55 reads for read 2.

Multiplexed array assembly of cDNA libraries. cDNA libraries were amplified using the following reaction
conditions: 34uL of H20, 50uL of Kapa HiFi Uracil+ ReadyMix (2X) (Roche #7959079001), SuL of primer
AAO272 (10uM, IDT), SuL of primer AAO273 (10uM, IDT), and 6puL 10x 5° cDNA library (~3ng/uL) and the
following cycling conditions: 98 °C for 3 min, followed by 5 cycles of 98 °C for 20 s, 65 °C for 30 s and 72 °C for
8 min, followed by a final 72 °C extension for 10 min. Amplified libraries were purified using 0.7x SPRIselect
(Beckman Coulter B23318) cleanup and quantified using Qubit (Thermo #Q32851). Libraries were further purified
using 10pL (100pg) Dynabeads™ kilobaseBINDER™ (Thermo #60101) with final bead reconstitution in 40puL
TE (Thermo #AM9849) after binding/washing. After streptavidin purification, 2ul of USER® Enzyme (M5505S)
was added and incubated at 37 °C for 2 hours to uncouple the bound cDNAs from the beads. Following USER
digestion, the reaction was placed on a magnet for 5 minutes, separating the beads and supernatant containing the
cDNAs. The cDNA fraction was moved to a fresh tube and purified using 0.7x SPRIselect (Beckman Coulter
B23318) cleanup. After cDNA purification, the following PCR master mix was assembled: 580uL of H20, 750uL
of Kapa HiFi Uracil+ ReadyMix (2X) (Roche #7959079001), and 20uL 10x 5° ¢cDNA library (~6ng/uL). 90uLL
of the mastermix was distributed in 15 PCR tubes, each containing 10uL of SuM MAS-seq primer pair mix. The
15 reactions were then thermocycled with the following cycling conditions: 98 °C for 3 min, followed by 8 cycles
of 98 °C for 20's, 65 °C for 30 s and 72 °C for 8 min, followed by a final 72 °C extension for 10 min (optimal
cycling number was identified using scaled down qPCR reaction). Reactions were then pooled in a 5 ml tube and
purified using a 0.7x SPRIselect (Beckman Coulter B23318) cleanup and eluted in 450uL of TE. In a subsequent
reaction, 15uL of USER® Enzyme (M5505S) was added to 435uL of the pooled product and set to incubate at
37 °C for 2 hours. Following USER digestion, 15 pL HiFi Tag DNA Ligase (M0647S) and 51 pL of HiFi Tagq
DNA Ligase buffer was added to the reaction and incubated in a thermocycler at 42 °C for 2 hours. Following
ligation, the reaction was purified using a 0.7x AMPure PB Bead (Pacific Biosciences #100-265-90) cleanup and
eluted in 180uL of H20. Multiplexed array libraries were quantified using Qubit (Thermo #Q32851) and
Genomic DNA ScreenTape (Agilent #5067- 5365).

SIRV-Set 4 cDNA generation. SIRV-Set 4 (Lexogen #141.01) was thawed and aliquoted 1puL into each of 9
PCR tubes on ice. Following primary aliquoting, 2ul of Tris-EDTA pH7.0 was added to each tube and mixed.
SIRV stocks were then frozen at -80 °C. For first strand synthesis, the following primary master-mix was set up:
15.5uL of H20, 3.2uL of Polyethylene glycol 8,000 50% (w/v) (VWR #25322-68-3), 0.24uL Triton X-100 10%
solution (Fisher #9002-93-1), 0.32pL SUPERasesIn™ RNase Inhibitor (Thermo #AM2696), 1.6uL of ANTP mix
10mM (NEB #N0447S), 0.16uL OligodT primer 100uM (IDT) (SS3_OligodTVN for Smart-seq3 and
MAS OligodTVN for Iso-seq and MAS-seq) , 3uL. of SIRV-Set 4 aliquot. Additionally, the following RT master-
mix was assembled: 1.2uL of H20, 0.8uL of Tris-HCI pH 8.5 (1M), 0.96uL of NaCl (1M), 0.8uL of MgCI2

7


https://doi.org/10.1101/2021.10.01.462818
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.01.462818; this version posted October 1, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(100mM), 0.32uL. of GTP (100mM), 2.56uL of DTT (100mM), 0.4uL of SUPERase*In™ RNase Inhibitor
(Thermo #AM?2696), 0.64uL of TSO 100uM (IDT) (SS3_OligodTVN for Smart-seq3 and MAS OligodTVN for
Iso-seq and MAS-seq), 0.32uL of Maxima H-minus RT enzyme 200U/uL (Thermo #EP0751). Both primary and
RT master-mixes were added to the thermocycler with the following conditions: 42 °C for 90 min, followed by
10 cycles of 50 °C for 2 min, 42 °C for 2 min, followed by a final 85 °C 5 min.

Smart-seq3 of SIRV-Set 4. To amplify the cDNA, the cDNA generation reaction was added to straight into the
following PCR mix: 26.5uL of H20, 16puL of Kapa HiFi HotStart buffer (5X), 2.4uL of ANTP mix 10mM (NEB
#N0447S), 0.4uL of MgCI2 (100mM), 0.4uL of fwd primer 100uM (IDT), 0.8uL of rev_primer 10uM (IDT),
1.6uL of Kapa Hifi DNA polymerase (KK2103). The reaction was amplified using the following conditions:
98 °C for 3 min, followed by 13 cycles of 98 °C for 20 s, 65 °C for 30 s and 72 °C for 8 min, followed by a final
72 °C extension for 10 min. Amplified cDNA libraries were purified using 0.7x SPRIselect (Beckman Coulter
B23318) cleanup and quantified using Qubit (Thermo #Q32851). Libraries were normalized to 0.1ng/puL and
tagmented using the following reaction conditions: 7.56uL of H20, 9uL of Tagmentation buffer 4x (Tris-HCI pH
7.5 (40mM), MgCl12 (20mM), DMF (20%)), 1.44uL. Amplicon Tagmentation Mix (XYZ), 4uL of normalized
cDNA libraries. Tagmentation reaction was mixed, spun down, then added to a thermocycler at 55 °C for 10 min.
After tagmentation, 2pL of 2% SDS was immediately added and incubated for 5 min to halt the reaction. To the
tagmented cDNA reactions, 6pul. of nextera primer pair mixes (0.5uM) were added. Following addition of
primers, the following PCR was assembled: 25.38 pL of H20, 25.2uL of Phusion Buffer 5x (Thermo Scientific
#F530L), 2.7uL of ANTP mix 10mM (NEB #N0447S), 0.72uL of Phusion High-Fidelity DNA Polymerase 2
U/uL and added to the thermocycler with the following conditions: 72 °C for 3 min, 98 °C for 3 min, followed by
12ncycles of 98 °C for 10s, 55 °C for 30s and 72 °C for 30 s, followed by a final 72 °C extension for 5 min.
Amplified final libraries were purified using 0.7x SPRIselect (Beckman Coulter B23318) cleanup and quantified
using Qubit (Thermo #Q32851) and Agilent High Sensitivity DNA kit for BioAnalyzer (Agilent #5067-4626).
Libraries were sequenced on an Illumina NovaSeq 6000, using paired-end 150 read lengths.

Smart-seq3 processing workflow

Aligning and stitching UMI-containing reads. We process Smart-seq3 SIRV Illumina paired-end reads closely
following the procedure outlined in Ref. 6. We processed raw non-demultiplexed FASTQ files using zUMIs
v2.9.4g and STAR v2.5.4b in order to generate expression profiles for both the 5" UMI-containing and internal
reads. To extract and identify the UMI-containing reads in zUMIs, we specified find_pattern: ATTGCGCAATG
for the 5’ read together with base definition: cDNA (23-150), UMI (12-19) in the configuration YAML file and
collapsed UMIs within a Hamming distance of 1. Next, we stitched UMI-containing reads together using
stitcher.py'® starting from the <prefix> filtered.Aligned.GeneTagged.UBcorrected.sorted.bam output from
zUMIs. We inferred the transcript compatibility set for each 5" UMI-containing read from the CT tag in the
produced BAM file. Finally, we generated the transcript identification confusion matrix by iterating over all
stitched 5 reads, assuming a flat prior for both source and target transcripts, and accordingly dividing the
assignment probability weight equally to all compatible source and target transcripts.

Quantification of SIRV isoforms. We quantified the abundance of Smart-seq3 SIRV isoforms from both 5’
UMI-containing and internal reads. To this end, we ran salmon v1.5.1 in quantification mode with additional
arguments “--minAssignedFrags 1 -1 g” on the previously obtained
<prefix>.filtered.tagged. Aligned.toTranscriptome.out.bam transcriptome alignments from zUMIs. We read the
TPM normalized abundances from the salmon_quant/quant.sf output table.

MAS-seq processing workflow

Error correction. Error correction was performed on-board the PacBio Sequel Ile with the vendor’s ccs software
v5.0.07 and settings “--all --subread-fallback --num-threads 232 --streamed <movie_name>.consensusreadset.xml
--bam <movie name>.reads.bam”. With these settings, all reads from the instrument (including those failing ccs
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correction) are presented in a single BAM!” file for downstream analysis. Each read is affixed with an auxiliary
BAM tag “rq” indicating overall read quality ranging from rq=-1 for uncorrected reads, -1 <rq <0.99 for corrected

reads with predicted accuracy < Q20, and rq > 0.99 for corrected reads with predicted accuracy > Q20'%,

Annotation/filtration/segmentation/demultiplexing. We developed a composite hidden Markov model
(“Longbow”) to enable the per-read labeling of all subsequences of interest (annotation), allowing for insertions,
deletions, and mismatches in both low and high error rate data. Given a predefined array structure, we combined
several instances of two probabilistic models for pairwise sequence alignment: the Needleman-Wunsch and
random alignment models'®. Needleman-Wunsch model sections support annotation of sequences known a priori
(i.e. MAS-seq adapters; 10x Genomics single-cell 5’ and 3’ adapters; poly(A) tails). Random alignment model
sections support annotation of unknown interstitial sequences (i.e. cDNA sequences) and barcode identifiers. In
this formulation, a MAS-ISO-seq read is considered to be a mosaic of imperfect (but complete) copies of the
various known adapter sequences among which the unknown cDNA sequences of interest are present.

The state transition diagram and default values for transmission and emission probabilities (used for all MAS-
ISO-seq processing performed in this work) are provided in Supplementary Fig. 14. These defaults can optionally
be refined using Longbow’s train command, which will estimate the parameters of the model using Baum-Welch
learning.

Data processing proceeds as follows: annotations as described above are generated for both the forward and
reverse-complement orientations, retaining the result from the model with higher log-likelihood. Given the design
expectation that MAS-ISO-seq adapters should be found in sequence along the length of the read, we verify that
each read conforms to this expectation and filter out any read with mis-ordered MAS-ISO-seq adapters. We then
segment each read between MAS-ISO-seq adapters and 10x Genomics single-cell 5° adapter.

For multiplexed libraries (e.g. libraries with different array configurations and run on the same flow cell), the
demultiplexing workflow proceeds similarly to the procedure described above with one notable change:
annotations are generated for both the forward and reverse-complement read orientations and over each user-
specified array design. The annotations from the read orientation and array design that maximize the overall log-
likelihood are propagated to subsequent steps.

Cell Barcode (CBC) and UMI Annotation. We annotated segmented reads with CBC and UMIs by leveraging
the structure of the read library. Each read begins with a 12 base MAS-seq adapter, 22 bp forward adapter, a 16
bp cell barcode, then a 10 bp UMI. We aligned the forward adapter to the 200 bases on either end of each read
using an accelerated Smith-Waterman algorithm, SSW (v1.2.4)%, to determine a known position in the read, then
counted bases from the end of that alignment to annotate each read with the raw CBC and UMI. We also annotated
each read with the base qualities for the CBC (found using the same offsets). In the case of SIRV data, no CBC
was present in the library and therefore it was not annotated.

CBC Error Correction. To ensure single-cell data analysis could be performed accurately, we performed CBC
error correction by integrating evidence from multiple data sources according to the following procedure. We
first annotated each long read that passed Longbow filtering with a raw CBC. We further sequenced the T cell
samples on Illumina instruments and processed the data with Cell Ranger v3.1.0?!' to annotate each short read
with a cell barcode and the corresponding base qualities. For each read, including long CCS-corrected, long CCS-
uncorrected, and short (Illumina), we computed a barcode pseudocount (BPC) from the barcode sequence base
qualities as follows:

L

_BQ
BPC = BPCppy 1_[ (1 — 10710 )

=1
where BQ; is the Phred-scaled base quality of the barcode letter at position [, and L = 16 is the barcode length.
The prefactor BPCax = 100 is arbitrary and is for reducing quantization noise in rounding the aggregated
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pseudocounts to whole integers (see below). Intuitively, BPC is proportional to the probability for the observed
barcode sequence to coincide with the actual barcode sequence. BPC is small for low-quality barcode sequences,
e.g. CCS-uncorrected reads, and reaches ~ BPCix for high-confidence observations, e.g. [llumina reads or CCS-
corrected reads. We combined the pseudocounts from all available reads for each of the observed barcode
sequences, rounded the resulting counts to whole integers, and used Starcode v1.4 2020-11-022%22 to cluster the
cell barcodes using aggregated pseudocounts in place of a raw counts (starcode --print-clusters --quiet -1). Finally,
we used the starcode output to create a mapping from raw cell barcodes to corrected cell barcodes (i.e. cluster
centroids), and annotated each read in our long-read datasets with the corresponding corrected cell barcode.
Notably, error correction can be performed without a whitelist or additional Illumina sequencing (in which case,
the CBC from high-confidence CCS-corrected reads will drive the CBC error correction of noisy CCS-
uncorrected reads).

Quantification of SIRV isoforms. To quantify SIRV isoforms, we took reads (both CCS-corrected and CCS-
uncorrected) that had been filtered, annotated, and segmented by Longbow and annotated their UMIs. We then
removed the adapter sequences and poly-A tails from these reads. The resulting reads were aligned to the SIRV-
Set 4 transcriptome using minimap2 v2.17-r9412% with the HiFi read preset (minimap2 -ayYL --MD --eqx -x
asm20). We then took the primary alignments, removed any in which we could not detect a UMI, and annotated
each one with the contig on which they were aligned (in this case, a transcript). These UMI-containing primary
alignments were then processed using UMI-tools v1.1.1?* to group the detected UMIs and mark the molecules
with the same UMIs (umi_tools group --buffer-whole-contig --no-sort-output --per-gene --gene-tag XG --extract-
umi-method tag --umi-tag ZU --group-out=out.tsv --output-bam). Finally, we created a count matrix from the
resulting BAM file by tallying for each transcript and CBC how many unique UMI occurrences there were.

Quantification of 10x Genomics 5° CD8+ T cell isoform expression. To quantify T cell isoforms, we took
reads, both CCS-corrected and CCS-uncorrected, that had been filtered, annotated, and segmented by Longbow
and annotated the CBCs and UMIs contained in each. We corrected the CBC in each read and removed the
adapter sequences and poly-A tails. These resulting extracted reads were aligned to a version of the GRCh38
human reference genome with alternate contigs removed using minimap2 v2.17-r941 with the splicing preset
(minimap2 -ayYL --MD --eqx -x splice:hq). We then processed the resulting reads with StringTie2 v2.1.6% using
Gencode v37 as baseline transcript annotations to create new transcriptome annotations specific to each of our
samples (stringtie -Lv -G gencode.v37.primary assembly.annotation.gtf -o annotations.gtf -A gene abund.out).
Based on the resulting transcript annotations we created a new transcript reference FASTA file using gffread
v0.12.6 (gffread -w transcriptome.fa -g hg38 no_alt.fasta annotations.gtf). We then aligned the extracted reads
to the novel transcriptome reference using minimap2 v2.17-r941 (minimap2 -ayYL --MD --eqx -x asm20). We
then took the resulting primary alignments, removed any in which we could not detect a UMI, and annotated each
one with the contig on which they were aligned (in this case, a transcript). These UMI-containing primary
alignments were then processed using UMI-tools v1.1.1 to group the detected UMIs and mark the molecules with
the same UMIs (umi_tools group --buffer-whole-contig --no-sort-output --per-gene --gene-tag XG --extract-umi-
method tag --umi-tag ZU --group-out=out.tsv --output-bam). We then created a count matrix from the resulting
bam file by tallying for each transcript and CBC combination how many unique UMI occurrences there were.

Single cell analysis

Short-read 10x Genomics 5° gene expression and antibody capture preprocessing. We quantified the
produced 5’ RNA capture and TotalSeq-C antibody capture libraries using Cell Ranger v3.1.0 count workflow.
We imported the count data into AnnData format using scanpy v1.7.2 read 10x_h5 command. Our preliminary
investigations indicated that the Cell Ranger automatic cell identification algorithm had used an excessively
conservative cutoff, leading to the loss of 30%-50% viable non-empty droplets (primarily of stem-like memory
T cells origin, a cell type that exhibits relatively lower transcriptional complexity). As a countermeasure, we
loaded the raw count data from Cell Ranger count output raw feature bc matrix.h5 and kept every droplet
expressing > 500 unique genes and > 80% non-mitochondrial genes. We performed a preliminary round of
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clustering and differential gene expression analysis using scanpy standard workflow?%. We identified and removed
non-immune cell clusters of likely primary tumor origin. We additionally identified and removed doublets using
scrublet v0.2.3. The estimated doublet rate was 14%, which is the expected figure for loading ~10,000 cells.
Finally, we log-transformed the antibody capture counts and treated them as cell-level annotations for the rest of
the analysis.

Long-read single-cell MAS-ISO-seq isoform _expression preprocessing. As a first step, we converted the
isoform-level UMI count matrix produced by the MAS-ISO-seq workflow to an AnnData object. During this
conversion, additional metadata was added to the transcript counts. Many of the novel transcripts and genes
discovered by StringTie2 could be unambiguously assigned back to a GENCODE annotation. In particular, novel
genes were assigned to known genes in GENCODE v37 if the novel genes had transcripts overlapping exactly
one unique gene in GENCODE v37. Novel genes with transcripts overlapping multiple GENCODE genes were
marked as ambiguous and removed from the analysis. In addition, an interval list containing T cell receptor
genes?’ was cross-referenced and transcripts found overlapping these intervals were accordingly marked. To
harmonize the long- and short-read AnnData objects for joint analyses, we only kept the mutual cell barcodes
between the two datasets. Remarkably, we could identify > 98.8% of T cell barcodes identified from the short-
read dataset in the MAS-ISO-seq long-read dataset, indicating the high fidelity of our CBC error correction
algorithm.

Normalization, clustering, and embedding. We imported the harmonized short- and long-read AnnData objects
to seurat v4.0.3 using SeuratData v0.2.1 and SeuratDisk v0.0.0.9015 helper packages®®. We performed a negative
binomial (NB) variance-stabilizing transformation (VST) on each count dataset separately using sctransform
v0.3.2. We treated isoform counts similarly to gene counts, which is justified since isoform counts exhibit the
same class of technical noise and statistical dropout as gene counts. Given the much larger number of isoforms,
we found it necessary to increase the number of isoforms used for training the NB model from the default value
of 2,000 to 10,000. We did not notice any significant change in the downstream results by increasing this figure
any further. The Pearson residuals for all cells and genes were exported to AnnData. We performed clustering
and embedding separately for short- and long-read datasets using the same workflow as follows. We selected the
top 5,000 genes (or isoforms) sorted in the descending order of total Pearson residual as highly variable features
(HVF). The HVFs were z-scored independently to equalize the role of each gene (or isoform). We reduced the
feature set down to 30 using PCA and calculated the k=100 nearest neighbor graph for each cell in the PCA space
based on the Euclidean distance. The resultant neighbor graph was used for obtaining a 2D embedding using
UMAP, and clustering using the Leiden algorithm with resolution parameter set to 1.1. We performed differential
gene expression (DE) analysis on the short-read dataset based on #-test, which is an appropriate statistical test for
VST counts, as implemented in scanpy rank genes groups method. The DE genes were used for annotating the
clusters shown in Fig. 2 using known T cell subtype markers.

Diffusion pseudotime analysis. We performed diffusion pseudotime (DPT) analysis closely following the scanpy
hematopoiesis trajectory analysis workflow?® with one notable modification. We noticed that using scaled highly-
variable Pearson residuals in place of log-transformed counts resulted in significantly cleaner force-directed
graphs. The latter is expected given that Pearson residuals are more Gaussian-like compared to log-transformed
counts, and thus, better suited to the assumptions of the DPT model. Accordingly, we substituted the standard
preprocessing and normalization step with the sctransform workflow.

CD45 isoform annotation refinement. The GENCODE v37 contains a rather extensive set of isoform
annotations for CD45, including the RO, RABC, RB, RBC, and RAB. The annotations, however, are frequently
incomplete and miss a large portion of the coding sequences. For instance, out of the available annotations for
PTPRC (CD45), only two (ENST00000348564: CD45RO and ENST00000442510: CD45RABC) extend all the
way to the 3 UTR (Supplementary Fig. 15). Given the short-reads origin of currently available transcriptome
annotations, we expect this caveat to prevail among most other genes, as also indicated by other authors’®3!. In
particular, we noticed that the more complete and longer annotations, such as RO and RABC, tend to be preferred
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primary target by the aligner (minimap2) for the vast majority of reads, overriding the differential usage of short
but biologically important exons such as the A, B, and C. We found it advantageous to refine GENCODE
annotations using StringTie2, which resulted in the extension of several incomplete GENCODE annotations and
significantly improved the specificity of isoform assignments to different CD8+ T cell subtypes (Supplementary
Fig. 15). Ultimately, though, we found the refined annotations produced by StringTie2 to be still incomplete and
direct transcriptome alignment to be lacking in specificity. Inspired by the highly distinct structure of the CD45
sashimi plots for different T cell subtypes (Supplementary Fig. 15), we reasoned higher specificity could be
achieved by directly classifying genomics alignments. To this end, we mapped the reads to the genome (GRCh38,
alternate contigs removed) using minimap2 v2.17-r941 with the splicing preset (minimap2 -ayYL --MD --eqx -x
splice:hq), and performed CD45 isoform assignment using a decision tree based on the presence/absence of
landmark exons, e.g. A, B, and C in CD45 (Supplementary Fig. 16; note the increased specificity of isoform
assignment to different T cell subtypes). The results shown in Fig. 2b, ¢ are based on the decision tree
methodology. Leveraging the significantly increased read depth afforded by MAS-ISO-seq, we find improving
algorithms for de novo isoform identification and clustering, and benchmarking the available isoform
quantification pipelines (e.g. FLAIR?!, TALON?2, etc.), and producing more complete transcriptome annotation
references to be crucial areas of future method and resource development.

Identification of differentially spliced genes. We consider two types of differential splicing (DS) statistical tests
for every expressed gene. (global DS test) First, we wish to determine whether the isoforms of a given gene are
differentially expressed in different cell clusters. To this end, we produce a contingency table with isoforms and
cell clusters as rows and columns, and with the aggregated isoform expression counts as entries. A non-trivial
global DS pattern is equivalent to having a statistical dependence between the columns and rows of this
contingency table. The latter, however, can be canonically assessed using Fisher’s exact test generalized to
arbitrary m X n contingency tables with m,n > 2. Notably, we found the requirements for fast Chi-squared
asymptotic approximation to be out of reach for the majority of cases. Therefore, we use the fisher.test as
implemented in R v4.1.1 to perform the test using 1e6 permutations. (cluster-resolved DS test) We additionally
perform a cluster-resolved DS test for every gene, whereby we wish to know whether a gene exhibits differential
isoform usage in each of the clusters vs. the rest. Like before, we form a contingency table with two columns
signifying the cluster of interest and the rest, isoforms in rows, and aggregated isoform expression counts as
entries. We similarly obtain a p-value by performing a permutation-based Fisher’s test for every gene and every
cluster. Finally, for both tests, we treat the obtained p-values as a collection of independent hypotheses and adjust
the p-values for false discovery rate (FDR) at level @ = 0.05 using the Benjamini-Hochberg step-up procedure.

Table of MAS-seq barcode adapters

MAS-seq Array Design (position) | Adapter label Adapter sequence
MAS-15 (1) A AGCTTACTTGTGAAGA
MAS-15 (2) B ACTTGTAAGCTGTCTA
MAS-15 (3) C ACTCTGTCAGGTCCGA
MAS-15 (4) D ACCTCCTCCTCCAGAA
MAS-15 (5) E AACCGGACACACTTAG
MAS-15 (6) F AGAGTCCAATTCGCAG
MAS-15 (7) G AATCAAGGCTTAACGG
MAS-15 (8) H ATGTTGAATCCTAGCG
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MAS-15 (9) I AGTGCGTTGCGAATTG
MAS-15 (10) J AATTGCGTAGTTGGCC
MAS-15 (11) K ACACTTGGTCGCAATC
MAS-15 (12) L AGTAAGCCTTCGTGTC
MAS-15 (13) M ACCTAGATCAGAGCCT
MAS-15 (14) N AGGTATGCCGGTTAAG
MAS-15 (15) O AAGTCACCGGCACCTT
MAS-15 (16) P ATGAAGTGGCTCGAGA

Table of MAS-seq primers

Name Sequence

AAQO272 CTACACGACGCTCTTCCGAT*C*T

AAO273 /5Biosg/lUAUAAGCAGTGGTATCAACGCAG*A*G

A-Fwd 5' 10x AGCTTACTTGTGAAGATCTACACGACGCTCTTCCGATCT
B-Fwd_5' 10x ACTTGTAAGCUGTCTAUCTACACGACGCTCTTCCGATCT
C-Fwd _5' 10x ACTCTGUCAGGTCCGAUCTACACGACGCTCTTCCGATCT
D-Fwd 5' 10x ACCTCCTCCUCCAGAAUCTACACGACGCTCTTCCGATCT
E-Fwd 5' 10x AACCGGACACACUTAGUCTACACGACGCTCTTCCGATCT
F-Fwd 5' 10x AGAGTCCAAUTCGCAGUCTACACGACGCTCTTCCGATCT
G-Fwd 5' 10x AATCAAGGCUTAACGGUCTACACGACGCTCTTCCGATCT
H-Fwd_5' 10x ATGTTGAAUCCTAGCGUCTACACGACGCTCTTCCGATCT
I-Fwd 5' 10x AGTGCGTUGCGAATTGUCTACACGACGCTCTTCCGATCT
J-Fwd 5' 10x AATTGCGUAGTTGGCCUCTACACGACGCTCTTCCGATCT
K-Fwd 5' 10x ACACTTGGUCGCAATCUCTACACGACGCTCTTCCGATCT
L-Fwd 5' 10x AGTAAGCCUTCGTGTCUCTACACGACGCTCTTCCGATCT
M-Fwd 5' 10x | ACCTAGAUCAGAGCCTUCTACACGACGCTCTTCCGATCT
N-Fwd 5' 10x AGGTAUGCCGGUTAAGUCTACACGACGCTCTTCCGATCT
O-Fwd 5' 10x AAGUCACCGGCACCUTUCTACACGACGCTCTTCCGATCT
B-Rev 5' 10x ATAGACAGCUTACAAGUAAGCAGTGGTATCAACGCAGAG
C-Rev_5' 10x ATCGGACCUGACAGAGUAAGCAGTGGTATCAACGCAGAG
D-Rev_5' 10x ATTCUGGAGGAGGAGGUAAGCAGTGGTATCAACGCAGAG
E-Rev_5' 10x ACTAAGTGUGTCCGGTUAAGCAGTGGTATCAACGCAGAG
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F-Rev_5' 10x ACTGCGAAUTGGACTCUAAGCAGTGGTATCAACGCAGAG
G-Rev_5' 10x ACCGTUAAGCCTTGATUAAGCAGTGGTATCAACGCAGAG

H-Rev_5' 10x ACGCTAGGAUTCAACAUAAGCAGTGGTATCAACGCAGAG
[-Rev_5' 10x ACAATUCGCAACGCACUAAGCAGTGGTATCAACGCAGAG
J-Rev_5' 10x AGGCCAACUACGCAATUAAGCAGTGGTATCAACGCAGAG
K-Rev_5' 10x AGATUGCGACCAAGTGUAAGCAGTGGTATCAACGCAGAG
L-Rev 5' 10x AGACACGAAGGCUTACUAAGCAGTGGTATCAACGCAGAG
M-Rev_5' 10x AAGGCTCUGATCTAGGUAAGCAGTGGTATCAACGCAGAG
N-Rev_5' 10x ACTUAACCGGCAUACCUAAGCAGTGGTATCAACGCAGAG
O-Rev_5' 10x AAAGGUGCCGGUGACTUAAGCAGTGGTATCAACGCAGAG
P-Rev 5' 10x ATCTCGAGCCACTTCATAAGCAGTGGTATCAACGCAGAG

Data Availability

Links to the datasets used in this study can be found at https://github.com/broadinstitute/mas-seq-paper-data.

Code Availability

An online repository of code used in this study can be found at https://github.com/broadinstitute/longbow.
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