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Abstract 

Alternative splicing is a core biological process that enables profound and essential diversification of gene 

function. Short-read RNA sequencing approaches fail to resolve RNA isoforms and therefore primarily enable 

gene expression measurements - an isoform unaware representation of the transcriptome. Conversely, full-length 

RNA sequencing using long-read technologies are able to capture complete transcript isoforms, but their utility 

is deeply constrained due to throughput limitations.  Here, we introduce MAS-ISO-seq, a technique for 

programmably concatenating cDNAs into single molecules optimal for long-read sequencing, boosting the 

throughput >15 fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. We validated 

unambiguous isoform assignment with MAS-ISO-seq using a synthetic RNA isoform library and applied this 

approach to single-cell RNA sequencing of tumor-infiltrating T cells. Results demonstrated a >30 fold boosted 

discovery of differentially spliced genes and robust cell clustering, as well as canonical PTPRC splicing patterns 

across T cell subpopulations and the concerted expression of the associated hnRNPLL splicing factor. Methods 

such as MAS-ISO-seq will drive discovery of novel isoforms and the transition from gene expression to transcript 

isoform expression analyses. 

Main 

While RNA sequencing has dramatically accelerated our understanding of biology, accurate quantification and 

discovery of RNA isoforms, especially at single-cell resolution, remains a steep challenge1. Alternative splicing 

is a core regulatory process that modulates the structure, expression, and localization of proteins through 

differential exon and/or UTR splicing during transcript maturation in eukaryotes. Beyond being an integral 

component of cellular/organismal development and homeostatic maintenance, alternative splicing is implicated 

in a wide range of pathologies with hallmark isoforms being linked to cardiovascular, neurological, and 

immunological diseases2,3. Additionally, mutated and/or dysregulated splicing factors make up a major class of 

phenotypic alterations associated with tumor progression and therapeutic resistance4.  

 

High-throughput full-length RNA isoform identification and quantification remain elusive goals for single-cell 

and bulk studies as the necessary read lengths (>5 kb) and depths (>2x107 reads) are not easily attainable by 

existing sequencing platforms (Supplementary Fig. 1). For example, short-read sequencing platforms (e.g. 

Illumina) achieve more than sufficient throughput (>1x109 reads) but are hindered by limited read lengths (50-

600 bp) which are inadequate to span the majority of human transcripts (~ 1.6 ± 1.1 kb, Supplementary Fig. 2). 

As a result, individual short reads often fail to span successive splice sites, impairing efforts to correctly identify 

alternative transcript isoforms5. A recently developed short-read sequencing approach, Smart-seq3, enhances 

isoform detection by enabling single-molecule reconstruction via integration of reads from products with the same 

5’ unique molecular identifier (UMI)6. However, due to the 5’ coverage bias of Smart-seq3, the vast majority of 

transcript molecules are only partially reconstructed, resulting in poor isoform identification and discovery. 

Conversely, the long-read platforms Oxford Nanopore (ONT) and Pacific Biosciences (PacBio) enable full-length 

RNA isoform sequencing but suffer from comparatively low read throughput at high costs. Early limitations in 

raw base calling accuracy on long-read platforms (error rates of 10-15%) have been significantly mitigated by 

circularized consensus sequencing (CCS, also referred to as HiFi) and consensus generation strategies for 

individual library molecules7,8. On the PacBio Sequel IIe platform, consensus base quality reaches Phred-scale 

quality of ~Q30 around 10 circular passes, with subsequent consensus reads providing marginal further gains. For 

the current Sequel IIe instrument and SMRT Cell 8M chemistry, the optimal library size for reaching ~10 circular 

passes is 15-20 kb. As the length register of transcripts is on average substantially shorter (100 bp-5 kb), CCS of 

individually circularized cDNA molecules yields an excessive number of circular passes (50-60), effectively 

wasting sequencing potential (Supplemental Fig. 3). 

 

To maximize the sequencing throughput on the PacBio platform, we developed a method for the programmable 

concatenation of DNA fragments into long composite sequence library molecules, Multiplexed Arrays 
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Sequencing (MAS-seq, Fig. 1a). When MAS-seq is used for sequencing transcript isoforms, we term the approach 

MAS-ISO-seq. The protocol begins by depleting TSO priming artifacts via streptavidin/biotin selection. Purified 

cDNAs then undergo parallel PCRs, which serve to both increase cDNA yield and append reaction specific deoxy-

uracil (dU) containing barcode adapters. Through the use of dU digestion followed by barcode-directed ligation 

of cDNAs, MAS-ISO-seq generates long concatenated cDNA arrays with a narrow length distribution that allows 

for both accurate consensus sequencing and more optimal capacity utilization of the PacBio long-read platform. 

To drive accurate and specific hybridization, the ligation barcode adapters are designed to be 15 bp in length with 

each having a hamming distance of 11 from all other barcodes9. In combination with upstream depletion of TSO 

priming artifacts via streptavidin/biotin selection, MAS-ISO-seq boosts the sequencing throughput to 

approximately 40 million full-length transcripts per SMRT Cell 8M flow cell, a >15-fold increase over CCS 

corrected read counts (Fig. 1b). 

 

To demonstrate the throughput gain and utility of MAS-ISO-seq, we performed a 15-member cDNA ligation 

from two 5’ single-cell gene expression cDNA libraries (10x Genomics) of tumor-infiltrating CD8+ T cells. As 

expected, we observed a narrowly distributed ~15-fold increase in cDNA library size after ligation 

(Supplementary Fig. 4). MAS-ISO-seq libraries underwent standard CCS library preparation and were sequenced 

on the PacBio Sequel IIe. Sequenced libraries exhibited corrected read length and circular pass count distributions 

more comparable to whole-genome CCS data than the standard isoform sequencing method, Iso-Seq, as expected 

due to longer concatenated library lengths (Supplementary Fig. 5). 

 

 
 
Fig. 1: MAS-ISO-seq workflow and experimental validation using synthetic RNA isoforms. (a) Schematic of the MAS-

ISO-seq intramolecular cDNA multiplexing workflow. (b) Sankey diagram reporting MAS-ISO-seq run yield of sample 1 

at various stages of processing. (c) Observed ERCC concentrations as measured in MAS-ISO-seq and Smart-seq3 
experiments vs. reference concentrations (R-squared > 0.95 for both). (d) Log-ratio of observed to reference concentrations 

of short and long SIRV isoforms in SIRV-Set 4 vs. transcript length for Smart-seq3 and MAS-ISO-seq. (e) Isoform 

identification confusion matrix for SIRV isoforms as measured by Smart-seq3 reconstructions and (f) MAS-ISO-seq reads. 

 

The sequential pattern of distinct MAS-ISO-seq adapters provides landmarks for effective cDNA segmentation 

as well as constraints for detecting malformed or otherwise defective sequences. MAS-ISO-seq adapters also 

enable utilization of CCS uncorrected reads which are otherwise discarded. To exploit these signals, we developed 

a composite profile hidden Markov model, Longbow, for the probabilistic annotation and optimal segmentation 

of each MAS-ISO-seq read via maximum a posteriori state path. Longbow is robust to the presence of a high per-

base error rate (Methods). Across both single-cell MAS-ISO-seq libraries, 98.9-99.0% of CCS corrected reads 
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and 43.0-50.3% of CCS uncorrected reads were found to segment consistently. To maximize precision, 

segmentation results inconsistent with our expected array structure (i.e. off-subdiagonal elements of the matrices 

in Supplementary Fig. 6a,b) were filtered out (Supplementary Fig. 6c,d). A plurality of filtered reads (Sample 1: 

31.14%, Sample 2: 38.18%) were found to contain fully-formed 15-element arrays. Arrays with fewer than 15 

cDNAs were more prevalent in uncorrected reads than corrected (Supplementary Fig. 7,8). Nonetheless, the vast 

majority of demultiplexed reads from these partial arrays post-filtering still contained consecutive adapter 

sequences, a poly(A) tail, and had a high mapping quality to the genome (95.53%, Supplementary Fig. 7,8). After 

final filtering and segmentation across both samples, we obtained ~22-29M CCS-corrected transcripts (a ~12-14 

fold yield increase over the number of CCS corrected reads) and ~10-13M CCS-uncorrected transcripts (an 

additional ~4-8 fold increase) for a total 16-22 fold increase as compared to standard CCS corrected reads (Fig. 

1b, Supplementary Fig. 9).   

 

To validate the ability of MAS-ISO-seq to faithfully capture full-length RNA isoforms, we performed full-length 

RNA sequencing of the Lexogen SIRV-Set 4, a synthetic mixture of Spike-In RNA Variants (SIRVs) containing 

69 RNA isoforms of varying lengths and equal molarity across 7 “genes”, 15 long 4-12kb SIRVs, and 92 ERCC 

RNA standards with concentration spanning 6 orders of magnitude10. Smart-seq3 sequencing of the SIRV-Set 4 

library was performed in parallel to compare short-read isoform reconstructions to our high-throughput long-read 

sequencing approach. While quantification of ERCC standards was broadly similar overall between both 

protocols (Fig. 1c), long isoforms showed markedly reduced length bias in MAS-ISO-seq and Iso-Seq vs. Smart-

seq3 (Fig. 1d, Supplementary Fig. 10). Smart-seq3 isoform reconstructions exhibited substantial ambiguity in 

assigning reconstructed transcripts to a specific known isoform (~43% error rate) (Fig. 1e).  In contrast, MAS-

ISO-seq allows direct identification of transcript isoforms without the need for in silico reconstruction, and hence 

leads to virtually unambiguous isoform assignment (~0.4% error rate, Fig. 1f). 

 

To characterize the performance of MAS-ISO-seq for single-cell RNA sequencing, we performed 10x Genomics 

5’ single-cell gene expression on tumor-infiltrating CD8+ T cells. Using the standard 5’ single-cell gene 

expression protocol, we generated both standard short-read and MAS-ISO-seq long-read libraries from the same 

full-length cDNA library. After conventional QC filtering steps and removal of doublets and primary tumor cells 

(Methods), we obtained 6,260 CD8+ T cells containing median 3,211 UMIs/cell (short read data) and 1,538 

UMIs/cell (long read data). Sequencing saturation was higher for the short-read run, 3.71 reads/UMI (short) vs. 

1.37 reads/UMI (long). Despite large discrepancies in sequencing depth between short and long-read approaches 

and quantification methodologies (Methods), cell clustering and gene expression were highly concordant (Fig. 

2a, adjusted Rand index = 0.78; Fig. 2b, concordant gene count saturation curves; Supplementary Fig. 11, R-

squared = 0.85). A common set of T cell transcriptional states ranging from stem cell-like to terminally 

differentiated were observed in both datasets.  

 

Leveraging the distinct splicing patterns of CD45 (PTPRC) over the course of T cell differentiation, we performed 

orthogonal validations of CD45 isoform expression at the protein level using CITE-seq and compared them to the 

mRNA levels measured with MAS-ISO-seq11. CD45 isoform expression between these two modalities was highly 

concordant (Fig. 2c). Notably, mRNA measurements were more granular in their ability to resolve the multiple 

CD45 isoforms present (RO, RA, RAB, RB, RBC) as compared to the antibody-based CITE-seq approach. This 

is due to the single epitope specificity of antibodies which do not enable discrimination of closely related 

isoforms12. For example, the CD45 RA antibody cannot distinguish between CD45 RA and RAB. Pseudotime 

analysis revealed a continuum of T cell states leading from stem cell-like to activated to terminally differentiated. 

Canonical CD45 isoform expression and its associated splicing factor, hnRNPLL11, tracked clearly along this 

differentiation trajectory (Fig. 2d-f).  
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Fig. 2: Single-cell isoform-resolved sequencing of primary human CD8+ T cells with MAS-ISO-seq. (a) UMAP 

embedding of single-cell gene expression of 6,260 CD8+ T cells from short or long-read analyses; the long-read UMAP is 
annotated with the cell identities determined from the short-read data. (b) Scatter plot of unique gene or transcript counts in 

cells vs. UMI counts for short-read (Illumina) and long-read (MAS-ISO-seq). (c) CD45 (PTPRC) isoform analysis using 

either CITE-seq or MAS-ISO-seq.  (d) Force directed graph of CD8+ T cells with insets depicting pseudotime progression 

and differential CD45 isoform expression along the pseudotime axis. (e) Levels of isoforms along pseudotime and in each 
cluster. (f) Expression of hnRNPLL along the pseudotime progression; (g) Downsampling analysis of MAS-ISO-seq reads; 

(top) evolution of UMAP embedding vs. depth; (middle) adjusted Rand index (ARI) between short-reads reference 

annotations and downsampled long reads vs. depth; (bottom) number of statistically significant differentially spliced genes 
vs. depth.  

 

To quantify the impact of the sequencing depth gained by MAS-ISO-seq on cell typing and identification of 

differential spliced genes, we performed an in silico downsampling analysis from a single MAS-ISO-seq run. We 

processed each dataset identically using the same pipeline and computed the adjusted Rand index (ARI) between 

the cell clustering of the subsampled long-read dataset and the full short-read dataset as reference. We also 

determined the number of differentially spliced genes across the T cell subtypes for each dataset (Methods). 

Compared to the read depth expected from an Iso-Seq run (1.6M full-length transcripts), the throughput gain 

afforded by MAS-ISO-seq translates to 44% increase and saturation of ARI between short-read and long-read 

single-cell clustering and remarkably, 34-fold gain in identifying differentially spliced genes (multiple hypothesis 

testing correction with FDR < 0.05) (Fig. 2g; cluster-resolved results given in Supplementary Fig. 12). Notably, 

a plurality of the differentially spliced (DS) genes were distinct from the set of differentially expressed (DE) genes 

(Supplementary Fig. 13). 

 

In summary, we detail and validate MAS-ISO-seq, a cDNA concatemerization method that boosts throughput of 

the PacBio long-read sequencing platform >15-fold to approximately 40 million reads per run. Using synthetic 

RNA isoforms as a ground truth library, we demonstrate that MAS-ISO-seq is far superior in confidently 

identifying RNA isoforms as compared to short-read approaches. Further, we leveraged MAS-ISO-seq to perform 

single-cell RNA isoform sequencing on human tumor-infiltrating CD8+ T cells. We validated our ability to 
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accurately identify isoforms by resolving canonical CD45 isoform expression differences across the range of 

observed cell states and orthogonal protein isoform-based measurements. Through downsampling analyses, we 

demonstrate that the additional throughput afforded by MAS-ISO-seq enables robust cell clustering into known 

T cell differentiation states and substantially boosts the identification of differentially spliced genes. A related 

approach, HIT-scISOseq, leverages palindromic adapter sequences to drive ligation of an indeterminate number 

of cDNAs, enabling approximately 10 million transcript reads13. While producing four-fold lower yield as 

compared to MAS-ISO-seq, HIT-scISOseq additionally lacks the sequential array structure that MAS-ISO-seq 

exploits for accurate segmentation and identification of malformed arrays. Other concatenation approaches for 

targeted DNA sequencing exist which use Gibson Assembly or Golden Gate Assembly for array formation. These 

methods also demonstrate considerably lower throughput and lack the error robustness of MAS-seq arrays14,15.  

 

Challenges impacting the RNA isoform sequencing field as a whole include cDNA synthesis artifacts, incomplete 

transcriptome references, and inaccurate transcriptome assembly software. We believe that the read throughput 

afforded by approaches such as MAS-ISO-seq will lower barriers to data generation and facilitate solving these 

related problems. The compatibility of MAS-ISO-seq with archived single-cell cDNA libraries from short-read 

platforms extensively applied in cell atlasing studies is poised to immediately facilitate isoform discovery and 

reference generation with cell type annotations at scale. Furthermore, MAS-ISO-seq will augment efforts related 

to fusion identification, neoantigen discovery, and TCR/BCR repertoire sequencing. Given the modular and 

scalable nature of the workflow, MAS-ISO-seq is positioned to co-evolve with long-read sequencing platforms, 

enabling even greater throughput as read lengths, yield, and per-base accuracy increase. 

Methods 

Patients consent and sample collection 

Patients CD8+ T cells analyzed in this study were collected under the Dana-Farber/Harvard Cancer Center 

Institutional Review Board (DF/HCC protocol 11-181), and provided written informed consent prior to tissue 

collection.  

 

Single-cell and SIRV cDNA library preparation 

Sample dissociation and FACS Sorting of CD3+CD8+ T cells: Using the human tumor dissociation kit 

(Miltenyi Biotec; Cat# 130-095-929), freshly isolated tumors were digested to obtain a single cell suspension. 

Tissue was placed into a 1.5mL Eppendorf tube containing 420µL of DMEM with 10% FCS, 42µL of enzyme 

H, 21µL of enzyme R, and 5µL enzyme A (provided with the kit). The tissue was minced using surgical scissors, 

and an additional 512µL of DMEM with 10% FCS was added to the tube (total volume of 1ml). Next the tissue 

was incubated for 15 min at 37°C, 350 rpm in a thermomixer (Eppendorf; F1.5). After incubation, the tissue was 

further digested using a 1 ml syringe plunger over a 50µm filter (Sysmex; Cat# 04-004-2327), making sure to 

wash the filter with media. Using ACK buffer (Gibco; Cat# A1049201), RBC lysis was performed and the sample 

was finally resuspended in DMEM with 10% FCS in order to count and determine the viability of the cells using 

a manual hemocytometer (Bright-line; Cat# 1492). Cells were then washed twice with cold PBSx1 and the cells 

were incubated with live/dead Zombie Violet Dye (Biolegend, 423114) for 15 min at RT as suggested by the 

manufacturer. The cells were then washed and resuspended with 1X PBS containing 1.5% FCS for cell surface 

labelling using a standard protocol for a 30 min at 4°C. A antibody panel was used to identify and sort the 

CD3+CD8+ T cell population: Human TrueStain FcX (Biolegend; Cat# 422302), PE anti-human CD45 

(Biolegend; Cat# 304008), FITC anti-human CD3 (Biolegend; Cat# 317306), APC/Cyanine7 anti-human 

CD235a (Biolegend; Cat# 349116), and APC anti-human CD8a (Biolegend; Cat# 300912). Sorting of single live 

CD3+CD8+ T cells (gating on Zombielow, hCD235a-, hCD45+, hCD3+, hCD8+) was performed using a Sony 

MA900 cell sorter. Cells were sorted into a 15mL tube containing DMEM with 10% FCS. After sorting, tubes 

with sorted cells were vortexed briefly, spun down at 1500rpm, 4°C for 5 minutes, resuspended, and counted for 

yield. 
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TotalSeq-C staining and Single-cell RNA sequencing procedure. Sorted CD3+CD8+ T cells were washed and 

resuspended with staining buffer (PBSx1 + FCS 2.5% + 2mM EDTA). Next TruStain FcX (FC blocker, 

Biolegend; Cat# 422301) was added and the sample was incubated for 10 min at 4°C. After incubation with FcX 

blocker, the cells were washed with staining buffer once and spun down at 1500rpm, 4°C for 5 minutes. The cells 

were then incubated for 20 min at 4°C with the TotalSeq-C antibody mix: TotalSeq - C0048 anti-human CD45 

Antibody (Biolegend; Cat# 368545), TotalSeq - C0103 anti-mouse/human CD45R/B220 (Biolegend; Cat# 

103273), TotalSeq - C0087 anti-human CD45RO (Biolegend; Cat# 304259), and TotalSeq - C0063 anti-human 

CD45RA (Biolegend; Cat# 304163).  Before adding the surface antibody mix, equal volumes of each antibody 

were combined and the mix was spun at 14,000rpm for 5min to remove aggregates. After staining the cells were 

washed twice with staining buffer, and a final wash was completed in DMEM with 10% FCS before counting. 

Single-cell RNA libraries were generated using the 10x Genomics Chromium Single Cell V(D)J Reagent Kit 

using 5’ v1 chemistry with Feature Barcode technology for Cell Surface Protein (10x Genomics; Cat# 1000080). 

After each step, cDNA generation, gene expression libraries, and cell surface protein libraries samples quality 

was assessed using the Qubit dsDNA high sensitivity kit (Invitrogen; Cat# Q32854) and the high sensitivity BioA 

DNA kit (Agilent; Cat# 5067-4626). Samples that passed quality control were sequenced on a NextSeq 500 

sequencer (Illumina), using pair-end reads, with 26 reads for read 1 and 55 reads for read 2.  

 

Multiplexed array assembly of cDNA libraries. cDNA libraries were amplified using the following reaction 

conditions: 34µL of H2O, 50µL of Kapa HiFi Uracil+ ReadyMix (2X) (Roche #7959079001), 5µL of primer 

AAO272 (10µM, IDT), 5µL of primer AAO273 (10µM, IDT), and 6µL 10x 5’ cDNA library (~3ng/µL) and the 

following cycling conditions: 98)°C for 3)min, followed by 5)cycles of 98)°C for 20)s, 65)°C for 30)s and 72)°C for 

8)min, followed by a final 72)°C extension for 10)min. Amplified libraries were purified using 0.7x SPRIselect 

(Beckman Coulter B23318) cleanup and quantified using Qubit (Thermo #Q32851). Libraries were further purified 

using 10µL (100µg) Dynabeads™ kilobaseBINDER™ (Thermo #60101) with final bead reconstitution in 40µL 

TE (Thermo #AM9849) after binding/washing. After streptavidin purification, 2ul of USER® Enzyme (M5505S) 

was added and incubated at 37)°C for 2 hours to uncouple the bound cDNAs from the beads. Following USER 

digestion, the reaction was placed on a magnet for 5 minutes, separating the beads and supernatant containing the 

cDNAs. The cDNA fraction was moved to a fresh tube and purified using 0.7x SPRIselect (Beckman Coulter 

B23318) cleanup. After cDNA purification, the following PCR master mix was assembled: 580µL of H2O, 750µL 

of Kapa HiFi Uracil+ ReadyMix (2X) (Roche #7959079001), and 20µL 10x 5’ cDNA library (~6ng/µL). 90µL 

of the mastermix was distributed in 15 PCR tubes, each containing 10µL of 5µM MAS-seq primer pair mix. The 

15 reactions were then thermocycled with the following cycling conditions: 98)°C for 3)min, followed by 8)cycles 

of 98)°C for 20)s, 65)°C for 30)s and 72)°C for 8)min, followed by a final 72)°C extension for 10)min (optimal 

cycling number was identified using scaled down qPCR reaction). Reactions were then pooled in a 5 ml tube and 

purified using a 0.7x SPRIselect (Beckman Coulter B23318) cleanup and eluted in 450µL of TE. In a subsequent 

reaction, 15µL of USER® Enzyme (M5505S) was added to 435µL of the pooled product and set to incubate at 

37)°C for 2 hours. Following USER digestion, 15 µL HiFi Taq DNA Ligase (M0647S) and 51 µL of HiFi Taq 

DNA Ligase buffer was added to the reaction and incubated in a thermocycler at 42)°C for 2 hours. Following 

ligation, the reaction was purified using a 0.7x AMPure PB Bead (Pacific Biosciences #100-265-90) cleanup and 

eluted in 180µL of H2O. Multiplexed array libraries were quantified using Qubit (Thermo #Q32851) and 

Genomic DNA ScreenTape (Agilent #5067- 5365).  

 

SIRV-Set 4 cDNA generation. SIRV-Set 4 (Lexogen #141.01) was thawed and aliquoted 1µL into each of 9 

PCR tubes on ice. Following primary aliquoting, 2ul of Tris-EDTA pH7.0 was added to each tube and mixed. 

SIRV stocks were then frozen at -80)°C. For first strand synthesis, the following primary master-mix was set up:  

15.5µL of H2O, 3.2µL of Polyethylene glycol 8,000 50% (w/v) (VWR #25322-68-3), 0.24µL Triton X-100 10% 

solution (Fisher #9002-93-1), 0.32µL SUPERase•In™ RNase Inhibitor (Thermo #AM2696), 1.6µL of dNTP mix 

10mM (NEB #N0447S), 0.16µL OligodT primer 100µM (IDT) (SS3_OligodTVN for Smart-seq3 and 

MAS_OligodTVN for Iso-seq and MAS-seq) , 3µL of SIRV-Set 4 aliquot. Additionally, the following RT master-

mix was assembled: 1.2µL of H2O, 0.8µL of Tris-HCl pH 8.5 (1M), 0.96µL of NaCl (1M), 0.8µL of MgCl2 
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(100mM), 0.32µL of GTP (100mM), 2.56µL of DTT (100mM), 0.4µL of SUPERase•In™ RNase Inhibitor 

(Thermo #AM2696), 0.64µL of TSO 100uM (IDT) (SS3_OligodTVN for Smart-seq3 and MAS_OligodTVN for 

Iso-seq and MAS-seq), 0.32µL of Maxima H-minus RT enzyme 200U/uL (Thermo #EP0751). Both primary and 

RT master-mixes were added to the thermocycler with the following conditions: 42)°C for 90)min, followed by 

10)cycles of 50)°C for 2 min, 42)°C for 2 min, followed by a final 85)°C 5)min.  

 

Smart-seq3 of SIRV-Set 4. To amplify the cDNA, the cDNA generation reaction was added to straight into the 

following PCR mix: 26.5µL of H2O, 16µL of Kapa HiFi HotStart buffer (5X), 2.4µL of dNTP mix 10mM (NEB 

#N0447S), 0.4µL of MgCl2 (100mM), 0.4µL of fwd_primer 100µM (IDT), 0.8µL of rev_primer 10µM (IDT), 

1.6µL of Kapa Hifi DNA polymerase (KK2103). The reaction was amplified using the following conditions: 

98)°C for 3)min, followed by 13)cycles of 98)°C for 20)s, 65)°C for 30)s and 72)°C for 8)min, followed by a final 

72)°C extension for 10)min. Amplified cDNA libraries were purified using 0.7x SPRIselect (Beckman Coulter 

B23318) cleanup and quantified using Qubit (Thermo #Q32851). Libraries were normalized to 0.1ng/µL and 

tagmented using the following reaction conditions: 7.56µL of H2O, 9µL of Tagmentation buffer 4x (Tris-HCl pH 

7.5 (40mM), MgCl2 (20mM), DMF (20%)), 1.44µL Amplicon Tagmentation Mix (XYZ),  4µL of normalized 

cDNA libraries. Tagmentation reaction was mixed, spun down, then added to a thermocycler at 55)°C for 10 min. 

After tagmentation, 2µL of 2% SDS was immediately added and incubated for 5 min to halt the reaction. To the 

tagmented cDNA reactions, 6µL of nextera primer pair mixes (0.5µM) were added. Following addition of 

primers, the following PCR was assembled: 25.38 µL of H2O, 25.2µL of Phusion Buffer 5x (Thermo Scientific 

#F530L), 2.7µL of dNTP mix 10mM (NEB #N0447S), 0.72µL of Phusion High-Fidelity DNA Polymerase 2 

U/µL and added to the thermocycler with the following conditions: 72)°C for 3)min, 98)°C for 3)min, followed by 

12ncycles of 98)°C for 10)s, 55)°C for 30)s and 72)°C for 30 s, followed by a final 72)°C extension for 5)min. 

Amplified final libraries were purified using 0.7x SPRIselect (Beckman Coulter B23318) cleanup and quantified 

using Qubit (Thermo #Q32851) and Agilent High Sensitivity DNA kit for BioAnalyzer (Agilent #5067-4626). 

Libraries were sequenced on an Illumina NovaSeq 6000, using paired-end 150 read lengths. 

 

Smart-seq3 processing workflow  

 

Aligning and stitching UMI-containing reads. We process Smart-seq3 SIRV Illumina paired-end reads closely 

following the procedure outlined in Ref. 6. We processed raw non-demultiplexed FASTQ files using zUMIs 

v2.9.4g and STAR v2.5.4b in order to generate expression profiles for both the 52 UMI-containing and internal 

reads. To extract and identify the UMI-containing reads in zUMIs, we specified find_pattern: ATTGCGCAATG 

for the 5’ read together with base_definition: cDNA (23–150), UMI (12–19) in the configuration YAML file and 

collapsed UMIs within a Hamming distance of 1. Next, we stitched UMI-containing reads together using 

stitcher.py16 starting from the  <prefix>.filtered.Aligned.GeneTagged.UBcorrected.sorted.bam output from 

zUMIs. We inferred the transcript compatibility set for each 52 UMI-containing read from the CT tag in the 

produced BAM file. Finally, we generated the transcript identification confusion matrix by iterating over all 

stitched 5’ reads, assuming a flat prior for both source and target transcripts, and accordingly dividing the 

assignment probability weight equally to all compatible source and target transcripts. 

 

Quantification of SIRV isoforms. We quantified the abundance of Smart-seq3 SIRV isoforms from both 5’ 

UMI-containing and internal reads. To this end, we ran salmon v1.5.1 in quantification mode with additional 

arguments “--minAssignedFrags 1 -l IU” on the previously obtained  

<prefix>.filtered.tagged.Aligned.toTranscriptome.out.bam transcriptome alignments from zUMIs. We read the 

TPM normalized abundances from the salmon_quant/quant.sf output table. 

 

MAS-seq processing workflow  

 

Error correction. Error correction was performed on-board the PacBio Sequel IIe with the vendor’s ccs software 

v5.0.07 and settings “--all --subread-fallback --num-threads 232 --streamed <movie_name>.consensusreadset.xml 

--bam <movie_name>.reads.bam”. With these settings, all reads from the instrument (including those failing ccs 
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correction) are presented in a single BAM17 file for downstream analysis. Each read is affixed with an auxiliary 

BAM tag “rq” indicating overall read quality ranging from rq=-1 for uncorrected reads, -1 < rq < 0.99 for corrected 

reads with predicted accuracy < Q20, and rq g 0.99 for corrected reads with predicted accuracy g Q2018. 

 

Annotation/filtration/segmentation/demultiplexing. We developed a composite hidden Markov model 

(“Longbow”) to enable the per-read labeling of all subsequences of interest (annotation), allowing for insertions, 

deletions, and mismatches in both low and high error rate data. Given a predefined array structure, we combined 

several instances of two probabilistic models for pairwise sequence alignment: the Needleman-Wunsch and 

random alignment models19. Needleman-Wunsch model sections support annotation of sequences known a priori 

(i.e. MAS-seq adapters; 10x Genomics single-cell 5’ and 3’ adapters; poly(A) tails). Random alignment model 

sections support annotation of unknown interstitial sequences (i.e. cDNA sequences) and barcode identifiers. In 

this formulation, a MAS-ISO-seq read is considered to be a mosaic of imperfect (but complete) copies of the 

various known adapter sequences among which the unknown cDNA sequences of interest are present. 

 

The state transition diagram and default values for transmission and emission probabilities (used for all MAS-

ISO-seq processing performed in this work) are provided in Supplementary Fig. 14. These defaults can optionally 

be refined using Longbow’s train command, which will estimate the parameters of the model using Baum-Welch 

learning. 

 

Data processing proceeds as follows: annotations as described above are generated for both the forward and 

reverse-complement orientations, retaining the result from the model with higher log-likelihood. Given the design 

expectation that MAS-ISO-seq adapters should be found in sequence along the length of the read, we verify that 

each read conforms to this expectation and filter out any read with mis-ordered MAS-ISO-seq adapters. We then 

segment each read between MAS-ISO-seq adapters and 10x Genomics single-cell 5’ adapter. 

 

For multiplexed libraries (e.g. libraries with different array configurations and run on the same flow cell), the 

demultiplexing workflow proceeds similarly to the procedure described above with one notable change: 

annotations are generated for both the forward and reverse-complement read orientations and over each user-

specified array design. The annotations from the read orientation and array design that maximize the overall log-

likelihood are propagated to subsequent steps. 

 

Cell Barcode (CBC) and UMI Annotation.  We annotated segmented reads with CBC and UMIs by leveraging 

the structure of the read library.  Each read begins with a 12 base MAS-seq adapter, 22 bp forward adapter, a 16 

bp cell barcode, then a 10 bp UMI.  We aligned the forward adapter to the 200 bases on either end of each read 

using an accelerated Smith-Waterman algorithm, SSW (v1.2.4)20, to determine a known position in the read, then 

counted bases from the end of that alignment to annotate each read with the raw CBC and UMI.  We also annotated 

each read with the base qualities for the CBC (found using the same offsets).  In the case of SIRV data, no CBC 

was present in the library and therefore it was not annotated. 

 

CBC Error Correction.  To ensure single-cell data analysis could be performed accurately, we performed CBC 

error correction by integrating evidence from multiple data sources according to the following procedure.  We 

first annotated each long read that passed Longbow filtering with a raw CBC. We further sequenced the T cell 

samples on Illumina instruments and processed the data with Cell Ranger v3.1.021 to annotate each short read 

with a cell barcode and the corresponding base qualities. For each read, including long CCS-corrected, long CCS-

uncorrected, and short (Illumina), we computed a barcode pseudocount (BPC) from the barcode sequence base 

qualities as follows: 

��� = ���%&'	)	
*

+,-
.1 2 102345-6 7 

where ��+ is the Phred-scaled base quality of the barcode letter at position �, and � = 16 is the barcode length. 

The prefactor BPCmax = 100 is arbitrary and is for reducing quantization noise in rounding the aggregated 
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pseudocounts to whole integers (see below).  Intuitively, BPC is proportional to the probability for the observed 

barcode sequence to coincide with the actual barcode sequence. BPC is small for low-quality barcode sequences, 

e.g. CCS-uncorrected reads, and reaches ~ BPCmax for high-confidence observations, e.g. Illumina reads or CCS-

corrected reads.  We combined the pseudocounts from all available reads for each of the observed barcode 

sequences, rounded the resulting counts to whole integers, and used Starcode v1.4 2020-11-0220,22 to cluster the 

cell barcodes using aggregated pseudocounts in place of a raw counts (starcode --print-clusters --quiet -i).  Finally, 

we used the starcode output to create a mapping from raw cell barcodes to corrected cell barcodes (i.e. cluster 

centroids), and annotated each read in our long-read datasets with the corresponding corrected cell barcode. 

Notably, error correction can be performed without a whitelist or additional Illumina sequencing (in which case, 

the CBC from high-confidence CCS-corrected reads will drive the CBC error correction of noisy CCS-

uncorrected reads). 

 

Quantification of SIRV isoforms.  To quantify SIRV isoforms, we took reads (both CCS-corrected and CCS-

uncorrected) that had been filtered, annotated, and segmented by Longbow and annotated their UMIs.  We then 

removed the adapter sequences and poly-A tails from these reads.  The resulting reads were aligned to the SIRV-

Set 4 transcriptome using minimap2 v2.17-r94123 with the HiFi read preset (minimap2 -ayYL --MD --eqx -x 

asm20).  We then took the primary alignments, removed any in which we could not detect a UMI, and annotated 

each one with the contig on which they were aligned (in this case, a transcript). These UMI-containing primary 

alignments were then processed using UMI-tools v1.1.124 to group the detected UMIs and mark the molecules 

with the same UMIs (umi_tools group --buffer-whole-contig --no-sort-output --per-gene --gene-tag XG --extract-

umi-method tag --umi-tag ZU --group-out=out.tsv --output-bam).  Finally, we created a count matrix from the 

resulting BAM file by tallying for each transcript and CBC how many unique UMI occurrences there were. 

 

Quantification of 10x Genomics 5’ CD8+ T cell isoform expression.  To quantify T cell isoforms, we took 

reads, both CCS-corrected and CCS-uncorrected, that had been filtered, annotated, and segmented by Longbow 

and annotated the CBCs and UMIs contained in each.  We corrected the CBC in each read and removed the 

adapter sequences and poly-A tails.  These resulting extracted reads were aligned to a version of the GRCh38 

human reference genome with alternate contigs removed using minimap2 v2.17-r941 with the splicing preset 

(minimap2 -ayYL --MD --eqx -x splice:hq).  We then processed the resulting reads with StringTie2 v2.1.625 using 

Gencode v37 as baseline transcript annotations to create new transcriptome annotations specific to each of our 

samples (stringtie -Lv -G gencode.v37.primary_assembly.annotation.gtf -o annotations.gtf -A gene_abund.out).  

Based on the resulting transcript annotations we created a new transcript reference FASTA file using gffread 

v0.12.6 (gffread -w transcriptome.fa -g hg38_no_alt.fasta annotations.gtf).  We then aligned the extracted reads 

to the novel transcriptome reference using minimap2 v2.17-r941 (minimap2 -ayYL --MD --eqx -x asm20).  We 

then took the resulting primary alignments, removed any in which we could not detect a UMI, and annotated each 

one with the contig on which they were aligned (in this case, a transcript).  These UMI-containing primary 

alignments were then processed using UMI-tools v1.1.1 to group the detected UMIs and mark the molecules with 

the same UMIs (umi_tools group --buffer-whole-contig --no-sort-output --per-gene --gene-tag XG --extract-umi-

method tag --umi-tag ZU --group-out=out.tsv --output-bam).  We then created a count matrix from the resulting 

bam file by tallying for each transcript and CBC combination how many unique UMI occurrences there were.  

 

Single cell analysis 

 

Short-read 10x Genomics 5’ gene expression and antibody capture preprocessing. We quantified the 

produced 5’ RNA capture and TotalSeq-C antibody capture libraries using Cell Ranger v3.1.0 count workflow. 

We imported the count data into AnnData format using scanpy v1.7.2 read_10x_h5 command. Our preliminary 

investigations indicated that the Cell Ranger automatic cell identification algorithm had used an excessively 

conservative cutoff, leading to the loss of 30%-50% viable non-empty droplets (primarily of stem-like memory 

T cells origin, a cell type that exhibits relatively lower transcriptional complexity). As a countermeasure, we 

loaded the raw count data from Cell Ranger count output raw_feature_bc_matrix.h5 and kept every droplet 

expressing > 500 unique genes and > 80% non-mitochondrial genes. We performed a preliminary round of 
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clustering and differential gene expression analysis using scanpy standard workflow26. We identified and removed 

non-immune cell clusters of likely primary tumor origin. We additionally identified and removed doublets using 

scrublet v0.2.3. The estimated doublet rate was 14%, which is the expected figure for loading ~10,000 cells. 

Finally, we log-transformed the antibody capture counts and treated them as cell-level annotations for the rest of 

the analysis. 

 

Long-read single-cell MAS-ISO-seq isoform expression preprocessing. As a first step, we converted the 

isoform-level UMI count matrix produced by the MAS-ISO-seq workflow to an AnnData object.  During this 

conversion, additional metadata was added to the transcript counts. Many of the novel transcripts and genes 

discovered by StringTie2 could be unambiguously assigned back to a GENCODE annotation. In particular, novel 

genes were assigned to known genes in GENCODE v37 if the novel genes had transcripts overlapping exactly 

one unique gene in GENCODE v37.  Novel genes with transcripts overlapping multiple GENCODE genes were 

marked as ambiguous and removed from the analysis.  In addition, an interval list containing T cell receptor 

genes27 was cross-referenced and transcripts found overlapping these intervals were accordingly marked. To 

harmonize the long- and short-read AnnData objects for joint analyses, we only kept the mutual cell barcodes 

between the two datasets. Remarkably, we could identify > 98.8% of T cell barcodes identified from the short-

read dataset in the MAS-ISO-seq long-read dataset, indicating the high fidelity of our CBC error correction 

algorithm. 

 

Normalization, clustering, and embedding. We imported the harmonized short- and long-read AnnData objects 

to seurat v4.0.3 using SeuratData v0.2.1 and SeuratDisk v0.0.0.9015 helper packages28. We performed a negative 

binomial (NB) variance-stabilizing transformation (VST) on each count dataset separately using sctransform 

v0.3.2. We treated isoform counts similarly to gene counts, which is justified since isoform counts exhibit the 

same class of technical noise and statistical dropout as gene counts. Given the much larger number of isoforms, 

we found it necessary to increase the number of isoforms used for training the NB model from the default value 

of 2,000 to 10,000. We did not notice any significant change in the downstream results by increasing this figure 

any further. The Pearson residuals for all cells and genes were exported to AnnData. We performed clustering 

and embedding separately for short- and long-read datasets using the same workflow as follows. We selected the 

top 5,000 genes (or isoforms) sorted in the descending order of total Pearson residual as highly variable features 

(HVF). The HVFs were z-scored independently to equalize the role of each gene (or isoform). We reduced the 

feature set down to 30 using PCA and calculated the k=100 nearest neighbor graph for each cell in the PCA space 

based on the Euclidean distance. The resultant neighbor graph was used for obtaining a 2D embedding using 

UMAP, and clustering using the Leiden algorithm with resolution parameter set to 1.1. We performed differential 

gene expression (DE) analysis on the short-read dataset based on t-test, which is an appropriate statistical test for 

VST counts, as implemented in scanpy rank_genes_groups method. The DE genes were used for annotating the 

clusters shown in Fig. 2 using known T cell subtype markers. 

 

Diffusion pseudotime analysis. We performed diffusion pseudotime (DPT) analysis closely following the scanpy 

hematopoiesis trajectory analysis workflow29 with one notable modification. We noticed that using scaled highly-

variable Pearson residuals in place of log-transformed counts resulted in significantly cleaner force-directed 

graphs. The latter is expected given that Pearson residuals are more Gaussian-like compared to log-transformed 

counts, and thus, better suited to the assumptions of the DPT model. Accordingly, we substituted the standard 

preprocessing and normalization step with the sctransform workflow. 

 

CD45 isoform annotation refinement. The GENCODE v37 contains a rather extensive set of isoform 

annotations for CD45, including the RO, RABC, RB, RBC, and RAB. The annotations, however, are frequently 

incomplete and miss a large portion of the coding sequences. For instance, out of the available annotations for 

PTPRC (CD45), only two (ENST00000348564: CD45RO and ENST00000442510: CD45RABC) extend all the 

way to the 3’ UTR (Supplementary Fig. 15). Given the short-reads origin of currently available transcriptome 

annotations, we expect this caveat to prevail among most other genes, as also indicated by other authors30,31. In 

particular, we noticed that the more complete and longer annotations, such as RO and RABC, tend to be preferred 
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primary target by the aligner (minimap2) for the vast majority of reads, overriding the differential usage of short 

but biologically important exons such as the A, B, and C. We found it advantageous to refine GENCODE 

annotations using StringTie2, which resulted in the extension of several incomplete GENCODE annotations and 

significantly improved the specificity of isoform assignments to different CD8+ T cell subtypes (Supplementary 

Fig. 15). Ultimately, though, we found the refined annotations produced by StringTie2 to be still incomplete and 

direct transcriptome alignment to be lacking in specificity. Inspired by the highly distinct structure of the CD45 

sashimi plots for different T cell subtypes (Supplementary Fig. 15), we reasoned higher specificity could be 

achieved by directly classifying genomics alignments. To this end, we mapped the reads to the genome (GRCh38, 

alternate contigs removed) using minimap2 v2.17-r941 with the splicing preset (minimap2 -ayYL --MD --eqx -x 

splice:hq), and performed CD45 isoform assignment using a decision tree based on the presence/absence of 

landmark exons, e.g. A, B, and C in CD45 (Supplementary Fig. 16; note the increased specificity of isoform 

assignment to different T cell subtypes). The results shown in Fig. 2b, c are based on the decision tree 

methodology. Leveraging the significantly increased read depth afforded by MAS-ISO-seq, we find improving 

algorithms for de novo isoform identification and clustering, and benchmarking the available isoform 

quantification pipelines (e.g. FLAIR31, TALON32, etc.), and producing more complete transcriptome annotation 

references to be crucial areas of future method and resource development. 

 

Identification of differentially spliced genes. We consider two types of differential splicing (DS) statistical tests 

for every expressed gene. (global DS test) First, we wish to determine whether the isoforms of a given gene are 

differentially expressed in different cell clusters. To this end, we produce a contingency table with isoforms and 

cell clusters as rows and columns, and with the aggregated isoform expression counts as entries. A non-trivial 

global DS pattern is equivalent to having a statistical dependence between the columns and rows of this 

contingency table. The latter, however, can be canonically assessed using Fisher’s exact test generalized to 

arbitrary � × � contingency tables with �,� g 2. Notably, we found the requirements for fast Chi-squared 

asymptotic approximation to be out of reach for the majority of cases. Therefore, we use the fisher.test as 

implemented in R v4.1.1 to perform the test using 1�6 permutations. (cluster-resolved DS test) We additionally 

perform a cluster-resolved DS test for every gene, whereby we wish to know whether a gene exhibits differential 

isoform usage in each of the clusters vs. the rest. Like before, we form a contingency table with two columns 

signifying the cluster of interest and the rest, isoforms in rows, and aggregated isoform expression counts as 

entries. We similarly obtain a p-value by performing a permutation-based Fisher’s test for every gene and every 

cluster. Finally, for both tests, we treat the obtained p-values as a collection of independent hypotheses and adjust 

the p-values for false discovery rate (FDR) at level � = 0.05 using the Benjamini-Hochberg step-up procedure. 

 

Table of MAS-seq barcode adapters 

MAS-seq Array Design (position) Adapter label Adapter sequence 

MAS-15 (1) A AGCTTACTTGTGAAGA 

MAS-15 (2) B ACTTGTAAGCTGTCTA 

MAS-15 (3) C ACTCTGTCAGGTCCGA 

MAS-15 (4) D ACCTCCTCCTCCAGAA 

MAS-15 (5) E AACCGGACACACTTAG 

MAS-15 (6) F AGAGTCCAATTCGCAG 

MAS-15 (7) G AATCAAGGCTTAACGG 

MAS-15 (8) H ATGTTGAATCCTAGCG 
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MAS-15 (9) I AGTGCGTTGCGAATTG 

MAS-15 (10) J AATTGCGTAGTTGGCC 

MAS-15 (11) K ACACTTGGTCGCAATC 

MAS-15 (12) L AGTAAGCCTTCGTGTC 

MAS-15 (13) M ACCTAGATCAGAGCCT 

MAS-15 (14) N AGGTATGCCGGTTAAG 

MAS-15 (15) O AAGTCACCGGCACCTT 

MAS-15 (16) P ATGAAGTGGCTCGAGA 

 

Table of MAS-seq primers 

Name Sequence 

AAO272 CTACACGACGCTCTTCCGAT*C*T 

AAO273 /5Biosg/UAUAAGCAGTGGTATCAACGCAG*A*G 

A-Fwd_5'_10x AGCTTACTTGTGAAGATCTACACGACGCTCTTCCGATCT 

B-Fwd_5'_10x ACTTGTAAGCUGTCTAUCTACACGACGCTCTTCCGATCT 

C-Fwd_5'_10x ACTCTGUCAGGTCCGAUCTACACGACGCTCTTCCGATCT 

D-Fwd_5'_10x ACCTCCTCCUCCAGAAUCTACACGACGCTCTTCCGATCT 

E-Fwd_5'_10x AACCGGACACACUTAGUCTACACGACGCTCTTCCGATCT 

F-Fwd_5'_10x AGAGTCCAAUTCGCAGUCTACACGACGCTCTTCCGATCT 

G-Fwd_5'_10x AATCAAGGCUTAACGGUCTACACGACGCTCTTCCGATCT 

H-Fwd_5'_10x ATGTTGAAUCCTAGCGUCTACACGACGCTCTTCCGATCT 

I-Fwd_5'_10x AGTGCGTUGCGAATTGUCTACACGACGCTCTTCCGATCT 

J-Fwd_5'_10x AATTGCGUAGTTGGCCUCTACACGACGCTCTTCCGATCT 

K-Fwd_5'_10x ACACTTGGUCGCAATCUCTACACGACGCTCTTCCGATCT 

L-Fwd_5'_10x AGTAAGCCUTCGTGTCUCTACACGACGCTCTTCCGATCT 

M-Fwd_5'_10x ACCTAGAUCAGAGCCTUCTACACGACGCTCTTCCGATCT 

N-Fwd_5'_10x AGGTAUGCCGGUTAAGUCTACACGACGCTCTTCCGATCT 

O-Fwd_5'_10x AAGUCACCGGCACCUTUCTACACGACGCTCTTCCGATCT 

B-Rev_5'_10x ATAGACAGCUTACAAGUAAGCAGTGGTATCAACGCAGAG 

C-Rev_5'_10x ATCGGACCUGACAGAGUAAGCAGTGGTATCAACGCAGAG 

D-Rev_5'_10x ATTCUGGAGGAGGAGGUAAGCAGTGGTATCAACGCAGAG 

E-Rev_5'_10x ACTAAGTGUGTCCGGTUAAGCAGTGGTATCAACGCAGAG 
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F-Rev_5'_10x ACTGCGAAUTGGACTCUAAGCAGTGGTATCAACGCAGAG 

G-Rev_5'_10x ACCGTUAAGCCTTGATUAAGCAGTGGTATCAACGCAGAG 

H-Rev_5'_10x ACGCTAGGAUTCAACAUAAGCAGTGGTATCAACGCAGAG 

I-Rev_5'_10x ACAATUCGCAACGCACUAAGCAGTGGTATCAACGCAGAG 

J-Rev_5'_10x AGGCCAACUACGCAATUAAGCAGTGGTATCAACGCAGAG 

K-Rev_5'_10x AGATUGCGACCAAGTGUAAGCAGTGGTATCAACGCAGAG 

L-Rev_5'_10x AGACACGAAGGCUTACUAAGCAGTGGTATCAACGCAGAG 

M-Rev_5'_10x AAGGCTCUGATCTAGGUAAGCAGTGGTATCAACGCAGAG 

N-Rev_5'_10x ACTUAACCGGCAUACCUAAGCAGTGGTATCAACGCAGAG 

O-Rev_5'_10x AAAGGUGCCGGUGACTUAAGCAGTGGTATCAACGCAGAG 

P-Rev_5'_10x ATCTCGAGCCACTTCATAAGCAGTGGTATCAACGCAGAG 

  

  

Data Availability 

 

Links to the datasets used in this study can be found at https://github.com/broadinstitute/mas-seq-paper-data. 

Code Availability 

 

An online repository of code used in this study can be found at https://github.com/broadinstitute/longbow. 
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