

1 **An anti-SARS-CoV-2 non-neutralizing antibody with Fc-effector function defines a
2 new NTD epitope and delays neuroinvasion and death in K18-hACE2 mice**

3

4 Guillaume Beaudoin-Bussières^{1,2,14}, Yaozong Chen^{3,14}, Irfan Ullah^{4,14}, Jérémie Prévost^{1,2},
5 William D. Tolbert³, Kelly Symmes⁴, Shilei Ding¹, Mehdi Benlarbi¹, Shang Yu Gong^{1,5},
6 Alexandra Tauzin^{1,2}, Romain Gasser^{1,2}, Debashree Chatterjee¹, Dani Vézina¹, Guillaume
7 Goyette¹, Jonathan Richard^{1,2}, Fei Zhou¹³, Leonidas Stamatatos^{6,7}, Andrew T.
8 McGuire^{6,7,8}, Hughes Charest⁹, Michel Roger^{1,2,9}, Edwin Pozharski^{11,12}, Priti Kumar⁴,
9 Walther Mothes¹⁰, Pradeep D. Uchil^{10,#}, Marzena Pazgier^{3,#} and Andrés Finzi^{1,2,5,15,#}

10

11 ¹Centre de recherche du CHUM, Montreal, QC H2X 0A9, Canada

12 ²Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X
13 0A9, Canada

14 ³Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health
15 Sciences, Bethesda, MD 20814-4712, USA

16 ⁴Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine,
17 New Haven, CT 06520, USA

18 ⁵Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada

19 ⁶Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA 98195, USA

20 ⁷Department of Global Health, University of Washington, Seattle, WA 98195, USA

21 ⁸Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA

22 ⁹Laboratoire de Santé Publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-
23 Bellevue, QC H9X 3R5, Canada

24 ¹⁰Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510,
25 USA

26 ¹¹University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA

27 ¹²Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine,
28 Baltimore, MD 21201, USA

29 ¹³ Division of Basic and Translational Biophysics, Unit on Structural Biology, NICHD, NIH, Bethesda,
30 MD, 20892, USA

31 ¹⁴These authors contributed equally

32 ¹⁵Lead contact

33 # corresponding authors

34 Pradeep Uchil pradeep.uchil@yale.edu

35 Marzena Pazgier marzena.pazgier@usuhs.edu

36 Andrés Finzi andres.finzi@umontreal.ca

37

38 **40 Running Title:** Fc-mediated effector functions against SARS-CoV-2 infection in mice

41 **Keywords:** SARS-CoV-2, COVID-19, coronavirus, Spike glycoproteins, non-
42 neutralizing antibodies, ADCC, K18-hACE2 mice, Fc-effector functions

43 **Summary**

44 Emerging evidence in animal models indicate that both neutralizing activity and Fc-
45 mediated effector functions of neutralizing antibodies contribute to protection against
46 SARS-CoV-2. It is unclear if antibody effector functions alone could protect against
47 SARS-CoV-2. Here we isolated CV3-13, a non-neutralizing antibody from a
48 convalescent individual with potent Fc-mediated effector functions that targeted the N-
49 terminal domain (NTD) of SARS-CoV-2 Spike. The cryo-EM structure of CV3-13 in
50 complex with SAR-CoV-2 spike revealed that the antibody bound from a distinct angle
51 of approach to a novel NTD epitope that partially overlapped with a frequently mutated
52 NTD supersite in SARS-CoV-2 variants. While CV3-13 did not alter the replication
53 dynamics of SARS-CoV-2 in a K18-hACE2 transgenic mouse model, an Fc-enhanced
54 CV3-13 significantly delayed neuroinvasion and death in prophylactic settings. Thus, we
55 demonstrate that efficient Fc-mediated effector functions can contribute to the *in vivo*
56 efficacy of anti-SARS-CoV-2 monoclonal antibodies in the absence of neutralization.

57

58 **Introduction**

59 In December of 2019, a new coronavirus was detected in Wuhan, China which has
60 subsequently been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
61 2) (Huang et al., 2020; Wu et al., 2020b; Zhu et al., 2020). This novel virus is an
62 enveloped, positive-strand RNA coronavirus that is a member of the β -coronavirus genus
63 (Huang et al., 2020; Wu et al., 2020b; Zhu et al., 2020). This genus also contains SARS-
64 CoV-1 and MERS-CoV which caused pandemics in 2002 and 2012, respectively
65 (Ksiazek et al., 2003; Zaki et al., 2012). SARS-CoV-2, however, has caused a much
66 larger pandemic with millions of deaths worldwide (Worldometer, 2021). The efficacy
67 with which SARS-CoV-2 transmits between humans has led to COVID-19 being one of
68 the largest and fastest growing pandemics in the past century. The COVID-19 pandemic
69 has caused a massive loss of human life, extreme economic consequences and disrupted
70 billions of human lives worldwide. For these reasons, billions of dollars have been
71 invested in the development of vaccines against SARS-CoV-2 which has resulted in their
72 development in record time. Several vaccine platforms have been approved in different
73 jurisdictions worldwide to counter the COVID-19 pandemic (Oliver et al., 2021a; Oliver
74 et al., 2021b; Polack et al., 2020; Voysey et al., 2021) with vaccine development
75 primarily focused on generating immune responses against the SARS-CoV-2 Spike
76 glycoprotein. The Spike glycoprotein mediates viral entry and is well exposed at the
77 surface of virions (Duan et al., 2020; Shang et al., 2020) and infected cells (Buchrieser et
78 al., 2020). The Spike glycoprotein is a trimer of heterodimers, composed of 2 subunits,
79 S1 and S2, generated by furin cleavage of a single S polypeptide. The S1 subunit permits
80 attachment via its receptor binding domain (RBD) to the cellular receptor angiotensin

81 converting enzyme 2 (ACE2) (Hoffmann et al., 2020; Lan et al., 2020; Walls et al., 2020;
82 Wrapp et al., 2020b). It also contains an N-terminal domain (NTD) that may aid
83 attachment and conformational transition of Spike, as previously observed for other
84 coronaviruses. (Amraie et al., 2020; Lempp et al., 2021; Soh et al., 2020). Once bound to
85 ACE2, a series of conformational changes allows the S2 subunit to mediate fusion
86 between the cellular and viral membranes. Virus neutralization has been shown to be
87 important for controlling SARS-CoV-2 infection in vaccinated human cohorts
88 (AstraZeneca and Iqvia Pty, 2021; Bio and Pfizer, 2021; Janssen and Prevention, 2021;
89 ModernaTx et al., 2022). As a result, considerable effort has been made to study
90 antibody-mediated neutralization and its effect in mitigating SARS-CoV-2 infection.
91 Many neutralizing antibodies target the RBD, but some targeting the NTD and the S2
92 subunits have also been described (Cao et al., 2020; Chen et al., 2020; Chi et al., 2020;
93 Jennewein et al., 2021; Ju et al., 2020; Li et al., 2021b; Liu et al., 2020; Rappazzo et al.,
94 2021; Seydoux et al., 2020; Suryadevara et al., 2021; Ullah et al., 2021; Voss et al., 2021;
95 Wang et al., 2020; Wrapp et al., 2020a; Wu et al., 2020c; Yuan et al., 2020). However,
96 some studies have shown that around 25% to 45% of people who resolve the infection
97 have plasma with low or undetectable levels of SARS-CoV-2 neutralizing activity
98 (Beaudoin-Bussieres et al., 2020; Luchsinger et al., 2020; Muecksch et al., 2021; Payne
99 et al., 2020; Prevost et al., 2020; Robbiani et al., 2020; Wu et al., 2020a). These data
100 suggest that immune functions other than neutralization could play a role in SARS-CoV-
101 2 control. Accordingly, results from a phase III clinical trials show a vaccine efficacy of
102 >90% starting 14 days after the injection of a single dose of a BNT162b2 mRNA vaccine,
103 a time at which neutralizing activity from the vaccine is weak (Baden et al., 2021; Polack

104 et al., 2020; Skowronski and De Serres, 2021; Tauzin et al., 2021). Similarly, recent
105 studies have shown that despite a significant loss in neutralizing activity against the
106 B.1.1.7 (Alpha) and B.1.351 (Beta) variants, the AstraZeneca and Pfizer/BioNTech
107 vaccines remain efficacious against these variants (Emary et al., 2021) (Pfizer/BioNTech,
108 2021).

109

110 The antigen binding domain (Fab) of antibodies is critical for neutralization but the
111 crystallizable fragment (Fc) of the antibody can contribute significantly to their *in vivo*
112 efficacy (Bournazos et al., 2019; Bournazos et al., 2014; DiLillo et al., 2014). Fc
113 engagement of Fc gamma receptors (Fc γ Rs) elicits complement-dependent cytotoxicity
114 (CDC), antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent
115 cellular phagocytosis (ADCP) depending on the effector cell to which they bind. We
116 previously examined the protection mediated by neutralizing antibodies (NAbs) targeting
117 the SARS-CoV-2 Spike in a K18-hACE2 mouse model and the effect of wild-type or Fc-
118 mutated versions of these NAbs in a prophylactic or therapeutic setting (Ullah et al.,
119 2021). The Fc mutations (L234A-L235A, also referred to as LALA), significantly
120 diminished the affinity of antibodies to Fc γ RIIIa and also impacted Fc-mediated effector
121 functions. Interestingly, in this study we showed LALA mutations significantly
122 diminished the capacity of NAbs to protect mice from a lethal SARS-CoV-2 challenge
123 (Ullah et al., 2021). Similarly, two other studies examining humoral responses in acutely
124 infected individuals found that Fc-mediated effector functions were associated with
125 survival (Brunet-Ratnasingham et al., 2021; Zohar et al., 2020). Therefore, while

126 antibody-mediated neutralization was required for protection, it was not sufficient for
127 viral control.

128 Serological analysis of the plasma or serum from SARS-CoV-2-infected individuals from
129 multiple sources (Harvey et al., 2021; McCallum et al., 2021; Piccoli et al., 2020)
130 revealed that ~65-80% of the neutralizing response was from RBD-specific antibodies,
131 with a smaller portion targeting the NTD (~6-20%) or the S2 subunit (4-20%). Although
132 the glycan-shielded NTD has been proposed to have limited immunogenicity as
133 compared to RBD, NTD-directed antibodies are regarded as a major driving force in
134 imposing selection pressure against the virus eliciting many NTD escape mutations and
135 deletions in emerging SARS-CoV-2 variants (McCallum et al., 2021). Notably, NTD-
136 directed monoclonal NAbs whose structures have been determined recognized a similar
137 glycan-free epitope (Cerutti et al., 2021; Chi et al., 2020; Liu et al., 2020; McCallum et
138 al., 2021; Sun et al., 2021; Voss et al., 2021), named the NTD-supersite (residue 14-20,
139 140-158 and 245-264) (Harvey et al., 2021; McCallum et al., 2021). There are a greater
140 number of mutations within the NTD supersite than in the NTD scaffold that highlights
141 its importance to the virus (McCarthy et al., 2021). Given that the NTD-supersite-
142 directed NAbs do not interfere with the ACE2-RBD interaction or the shedding of the S1
143 subunit, their mechanism of neutralization is yet to be determined. Possible mechanisms
144 could include interactions with co-receptors, proteolytic activation by TMPRSS2, or
145 interference with membrane-fusion.

146 Here we sought to test if Fc-mediated effector functions of antibodies alone could
147 mediate virological control in a lethal K18-hACE2 transgenic mouse model of SARS-
148 CoV-2 using CV3-13, a non-neutralizing antibody with potent Fc-effector functions. Our

149 cryo-EM structure revealed that CV3-13 binds to a novel NTD epitope that partially
150 overlaps with the NTD supersite with a distinct angle of approach, adding to our
151 understanding of how fine epitope specificity and the mode of antibody binding can
152 contribute to antibody function. Several recurrent NTD mutations outside of the NTD
153 supersite associated with immune resistance are found within the CV3-13 epitope, e.g.
154 the N2 loop and the newly identified N2-3 hairpin, suggesting that the epitope coincides
155 with those of other NTD-binding antibodies. While administration of CV3-13 under both
156 prophylactic and therapeutic regimens did not change the replication dynamics of SARS-
157 CoV-2 in a K18-hACE2 transgenic mouse model, an Fc-enhanced version of CV3-13
158 significantly delayed neuroinvasion and death from a lethal challenge of the virus in a
159 prophylactic setting. Thus, using a NTD-binding non-neutralizing antibody, we
160 demonstrate the contribution of Fc-effector functions in mitigating viral-induced
161 pathogenesis.

162

163 **Results**

164 **CV3-13 binds the NTD of the Spike glycoprotein**

165 To test if non-neutralizing antibodies alone can protect from SARS-CoV-2 infection, we
166 characterized a non-neutralizing antibody isolated from the peripheral blood mononuclear
167 cells (PBMCs) of a convalescent individual (CV3) 6 weeks after the onset of symptoms.

168 Using fluorescent SARS-CoV-2 Spike 2P as a probe, we sorted four hundred thirty-two
169 antigen-specific B cells from this donor PBMCs. We successfully generated twenty-
170 seven monoclonal antibodies and tested their ability to neutralize pseudoviral particles
171 carrying Spike protein. CV3-13 bound to Spike but did not neutralize SARS-CoV-2
172 pseudovirus (Jennewein et al., 2021). To determine the epitope recognized by CV3-13,
173 we analyzed its ability to bind different Spike variants on the surface of transfected cells.

174 CV3-13 efficiently bound the WT (Wuhan-Hu-1 reference strain) and the D614G variant
175 but did not recognize the Spike from the B.1.1.7 (alpha) variant (Figure 1A, B). We took
176 advantage of this differential binding capacity to determine the epitope of CV3-13 by
177 sequentially introducing B.1.1.7 variant mutations into the WT Spike. CV3-13
178 recognized all but the Δ144 mutant that had a single amino acid deletion located in the S1
179 NTD (Figure 1B). In agreement with our cell surface binding analyses, surface plasmon
180 resonance (SPR) showed that CV3-13 binds to the SARS-CoV-2 S1 subunit (Figure 1C).
181 Monovalent CV3-13 Fab bound to the stabilized Spike trimer ectodomain (Spike-6P)
182 with nanomolar affinity ($K_D = \sim 55$ nM) (Figure 1D).

183

184

185

186 **CV3-13 is a non-neutralizing antibody with potent Fc-mediated effector functions**

187 To confirm that CV3-13 was a non-neutralizing antibody (Jennewein et al., 2021), we
188 tested its capacity to neutralize pseudoviruses carrying the SARS-CoV-2 Spike. For
189 comparison purposes, we used CV3-1, a potent RBD-targeting NAb, as a positive control
190 (Jennewein et al., 2021). CV3-1 was recently shown to protect K18-hACE2 mice from a
191 lethal SARS-CoV-2 challenge in a Fc-effector function-dependent manner (Ullah et al.,
192 2021). Our analyses showed that CV3-13 was unable to neutralize pseudoviral particles
193 (Figure 2A) bearing SARS-CoV-2 Spike or the live virus (Figure 2B). Introduction of
194 LALA or GASDALIE mutations to the Fc portion of the antibody did not modify its
195 neutralization profile (Figure 2A) or its ability to recognize the Spike whether it be at the
196 surface of infected cells, transduced cells or the recombinant SARS-CoV-2 S-6P (Figure
197 2C, D, S1). The LALA (L234A/L235A) mutations impair the interaction between the
198 IgG Fc portion and Fc γ Rs (Saunders, 2019), while GASDALIE
199 (G236A/S239D/A330L/I332E) mutations strengthen these interactions (Bournazos et al.,
200 2014; DiLillo and Ravetch, 2015; Lazar et al., 2006; Richards et al., 2008; Smith et al.,
201 2012). Having established that CV3-13 does not mediate neutralization (Figure 2A, B),
202 we then evaluated whether it could mediate Fc-effector functions. To this end we used an
203 antibody-dependent cellular cytotoxicity (ADCC) assay using a human T-lymphoid cell
204 line resistant to NK cell-mediated cell lysis (CEM.NKr) and stably expressing the full-
205 length Spike on their surface as target cells. PBMCs from healthy individuals were used
206 as effector cells, as previously reported (Anand et al., 2021). In agreement with a
207 previous study, CV3-1 mediated robust ADCC (Ullah et al., 2021) (Figure 2E). CV3-13
208 mediated ADCC to a similar level as CV3-1 (Figure 2E). Introduction of the GASDALIE

209 mutations enhanced CV3-13-mediated ADCC to levels surpassing those achieved with
210 CV3-1 or CV3-13 WT at higher concentrations (Figure 2E). As expected, introduction of
211 the LALA mutations significantly decreased CV3-13-mediated ADCC (Figure 2E). CV3-
212 13 GASDALIE mediated similar ADCP as its WT counterpart, while CV3-13 LALA
213 mediated reduced ADCP (at all tested concentrations) than both CV3-13 WT and CV3-13
214 GASDALIE (Figure 2F). Altogether, these results confirm that CV3-13 is a non-
215 neutralizing antibody able to mediate Fc-mediated effector functions.

216

217 **Structural analyses of the CV3-13 Fab and SARS-CoV-2 spike complex defines a
218 novel NTD epitope**

219 To define the CV3-13 epitope and gain a more comprehensive understanding of how
220 CV3-13 triggers potent Fc-mediated cytotoxicity without directly neutralizing the SARS-
221 CoV-2 virus, we determined the cryo-EM structure of SARS-CoV-2 HexaPro Spike in
222 complex with CV3-13 Fab at a resolution of 4.45 Å (FSC cut-off 0.143) using C1-
223 symmetry (Figure 3 and S4). The Spike trimer presented itself in the one-RBD-up
224 conformation with each of the N-terminal domain (NTD) bound to one CV3-13 Fab to
225 the furthest lateral side of the spike relative to the spike-trimer axis. Despite the
226 asymmetric RBD conformation in the three spike protomers, the three CV3-13-NTD
227 interfaces were identical. Global refinement imposed with C3 symmetry improved the
228 overall resolution to 4.19 Å and permitted a detailed analysis of the CV3-13 footprint.
229 The C3-symmetry map was therefore used in all further structural analysis (Figure 3 and
230 S4).

231 The structure of CV3-13 Fab bound to SARS-CoV-2 HexaPro Spike is shown in Figure
232 3A. The variable heavy and light chain regions (V_H and V_L) of CV3-13 were well defined
233 in the density. The constant part of the Fab was disordered, however, and is omitted from
234 the model. CV3-13 binds to the NTD, at an almost right angle relative to the stem region
235 of the spike. Both heavy and light chain complementarity determining regions (CDRs) of
236 CV3-13 contribute almost equally to antigen recognition with CDR H3, CDR L1 and
237 CDR L3 having the greatest number of contacts. The total buried surface area (BSA) in
238 complex formation is 1184 \AA^2 which is comparable to the BSA of typical complexes
239 formed by other NTD-specific antibodies (Figure 3B). Four out of five highly mobile
240 NTD loops as defined by Chi et al., (Chi et al., 2020), e.g.: N2 (residues 67-79), N3
241 (residues 141-156), N4 (residues 177-186) and N5 (residues 246-260) are stabilized by
242 the associated CV3-13 Fab (Figure 3C). The fifth antigenic NTD loop N1 (residues 14-
243 26) is distal from the CV3-13 binding site and exhibits a higher degree of mobility in the
244 complex. Of the antibody CDRs, the 14-amino-acid CDR H3, consisting of 7 aromatic
245 residues (six tyrosines and one phenylalanine), stretches into the hydrophilic groove
246 formed by the positively charged N3 and N4 loops, the N2 and N3 loops, and the glycan-
247 shielded Asn¹²². CV3-13 forms extensive contact with N2, N4 and a buried N2 to N3
248 loop hairpin (residues 95-102) which are rarely involved in the epitopes of other known
249 NTD-mAbs (Figure 4C). Interestingly, CV3-13 relies on key π - π interactions through its
250 CDR H3 tyrosines to the Tyr¹⁴⁴-Tyr¹⁴⁵ stretch of N3 that is frequently mutated in SARS-
251 CoV-2 emerging variants. For example, the single residue deletion of Tyr¹⁴⁴ (as first
252 detected in the B.1.1.7 variant) which was used to initially characterize CV3-13 causes a
253 complete abrogation of CV3-13 binding (Figure 1B).

254 The footprint of CV3-13 epitope differs from all known NAbs that recognize the NTD.
255 Neutralizing NTD-directed antibodies target similar glycan-free epitopes located in the
256 upper protruding area of the NTD, referred to as the “NTD supersite” of vulnerability
257 (Cerutti et al., 2021; Harvey et al., 2021; McCallum et al., 2021). The non-neutralizing
258 CV3-13 targets a distinct lateral region of the spike closer to the viral membrane surface,
259 which only marginally overlaps with the supersite (Figure 4A). The distinct angle of
260 approach of CV3-13 enables its extended CDR H3 to access the buried N2 to N3 hairpin
261 which does not interact with the reported NTD-directed mAbs. Given that the NTD
262 mutations found in escape variants of SARS-CoV-2 are thought to be the direct result of
263 NTD-specific antibody selection, the emergence of the T95I mutation in the N2 to N3
264 hairpin, as first seen in the B.1.526 (Iota) and B.1.617.1 (Kappa) variants (Figure S6),
265 suggests that this region represents a new antigenic site that can be targeted by non-
266 neutralizing antibodies. Interestingly, the immunogenic N3 and N5 loops, which form the
267 major interacting motifs for currently characterized NTD mAbs and is the primary
268 component of the NTD supersite, only makes minor contact with the CDR H3, L1 and L2
269 of CV3-13. As a result, the backbone residues of the N3 and N5 loops are less traceable
270 in the density map (Figure S5) and appear to adopt markedly different conformations as
271 compared with those observed for neutralizing anti-NTD mAb structures (Figure 4E).
272 Overall, the N3 and N5 loops which form the majority of the NTD supersite are less
273 important for CV3-13 binding. Instead, CV3-13 utilizes the N2 and N4 loops and N2 to
274 N3 hairpin, which are located at the lateral/bottom side of the NTD and are rarely
275 accessed by the NTD-directed NAbs that bind from the top of the NTD. Our data are

276 consistent with the finding that N3 and N5 loop engagement is an important component
277 of NTD directed antibody neutralization of SARS-CoV-2.

278

279 **CV3-13 has a distinct angle of approach and induces conformational**
280 **rearrangements in the NTD as compared to other NTD-binding mAbs**

281 To gain structural insight on how the antibody recognition site and its angle of approach
282 to the SARS-CoV-2 spike NTD affects the mode of action (i.e., potent neutralizers
283 targeting the supersite versus non-neutralizing antibodies), we aligned the NTD-Fv
284 portions of CV3-13 and other reported NTD-directed antibodies based on the rigid NTD
285 core. The comparisons consisted of antigen-Fab structures for whose PDB models are
286 available. There are in total eleven neutralizing antibodies targeting the NTD supersite as
287 well as the other three which recognize the so-called infectivity-enhancing site (Li et al.,
288 2021a; Liu et al., 2021; McCallum et al., 2021). As shown in Figure 4A, CV3-13
289 approaches the NTD at a nearly perpendicular angle relative to the spike trimer axis with
290 its epitope footprint only partly overlapping the NTD supersite and the infectivity-
291 enhancing site. The supersite binding antibodies access the NTD from the top of the spike
292 trimer, while antibodies targeting the infectivity-enhancing site approach the spike from
293 the bottom, closer to the viral membrane. The differences in binding modes of CV3-13
294 and other NTD-specific antibodies are evident when the angles of approach (defined as
295 the angle between the average C α position for the Fv of each individual mAb (C α -Fv),
296 and the average C α position for the NTD as a whole (C α -NTD), using the average C α
297 position of the C-terminal helix (residues 295-303) of the NTD (C α -NTD-C-term) as the
298 origin to exclude any differences due to the conformational state of the NTD relative to

299 the spike as a whole) are calculated (Figure 4B). The supersite-binding NAbs approach
300 the NTD with a similar angle (in a range of 6° -15°), substantially different from that of
301 CV3-13 with a calculated angle ~30° (Figure 4B). In contrast, the infectivity-enhancing
302 antibodies use the angle of approach in the range of 45°-60°. Also, the fine epitope
303 specificity of CV3-13 is different with contact regions only partially overlapping with
304 neutralization supersite (Figure 4C). To summarize, CV3-13 uses the binding angle that
305 positions it somewhere between the binding angles of antibodies recognizing the
306 neutralization supersite, that bind from the top of the spike and antibodies targeting the
307 infectivity-enhancing site, that bind at the bottom of spike, closer to the viral membrane.
308 These features are likely why CV3-13 lacks direct neutralizing activity but has no
309 infectivity-enhancing properties (Figure 2A, B). The CV3-13 binding mode permits
310 effective engagement of innate immune cells to mediate Fc-effector activity. Indeed, it
311 has been shown that antibodies targeting the NTD supersite have largely overlapping
312 epitope footprints (all engaging the N1, N3 and N5 NTD loops) and a narrow range in
313 their angle of approach that could allow them to sterically disrupt spike-receptor
314 interactions, TMPRSS2-dependent activation and/or viral-host membrane fusion.

315
316 Both CV3-13 and the supersite specific Abs bind to the NTD utilizing highly mobile and
317 conformationally unconstrained NTD loops by an induced-fit mechanism. To assess the
318 impact of antibody recognition on the conformation of NTD, we superimposed the NTD
319 domain from the ligand-free HexaPro Spike (PDB:6XKL) and eleven NTD-directed
320 antibody-spike/NTD complexes and examined mAb-induced structural rearrangements.
321 As described earlier by Cerutti and colleagues (Cerutti et al., 2021), the highly mobile

322 N1-N5 loops (Figure 4D), which are largely disordered in the ligand-free spike, have
323 diverse conformations in response to the bound Fabs at different sites (Figure 4E). The
324 degree of local flexibility for the NTD loops is inversely correlated with their
325 contribution to the Fab-NTD interface. These structural changes are a direct consequence
326 of antibody binding, either by a conformational sampling or an induced-fit mechanism.
327 Overall, NTD-directed antibodies induced substantial structural rearrangement of the
328 NTD. The high immunogenicity and high mutational frequency observed in the flexible
329 NTD loops likely results from their increased accessibility on the Spike and their
330 subsequent encounters with both neutralizing and non-neutralizing antibodies.

331

332 **CV3-13 does not protect K18-hACE2 mice from a SARS-CoV-2 lethal challenge**

333 We next investigated the *in vivo* efficacy of the non-neutralizing antibody CV3-13 under
334 a prophylactic or therapeutic setting to protect or treat K18-hACE2 transgenic mice from
335 a lethal SARS-CoV-2 infection. CV3-13 was delivered intraperitoneally (ip, 12.5 mg
336 IgG/kg body weight) 24 h before (prophylactic) or one and two days post infection (dpi,
337 therapeutic) in K18-hACE2 mice intranasally challenged with SARS-CoV-2 nLuc, as
338 previously described (Figure S2 and S3) (Ullah et al., 2021). Longitudinal non-invasive
339 bioluminescence imaging (BLI), body weight change, survival, viral load estimation in
340 brain, lung and nasal cavity and terminal imaging after necropsy showed no difference
341 between isotype- and CV3-13-treated mice under either prophylactic or therapeutic
342 settings (Figure S2 and S3, panels A-J). Furthermore, mRNA levels of inflammatory
343 cytokines (*IL6*, *CCL2*, *CXCL10* and *IFNG*) in brain and lungs were also similar to
344 isotype-treated cohorts (Figure S2 and S3, panels K, L). These data suggest that natural

345 Fc-effector functions associated with CV3-13 are not enough to alter virus replication and
346 dissemination *in vivo* in the stringent K18-hACE2 mouse model of SARS-CoV-2
347 infection. Thus, in addition to clearing infected cells by engaging innate immune cells
348 through Fc, efficient Fab-mediated neutralization of free viruses is essential for optimal
349 *in vivo* efficacy. A compromise in either function reduces antibody-mediated protection
350 *in vivo*.

351

352

353 **Fc-effector function enhancing mutations in CV3-13 delay neuroinvasion and**
354 **mortality in a prophylactic regimen in K18-hACE2 mice**

355 We explored if introducing Fc-effector function enhancing mutations (GASDALIE) in
356 CV3-13 can improve *in vivo* efficacy against SARS-CoV-2. As shown in Figure 2,
357 introduction of the GASDALIE mutations significantly enhanced Fc-mediated effector
358 functions without affecting the lack of neutralizing activity of CV3-13. We carried out
359 temporal BLI to visualize the viral dissemination profile when a CV3-13 GASDALIE
360 mutant was administered under the prophylactic regimen in SARS-CoV-2-nLuc
361 challenged K18-hACE2 mice (Figure 5A). Non-invasive imaging analyses revealed that
362 CV3-13 GASDALIE-pre-treated mice showed reduced viral spread and delayed
363 neuroinvasion compared to isotype-treated controls (Figure 5B, D, E). Accordingly,
364 CV3-13 GASDALIE-treated mice displayed a decelerated body-weight loss phenotype
365 and a significant delay in mortality (Figure 5F, G). Imaging animals at the experimental
366 endpoint after necropsy revealed that systemic virus spread as measured by flux as well
367 as viral loads in the nose, brain and lungs were significantly reduced in CV3-13

368 GASDALIE-treated compared to isotype-treated mice (Figure 5B, C, H-J). While the
369 overall inflammatory cytokine mRNA expression profile in the brain and lungs were not
370 different, IFN-gamma mRNA levels were significantly reduced in the brain tissues of
371 CV3-13 GASDALIE-treated mice as compared to controls.

372

373 To confirm the ability of CV3-13 GASDALIE to reduce virus spread and delay
374 neuroinvasion, we terminated the experiment at 4 dpi (Figure 6A). Our BLI analyses
375 confirmed a significant decrease in nLuc signals in the brain both non-invasively and
376 after necropsy (Figure 6B-E, G, H). Viral burden measurements by assessing
377 Nucleocapsid mRNA levels and nLuc activity from Vero ACE2-TMPRSS2 infected with
378 tissue homogenates as well as histological analyses corroborated a significant reduction
379 of viral replication in the brains of CV3-13 GASDALIE-treated mice (Figure 6B-E, G-
380 K). While viral loads and cytokine mRNA levels in the lungs were similar between the
381 two cohorts, there was a significant decrease in overall inflammatory cytokine mRNA
382 levels in the brain consistent with reduced viral loads in CV3-13 GASDALIE-treated
383 mice (Figure 6L, M). Thus, these data demonstrate the potential of non-neutralizing
384 antibodies with enhanced Fc-effector functions to interfere with SARS-CoV-2 spread.

385

386

387

388 **Discussion**

389 Neutralization plays a crucial role in protection against SARS-CoV-2 infection.
390 Therefore many studies have focused on neutralization responses from convalescent
391 plasma (Anand et al., 2021; Beaudoin-Bussieres et al., 2020; Gasser et al., 2021; Long et
392 al., 2020; Prevost et al., 2020; Robbiani et al., 2020), vaccine-elicited antibodies
393 (AstraZeneca and Iqvia Pty, 2021; Baden et al., 2021; Bio and Pfizer, 2021; Janssen and
394 Prevention, 2021; ModernaTx et al., 2022; Polack et al., 2020; Skowronski and De
395 Serres, 2021; Tauzin et al., 2021) and cocktails of mAbs for use as therapeutics (Hurlburt
396 et al., 2020; Jennewein et al., 2021; Ju et al., 2020; Li et al., 2021b; Liu et al., 2020;
397 Schafer et al., 2021; Tian et al., 2020; Wu et al., 2020c; Yuan et al., 2020). However,
398 antibodies are polyvalent molecules able to mediate several antiviral functions (Adeniji et
399 al., 2021). Among these, their capacity to recognize antigens at the surface of viral
400 particles or infected cells and to recruit effector cells is gaining attention for SARS-CoV-
401 2 infection (Brunet-Ratnasingham et al., 2021; Schafer et al., 2021; Tortorici et al., 2020;
402 Ullah et al., 2021; Winkler et al., 2021; Zohar et al., 2020). Also, recent studies on
403 vaccine-elicited humoral responses suggest that additional mechanisms, besides
404 neutralization, could be playing a role in vaccine efficacy (Alter et al., 2021; Amanat et
405 al., 2021; Stankov et al., 2021; Tauzin et al., 2021). To address whether a non-
406 neutralizing antibody can afford any level of protection from SARS-CoV-2 infection, we
407 isolated a non-neutralizing antibody, CV3-13, from a convalescent donor and assessed its
408 impact on the virus. CV3-13 binds the NTD of the Spike with high affinity and defines a
409 novel NTD epitope. As compared to other NTD-supersite-directed neutralizing mAbs
410 which bind the NTD predominately through use of the N1, N3 and N5 loops and

411 approach the NTD from the top, CV3-13 targets the lateral NTD surface, engaging and
412 rearranging a new set of antigenic NTD loops: N2, N4 and N2-3. The NTD interface
413 residues, as identified by the cryo-EM structure, harbor frequent mutations in several
414 circulating SARS-CoV-2 variants, including B.1.1.7 (alpha), B.1.617.1 (kappa), and C.37
415 (lambda), defining the structural basis for viral escape from CV3-13 and CV3-13-like
416 antibodies. For instance, Tyr¹⁴⁴ on the protruding N3 loop, forms close contact with the
417 Tyr/Phe-rich CDR H3 of CV3-13 (Figure 3D), and is deleted in B.1.1.7, which markedly
418 reduces its binding to CV3-13 (Figure 1A). Other NTD mutations outside of the supersite
419 are found within the CV3-13 epitope including an N2 deletion ⁶⁹HisVal⁷⁰ in B.1.1.7, a
420 Gly⁷⁵ to Val/Thr⁷⁶ to Ile double mutation in C.37, and a recurrent Thr⁹⁵ to Ile mutation in
421 B.1.526 and B.1.617.1 (Figure S6A). This is in line with the interpretation that NTD
422 mutations from the emerging variants may be a result of NTD-directed antibody
423 selection, suggesting that non-neutralizing NTD antibodies like CV3-13 influence virus
424 evolution through the Fc-mediated effector functions.

425

426 CV3-13 did not neutralize pseudoviral particles or authentic SARS-CoV-2 viruses but did
427 mediate Fc effector functions against Spike-expressing cells. We suggest that differences
428 in fine epitope specificity and the angle of approach used by CV3-13 as compared to
429 neutralizing NTD-specific mAbs limit its ability to sterically hinder Spike-co-
430 receptor/auxiliary receptor interactions, the prefusion-to-postfusion transition of Spike
431 and/or membrane fusion as has been suggested as a neutralization mechanism for other
432 NTD binding antibodies.

433 Our data demonstrates that an antibody devoid of neutralizing activity is able to reduce
434 virus dissemination and delay death in mice from lethal SARS-CoV-2 challenge via its
435 Fc-mediated effector functions. While wild-type CV3-13 IgG1 did not provide any
436 protection, CV3-13 GASDALIE mutant delayed death in prophylactically treated mice.
437 These data suggest that a threshold of Fc-mediated effector function activity was required
438 to impede virus progression.

439

440 While non-neutralizing antibodies do not directly inactivate free viruses, they remain
441 attractive candidates for eliminating infected cells through Fc engagement and reduce
442 virus burden. Although the characteristics including binding efficiency and angle of
443 approach for efficient elimination of infected cells by non-neutralizing antibodies remains
444 to be elucidated, here we show that enhancing Fc mutations (GASDALIE) are a crucial
445 step in improving *in vivo* efficacy.

446

447 Altogether, CV3-13 represents of a new class of non-neutralizing NTD-directed mAbs
448 that can mediate Fc-effector functions both *in vivo* and *in vitro*. Our data indicates that in
449 addition to neutralization, additional antibody properties including Fc-mediated effector
450 functions contribute to limiting viral spread and aid in fighting SARS-CoV-2 infection.

451 **Supplemental information**

452 6 Supplementary figures and 1 table.

453

454 **Author contributions**

455 GBB, YC, PDU, MP & AF : Conceptualization, Experimental design, Interpretation,
456 Manuscript preparation and Writing; GBB : Generation of the GASDALIE and LALA
457 mutants, Figure generation, Data processing and Initial draft; IU: Animal experiments,
458 BLI, Viral load analyses, Data processing and Figure generation; YC, EP, WT, MP &
459 FZ: Cryo-EM data collection, processing and validation; YC, WT & MP: Structural
460 analysis and Figure generation; PDU: Histological analyses and Figure generation; GBB,
461 JP, MB, SYG, SD, RG, YC, AT, GG, LS, DV, DC, ATM, JR, MP, WM & AF: Isolation,
462 generation and characterization of SARS-CoV-2 S mAb CV3-13; SYG, JP & DV :
463 Generation of the individual B.1.1.7 mutations in the Spike; MR & HC: Provided
464 authentic SARS-CoV-2 virus; PK, MP, PDU, WM & AF: Funding for the work. Every
465 author has read, edited, and approved the final manuscript.

466

467 **Acknowledgements**

468 The authors thank the CRCHUM BSL-3 and Flow Cytometry Platforms for technical
469 assistance. We thank Dr. Stefan Pöhlmann and Dr. Markus Hoffmann (Georg-August
470 University) for the plasmids coding for SARS-CoV-2 and SARS-CoV-1 S and Dr. M.
471 Gordon Joyce (U.S. MHRP) for the CR3022 mAb. Antibodies CV3-1, CV3-13 and CV3-
472 25 were produced using the pTT vector kindly provided by the National Research
473 Council of Canada. Schematics for showing experimental design in figures were created

474 with BioRender.com. This work was supported by le Ministère de l'Économie et de
475 l'Innovation (MEI) du Québec, Programme de soutien aux organismes de recherche et
476 d'innovation, the Fondation du CHUM, a CIHR foundation grant #352417, an
477 Exceptional Fund COVID-19 from the Canada Foundation for Innovation (CFI) #41027,
478 a CIHR operating grant Pandemic and Health Emergencies Research/Project #177958
479 and a CIHR stream 1 and 2 for SARS-CoV-2 Variant Research to A.F. Support was also
480 provided by the Sentinel COVID Quebec network led by the Laboratoire de Santé
481 Publique du Quebec (LSPQ) in collaboration with Fonds de Recherche du Québec-Santé
482 (FRQS) and Genome Canada – Génome Québec, and by the Ministère de la Santé et des
483 Services Sociaux (MSSS) and MEI to A.F. and M.R. NIH grant R01AI163395 to W.M.
484 A.F. is recipient of a Canada Research Chair on Retroviral Entry no. RCHS0235 950-
485 232424. G.B.B. is the recipient of CIHR and FRQS PhD fellowships and J.P. is the
486 recipient of a CIHR PhD fellowship. RG is supported by a MITACS Accélération
487 postdoctoral fellowship. The funders had no role in study design, data collection and
488 analysis, decision to publish, or preparation of the manuscript. CryoEM data were
489 collected at the Maryland Center for Advanced Molecular Analyses which is supported
490 by MPOWER (The University of Maryland Strategic Partnership).

491

492

493 **Disclaimer**

494 The views expressed in this presentation are those of the authors and do not reflect the
495 official policy or position of the Uniformed Services University, the U.S. Army, the
496 Department of Defense, or the U.S. Government.

497

498 **Declaration of Interests**

499 LS, ATM and AF have filed a provisional patent application on the following monoclonal

500 antibodies: CV3-1, CV3-13 and CV3-25.

501 **Figure Legends**

502 **Figure 1. Recognition of SARS-CoV-2 Spikes by CV3-13.**

503 (A) Staining of CV3-13 (5 μ g/mL) on the Spike of the WT (Wuhan-Hu-1) or the B.1.1.7
504 (alpha variant) strain of SARS-CoV-2 expressed at the surface of 293T transfected cells.
505 (B) Staining of CV3-13 (5 μ g/mL) on the different individual mutations of the Spike of
506 the B.1.1.7 strain of SARS-CoV-2 (D614G, Δ 69-70, Δ 144, N501Y, A570D, P681H,
507 T716I, S982A and D1118H). CV3-13 binding was further normalized to the binding
508 obtained with the conformational-independent CV3-25 mAb (5 μ g/mL). Statistical
509 significance was evaluated using a non-parametric Mann-Whitney U test (**, $p < 0.01$).
510 Data are the average of the median of each experiment done at least 2 times. Mean values
511 \pm Standard error of the mean (SEM). (C) SPR-based epitope mapping reveals that CV3-
512 13 explicitly binds to SARS-CoV-2 spike S1 subunit. Different viral antigens from
513 SARS-CoV or SARS-CoV-2 were injected to the immobilized CV3-13 IgG (~5800 RU)
514 at the indicated concentrations. (D) Kinetics measurement of CV3-13 Fab binding to the
515 immobilized SARS-CoV-2 HexaPro spike (~800 RU) with concentrations ranging from
516 3.125 to 200 nM (2-fold serial dilution). The experimental data (red) were fitted to a 1:1
517 Langmuir model (black) in BIA evaluation software.

518

519 **Figure 2. CV3-13 is a non-neutralizing antibody that has potent Fc-mediated
520 effector functions.**

521 (A) Neutralizing activity of titrated concentrations of CV3-13 WT, CV3-13 LALA, CV3-
522 13 GASDALIE and CV3-1 on SARS-CoV-2 Spike D614G bearing pseudoviruses using
523 293T-ACE2 target cells. (B) Neutralizing activity of CV3-13 WT, CV3-13 LALA, CV3-

524 13 GASDALIE and CV3-1 on SARS-CoV-2 D614G authentic virus using Vero E6 target
525 cells. (C) Binding of CR3022, CV3-1, and CV3-13 WT on the surface of Vero E6 cells
526 infected with authentic SARS-CoV-2 virus 48 hours post-infection. Intracellular
527 Nucleocapsid (N) staining was done to separate infected from the uninfected cells. (D)
528 Binding of CV3-13 WT, CV3-13 LALA, CV3-13 GASDALIE and CV3-1 on
529 CEM.NKr.Spike. (E) % ADCC in the presence of titrated amounts of CV3-13 WT, CV3-
530 13 LALA, CV3-13 GASDALIE and CV3-1 using a 1:1 ratio of parental CEM.NKr cells
531 and CEM.NKr-Spike cells as target cells while PBMCs from uninfected donors were
532 used as effector cells. (F) % ADCP in the presence of titrated amounts of CV3-13 WT,
533 CV3-13 LALA, CV3-13 GASDALIE and CV3-1 using CEM.NKr-Spike cells as target
534 cells and THP-1 cells as phagocytic cells. Data are the average of at least 2 experiments
535 for (A), (B), (D)-(F). Data is from a single experiment for (C). Mean values \pm SEM.
536

537 **Figure 3. Cryo-EM structure of SARS-CoV-2 Spike in complex with CV3-13 Fab.**

538 (A) Side and top views of the NTD-targeting CV3-13 Fab and SARS-CoV-2 Spike
539 complex reveal a symmetrical Fab-spike assembly. In the left panel, protomer A of the
540 Spike colored in salmon is shown in ribbons while the other two protomers colored in
541 green or grey and the variable regions (heavy chain - light yellow and light chain - cyan)
542 of three CV3-13 Fabs binding to the lateral surface of the NTD are shown as cryo-EM
543 density (C3-symmetry map). (B) The total buried surface area (BSA) at the Fab/NTD
544 interface contributed by heavy/light chains of CV3-13 and eleven other structurally
545 available NTD-directed mAbs,:4A8 (PDB: 7CL2), S2M28 (7LY3), S2L28 (7LXX), 5-24
546 (7L2F), 4-18 (7L2E), 4-8 (7LQV), 1-87 (7L2D), 2-51 (7L2C), CM25 (7M8J), FC05

547 (7CWS) and DH1052 (7LAB). The BSA values of all the equivalent biological
548 assemblies were calculated and averaged by PISA (Krissinel and Henrick, 2007). (C)
549 Expanded view of CV3-13 interactions with the protruding NTD loops. CV3-13 is shown
550 as surface with the CDRs H1, H2, H3 L1, L2 and L3 colored in yellow, orange, gold,
551 dark cyan, sky blue and deep blue respectively. The NTD regions are displayed as
552 ribbons and the N1 to N5 loops as defined by (Chi et al., 2020) are colored in green,
553 purple, deep red, blue and pink respectively. Of note, the newly identified N2-3 hairpin is
554 highlighted in light green. (D) CV3-13 epitope footprint on the electrostatic potential
555 surface of NTD (colored red, blue and white for negative, positive and neutral
556 electrostatic potential respectively). The NTD residues interacting with CV3-13, which
557 were defined as those with $BSA > 0 \text{ \AA}^2$ as calculated by PISA, are colored as in (C) in
558 accordance with loop locations. The CV3-13 epitope footprints is outlined in green. The
559 deleted Y¹⁴⁴ identified in B.1.1.7 variant that disrupts CV3-13 binding is marked with a
560 red box.

561

562 **Figure 4. Structural basis of SARS-CoV-2 Spike recognition by CV3-13 and NTD-
563 directed neutralizing mAbs.**

564 (A) Two-view diagram of CV3-13 binding to the NTD lateral epitope as compared to 11
565 other NTD-targeting neutralizing mAbs and 3 other infectivity enhancing mAbs. The
566 NTD defined in this study is used here and shown as a light blue surface with the NTD
567 supersite (residues 14-20, 140-158 and 245-264) highlighted in blue. On the left panel,
568 the CV3-13 variable region is shown as a surface in light yellow for heavy chain and
569 cyan for light chain. The approach of other NTD-binding mAbs are graphically

570 represented by arrows (using the average C_α position of the variable region for
571 individual NTD-targeting antibodies (C_α-F_v) pointing toward the average C_α position of
572 the NTD domains as a whole (C_α-NTD) determined by individual NTD/spike-mAb
573 complexes) in indicated colors. On the right panel, the NTD is shown in semi-transparent
574 surface with NTD loops N1-N5 and the newly defined N2-3 hairpin shown as colored
575 ribbons. The CV3-13 epitope boundary is shown with a green line. The C_α-F_v of each
576 NTD antibody is shown as colored spheres. (B) Angles of approach of CV3-13 and other
577 NTD antibodies. The values for individual mAbs are calculated as the angle between C_α-
578 F_v and C_α-NTD with C_α-NTD-C_{ter} acting as the origin. (C) Diagram of NTD-antibody
579 epitopes reveal a distinct set of CV3-13 interacting NTD residues. The buried surface
580 area (BSA) for the NTD residues contacting individual mAbs were calculated by PISA.
581 (D) B-factor representation of the CV3-13-bound NTD domain. (E) Orthogonal views of
582 the NTD superimposition of reported EM/X-ray structures of NTD-binding mAbs in
583 complex with SARS-CoV-2 spike or NTD. On the left panel, N1-N5 loops and N2-3
584 hairpin of CV3-13-bound NTD are shown as colored ribbons with the NTD scaffold is
585 colored in yellow, while the other NTDs are uniformly depicted as grey ribbons. In the
586 right panel, CV3-13-bound NTD is shown by yellow ribbons and the antigen NTD loops
587 from other mAb-NTD structures are shown with colored ribbons with the scaffold
588 colored in grey.

589

590 **Figure 5. Prophylactic treatment with CV3-13 GASDALIE reduces SARS-CoV-2**
591 **spread and delays mortality in K18-hACE2 mouse model**

592 (A) Experimental design for testing *in vivo* efficacy of Fc-effector function enhanced
593 CV3-13 GASDALIE 1 day prior to challenging K18-hACE2 mice (i.n.) with SARS-
594 CoV-2-nLuc followed by non-invasive BLI every 2 days. Human IgG1-treated (12.5 mg
595 IgG/kg) mice were used as the isotype control (Iso) (B) Representative images from BLI
596 of SARS-CoV-2-nLuc-infected mice in ventral (v) and dorsal (d) positions at the
597 indicated dpi and after necropsy for experiment as in A. (C) *Ex-vivo* quantification of
598 nLuc signal as flux (photons/sec) after necropsy. (D, E) Temporal quantification of nLuc
599 signal as flux (photons/sec) computed non-invasively in indicated areas of each animal.
600 (F) Temporal changes in mouse body weight with initial body weight set to 100 %. (G)
601 Kaplan-Meier survival curves of mice statistically compared by log-rank (Mantel-Cox)
602 test for experiment as in A. (H, I) *Ex-vivo* imaging of indicated organs and quantification
603 of nLuc signal as flux (photons/sec) at the indicated dpi after necropsy. (J) Viral loads
604 (nLuc activity/g) from indicated organs using Vero E6 cells as targets. (K, L) Cytokine
605 mRNA levels in lung and brain tissues after necropsy normalized to *Gapdh* in the same
606 sample and that in uninfected mice. Viral loads (J) and inflammatory cytokine profile (K,
607 L) were determined after necropsy for mice when they succumbed to infection. Scale bars
608 in (B) and (H) denote radiance (photons/sec/cm²/steradian). Each curve in (D)-(F) and
609 each data point in (C, I)-(L) represents an individual mouse. The data in (C), (I)-(L) were
610 analyzed by Mann Whitney U test. Statistical significance to isotype control are shown.
611 *, p < 0.05; **, p < 0.01; Mean values ± SD are depicted.

612

613 **Figure 6. CV3-13 GASDALIE delays neuroinvasion and reduces inflammation in**
614 **the brain of SARS-CoV-2-challenged K18-hACE2 mice.**

615 (A) Experimental design for testing virus dissemination in CV3-13 GASDALIE
616 administered K18-hACE2 mice, 1 day prior to challenging (i.n.) with SARS-CoV-2-nLuc
617 followed by non-invasive BLI every 2 days. Human IgG1-treated (12.5 mg IgG/kg) mice
618 were use as the isotype control (Iso). (B) Representative images from BLI of SARS-CoV-
619 2-nLuc-infected mice in ventral (v) and dorsal (d) positions at the indicated dpi and after
620 necropsy at indicated days for experiment as in A. (C) *Ex-vivo* quantification of nLuc
621 signal as flux (photons/sec) at 4 dpi after necropsy. (D, E) Temporal quantification of
622 nLuc signal as flux (photons/sec) computed non-invasively in indicated areas of each
623 animal. (F) Temporal changes in mouse body weight with initial body weight set to
624 100%. (G, H) *Ex-vivo* imaging of organs and quantification of nLuc signal as flux
625 (photons/sec) at the indicated dpi after necropsy. (I) A plot showing real-time PCR
626 analyses to detect SARS-CoV-2 nucleocapsid (N) gene mRNA in indicated organs at 4
627 dpi. The data were normalized to N RNA seen in uninfected mice and GAPDH mRNA
628 levels. (J) Viral loads (nLuc activity/g) from indicated organs using Vero E6 cells as
629 targets. (K) Images of cryosections from brain tissues of SARS-CoV-2-nLuc infected
630 K18-hACE2 mouse treated with indicated antibodies and harvested at 4 dpi. Actin (blue)
631 was detected using phalloidin-CF450, nucleocapsid (green) was detected using anti-
632 SARS-CoV-2 N conjugated to AF488. Scale bar 150 μ m. (L, M) Cytokine mRNA levels
633 in lung and brain tissues after necropsy normalized to *Gapdh* in the same sample and that
634 in uninfected mice. Viral loads (J) and inflammatory cytokine profile (L, M) were
635 determined after necropsy for mice that succumbed to infection. Scale bars in (B) and (G)
636 denote radiance (photons/sec/cm²/steradian). Each curve in (D)-(F) and each data point in
637 (C), (H)-(J), (L) and (M) represents an individual mouse. The data in (C), (H)-(J), (L) and

638 (M) were analyzed by Mann Whitney U test. Statistical significance to isotype control are
639 shown. *, p < 0.05; **, p < 0.01; Mean values \pm SD are depicted.

640 **Supplementary Figure Legends:**

641 **Figure S1. LALA and GASDALIE Fc mutations does not affect CV3-13 binding to**
642 **SARS-CoV-2 Spike.**

643 (A) Indirect ELISA on SARS-CoV-2 Spike 6P using CV3-13 WT, CV3-13 LALA, CV3-
644 13 GASDALIE, CV3-1, CV3-25 and CR3022 (50 ng/mL). CR3022 was used as a
645 positive control in each ELISA plate and for each experiment the data was further
646 normalized on the signal obtained with this antibody. Experiment was done 4 times. (B)
647 Staining with CV3-13 WT, CV3-13 LALA, CV3-13 GASDALIE, CV3-1, CV3-25 and
648 CR3022 (5 μ g/mL) of 293T cells transfected with the SARS-CoV-2 Spike. CR3022 was
649 used as a positive control in each experiment and for each experiment the data was
650 further normalized on the signal obtained with this antibody. Experiment was done 3
651 times. Statistical significance was evaluated using a non-parametric Mann-Whitney U
652 test (n.s., not significant). The data shown is the mean \pm SEM.

653

654 **Figure S2. Prophylactic treatment with non-neutralizing CV3-13 antibody does not**
655 **protect K18-hACE2 mice from lethal SARS-CoV-2 infection**

656 (A) Experimental design for testing *in vivo* efficacy of non-neutralizing CV3-13 antibody
657 administered 1 day prior to challenging K18-hACE2 mice (i.n.) with SARS-CoV-2-nLuc
658 followed by non-invasive BLI every 2 days. Human IgG1-treated (12.5 mg IgG/kg) mice
659 were used as the isotype control (Iso). (B) Representative images from BLI of SARS-CoV-
660 2-nLuc-infected mice in ventral (v) and dorsal (d) positions at the indicated dpi and after
661 necropsy for experiment as in A. (C) *Ex-vivo* quantification of nLuc signal as flux
662 (photons/sec) after necropsy. (D, E) Temporal quantification of nLuc signal as flux

663 (photons/sec) computed non-invasively in indicated areas of each animal. (F) Temporal
664 changes in mouse body weight with initial body weight set to 100 %. (G) Kaplan-Meier
665 survival curves of mice statistically compared by log-rank (Mantel-Cox) test for
666 experiment as in A. (H, I) *Ex-vivo* imaging of organs and quantification of nLuc signal as
667 flux (photons/sec) at the indicated dpi after necropsy. (J) Viral loads (nLuc activity/g)
668 from indicated organs using Vero E6 cells as targets. (K, L) Cytokine mRNA levels in
669 lung and brain tissues after necropsy normalized to *Gapdh* in the same sample and that in
670 uninfected mice. Viral loads (J) and inflammatory cytokine profile (K, L) were
671 determined after necropsy for mice that succumbed to infection. Scale bars in (B) and (H)
672 denote radiance (photons/sec/cm²/steradian). Each curve in (D)-(F) and each data point in
673 (C) and (I)-(L) represents an individual mouse. The data in (C) and (I)-(L) were analyzed
674 by non-parametric Mann Whitney test. Non-significant values are not shown, Mean
675 values \pm SD are depicted.

676

677 **Figure S3. Therapeutic treatment with non-neutralizing CV3-13 antibody does not**
678 **protect K18-hACE2 mice from lethal SARS-CoV-2 infection**

679 (A) Experimental design for testing *in vivo* efficacy of CV3-13 administered at 1 and 2
680 dpi after challenging K18-hACE2 mice (i.n.) with SARS-CoV-2-nLuc followed by non-
681 invasive BLI every 2 days. Human IgG1-treated (12.5 mg IgG/kg) mice were use as the
682 isotype control (Iso). (B) Representative images from BLI of SARS-CoV-2-nLuc-
683 infected mice in ventral (v) and dorsal (d) positions at the indicated dpi and after
684 necropsy at indicated days for experiment as in A. (C) *Ex-vivo* quantification of nLuc
685 signal as flux (photons/sec) after necropsy. (D, E) Temporal quantification of nLuc signal

686 as flux (photons/sec) computed non-invasively in indicated areas of each animal. (F)
687 Temporal changes in mouse body weight with initial body weight set to 100 %. (G)
688 Kaplan-Meier survival curves of mice statistically compared by log-rank (Mantel-Cox)
689 test for experiment as in A. (H, I) *Ex-vivo* imaging of organs and quantification of nLuc
690 signal as flux (photons/sec) at the indicated dpi after necropsy. (J) Viral loads (nLuc
691 activity/g) from indicated organs using Vero E6 cells as targets. (K, L) Cytokine mRNA
692 levels in lung and brain tissues after necropsy normalized to *Gapdh* in the same sample
693 and that in uninfected mice. Viral loads (J) and inflammatory cytokine profile (K, L)
694 were determined after necropsy for mice that succumbed to infection. Scale bars in (B)
695 and (H) denote radiance (photons/sec/cm²/steradian). Each curve in (D)-(F) and each data
696 point in (C) and (I)-(L) represents an individual mouse. The data in (C) and (I)-(L) were
697 analyzed by Mann Whitney U test. Mean values ± SD are depicted.

698

699 **Figure S4. Cryo-EM data collection and processing of SARS-CoV-2 HexaPro Spike-**
700 **CV3-13 Fab complex**

701 (A) Cryo-EM sample preparation. Size-exclusion chromatogram (SEC) of the purified,
702 non-tagged SARS-CoV-2 Hexa-Pro spike (blue) and its overnight mixture with CV3-13
703 Fab (molar-ratio: 1:20) (red) on a superpose 6 300/10 GL column. The SEC peak-shift
704 and SDS-PAGE validate the Fab-spike complex formation. (B) Cryo-EM data processing
705 workflow in cryosparc and the representative raw electron micrograph. (C) Selected 2D
706 averages for *ab initio* reconstruction. (D, E) Side and top views of the final cryo-EM
707 density map imposed with C1 (D) or C3 symmetry (E). (F, G) The Fourier shell
708 correlation curves indicate the overall resolution (FSC cutoff 0.143) using non-uniform

709 refinement (left panel) and the direction distribution plot of all particles used in the final
710 refinement (right panel) for the C1-symmetry map (F) and the C3-symmetry map (G).

711

712 **Figure S5. Cryo-EM structure validation.**

713 (A) Two views of C3-symmetry density map colored by local resolution as calculated in
714 cryoSPARC using a FSC cutoff of 0.143. (B) Blow-up view of the density corresponding
715 to the NTD-Fv portion colored by local resolution. (C) Density fit of NTD and CV3-13
716 Fv at different contour levels (Chimera X) in which the NTD framework is shown as
717 salmon ribbons with NTD loops colored as indicated and the heavy and light chain of
718 CV3-13 variable region colored in light yellow and cyan.

719

720 **Figure S6. Sequence alignments.**

721 (A) Sequence alignment of the NTD (residue 1-317) from 11 SARS-CoV-2 variants. The
722 sequence of ancestral Wuhan strain is listed on the top and the mutations from other
723 variants are listed (“X” denotes a deletion), while the remaining identical residues to the
724 Wuhan strain are shown as “.” for clarity. CV3-13 contacting residues are shaded in grey
725 with the hydrogen-bonded residues marked above the sequence (“+” for the side chain
726 and “-” for the main chain). Residues in the NTD supersite are colored in blue and the
727 recurrently deleted regions (RDR1-4), as described by McCathy and colleagues
728 (McCarthy et al., 2021), are shaded in yellow. The regions corresponding to N1-N5 loops
729 and the N2-3 hairpin are highlighted in colored dashed rectangles. The documented
730 glycosylation sites are boxed in red. The secondary structure assignment on top is derived
731 from the 4A8-spike complex (PDB: 7C2L), the first reported NTD-directed mAb-Spike

732 structure (Chi et al., 2020). (B) V_H and V_L sequence alignments of the affinity-matured
733 CV3-13 and its germline IGHV4 and IGKV1 and the other NTD-directed mAbs. The
734 NTD-contact residues are shaded in grey with those involved in hydrogen-bonds marked
735 with (+) for side chain and (-) for mainchain above the sequence. The somatically
736 mutated residues in the germline sequence are as shown with the unchanged residues
737 marked as “.”.

738

739

740

741 **Supplemental table 1. Cryo-EM data collection and refinement statistics**

Protein	SARS-CoV-2 HexaPro spike/CV3-13 Fab
EMDB	EMD-24628
PDB	7RQ6
<u>Data collection and Reconstruction</u>	
Microscope	FEI Glacios
Voltage (kV)	200
Electron dose (e ⁻ /Å ²)	42
Detector	Gatan K3
Magnification	45,000
Pixel size (Å/pix)	0.889
Defocus range (μm)	0.27-3.03
Micrographs collected	2,181
Particles extracted/final	916,236/98,752
Symmetry imposed	C3
Box size (pix)	512
Unmasked resolution at 0.5/0.143 FSC (Å)	4.45 / 4.22
Masked resolution at 0.5/0.143 FSC (Å)	4.37 /4.19
<u>Refinement and Validation</u>	
Software	CryoSPARC/Phenix 1.18/ccpEM
Protein residues	3951
Chimera CC	0.868
EMRinger Score	1.77
Model vs data CC	0.76
R.m.s. Deviations	
Bond Length (Å)	0.004
Bond Angles (°)	0.726
Molprobability score	2.14
Clash score	13.20
Favored rotamers (%)	99.94
Ramamchandran	
Favored regions (%)	91.34
Allowed regions (%)	8.58
Disallowed regions (%)	0.08

743 STAR Methods

744

745 KEY RESOURCES TABLE

746

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
InVivoMAB human IgG1 isotype control	Bio X Cell	RRID: AB_2687817 Cat # BE0297
Cross-reactive SARS-CoV-1 monoclonal antibody CR3022	ter Meulen et al. 2006 (ter Meulen et al., 2006)	RRID: AB_2848080
CV3-1 (IgG1)	Jennewein et al. 2021 (Jennewein et al., 2021)	N/A
CV3-13 (IgG1)	Jennewein et al. 2021 (Jennewein et al., 2021)	N/A
CV3-25 (IgG1)	Jennewein et al. 2021 (Jennewein et al., 2021)	N/A
CV3-13 LALA (IgG1)	Finzi Lab, Université de Montréal	N/A
CV3-13 GASDALIE (IgG1)	Finzi Lab, Université de Montréal	N/A
Goat anti-Human IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 647	Invitrogen	Cat # A-21445; RRID: AB_2535862
Goat anti-Human IgG Fc Cross-Adsorbed Secondary Antibody, HRP	Invitrogen	Cat # A18823; RRID: AB_2535600
Mouse anti-SARS-CoV-2 nucleocapsid (clone 1C7)	Bioss Antibodies	Cat # bsm-41411M
Alexa Fluor® 488 anti-SARS-CoV-2 nucleocapsid (mBG17)	Prévost et al. bioRxiv 2021 (Prevost et al., 2021)	N/A
Rabbit anti-SARS-CoV-2 nucleocapsid	Novus	Cat # NB100-56576
Goat anti-Human IgG Fc Cross-Adsorbed Secondary Antibody, HRP	Invitrogen	Cat # 31413; RRID : AB_429693
Bacterial and Virus Strains		
SARS-CoV-2-nLuc (strain 2019-nCoV/USA_WA1/2020)	Craig Wilen (Yale University)	K. Plante and Pei-Yong Shi, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch)
Authentic SARS-CoV-2 D614G virus (LSPQ/231457/2020)	Prévost et al. bioRxiv 2021 (Prevost et al., 2021)	N/A
Biological Samples		
Primary human peripheral blood mononuclear cells (PBMCs)	FRQS AIDS network	N/A
Chemicals, Peptides, and Recombinant Proteins		
Liberase TL Research Grade	Sigma-Aldrich	Cat# 5401020001
DNase I recombinant, RNase-free	Roche	Ref # 04716728001
Gibco™ RPMI 1640 medium	Thermo Fisher Scientific	Cat # 11875093
Gibco™ Dulbecco's modified Eagle's medium (DMEM)	Thermo Fisher Scientific	Cat # 11965118

Gibco™ MEM Non-essential amino acid (NEAA) solution	Thermo Fisher Scientific	Cat # 11140050
Gibco™ Penicillin-streptomycin solution (10,000 U/ml)	Thermo Fisher Scientific	Cat # 15140122
Gibco™ Dulbecco's Phosphate Buffered Saline (DPBS)	Thermo Fisher Scientific	Cat # 14190144
Gibco™ L-Glutamine (200mM)	Thermo Fisher Scientific	Cat # 25030081
Gibco™ 0.05% Trypsin-EDTA, phenol red	Thermo Fisher Scientific	Cat # 25300054
Fetal bovine serum	Atlanta Biologicals	Cat # S11550
RBC Lysis Buffer (10X)	BioLegend Inc	Cat # 420301
Bovine Serum Albumin (BSA)	Sigma-Aldrich	Cat# A9647-100G CAS: 9048-46-8
Accutase	BioLegend Inc	Cat # 423201
0.05% Trypsin-EDTA (1X)	Life Technologies	Cat # 25300-054
K3 EDTA 15% Solution	Fisher Scientific	Cat # BD 366450
Sodium pyruvate (100 mM)	Life technologies	Ref # 11360-070
2-Mercaptoethanol	Sigma-Aldrich	Cat # M3148
L-Glutamine (200mM)	Life technologies	Ref # 25030-081
Red blood cell lysis buffer-Hytri-Max	Sigma-Aldrich	Cat # R7757-100ML
Tris-buffered saline (TBS)	Thermo Fisher Scientific	Cat # BP24711
Western Lightning Plus-ECL, Enhanced Chemiluminescence Substrate	Perkin Elmer Life Sciences	Cat # NEL105001EA
Tween20	Thermo Fisher Scientific	Cat # BP337-500
Passive lysis buffer	Promega	Cat # E1941
Triton-X 100 t-octyl phenoxy polyethoxyethanol	American Bioanalytical	Cat # AB02025-00500 CAS: 9002-93-1
Paraformaldehyde (PFA)	Electron Microscopy Sciences	Cat # 19200 CAS: 30525-89-4
Rat serum	Stemcell Biotechnologies	Cat # 13551
L-lysine Monohydrochloride	Sigma-Aldrich	Cat # L1262
Sodium (meta)periodate	Sigma-Aldrich	Cat # 30323-100G CAS: 7790-28-5
Sucrose/ α -D-glucopyranosyl- β -D-fructofuranoside	americanBIO	Ref # AB01900-01000 CAS: 57-50-1
Tissue-Tek O.C.T Compound	Sakura	Cat # 4583
Fc receptor blocker	Innovex	Cat # NB335-5
Superforst® Plus microscope slides	Thermo Scientific	Cat # 4951PLUS-001
Dimethyl sulfoxide (DMSO)	Sigma-Aldrich	Cat # D2650-5X5ML CAS: 67-68-5
Sodium azide	Sigma-Aldrich	Cat # S-8032 EC No: 247-852-1
Sodium phosphate, Monobasic, Monohydrate, Crystal (NaH ₂ PO ₄ ·H ₂ O)	J.T.Baker	Cat # 3818-01 CAS: 10049-21-5
Sodium phosphate, Dibasic, Anhydrous (Na ₂ HPO ₄)	J.T.Baker	Cat # 3828-01 CAS: 7558-79-4
Glycine	American Bioanalytical	Cat # AB00730-01000 CAS: 56-40-6
The PEG-it Virus precipitation solution (5X)	System Bioscience	Cat # LV810A-1
Avicel® Pharma Grade	FMC	Cat # RC-581 NF 10.20944/preprints202005.0 264.v1
Vector® TrueView® Autofluorescence Quenching Kit	Vector Laboratories	SP-8400
Puromycin dihydrochloride	Millipore Sigma	Cat # P8833
D-Luciferin potassium salt	Prolume	Cat # 306

Formaldehyde 37%	Thermo Fisher Scientific	Cat # F79-500
LIVE/DEAD Fixable AquaVivid Cell Stain	Thermo Fisher Scientific	Cat # L34957
Cell proliferation dye eFluor670	Thermo Fisher Scientific	Cat # 65-0840-85
Cell proliferation dye eFluor450	Thermo Fisher Scientific	Cat # 65-0842-85
FreeStyle 293F expression medium	ThermoFisher Scientific	Cat # 12338002
ExpiFectamine 293 transfection reagent	ThermoFisher Scientific	Cat # A14525
Protein A Sepharose CL-4B	Cytiva	Cat # 17096303
Ni-NTA agarose	Invitrogen	Cat # R90110
Papain-agarose resin	ThermoFisher Scientific	Cat # 20341
SARS-CoV-2 S1 domain C-His tag protein, from HEK293 cells	BEI Resources	NR-53798
SARS-CoV-2 S2 ectodomain C-His tag protein, from Baculovirus	BEI Resources	NR-53799
SIGMAFAST OPD	EMD Millipore	Cat # P9187
Critical Commercial Assays		
Nano-Glo Luciferase Assay System (nanoluc substrate)	Promega	Cat # N1120
Pierce™ Gaussia Luciferase Glow Assay Kit	ThermoFisher Scientific	Cat # 16160
Strep-Tactin®XT 4Flow	IBA Lifesciences	Cat # 2-5998-000
KAPA SYBR FAST qPCR Master Mix (2X) Kit	KAPA Biosystems	Cat # KK4600 and KK4601
Ambion DNase I (RNase-free)	ThermoFisher Scientific	Cat # AM2222
RNeasy Mini Kit (50)	Qiagen	Cat #/ID 74104
iScript advanced cDNA kit	Bio Rad	Cat #1725038
iQ Multiplex Powermix	Bio Rad	Cat # 1725848
iScript™ cDNA Synthesis Kit	Bio Rad	Cat # 95047-100
Deposited Data		
Experimental Models: Cell Lines		
Vero E6 (female, <i>Chlorocebus sabaeus</i>)	ATCC	Cat # CRL-1586; RRID: CVCL_0574
Vero E6-TMPRSS2 (female, <i>Chlorocebus sabaeus</i>)	Craig B. Wilen, Yale University	N/A
HEK293 (female, <i>Homo sapiens</i>)	ATCC	Cat # CRL-1573; RRID: CVCL_0045
HEK293T (female, <i>Homo sapiens</i>)	ATCC	Cat # CRL-3216; RRID: CVCL_0063
Expi293F™ GnTI- Cells (female, <i>Homo sapiens</i>)	ThermoFisher Scientific	Cat # A39240; RRID: CVCL_B0J7
Expi293F cells (female, <i>Homo sapiens</i>)	ThermoFisher Scientific	Cat # A14527; RRID: CVCL_D615
293T-ACE2 (female, <i>Homo sapiens</i>)	Prevost et al. 2020 (Prevost et al., 2020)	N/A
CEM.NKr-CCR5+ (female, <i>Homo sapiens</i>)	NIH AIDS Reagent Program	Cat # 4376; RRID: CVCL_X623
CEM.NKr-Spike (female, <i>Homo sapiens</i>)	Anand et al., 2021 (Anand et al., 2021)	N/A
THP-1 (male, <i>Homo sapiens</i>)	ATCC	Cat # TIB-202; RRID: CVCL_0006
FreeStyle 293F cells (female, <i>Homo sapiens</i>)	ThermoFisher Scientific	Cat # R79007; RRID: CVCL_D603
Experimental Models: Organisms/Strains		
B6.Cg-Tg(K18-ACE2)2PrImn/J	The Jackson Laboratory	Stock No: 034860

Oligonucleotides		
SARS-CoV-2 N F: 5'-ATGCTGCAATCGTGCTACAA-3'	Yale School of Medicine, W. M. Keck Foundation, Oligo Synthesis Resource	
SARS-CoV-2 N R: 5'-GACTGCCGCCTCTGCTC-3'	Yale School of Medicine, W. M. Keck Foundation, Oligo Synthesis Resource	
Human IgG1 G236A-S239D F : 5'-CTCCTGGCGGGACCGGATGTCTCCTCTTC-3'	Integrated DNA Technologies	N/A
Human IgG1 G236A-S239D R : 5'-GAAGAGGAAGACATCCGGCCGCCAGGAG-3'	Integrated DNA Technologies	N/A
Human IgG1 A330L-I332E F : 5'-GCCCTCCCCTCCCGAAGAGAGAAAACCATC-3'	Integrated DNA Technologies	N/A
Human IgG1 A330L-I332E R : 5'-GATGGTTTCTCTCGGGAGTGGGAGGGC-3'	Integrated DNA Technologies	N/A
Human IgG1 L234A-L235A F: 5'-CAGCACCTGAAGCCGCGGGGGACCGTC-3'	Integrated DNA Technologies	N/A
Human IgG1 L234A-L235A R: 5'-GACGGTCCCCCGCGGCTTCAGGTGCTG-3'	Integrated DNA Technologies	N/A
FAM-Gapdh	Bio Rad	Cat # 12001950
HEX-IL6	Bio Rad	Cat # 10031228
TEX615-CCL2	Bio Rad	Cat # 10031234
Cy5-CXCL10	Bio Rad	Cat # 10031231
Cy5.5-IFNg	Bio Rad	Cat # 10031237
Transgene Forward: GAC CCC TGA GGG TTT CAT ATA G	Yale School of Medicine, W. M. Keck Foundation, Oligo Synthesis Resource	#53437, Genotyping primers for K18-hACE2 mice. The Jackson Laboratory
Common: CAC CAA CAC AGT TTC CCA AC	Yale School of Medicine, W. M. Keck Foundation, Oligo Synthesis Resource	#53438, Genotyping primers for K18-hACE2 mice. The Jackson Laboratory
Wildtype forward: AAG TTG GAG AAG ATG CTG AAA GA	Yale School of Medicine, W. M. Keck Foundation, Oligo Synthesis Resource	#53439, Genotyping primers for K18-hACE2 mice. The Jackson Laboratory
Recombinant DNA		
pCMV-SARS-CoV-2 Spike D614G Δ19	Ullah, Prévost et al. 2021 (Ullah et al., 2021)	N/A
pCMV-SARS-CoV-2 Spike	Sino Biological	Cat # VG40589-UT
pCMV delta R8.2	Addgene	Cat #12263
HIV-1-inGluc-ΔEnv	Mothes Lab, Yale University	N/A
pCG1-SARS-CoV-2 Spike	Hoffmann et al., 2020 (Hoffmann et al., 2020)	N/A
pCG1-SARS-CoV-2 Spike D614G	Beaudoin-Bussières et al. mBio 2020 (Beaudoin-Bussieres et al., 2020)	N/A
pCG1-SARS-CoV-2 Spike D614G N501Y	Prévost et al. bioRxiv 2021 (Prevost et al., 2021)	N/A
pcDNA3.1-SARS-CoV-2 Spike B.1.1.7	Tauzin et al. CHM 2021 (Tauzin et al., 2021)	N/A
pCG1-SARS-CoV-2 Spike D614G Δ69-70	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A

pCG1-SARS-CoV-2 Spike D614G Δ144	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
pCG1-SARS-CoV-2 Spike D614G A570D	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
pCG1-SARS-CoV-2 Spike D614G P681H	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
pCG1-SARS-CoV-2 Spike D614G T716I	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
pCG1-SARS-CoV-2 Spike D614G S982A	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
pCG1-SARS-CoV-2 Spike D614G D1118H	Li, Chen, Prévost et al. bioRxiv 2021 (Li et al., 2021b)	N/A
paH-SARS-CoV-2 Spike HexaPro	Dr Jason S. McLellan, University of Texas	N/A
pcDNA3.1-SARS-CoV-2 RBD	Beaudoin-Bussières et al., 2020b (Beaudoin-Bussières et al., 2020)	N/A
pNL4.3 R-E- Luc	NIH AIDS Reagent Program	Cat # 3418
pIRES2-eGFP vector	Clontech	Cat # 6029-1
Software and Algorithms		
FlowJo v10.5.3	Treestar	https://www.flowjo.com/
Nikon-Elements AR Analysis v4.13 and Acquisition v4.5	Nikon	
Adobe Photoshop CC	Adobe Systems Inc	N/A
Adobe Illustrator CC	Adobe Systems Inc	N/A
BioRender (schematics in figures)	BioRender.com	N/A
CFX MaestroTM Software (qPCR analyses)	Bio-rad Inc	N/A
Graphpad Prism v9.0.1	GraphPad Software	https://www.graphpad.com/

SerialEM software package	David N. Mastronarde, University of Colorado Boulder	https://bio3d.colorado.edu/SerialEM/
IMOD software package	David N. Mastronarde, University of Colorado Boulder	https://bio3d.colorado.edu/IMOD/
CryoSPARC	Punjani et al., 2017 (Punjani et al., 2017)	https://cryosparc.com
Phenix	Liebschner. et al. 2019 (Liebschner et al., 2019)	https://phenix-online.org/
Coot	Emsley et al., 2010 (Emsley et al., 2010)	https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Relion	Scheres and Chen, 2012; Zivanov et al., 2019 (Scheres and Chen, 2012) (Zivanov et al., 2018)	https://www2.mrc-lmb.cam.ac.uk/relion/index.php?title=&equals;Main_Page
UCSF ChimeraX	Goddard et al., 2018 (Goddard et al., 2018)	https://www.rbvi.ucsf.edu/chimerax/
UCSF Chimera	Goddard et al., 2007 (Goddard et al., 2007)	http://plato.cgl.ucsf.edu/chimera RRID: SCR_004097
PyMOL	The PyMOL Molecular Graphics System	https://www.schrodinger.com/products/pymol
MolProbity	Chen et al., 2010 (Chen et al., 2010)	http://molprobity.biochem.duke.edu/
PISA	Krissinel, et al., 2007 (Krissinel and Henrick, 2007)	https://www.ebi.ac.uk/pdbe/pisa/
Gen5 microplate reader and imager software	Bioteck	N/A
BIAevaluation software	GE Healthcare	Cat # BR-1005-97
Other		
TriStar LB 941 Multimode Microplate Reader and Luminometer	BERTHOLD TECHNOLOGIES GmbH & Co. KG	Finzi and Mothes Lab
BD LSR II Flow Cytometer	BD Biosciences	https://medicine.yale.edu/immuno/flowcore/
Leica Cryostat CM1950	Leica	CM1950 (Iwasaki Lab; Yale University)
Nikon W1 Spinning Disk Confocal microscope	Nikon Instruments Inc, Americas	Yale West Campus Imaging Core
C1000 Touch thermal cycler	Bio-Rad	
CFX Connect™ Real-Time PCR Detection System	Bio-Rad	
Nanodrop Spectrophotometer ND-1000	ThermoFisher Scientific	
27G x ½" insulin syringe with needle	TERUMO	Cat # SS*05M2713
31G insulin syringe	BD Biosciences	Cat # 328468
70 µm Nylon cell strainer	FALCON	Cat # 352350
Acrodisc 25 mm Syringe Filter w/0.45 µm HT Tuffryn Membrane	PALL Life Sciences	Cat # 4184
Superfrost Plus Microscope Slides	Thermo Scientific	Cat # 4951PLUS-001
96-well white plates for luciferase assays	Costar	Cat # 3917
Accu-Edge High Profile Microtome Blades	SAKURA	Cat # 4685
Microcover glasses 1 ounce No.1	VWR	Cat # 48393 106
Tissue-Tek Cryomold	SAKURA	Ref # 4557
Brass planchettes	Ted Pella, Inc.	Type A and Type B

Cryotubes	Thermo Scientific Nunc	Cat # 340711
Teflon-coated glass microscope slides		
Microsurgical scalpel	Electron Microscopy Sciences	Cat # 72047-15
Plastic sectioning stubs	Home Made	
Diamond knife	Diatome, Ltd	
Formvar-coated copper-rhodium slot grids	Electron Microscopy Sciences	
Dual-axis tomography holder	E.A. Fischione Instruments, Export PA	Model 2040
Polystyrene Round-bottom Tube	FALCON	Ref # 352058
Optical Flat 8-Cap Strips for 0.2 ml tube stripes/plates	Bio-Rad	Cat # TCS0803
Individual PCR tubes 8-tube Strip, clear	Bio-Rad	Cat # TLS0801
ThermalGrid Rigid Strip PCR tubes	Denville Scientific INC	Ref # C18064
96 well U bottom plate	FALCON	Ref # 353077
XIC-3 animal isolation chamber	PerkinElmer	
IVIS Spectrum	PerkinElmer	Yale University ABSL-3 facility
RAS-4 Rodent Anesthesia System	PerkinElmer	CLS146737
QUANTIFOIL® holey carbon grids	Electron Microscopy Sciences	Cat # Q250-CR1
Synergy LX multi-mode reader	Bioteck	N/A
Superose 6 10/300 GL	GE Healthcare	Cat # 17517201
Hiload 16/600 Superdex 200pg	GE Healthcare	Cat # 28989335
Biacore 3000	GE Healthcare	N/A
Protein A sensor chip	Cytiva	Cat # 29127558
Ni-NTA sensor chip	Cytiva	Cat # BR100034

748 **RESOURCE AVAILABILITY**

749 **Lead Contact**

750 Further information and requests for resources and reagents should be directed to and will
751 be fulfilled by the Lead Contact, Andrés Finzi (andres.finzi@umontreal.ca).

752

753 **Materials Availability**

754 All other unique reagents generated in this study are available from the corresponding
755 authors with a completed Materials Transfer Agreement.

756

757 **Data and Code Availability**

758 The data that support the findings of this study are available from the corresponding
759 authors upon reasonable request.

760

761 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

762

763 **Cell and Viruses**

764 Vero E6 (CRL-1586, American Type Culture Collection (ATCC) or Vero E6-TMPRSS2
765 (Craig B. Wilen, Yale University), were cultured at 37°C in RPMI supplemented with
766 10% fetal bovine serum (FBS), 10 mM HEPES pH 7.3, 1 mM sodium pyruvate, 1× non-
767 essential amino acids, and 100 U/ml of penicillin–streptomycin. The 2019n-
768 CoV/USA_WA1/2019 isolate of SARS-CoV-2 expressing nanoluciferase was obtained
769 from Craig Wilen, Yale University and generously provided by K. Plante and Pei-Yong
770 Shi, World Reference Center for Emerging Viruses and Arboviruses, University of Texas

771 Medical Branch) (Xie et al., 2020a; Xie et al., 2020b). Virus was propagated in Vero-E6
772 or Vero E6-TMPRSS2 by infecting them in T150 cm² flasks at a MOI of 0.1. The culture
773 supernatants were collected after 72 h when cytopathic effects were clearly visible. The
774 cell debris was removed by centrifugation and filtered through 0.45-micron filter to
775 generate virus stocks. Viruses were concentrated by adding one volume of cold (4 °C) 4x
776 PEG-it Virus Precipitation Solution (40 % (w/v) PEG-8000 and 1.2 M NaCl; System
777 Biosciences) to three volumes of virus-containing supernatant. The solution was mixed
778 by inverting the tubes several times and then incubated at 4 °C overnight. The
779 precipitated virus was harvested by centrifugation at 1,500 × g for 60 minutes at 4 °C.
780 The concentrated virus was then resuspended in PBS then aliquoted for storage at -80°C.
781 All work with infectious SARS-CoV-2 was performed in Institutional Biosafety
782 Committee approved BSL3 and A-BSL3 facilities at Yale University School of Medicine
783 or Université de Montréal using appropriate positive pressure air respirators and
784 protective equipment. CEM.NKr, CEM.NKr-Spike, THP-1 and peripheral blood
785 mononuclear cells (PBMCs) were maintained at 37°C under 5% CO₂ in RPMI media,
786 supplemented with 10% FBS and 100 U/mL penicillin/streptomycin. 293T (or
787 HEK293T) and 293T-ACE2 cells were maintained at 37°C under 5% CO₂ in DMEM
788 media, supplemented with 5% FBS and 100 U/mL penicillin/streptomycin. CEM.NKr
789 (NIH AIDS Reagent Program) is a T lymphocytic cell line resistant to NK cell-mediated
790 lysis. CEM.NKr-Spike stably expressing SARS-CoV-2 Spike were used as target cells in
791 ADCC and ADCP assays (Anand et al., 2021). THP-1 monocytic cell line (ATCC) was
792 used as effector cells in the ADCP assay. PBMCs were obtained from healthy donor
793 through leukapheresis and were used as effector cells in ADCC assay. 293T cells

794 (obtained from ATCC) were derived from 293 cells, into which the simian virus 40 T-
795 antigen was inserted. 293T-ACE2 cells stably expressing human ACE2 is derived from
796 293T cells (Prevost et al., 2020). 293T-ACE2 cells were cultured in medium
797 supplemented with 2 mg/mL of puromycin (Millipore Sigma).

798

799 **Ethics statement**

800 PBMCs from healthy individuals as a source of effector cells in our ADCC assay were
801 obtained under CRCHUM institutional review board (protocol #19.381). Research
802 adhered to the standards indicated by the Declaration of Helsinki. All participants were
803 adults and provided informed written consent prior to enrollment in accordance with
804 Institutional Review Board approval.

805

806 **Antibodies**

807 The human antibodies (CV3-1, CV3-25 and CV3-13) used in the work were isolated
808 from blood of male convalescent donor CV3 recovered 41 days after symptoms onset
809 using fluorescent recombinant stabilized Spike ectodomains (S2P) as probes to identify
810 antigen-specific B cells as previously described (Lu et al., 2020; Seydoux et al., 2020).
811 Light and heavy chains were cloned into the pTT expression plasmid (Durocher et al.,
812 2002). Site-directed mutagenesis was performed on plasmids expressing CV3-13
813 antibody heavy chains in order to introduce the LALA mutations (L234A/L235A) and the
814 GASDALIE mutations (G236A/S239D/A330L/I332E) using to the QuickChange II XL
815 site-directed mutagenesis protocol (Stratagene).

816

817

818 **Mouse Experiments**

819 All experiments were approved by the Institutional Animal Care and Use Committees
820 (IACUC) of and Institutional Biosafety Committee of Yale University (IBSCYU). All the
821 animals were housed under specific pathogen-free conditions in the facilities provided
822 and supported by Yale Animal Resources Center (YARC). All IVIS imaging, blood draw
823 and virus inoculation experiments were done under anesthesia using regulated flow of
824 isoflurane:oxygen mix to minimize pain and discomfort to the animals.

825

826 **METHOD DETAILS**

827 **SARS-CoV-2 infection and treatment conditions**

828 For all *in vivo* experiments, the 6 to 8 weeks male and female hACE2-K18 mice were
829 intranasally challenged with 1×10^5 PFU in 25-30 μl volume under anesthesia (0.5 - 5 %
830 isoflurane delivered using precision Dräger vaporizer with oxygen flow rate of 1 L/min).
831 For mAb treatment using prophylaxis regimen, mice were treated with 250 μg (12.5 $\mu\text{g/g}$
832 body weight) of indicated antibodies (CV3-13 WT or CV3-13 GASDALIE) via
833 intraperitoneal injection (i.p.) 24 h prior to infection. For mAb treatment under
834 therapeutic regimen, mice were treated at 1 and 2 dpi intraperitoneally with CV3-13 (12.5
835 $\mu\text{g/g}$ body weight). Body weight was measured and recorded daily. The starting body
836 weight was set to 100 %. For survival experiments, mice were monitored every 6-12 h
837 starting six days after virus administration. Lethargic and moribund mice or mice that had
838 lost more than 20 % of their body weight were sacrificed and considered to have
839 succumbed to infection for Kaplan-Meier survival plots.

840

841 **Bioluminescence Imaging (BLI) of SARS-CoV-2 infection**

842 All standard operating procedures and protocols for IVIS imaging of SARS-CoV-2
843 infected animals under ABSL-3 conditions were approved by IACUC, IBSCYU and
844 YARC. All the imaging was carried out using IVIS Spectrum® (PerkinElmer) in XIC-3
845 animal isolation chamber (PerkinElmer) that provided biological isolation of anesthetized
846 mice or individual organs during the imaging procedure. All mice were anesthetized via
847 isoflurane inhalation (3 - 5 % isoflurane, oxygen flow rate of 1.5 L/min) prior and during
848 BLI using the XGI-8 Gas Anesthesia System. Prior to imaging, 100 µL of nanoluciferase
849 substrate, furimazine (NanoGlo™, Promega, Madison, WI) diluted 1:40 in endotoxin-
850 free PBS was retro-orbitally administered to mice under anesthesia. The mice were then
851 placed into XIC-3 animal isolation chamber (PerkinElmer) pre-saturated with isothermia
852 and oxygen mix. The mice were imaged in both dorsal and ventral position at indicated
853 days post infection. The animals were then imaged again after euthanasia and necropsy
854 by spreading additional 200 µL of substrate on to exposed intact organs. Infected areas of
855 interest identified by carrying out whole-body imaging after necropsy were isolated,
856 washed in PBS to remove residual blood and placed onto a clear plastic plate. Additional
857 droplets of furimazine in PBS (1:40) were added to organs and soaked in substrate for 1-2
858 min before BLI.

859 Images were acquired and analyzed with the manufacturer's Living Image v4.7.3
860 *in vivo* software package. Image acquisition exposures were set to auto, with imaging
861 parameter preferences set in order of exposure time, binning, and f/stop, respectively.
862 Images were acquired with luminescent f/stop of 2, photographic f/stop of 8. Binning was

863 set to medium. Comparative images were compiled and batch-processed using the image
864 browser with collective luminescent scales. Photon flux was measured as luminescent
865 radiance (p/sec/cm²/sr). During luminescent threshold selection for image display,
866 luminescent signals were regarded as background when minimum threshold levels
867 resulted in displayed radiance above non-tissue-containing or known uninfected regions.
868 To determine the pattern of virus spread, the image sequences were acquired every day
869 following administration of SARS-CoV-2 (i.n). Image sequences were assembled and
870 converted to videos using Image J.

871

872 **Analyses of signature inflammatory cytokines mRNA**

873 Brain and lung samples were collected from mice at the time of necropsy.
874 Approximately, 20 mg of tissue was suspended in 500 μ L of RLT lysis buffer, and RNA
875 was extracted using RNeasy plus Mini kit (Qiagen Cat # 74136), reverse transcribed with
876 iScript advanced cDNA kit (Bio-Rad Cat #1725036). To determine levels of signature
877 inflammatory cytokines, multiplex qPCR was conducted using iQ Multiplex Powermix
878 (Bio Rad Cat # 1725848) and PrimePCR Probe Assay mouse primers FAM-GAPDH,
879 HEX-IL6, TEX615-CCL2, Cy5-CXCL10, and Cy5.5-IFNgamma. The reaction plate was
880 analyzed using CFX96 touch real time PCR detection system. Scan mode was set to all
881 channels. The PCR conditions were 95 °C 2 min, 40 cycles of 95 °C for 10 s and 60 °C
882 for 45 s, followed by a melting curve analysis to ensure that each primer pair resulted in
883 amplification of a single PCR product. mRNA levels of il6, ccl2, cxcl10 and ifng in the
884 cDNA samples of infected mice were normalized to gapdh with the formula ΔC_t (target

885 gene)=C_t(target gene)-C_t(gapdh). The fold increase was determined using 2^{-ΔΔC_t} method
886 comparing treated mice to uninfected controls.

887

888 **Protein expression and purification**

889 FreeStyle 293F cells (Thermo Fisher) were grown in FreeStyle 293F medium (Thermo
890 Fisher) to a density of 1x10⁶ cells/mL at 37°C with 8% CO₂ with regular agitation (135
891 rpm). Cells were transfected with a plasmid coding for recombinant stabilized SARS-
892 CoV-2 ectodomain (residue 1-1208) (S-6P or HexaPro Spike; obtained from Dr. Jason S.
893 McLellan) (Hsieh et al., 2020), his-tagged SARS-CoV-2 RBD (residue 319-541) or
894 SARS-CoV RBD-SD1(residue 306-577) using polyethylenimine (PEI). One-week post-
895 transfection, supernatants were clarified and filtered using a 0.22 μm filter (Thermo
896 Fisher Scientific). The crude S-6P was purified on strep-tactin resin (IBA) followed by
897 size-exclusion chromatography on Superose 6 10/300 column (GE Healthcare) in 10 mM
898 Tris pH 8.0 and 200 mM NaCl (SEC buffer). RBD was purified on a Ni-NTA column
899 (Invitrogen) followed by size-exclusion chromatography on a Hiload 16/600 Superdex
900 200pg column using the same SEC buffer. For CryoEM protein sample preparation, the
901 expression plasmid encoding S-6P was transfected into 293F GnT1- cells using PEI. The
902 protein was harvested and purified with the same protocol as above. The C-terminal twin-
903 Strep-Tag and 8xHis tag on S-6P was removed by HRV3C (Sigma) digestion as
904 described in (Wrapp et al., 2020b) and the cleaved protein was further purified on a Ni-
905 NTA column followed by gel filtration on a Superose 6 10/300 in SEC buffer. Purified
906 proteins were snap-frozen in liquid nitrogen and stored in aliquots at -80°C until further
907 use. Protein purity was confirmed by SDS-PAGE.

908 The expression plasmids encoding the heavy and light chains of CV3-13 IgG were
909 transiently transfected into Expi293F cells (Thermo Fisher) using ExpiFectamine 293
910 transfection reagent as per the manufacturer's protocol (Thermo Fisher). After 6-days
911 post-transfection, the antibody was purified on Protein A resin from cell supernatant
912 (Thermo Fisher) before the overnight papain digestion at 37°C using immobilized papain
913 agarose (Thermo Fisher). The resulting Fab was separated from Fc and undigested IgG
914 by passage over protein A resin. Fab was further purified by gel filtration using a
915 Superose 6 10/300 column before use in SPR binding or cryo-EM sample preparation.

916 FreeStyle 293F cells (Thermo Fisher) were grown in FreeStyle 293F medium (Thermo
917 Fisher Scientific) to a density of 1×10^6 cells/mL at 37°C with 8% CO₂ with regular
918 agitation (135 rpm). The expression plasmids encoding the heavy and light chains of
919 CV3-1, CV3-25, CV3-13 WT, CV3-13 LALA and CV3-13 GASDALIE IgG were
920 transfected into Freestyle 293F cells (Thermo Fisher Scientific) using ExpiFectamine 293
921 transfection reagent as per the manufacturer's protocol (Thermo Fisher Scientific). 1
922 week later, the cells were pelleted and discarded. The supernatants were filtered (Thermo
923 Fisher Scientific) (0.22-μm-pore-size filter) as directed by the manufacturer (Thermo
924 Fisher Scientific). The supernatant containing the antibody was then passed over Protein
925 A beads (Cytiva). Following this, the antibodies were washed, eluted and dialyzed
926 against PBS before their concentration being measured. Antibodies were then aliquoted
927 and stored at -80°C until further use.

928

929 **SARS-CoV-2 Spike ELISA (enzyme-linked immunosorbent assay)**

930 The SARS-CoV-2 Spike ELISA assay used was recently described (Beaudoin-Bussieres
931 et al., 2020; Prevost et al., 2020). Briefly, recombinant SARS-CoV-2 S-6P (2.5 µg/ml), or
932 bovine serum albumin (BSA) (2.5 µg/ml) as a negative control, were prepared in PBS
933 and were adsorbed to plates (MaxiSorp; Nunc) overnight at 4 °C. Coated wells were
934 subsequently blocked with blocking buffer (Tris-buffered saline [TBS] containing 0.1%
935 Tween20 and 2% BSA) for 1 hour at room temperature. Wells were then washed four
936 times with washing buffer (TBS containing 0.1% Tween20). CV3-1, CV3-25, CV3-13
937 WT, CV3-13 LALA, CV3-13 GASDALIE and CR3022 mAbs (50 ng/ml) were prepared
938 in a diluted solution of blocking buffer (0.1 % BSA) and incubated in the coated wells for
939 90 minutes at room temperature. Plates were washed four times with washing buffer
940 followed by incubation with HRP-conjugated anti-Human IgG secondary Abs
941 (Invitrogen) (at a concentration of 0.267 µg/mL in a diluted solution of blocking buffer
942 [0.4% BSA]) for 1 hour at room temperature, followed by four washes. HRP enzyme
943 activity was determined after the addition of 40 µL of a 1:1 mix of Western Lightning
944 oxidizing and luminol reagents (Perkin Elmer Life Sciences). Light emission was
945 measured with a LB941 TriStar luminometer (Berthold Technologies). Signal obtained
946 with BSA was subtracted for each antibody and was then normalized to the signal
947 obtained with CR3022 mAb present in each plate.

948

949 **Flow cytometry analysis of cell-surface Spike staining.**

950 10 µg of the different expressors of the original SARS-CoV-2 Spike (Hoffmann et al.,
951 2020) or the different mutants of the SARS-CoV-2 Spike (B.1.1.7, D614G, Δ69-70,
952 Δ144, N501Y, A570D, P681H, T716I, S982A and D1118H) (Li et al., 2021b; Prevost et

953 al., 2021; Tauzin et al., 2021) were co-transfected with 2.5 μ g of a green fluorescent
954 protein (GFP) expressor (pIRES2-eGFP) into 2×10^6 293T cells using the standard
955 calcium phosphate method. Before staining with primary antibodies, cells were washed 2
956 times. At 48 hours post transfection, 293T cells were stained with CR3022, CV3-1, CV3-
957 13 WT, CV3-13 LALA, CV3-13 GASDALIE and CV3-25 antibodies (5 μ g/mL) for 45
958 minutes at 37°C before being washed 2 times in PBS. Alexa Fluor-647-conjugated goat
959 anti-human IgG (H+L) Abs (Invitrogen) (2 μ g/mL) and AquaVivid (Thermo Fischer
960 Scientific) (Dilution of 1/1000) were used to stain the cells for 20 minutes at room
961 temperature. The percentage of transfected cells (GFP+ cells) was determined by gating
962 the living cell population based on the basis of viability dye staining (AquaVivid, Thermo
963 Fischer Scientific). Samples were acquired on a LSRII cytometer (BD Biosciences) and
964 data analysis was performed using FlowJo v10.5.3 (Tree Star).

965 For cell surface staining of transduced CEM.NKr-Spike cells, CEM.NKr-Spike cells
966 were stained for 45 minutes at room temperature with CV3-1, CV3-13 WT, CV3-13
967 LALA and CV3-13 GASDALIE (0.0025 μ g/mL, 0.01 μ g/mL, 0.05 μ g/mL, 0.25 μ g/mL,
968 1 μ g/mL and 5 μ g/mL) in PBS. Cells were then washed twice with PBS and stained with
969 2 μ g/mL of anti-human AlexaFluor 647 (AF-647) secondary antibody and 1:1000
970 dilution of viability dye AquaVivid (Thermo Fisher) for 20 minutes in PBS at room
971 temperature. Cells were then washed twice with PBS and fixed in a 2% PBS-
972 formaldehyde solution. All samples were acquired on an LSRII cytometer (BD
973 Biosciences) and data analysis was performed using FlowJo v10.5.3 (Tree Star).

974

975 **Surface plasmon resonance (SPR)**

976 All surface plasma resonance assays were performed on a Biacore 3000 (GE Healthcare)
977 with a running buffer of 10 mM HEPES pH 7.5 and 150 mM NaCl, supplemented with
978 0.05% Tween 20 at 25°C. Initial epitope mapping was performed by the binding of
979 SARS-CoV RBD (residue 306-577) and other SARS-CoV-2 antigens (S1 and S2
980 obtained from BEI Resources) to immobilized CV3-13 IgG (~5800 RU) on a Protein A
981 sensor chip (Cytiva). For the kinetic measurement of CV3-13 Fab binding to SARS-CoV-
982 2 spike, ~800 RU of his-tagged SARS-CoV-2 S-6P was immobilized on a Ni-pretreated
983 NTA chip (Cytiva). 2-fold serial dilutions of purified CV3-13 Fab were then injected
984 with concentrations ranging from 3.125 to 200 nM. Sensorgrams were corrected by
985 subtraction of the corresponding blank channel as well as for the buffer background and
986 kinetic constants determined using a 1:1 Langmuir model with the BIAevaluation
987 software (GE Healthcare). Goodness of fit of the curve was evaluated by the Chi² of the
988 fit with a value below 3 considered acceptable.

989

990 **Pseudovirus neutralization assay**

991 Target cells were infected with single-round luciferase-expressing lentiviral particles.
992 Briefly, 293T cells were transfected by the calcium phosphate method with the pNL4.3
993 R-E- Luc plasmid (NIH AIDS Reagent Program) and a plasmid encoding for SARS-
994 CoV-2 Spike at a ratio of 10:1. Two days post-transfection, cell supernatants were
995 harvested and stored at -80°C until use. 293T-ACE2 (Prevost et al., 2020) target cells
996 were seeded at a density of 1×10^4 cells/well in 96-well luminometer-compatible tissue
997 culture plates (Perkin Elmer) 24 h before infection. Recombinant viruses in a final
998 volume of 100 μ L were incubated with the indicated semi-log diluted antibody

999 concentrations (0 μ g/mL, 0.01 μ g/mL, 0.0316 μ g/mL, 0.1 μ g/mL, 0.316 μ g/mL, 1
1000 μ g/mL, 3.16 μ g/mL and 10 μ g/mL) for 1 h at 37°C and were then added to the target
1001 cells followed by incubation for 48 h at 37°C; cells were lysed by the addition of 30 μ L
1002 of passive lysis buffer (Promega) followed by one freeze-thaw cycle. An LB941 TriStar
1003 luminometer (Berthold Technologies) was used to measure the luciferase activity of each
1004 well after the addition of 100 μ L of luciferin buffer (15 mM MgSO₄, 15 mM KH₂PO₄
1005 [pH 7.8], 1 mM ATP, and 1 mM dithiothreitol) and 50 μ L of 1 mM d-luciferin potassium
1006 salt.

1007

1008 **Microneutralization assay**

1009 One day prior to infection, 2x10⁴ Vero E6 cells were seeded per well of a 96 well flat
1010 bottom plate and incubated overnight to permit Vero E6 cell adherence. Antibody
1011 concentrations (0 μ g/mL, 0.01 μ g/mL, 0.0316 μ g/mL, 0.1 μ g/mL, 0.316 μ g/mL, 1
1012 μ g/mL, 3.16 μ g/mL and 10 μ g/mL) were performed in a separate 96 well culture plate
1013 using DMEM supplemented with penicillin (100 U/mL), streptomycin (100 μ g/mL),
1014 HEPES, 0.12% sodium bicarbonate, 2% FBS and 0.24% BSA. 10⁴ TCID₅₀/mL of
1015 authentic SARS-CoV-2 D614G virus (derived from strain LSPQ/231457/2020; (Prevost
1016 et al., 2021)) was prepared in DMEM + 2% FBS and combined with an equivalent
1017 volume of diluted antibodies for one hour. After this incubation, all media was removed
1018 from the 96 well plate seeded with Vero E6 cells and virus:antibody mixture was added
1019 to each respective well at a volume corresponding to 600 TCID₅₀ per well and incubated
1020 for one hour further at 37°C. Both virus only and media only (MEM + 2% FBS)
1021 conditions were included in this assay. All virus:antibody supernatant was removed from

1022 wells without disrupting the Vero E6 monolayer. Each diluted antibody (for a volume of
1023 100 μ L) was added to its respective Vero E6-seeded well in addition to an equivalent
1024 volume of MEM + 2% FBS and was then incubated for 48 hours. Media was then
1025 discarded and replaced with 10% formaldehyde for 24 hours to cross-link Vero E6
1026 monolayer. After, formaldehyde was removed from wells and subsequently washed with
1027 PBS. Cell monolayers were permeabilized for 15 minutes at room temperature with PBS
1028 + 0.1% Triton X-100, washed with PBS and then incubated for one hour at room
1029 temperature with PBS + 3% non-fat milk. A mouse anti-SARS-CoV-2 nucleocapsid
1030 protein monoclonal antibody (Clone 1C7, Bioss Antibodies) solution was prepared at 1
1031 μ g/mL in PBS + 1% non-fat milk and added to all wells for one hour at room
1032 temperature. Following extensive washing (3x) with PBS, an anti-mouse IgG HRP
1033 secondary antibody solution was formulated in PBS + 1% non-fat milk. One hour post-
1034 room temperature incubation, wells were washed with 3xPBS, substrate (ECL) was
1035 added and an LB941 TriStar luminometer (Berthold Technologies) was used to measure
1036 the signal each well.

1037

1038 **Cell-surface staining of SARS-CoV-2-infected cells**

1039 8M Vero-E6 cells were plated in T-175 flask 24 hours before infection. Authentic SARS-
1040 CoV-2 virus (MOI = 0.01) was used for infection. After 48 hours, infected Vero E6 cells
1041 were detached with PBS-EDTA and were incubated with 5 μ g/mL of indicated antibodies
1042 for 30 minutes at 37°C, followed by staining with anti-human -AF647 secondary
1043 antibody and 1:1000 dilution of viability dye AquaVivid (Thermo Fisher Scientific) for
1044 20 minutes at room temperature. Cells were then treated with 4% PFA for 24 hours at

1045 4°C. Then the cells were stained intracellularly for SARS-CoV-2 nucleocapsid (N)
1046 antigen, using the Cytofix/Cytoperm fixation/permeabilization kit (BD Biosciences) and
1047 an anti-N mAb (clone mBG17; Kerafast) conjugated with the Alexa Fluor 488 dye
1048 according to the manufacturer's instructions (Invitrogen). The percentage of infected
1049 cells (N+ cells) was determined by gating the living cell population based on the basis of
1050 viability dye staining (Aqua Vivid, Invitrogen). Samples were acquired on a LSRII
1051 cytometer (BD Biosciences, Mississauga, ON, Canada) and data analysis was performed
1052 using FlowJo v10.5.3 (Tree Star, Ashland, OR, USA).

1053

1054 **Antibody dependent cellular cytotoxicity (ADCC) assay**

1055 This assay was previously described (Anand et al., 2021). Briefly, for evaluation of anti-
1056 SARS-CoV-2 ADCC activity, parental CEM.NKr CCR5+ cells were mixed at a 1:1 ratio
1057 with CEM.NKr-Spike cells. These cells were stained for viability (AquaVivid; Thermo
1058 Fisher Scientific) and a cellular dye (cell proliferation dye eFluor670; Thermo Fisher
1059 Scientific) and subsequently used as target cells. Overnight rested PBMCs were stained
1060 with another cellular marker (cell proliferation dye eFluor450; Thermo Fisher Scientific)
1061 and used as effector cells. Stained effector and target cells were mixed at a 10:1 ratio in
1062 96-well V-bottom plates. Titrated concentrations of CV3-1, CV3-13 WT, CV3-13 LALA
1063 and CV3-13 GASDALIE monoclonal antibodies (0.0025 µg/mL, 0.01 µg/mL, 0.05
1064 µg/mL, 0.25 µg/mL, 1 µg/mL and 5 µg/mL) were added to the appropriate wells. The
1065 plates were subsequently centrifuged for 1 min at 300 x g, and incubated at 37°C, 5%
1066 CO₂ for 5 hours before being fixed in a 2% PBS-formaldehyde solution. Since
1067 CEM.NKr-Spike cells express GFP, ADCC activity was calculated using the formula:

1068 [(% of GFP+ cells in Targets plus Effectors) - (% of GFP+ cells in Targets plus Effectors
1069 plus antibody)] / (% of GFP+ cells in Targets) x 100 by gating on transduced live target
1070 cells. All samples were acquired on an LSRII cytometer (BD Biosciences) and data
1071 analysis performed using FlowJo v10.5.3 (Tree Star).

1072

1073 **Antibody dependent cellular phagocytosis (ADCP) assay**

1074 The ADCP assay was performed using CEM.NKr-Spike cells as target cells that were
1075 fluorescently labelled with a cellular dye (cell proliferation dye eFluor450). THP-1 cells
1076 were used as effector cells and were stained with another cellular dye (cell proliferation
1077 dye eFluor670). Stained target cells were incubated with 100 μ L of the titrated
1078 concentrations of CV3-1, CV3-13 WT, CV3-13 LALA and CV3-13 GASDALIE
1079 antibodies (0,625 μ g/mL, 1,25 μ g/mL, 2,5 μ g/mL, 5 μ g/mL and 10 μ g/mL) for 1h at
1080 37°C, followed by two washes with media. Stained target and effector cells were mixed
1081 at a 5:1 ratio in 96-well U-bottom plates. After a 5 hours incubation at 37 °C and 5%
1082 CO₂, cells were fixed with a 2% PBS-formaldehyde solution. Antibody-mediated
1083 phagocytosis was determined by flow cytometry, gating on THP-1 cells that were triple-
1084 positive for eFluor450 and eFluor670 cellular dyes and GFP. All samples were acquired
1085 on an LSRII cytometer (BD Biosciences) and data analysis performed using FlowJo
1086 v10.5.3 (Tree Star).

1087

1088 **Cryo-EM sample preparation and data collection**

1089 SARS-CoV-2 HexaPro spike (GnT1- produced) was incubated with 20-fold excess of
1090 CV3-13 Fab overnight at 4°C before purification on a Superose 6 300/10 GL column (GE

1091 Healthcare). The complex peak was harvested, concentrated to 0.50 mg/mL in the SEC
1092 buffer and immediately used for Cryo-EM grid preparation. 3 μ L of protein was deposited
1093 on a holey copper grids (QUANTIFOIL R 1.2/1.3, 200 mesh, EMS) which had been
1094 glow-discharged for 30s at 15 Ma using PELCO easiGlow (TedPella Inc). Grids were
1095 vitrified in liquid ethane using Vitrobot Mark IV (Thermo Fisher) with a blot time of 2-4
1096 s and variable blot force at 4°C and 100% humidity.

1097 The frozen grids were screened on a FEI Talos Arctica microscope at 200 kV equipped
1098 with a FEI Falcon3EC detector using the EPU software (Thermo Fisher). Cryo-EM data
1099 from a good grid were acquired on a FEI Glacios electron microscope operating at 200
1100 kV, equipped with a Gatan K3 direct electron detector. Micrographs were collected at a
1101 magnification of 45,000 corresponding to a calibrated pixel size of 0.8893 Å, with a total
1102 exposure dose of 42 e-/ Å².

1103

1104 **Cryo-EM data processing, model building and analysis**

1105 Motion correction, CTF estimation, particle picking, curation and extraction, 2D
1106 classification, *ab initio* model reconstruction, volume refinements and local resolution
1107 estimation were carried out in cryoSPARC (Punjani et al., 2017; Rubinstein and
1108 Brubaker, 2015). An initial SARS-CoV-2 spike model (PDB: 6XKL) with single-RBD
1109 up and a three-RBD-down (closed) model (PDB: 6VXX) were used as modeling
1110 templates. The NTDs were initially modelled from PDB entry 7C2L. The initial models
1111 for CV3-13 Fab were generated in the SAbPred server (Dunbar et al., 2016) using the
1112 primary sequence.

1113 Automated and manual model refinements were iteratively carried out in CCP-EM
1114 (Burnley et al., 2017), Phenix (Liebschner et al., 2019) (real-space refinement) and Coot
1115 (Emsley and Cowtan, 2004). Geometry validation and structure quality evaluation were
1116 performed by EM-Ringer (Barad et al., 2015) and Molprobity (Chen et al., 2010). Model-
1117 to-map fitting cross correlation and figures generation were carried out in UCSF
1118 Chimera, Chimera X (Pettersen et al., 2021) and PyMOL (The PyMOL Molecular
1119 Graphics System, Version 1.2r3pre, Schrödinger, LLC). The complete cryo-EM data
1120 processing workflow is shown in Figure S4 and statistics of data collection,
1121 reconstruction and refinement is described in Table S1. The epitope interface analysis
1122 was performed in PISA (Krissinel and Henrick, 2007).

1123

1124 **Quantification and Statistical Analysis**

1125 Statistical significance was derived by applying parametric unpaired t-test or non-
1126 parametric Mann-Whitney U test (two-tailed) available in GraphPad Prism software (La
1127 Jolla, CA, USA) depending on the normality distribution of the data. *p* values lower than
1128 0.05 were considered statistically significant. *P* values were indicated as *, *p* < 0.05; **, *p*
1129 < 0.01; ***, *p* < 0.001; ****, *p* < 0.0001.

1130

1131

1132 **References**

1133 Adeniji, O.S., Giron, L.B., Purwar, M., Zilberstein, N.F., Kulkarni, A.J., Shaikh, M.W.,
1134 Balk, R.A., Moy, J.N., Forsyth, C.B., Liu, Q., *et al.* (2021). COVID-19 Severity Is
1135 Associated with Differential Antibody Fc-Mediated Innate Immune Functions. *mBio* 12.

1136 Alter, G., Gorman, M., Patel, N., Guebre-Xabier, M., Zhu, A., Atyeo, C., Pullen, K.,
1137 Loos, C., Goez-Gazi, Y., Carrion, R., *et al.* (2021). Collaboration between the Fab and Fc
1138 contribute to maximal protection against SARS-CoV-2 following NVX-CoV2373 subunit
1139 vaccine with Matrix-M vaccination. *Res Sq.*

1140 Amanat, F., Thapa, M., Lei, T., Ahmed, S.M.S., Adelsberg, D.C., Carreno, J.M.,
1141 Strohmeier, S., Schmitz, A.J., Zafar, S., Zhou, J.Q., *et al.* (2021). The plasmablast
1142 response to SARS-CoV-2 mRNA vaccination is dominated by non-neutralizing
1143 antibodies that target both the NTD and the RBD. *medRxiv*.

1144 Amraie, R., Napoleon, M.A., Yin, W., Berrigan, J., Suder, E., Zhao, G., Olejnik, J.,
1145 Gummuluru, S., Muhlberger, E., Chitalia, V., *et al.* (2020). CD209L/L-SIGN and
1146 CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in
1147 lung and kidney epithelial and endothelial cells. *bioRxiv*.

1148 Anand, S.P., Prevost, J., Nayrac, M., Beaudoin-Bussieres, G., Benlarbi, M., Gasser, R.,
1149 Brassard, N., Laumaea, A., Gong, S.Y., Bourassa, C., *et al.* (2021). Longitudinal analysis
1150 of humoral immunity against SARS-CoV-2 Spike in convalescent individuals up to 8
1151 months post-symptom onset. *Cell Rep Med* 2, 100290.

1152 AstraZeneca, and IQVIA Pty, L. (2021). Phase III Double-blind, Placebo-controlled Study
1153 of AZD1222 for the Prevention of COVID-19 in Adults.

1154 Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D.,
1155 Spector, S.A., Roush, N., Creech, C.B., *et al.* (2021). Efficacy and Safety of the
1156 mRNA-1273 SARS-CoV-2 Vaccine. *N Engl J Med* 384, 403-416.

1157 Barad, B.A., Echols, N., Wang, R.Y., Cheng, Y., DiMaio, F., Adams, P.D., and Fraser,
1158 J.S. (2015). EMRinger: side chain-directed model and map validation for 3D cryo-
1159 electron microscopy. *Nat Methods* 12, 943-946.

1160 Beaudoin-Bussieres, G., Laumaea, A., Anand, S.P., Prevost, J., Gasser, R., Goyette, G.,
1161 Medjahed, H., Perreault, J., Tremblay, T., Lewin, A., *et al.* (2020). Decline of Humoral
1162 Responses against SARS-CoV-2 Spike in Convalescent Individuals. *mBio* 11.

1163 Bio, N.S.E., and Pfizer (2021). Study to Describe the Safety, Tolerability,
1164 Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in
1165 Healthy Individuals.

1166 Bournazos, S., Klein, F., Pietzsch, J., Seaman, M.S., Nussenzweig, M.C., and Ravetch,
1167 J.V. (2014). Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for
1168 in vivo activity. *Cell* 158, 1243-1253.

1169 Brunet-Ratnasingham, E., Anand, S.P., Gantner, P., Moquin-Beaudry, G., Dyachenko,
1170 A., Brassard, N., Beaudoin-Bussières, G., Pagliuzza, A., Gasser, R., Benlarbi, M., *et al.*
1171 (2021). Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as
1172 an early predictor of COVID-19 mortality. 2021.2003.2018.21253907.

1173 Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M.M., Planchais, C.,
1174 Porrot, F., Guivel-Benhassine, F., Van der Werf, S., *et al.* (2020). Syncytia formation by
1175 SARS-CoV-2-infected cells. *EMBO J* 39, e106267.

1176 Burnley, T., Palmer, C.M., and Winn, M. (2017). Recent developments in the CCP-EM
1177 software suite. *Acta Crystallogr D Struct Biol* 73, 469-477.

1178 Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y.,
1179 Geng, C., *et al.* (2020). Potent Neutralizing Antibodies against SARS-CoV-2 Identified
1180 by High-Throughput Single-Cell Sequencing of Convalescent Patients' B Cells. *Cell* 182,
1181 73-84 e16.

1182 Cerutti, G., Guo, Y., Zhou, T., Gorman, J., Lee, M., Rapp, M., Reddem, E.R., Yu, J.,
1183 Bahna, F., Bimela, J., *et al.* (2021). Potent SARS-CoV-2 neutralizing antibodies directed
1184 against spike N-terminal domain target a single supersite. *Cell Host Microbe* 29, 819-833
1185 e817.

1186 Chen, V.B., Arendall, W.B., 3rd, Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral,
1187 G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom
1188 structure validation for macromolecular crystallography. *Acta Crystallogr D Biol
1189 Crystallogr* 66, 12-21.

1190 Chen, X., Li, R., Pan, Z., Qian, C., Yang, Y., You, R., Zhao, J., Liu, P., Gao, L., Li, Z., *et
1191 al.* (2020). Human monoclonal antibodies block the binding of SARS-CoV-2 spike
1192 protein to angiotensin converting enzyme 2 receptor. *Cell Mol Immunol* 17, 647-649.

1193 Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y.,
1194 Yang, Y., *et al.* (2020). A neutralizing human antibody binds to the N-terminal domain of
1195 the Spike protein of SARS-CoV-2. *Science* 369, 650-655.

1196 DiLillo, D.J., and Ravetch, J.V. (2015). Differential Fc-Receptor Engagement Drives an
1197 Anti-tumor Vaccinal Effect. *Cell* 161, 1035-1045.

1198 Duan, L., Zheng, Q., Zhang, H., Niu, Y., Lou, Y., and Wang, H. (2020). The SARS-CoV-
1199 2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications
1200 for the Design of Spike-Based Vaccine Immunogens. *Front Immunol* 11, 576622.

1201 Dunbar, J., Krawczyk, K., Leem, J., Marks, C., Nowak, J., Regep, C., Georges, G., Kelm,
1202 S., Popovic, B., and Deane, C.M. (2016). SAbPred: a structure-based antibody prediction
1203 server. *Nucleic Acids Res* 44, W474-478.

1204 Durocher, Y., Perret, S., and Kamen, A. (2002). High-level and high-throughput
1205 recombinant protein production by transient transfection of suspension-growing human
1206 293-EBNA1 cells. *Nucleic Acids Res* 30, E9.

1207 Emary, K.R.W., Golubchik, T., Aley, P.K., Ariani, C.V., Angus, B., Bibi, S., Blane, B.,
1208 Bonsall, D., Cicconi, P., Charlton, S., *et al.* (2021). Efficacy of ChAdOx1 nCoV-19
1209 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an
1210 exploratory analysis of a randomised controlled trial. *Lancet* 397, 1351-1362.

1211 Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
1212 *Acta Crystallogr D Biol Crystallogr* 60, 2126-2132.

1213 Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development
1214 of Coot. *Acta Crystallogr D Biol Crystallogr* 66, 486-501.

1215 Gasser, R., Cloutier, M., Prevost, J., Fink, C., Ducas, E., Ding, S., Dussault, N., Landry,
1216 P., Tremblay, T., Laforce-Lavoie, A., *et al.* (2021). Major role of IgM in the neutralizing
1217 activity of convalescent plasma against SARS-CoV-2. *Cell Rep* 34, 108790.

1218 Goddard, T.D., Huang, C.C., and Ferrin, T.E. (2007). Visualizing density maps with
1219 UCSF Chimera. *J Struct Biol* 157, 281-287.

1220 Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and
1221 Ferrin, T.E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and
1222 analysis. *Protein Sci* 27, 14-25.

1223 Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M.,
1224 Ludden, C., Reeve, R., Rambaut, A., Consortium, C.-G.U., *et al.* (2021). SARS-CoV-2
1225 variants, spike mutations and immune escape. *Nat Rev Microbiol* *19*, 409-424.

1226 Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S.,
1227 Schiergens, T.S., Herrler, G., Wu, N.H., Nitsche, A., *et al.* (2020). SARS-CoV-2 Cell
1228 Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease
1229 Inhibitor. *Cell* *181*, 271-280 e278.

1230 Hsieh, C.L., Goldsmith, J.A., Schaub, J.M., DiVenere, A.M., Kuo, H.C., Javanmardi, K.,
1231 Le, K.C., Wrapp, D., Lee, A.G., Liu, Y., *et al.* (2020). Structure-based design of
1232 prefusion-stabilized SARS-CoV-2 spikes. *Science* *369*, 1501-1505.

1233 Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X.,
1234 *et al.* (2020). Clinical features of patients infected with 2019 novel coronavirus in
1235 Wuhan, China. *Lancet* *395*, 497-506.

1236 Hurlburt, N.K., Seydoux, E., Wan, Y.H., Edara, V.V., Stuart, A.B., Feng, J., Suthar,
1237 M.S., McGuire, A.T., Stamatatos, L., and Pancera, M. (2020). Structural basis for potent
1238 neutralization of SARS-CoV-2 and role of antibody affinity maturation. *Nat Commun* *11*,
1239 5413.

1240 Janssen, V., and Prevention, B.V. (2021). A Study of Ad26.COV2.S for the Prevention of
1241 SARS-CoV-2-Mediated COVID-19 in Adult Participants.

1242 Jennewein, M.F., MacCamay, A.J., Akins, N.R., Feng, J., Homad, L.J., Hurlburt, N.K.,
1243 Seydoux, E., Wan, Y.H., Stuart, A.B., Edara, V.V., *et al.* (2021). Isolation and
1244 characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects.
1245 *Cell Rep*, 109353.

1246 Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S.,
1247 *et al.* (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature*
1248 *584*, 115-119.

1249 Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from
1250 crystalline state. *J Mol Biol* *372*, 774-797.

1251 Ksiazek, T.G., Erdman, D., Goldsmith, C.S., Zaki, S.R., Peret, T., Emery, S., Tong, S.,
1252 Urbani, C., Comer, J.A., Lim, W., *et al.* (2003). A novel coronavirus associated with
1253 severe acute respiratory syndrome. *N Engl J Med* *348*, 1953-1966.

1254 Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang,
1255 L., *et al.* (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to
1256 the ACE2 receptor. *Nature* *581*, 215-220.

1257 Lazar, G.A., Dang, W., Karki, S., Vafa, O., Peng, J.S., Hyun, L., Chan, C., Chung, H.S.,
1258 Eivazi, A., Yoder, S.C., *et al.* (2006). Engineered antibody Fc variants with enhanced
1259 effector function. *Proc Natl Acad Sci U S A* *103*, 4005-4010.

1260 Lempp, F.A., Soriaga, L., Montiel-Ruiz, M., Benigni, F., Noack, J., Park, Y.-J., Bianchi,
1261 S., Walls, A.C., Bowen, J.E., Zhou, J., *et al.* (2021). Membrane lectins enhance SARS-
1262 CoV-2 infection and influence the neutralizing activity of different classes of antibodies.
1263 2021.2004.2003.438258.

1264 Li, D., Edwards, R.J., Manne, K., Martinez, D.R., Schafer, A., Alam, S.M., Wiehe, K.,
1265 Lu, X., Parks, R., Sutherland, L.L., *et al.* (2021a). In vitro and in vivo functions of SARS-
1266 CoV-2 infection-enhancing and neutralizing antibodies. *Cell* *184*, 4203-4219 e4232.

1267 Li, W., Chen, Y., Prevost, J., Ullah, I., Lu, M., Gong, S.Y., Tauzin, A., Gasser, R.,
1268 Vezina, D., Anand, S.P., *et al.* (2021b). Structural Basis and Mode of Action for Two

1269 Broadly Neutralizing Antibodies Against SARS-CoV-2 Emerging Variants of Concern.
1270 bioRxiv.

1271 Liebschner, D., Afonine, P.V., Baker, M.L., Bunkoczi, G., Chen, V.B., Croll, T.I.,
1272 Hintze, B., Hung, L.W., Jain, S., McCoy, A.J., *et al.* (2019). Macromolecular structure
1273 determination using X-rays, neutrons and electrons: recent developments in Phenix. *Acta
1274 Crystallogr D Struct Biol* 75, 861-877.

1275 Liu, L., Wang, P., Nair, M.S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J.F., Sahi, V.,
1276 Figueroa, A., *et al.* (2020). Potent neutralizing antibodies against multiple epitopes on
1277 SARS-CoV-2 spike. *Nature* 584, 450-456.

1278 Liu, Y., Soh, W.T., Kishikawa, J.I., Hirose, M., Nakayama, E.E., Li, S., Sasai, M.,
1279 Suzuki, T., Tada, A., Arakawa, A., *et al.* (2021). An infectivity-enhancing site on the
1280 SARS-CoV-2 spike protein targeted by antibodies. *Cell* 184, 3452-3466 e3418.

1281 Long, Q.X., Tang, X.J., Shi, Q.L., Li, Q., Deng, H.J., Yuan, J., Hu, J.L., Xu, W., Zhang,
1282 Y., Lv, F.J., *et al.* (2020). Clinical and immunological assessment of asymptomatic
1283 SARS-CoV-2 infections. *Nat Med* 26, 1200-1204.

1284 Lu, M., Uchil, P.D., Li, W., Zheng, D., Terry, D.S., Gorman, J., Shi, W., Zhang, B.,
1285 Zhou, T., Ding, S., *et al.* (2020). Real-Time Conformational Dynamics of SARS-CoV-2
1286 Spikes on Virus Particles. *Cell Host Microbe* 28, 880-891 e888.

1287 Luchsinger, L.L., Ransegrelola, B.P., Jin, D.K., Muecksch, F., Weisblum, Y., Bao, W.,
1288 George, P.J., Rodriguez, M., Tricoche, N., Schmidt, F., *et al.* (2020). Serological Assays
1289 Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody Activity in Recovered
1290 COVID-19 Patients. *J Clin Microbiol* 58.

1291 McCallum, M., De Marco, A., Lempp, F.A., Tortorici, M.A., Pinto, D., Walls, A.C.,
1292 Beltramello, M., Chen, A., Liu, Z., Zatta, F., *et al.* (2021). N-terminal domain antigenic
1293 mapping reveals a site of vulnerability for SARS-CoV-2. *Cell* 184, 2332-2347 e2316.

1294 McCarthy, K.R., Rennick, L.J., Nambulli, S., Robinson-McCarthy, L.R., Bain, W.G.,
1295 Haidar, G., and Duprex, W.P. (2021). Recurrent deletions in the SARS-CoV-2 spike
1296 glycoprotein drive antibody escape. *Science* 371, 1139-1142.

1297 ModernaTx, I., Biomedical Advanced, R., Development, A., National Institute of, A., and
1298 Infectious, D. (2022). A Study to Evaluate Efficacy, Safety, and Immunogenicity of
1299 mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID-19.

1300 Muecksch, F., Wise, H., Batchelor, B., Squires, M., Semple, E., Richardson, C.,
1301 McGuire, J., Clearly, S., Furrie, E., Greig, N., *et al.* (2021). Longitudinal Serological
1302 Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent
1303 Patients. *J Infect Dis* 223, 389-398.

1304 Oliver, S.E., Gargano, J.W., Marin, M., Wallace, M., Curran, K.G., Chamberland, M.,
1305 McClung, N., Campos-Outcalt, D., Morgan, R.L., Mbaeyi, S., *et al.* (2021a). The
1306 Advisory Committee on Immunization Practices' Interim Recommendation for Use of
1307 Moderna COVID-19 Vaccine - United States, December 2020. *MMWR Morb Mortal
1308 Wkly Rep* 69, 1653-1656.

1309 Oliver, S.E., Gargano, J.W., Scobie, H., Wallace, M., Hadler, S.C., Leung, J., Blain, A.E.,
1310 McClung, N., Campos-Outcalt, D., Morgan, R.L., *et al.* (2021b). The Advisory
1311 Committee on Immunization Practices' Interim Recommendation for Use of Janssen
1312 COVID-19 Vaccine - United States, February 2021. *MMWR Morb Mortal Wkly Rep* 70,
1313 329-332.

1314 Payne, D.C., Smith-Jeffcoat, S.E., Nowak, G., Chukwuma, U., Geibe, J.R., Hawkins,
1315 R.J., Johnson, J.A., Thurnburg, N.J., Schiffer, J., Weiner, Z., *et al.* (2020). SARS-CoV-2
1316 Infections and Serologic Responses from a Sample of U.S. Navy Service Members - USS
1317 Theodore Roosevelt, April 2020. *MMWR Morb Mortal Wkly Rep* *69*, 714-721.

1318 Pettersen, E.F., Goddard, T.D., Huang, C.C., Meng, E.C., Couch, G.S., Croll, T.I.,
1319 Morris, J.H., and Ferrin, T.E. (2021). UCSF ChimeraX: Structure visualization for
1320 researchers, educators, and developers. *Protein Sci* *30*, 70-82.

1321 Pfizer/BioNTech (2021). Pfizer and BioNTech Confirm High Efficacy and No Serious
1322 Safety Concerns Through Up to Six Months Following Second Dose in Updated Topline
1323 Analysis of Landmark COVID-19 Vaccine Study.

1324 Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M.,
1325 Silacci-Fregni, C., Pinto, D., Rosen, L.E., Bowen, J.E., *et al.* (2020). Mapping
1326 Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding
1327 Domain by Structure-Guided High-Resolution Serology. *Cell* *183*, 1024-1042 e1021.

1328 Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez,
1329 J.L., Perez Marc, G., Moreira, E.D., Zerbini, C., *et al.* (2020). Safety and Efficacy of the
1330 BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med* *383*, 2603-2615.

1331 Prevost, J., Gasser, R., Beaudoin-Bussieres, G., Richard, J., Duerr, R., Laumaea, A.,
1332 Anand, S.P., Goyette, G., Benlarbi, M., Ding, S., *et al.* (2020). Cross-Sectional
1333 Evaluation of Humoral Responses against SARS-CoV-2 Spike. *Cell Rep Med* *1*, 100126.

1334 Prevost, J., Richard, J., Gasser, R., Ding, S., Fage, C., Anand, S.P., Adam, D., Vergara,
1335 N.G., Tauzin, A., Benlarbi, M., *et al.* (2021). Impact of temperature on the affinity of
1336 SARS-CoV-2 Spike for ACE2. *bioRxiv*.

1337 Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC:
1338 algorithms for rapid unsupervised cryo-EM structure determination. *Nat Methods* *14*,
1339 290-296.

1340 Rappazzo, C.G., Tse, L.V., Kaku, C.I., Wrapp, D., Sakharkar, M., Huang, D., Deveau,
1341 L.M., Yockachonis, T.J., Herbert, A.S., Battles, M.B., *et al.* (2021). Broad and potent
1342 activity against SARS-like viruses by an engineered human monoclonal antibody.
1343 *Science* *371*, 823-829.

1344 Richards, J.O., Karki, S., Lazar, G.A., Chen, H., Dang, W., and Desjarlais, J.R. (2008).
1345 Optimization of antibody binding to Fc γ RIIa enhances macrophage phagocytosis
1346 of tumor cells. *Mol Cancer Ther* *7*, 2517-2527.

1347 Robbiani, D.F., Gaebler, C., Muecksch, F., Lorenzi, J.C.C., Wang, Z., Cho, A., Agudelo,
1348 M., Barnes, C.O., Gazumyan, A., Finkin, S., *et al.* (2020). Convergent antibody responses
1349 to SARS-CoV-2 in convalescent individuals. *Nature* *584*, 437-442.

1350 Rubinstein, J.L., and Brubaker, M.A. (2015). Alignment of cryo-EM movies of
1351 individual particles by optimization of image translations. *J Struct Biol* *192*, 188-195.

1352 Saunders, K.O. (2019). Conceptual Approaches to Modulating Antibody Effector
1353 Functions and Circulation Half-Life. *Front Immunol* *10*, 1296.

1354 Schafer, A., Muecksch, F., Lorenzi, J.C.C., Leist, S.R., Cipolla, M., Bournazos, S.,
1355 Schmidt, F., Maison, R.M., Gazumyan, A., Martinez, D.R., *et al.* (2021). Antibody
1356 potency, effector function, and combinations in protection and therapy for SARS-CoV-2
1357 infection *in vivo*. *J Exp Med* *218*.

1358 Scheres, S.H., and Chen, S. (2012). Prevention of overfitting in cryo-EM structure
1359 determination. *Nat Methods* *9*, 853-854.

1360 Seydoux, E., Homad, L.J., MacCamy, A.J., Parks, K.R., Hurlburt, N.K., Jennewein, M.F.,
1361 Akins, N.R., Stuart, A.B., Wan, Y.H., Feng, J., *et al.* (2020). Analysis of a SARS-CoV-2-
1362 Infected Individual Reveals Development of Potent Neutralizing Antibodies with Limited
1363 Somatic Mutation. *Immunity* 53, 98-105 e105.

1364 Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., and Li, F. (2020). Cell entry
1365 mechanisms of SARS-CoV-2. *Proc Natl Acad Sci U S A* 117, 11727-11734.

1366 Skowronski, D.M., and De Serres, G. (2021). Safety and Efficacy of the BNT162b2
1367 mRNA Covid-19 Vaccine. *N Engl J Med* 384.

1368 Smith, P., DiLillo, D.J., Bournazos, S., Li, F., and Ravetch, J.V. (2012). Mouse model
1369 recapitulating human Fcgamma receptor structural and functional diversity. *Proc Natl
1370 Acad Sci U S A* 109, 6181-6186.

1371 Soh, W.T., Liu, Y., Nakayama, E.E., Ono, C., Torii, S., Nakagami, H., Matsuura, Y.,
1372 Shioda, T., and Arase, H. (2020). The N-terminal domain of spike glycoprotein mediates
1373 SARS-CoV-2 infection by associating with L-SIGN and DC-SIGN.
1374 2020.2011.2005.369264.

1375 Stankov, M.V., Cossmann, A., Bonifacius, A., Dopfer-Jablonka, A., Ramos, G.M.,
1376 Gödecke, N., Scharff, A.Z., Happle, C., Boeck, A.-L., Tran, A.T., *et al.* (2021). Humoral
1377 and cellular immune responses against SARS-CoV-2 variants and human coronaviruses
1378 after single BNT162b2 vaccination. 2021.2004.2016.21255412.

1379 Sun, Y., Wang, L., Feng, R., Wang, N., Wang, Y., Zhu, D., Xing, X., Yang, P., Zhang,
1380 Y., Li, W., *et al.* (2021). Structure-based development of three- and four-antibody
1381 cocktails against SARS-CoV-2 via multiple mechanisms. *Cell Res* 31, 597-600.

1382 Suryadevara, N., Shrihari, S., Gilchuk, P., VanBlargan, L.A., Binshtein, E., Zost, S.J.,
1383 Nargi, R.S., Sutton, R.E., Winkler, E.S., Chen, E.C., *et al.* (2021). Neutralizing and
1384 protective human monoclonal antibodies recognizing the N-terminal domain of the
1385 SARS-CoV-2 spike protein. *Cell* 184, 2316-2331 e2315.

1386 Tauzin, A., Nayrac, M., Benlarbi, M., Gong, S.Y., Gasser, R., Beaudoin-Bussieres, G.,
1387 Brassard, N., Laumaea, A., Vezina, D., Prevost, J., *et al.* (2021). A single dose of the
1388 SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T
1389 cell responses. *Cell Host Microbe*.

1390 ter Meulen, J., van den Brink, E.N., Poon, L.L., Marissen, W.E., Leung, C.S., Cox, F.,
1391 Cheung, C.Y., Bakker, A.Q., Bogaards, J.A., van Deventer, E., *et al.* (2006). Human
1392 monoclonal antibody combination against SARS coronavirus: synergy and coverage of
1393 escape mutants. *PLoS Med* 3, e237.

1394 Tian, X., Li, C., Huang, A., Xia, S., Lu, S., Shi, Z., Lu, L., Jiang, S., Yang, Z., Wu, Y., *et*
1395 *al.* (2020). Potent binding of 2019 novel coronavirus spike protein by a SARS
1396 coronavirus-specific human monoclonal antibody. *Emerg Microbes Infect* 9, 382-385.

1397 Tortorici, M.A., Beltramello, M., Lempp, F.A., Pinto, D., Dang, H.V., Rosen, L.E.,
1398 McCallum, M., Bowen, J., Minola, A., Jaconi, S., *et al.* (2020). Ultrapotent human
1399 antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. *Science* 370,
1400 950-957.

1401 Ullah, I., Prevost, J., Ladinsky, M.S., Stone, H., Lu, M., Anand, S.P., Beaudoin-
1402 Bussieres, G., Symmes, K., Benlarbi, M., Ding, S., *et al.* (2021). Live Imaging of SARS-
1403 CoV-2 Infection in Mice Reveals Neutralizing Antibodies Require Fc Function for
1404 Optimal Efficacy. *bioRxiv*.

1405 Voss, W.N., Hou, Y.J., Johnson, N.V., Delidakis, G., Kim, J.E., Javanmardi, K., Horton,
1406 A.P., Bartzoka, F., Paresi, C.J., Tanno, Y., *et al.* (2021). Prevalent, protective, and
1407 convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. *Science* 372,
1408 1108-1112.

1409 Voysey, M., Clemens, S.A.C., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K.,
1410 Angus, B., Baillie, V.L., Barnabas, S.L., Bhorat, Q.E., *et al.* (2021). Safety and efficacy
1411 of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis
1412 of four randomised controlled trials in Brazil, South Africa, and the UK. *Lancet* 397, 99-
1413 111.

1414 Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., and Veesler, D.
1415 (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
1416 *Cell* 181, 281-292 e286.

1417 Wang, C., Li, W., Drabek, D., Okba, N.M.A., van Haperen, R., Osterhaus, A., van
1418 Kuppeveld, F.J.M., Haagmans, B.L., Grosveld, F., and Bosch, B.J. (2020). A human
1419 monoclonal antibody blocking SARS-CoV-2 infection. *Nat Commun* 11, 2251.

1420 Winkler, E.S., Gilchuk, P., Yu, J., Bailey, A.L., Chen, R.E., Chong, Z., Zost, S.J., Jang,
1421 H., Huang, Y., Allen, J.D., *et al.* (2021). Human neutralizing antibodies against SARS-
1422 CoV-2 require intact Fc effector functions for optimal therapeutic protection. *Cell* 184,
1423 1804-1820 e1816.

1424 Worldometer (2021). COVID-19 CORONAVIRUS PANDEMIC.

1425 Wrapp, D., De Vlieger, D., Corbett, K.S., Torres, G.M., Wang, N., Van Breedam, W.,
1426 Roose, K., van Schie, L., Team, V.-C.C.-R., Hoffmann, M., *et al.* (2020a). Structural
1427 Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid
1428 Antibodies. *Cell* 181, 1004-1015 e1015.

1429 Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.L., Abiona, O., Graham,
1430 B.S., and McLellan, J.S. (2020b). Cryo-EM structure of the 2019-nCoV spike in the
1431 prefusion conformation. *Science* 367, 1260-1263.

1432 Wu, F., Liu, M., Wang, A., Lu, L., Wang, Q., Gu, C., Chen, J., Wu, Y., Xia, S., Ling, Y.,
1433 *et al.* (2020a). Evaluating the Association of Clinical Characteristics With Neutralizing
1434 Antibody Levels in Patients Who Have Recovered From Mild COVID-19 in Shanghai,
1435 China. *JAMA Intern Med* 180, 1356-1362.

1436 Wu, F., Zhao, S., Yu, B., Chen, Y.M., Wang, W., Song, Z.G., Hu, Y., Tao, Z.W., Tian,
1437 J.H., Pei, Y.Y., *et al.* (2020b). A new coronavirus associated with human respiratory
1438 disease in China. *Nature* 579, 265-269.

1439 Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., *et*
1440 *al.* (2020c). A noncompeting pair of human neutralizing antibodies block COVID-19
1441 virus binding to its receptor ACE2. *Science* 368, 1274-1278.

1442 Xie, X., Muruato, A., Lokugamage, K.G., Narayanan, K., Zhang, X., Zou, J., Liu, J.,
1443 Schindewolf, C., Bopp, N.E., Aguilar, P.V., *et al.* (2020a). An Infectious cDNA Clone of
1444 SARS-CoV-2. *Cell Host Microbe* 27, 841-848 e843.

1445 Xie, X., Muruato, A.E., Zhang, X., Lokugamage, K.G., Fontes-Garfias, C.R., Zou, J.,
1446 Liu, J., Ren, P., Balakrishnan, M., Cihlar, T., *et al.* (2020b). A nanoluciferase SARS-
1447 CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-
1448 19. *Nat Commun* 11, 5214.

1449 Yuan, M., Wu, N.C., Zhu, X., Lee, C.D., So, R.T.Y., Lv, H., Mok, C.K.P., and Wilson,
1450 I.A. (2020). A highly conserved cryptic epitope in the receptor binding domains of
1451 SARS-CoV-2 and SARS-CoV. *Science* 368, 630-633.

1452 Zaki, A.M., van Boheemen, S., Bestebroer, T.M., Osterhaus, A.D., and Fouchier, R.A.
1453 (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N
1454 Engl J Med* 367, 1814-1820.

1455 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W.,
1456 Lu, R., *et al.* (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019.
1457 *N Engl J Med* 382, 727-733.

1458 Zivanov, J., Nakane, T., Forsberg, B.O., Kimanis, D., Hagen, W.J., Lindahl, E., and
1459 Scheres, S.H. (2018). New tools for automated high-resolution cryo-EM structure
1460 determination in RELION-3. *Elife* 7.

1461 Zohar, T., Loos, C., Fischinger, S., Atyeo, C., Wang, C., Stein, M.D., Burke, J., Yu, J.,
1462 Feldman, J., Hauser, B.M., *et al.* (2020). Compromised Humoral Functional Evolution
1463 Tracks with SARS-CoV-2 Mortality. *Cell* 183, 1508-1519 e1512.

1464 The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC
1465

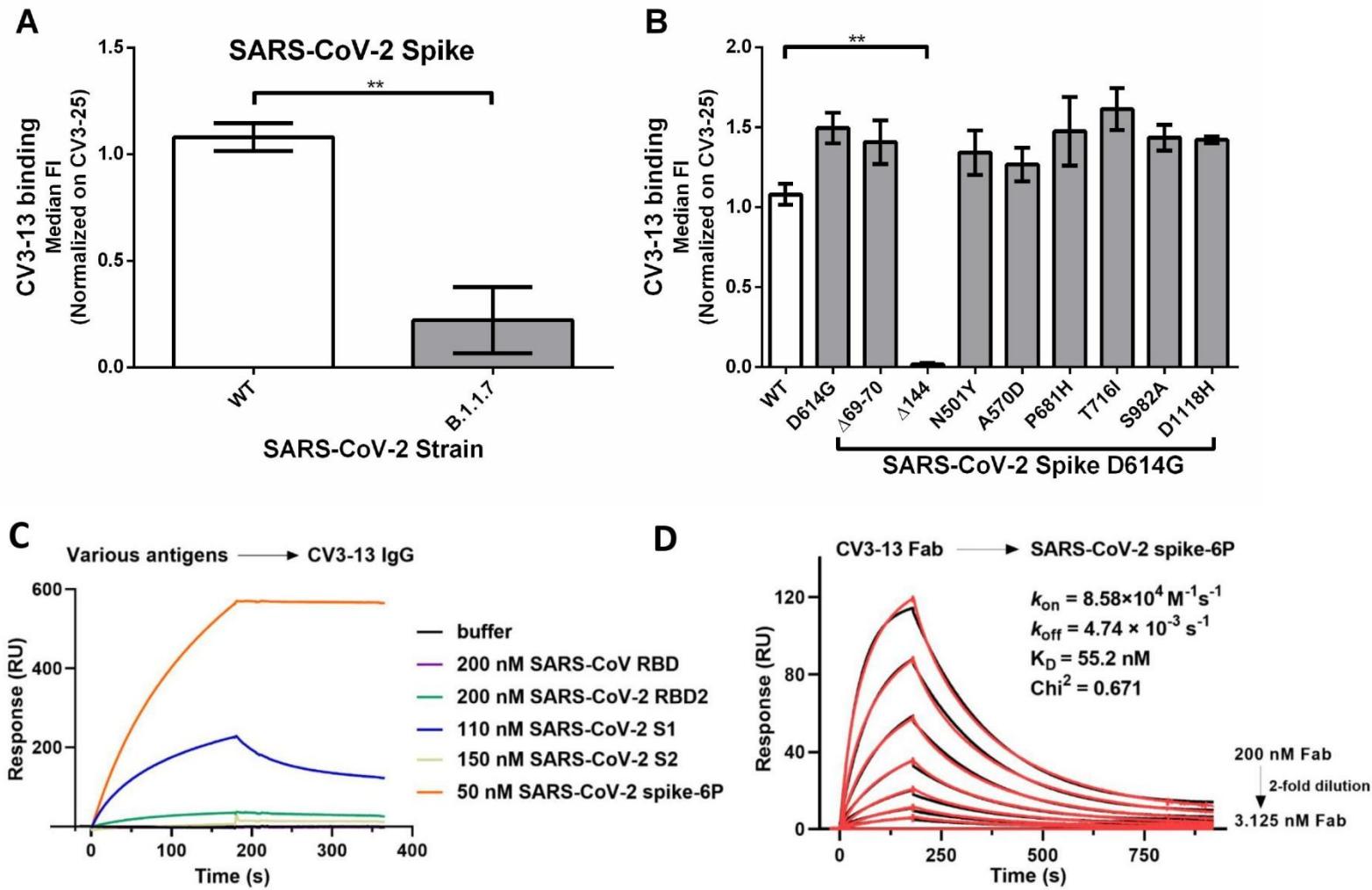
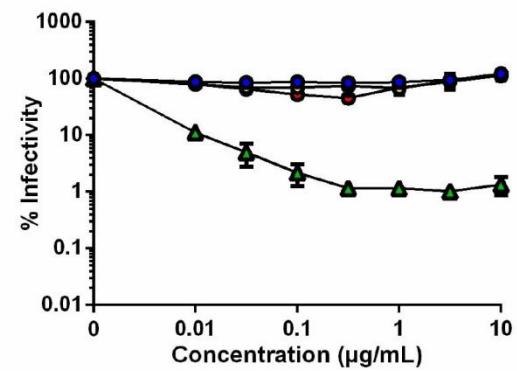
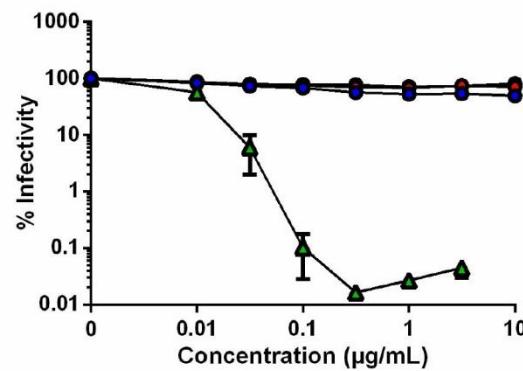
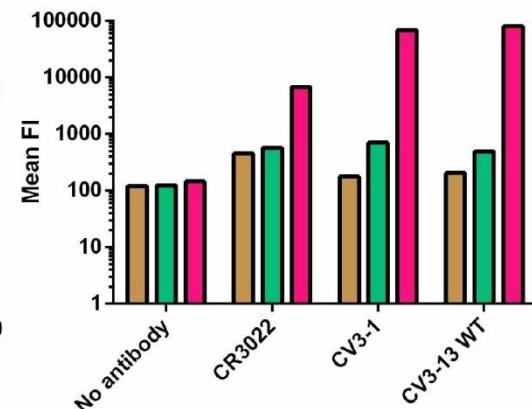
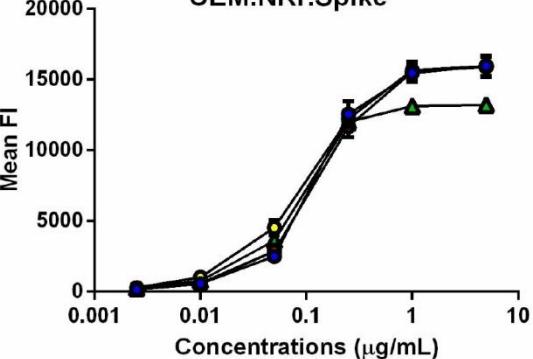



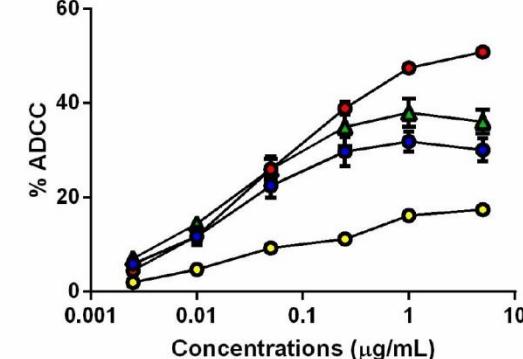
Figure 1

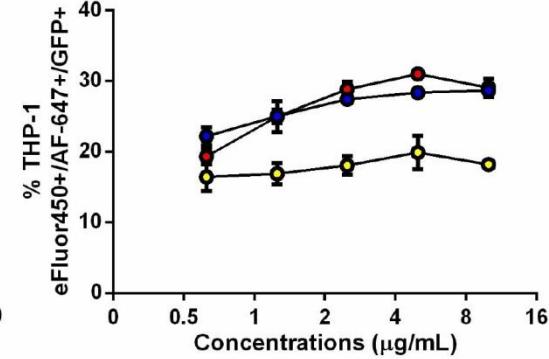

- CV3-13 WT
- CV3-13 LALA
- CV3-13 GASDALIE
- CV3-1

- MOCK infected cells
- SARS-CoV-2 infected cells (N-)
- SARS-CoV-2 infected cells (N+)


A SARS-CoV-2 Pseudovirus


B SARS-CoV-2 Authentic virus


C Cell surface staining SARS-CoV-2 infected cells


D Cell surface staining CEM.NKr.Spike

E ADCC

F ADCP

Figure 2

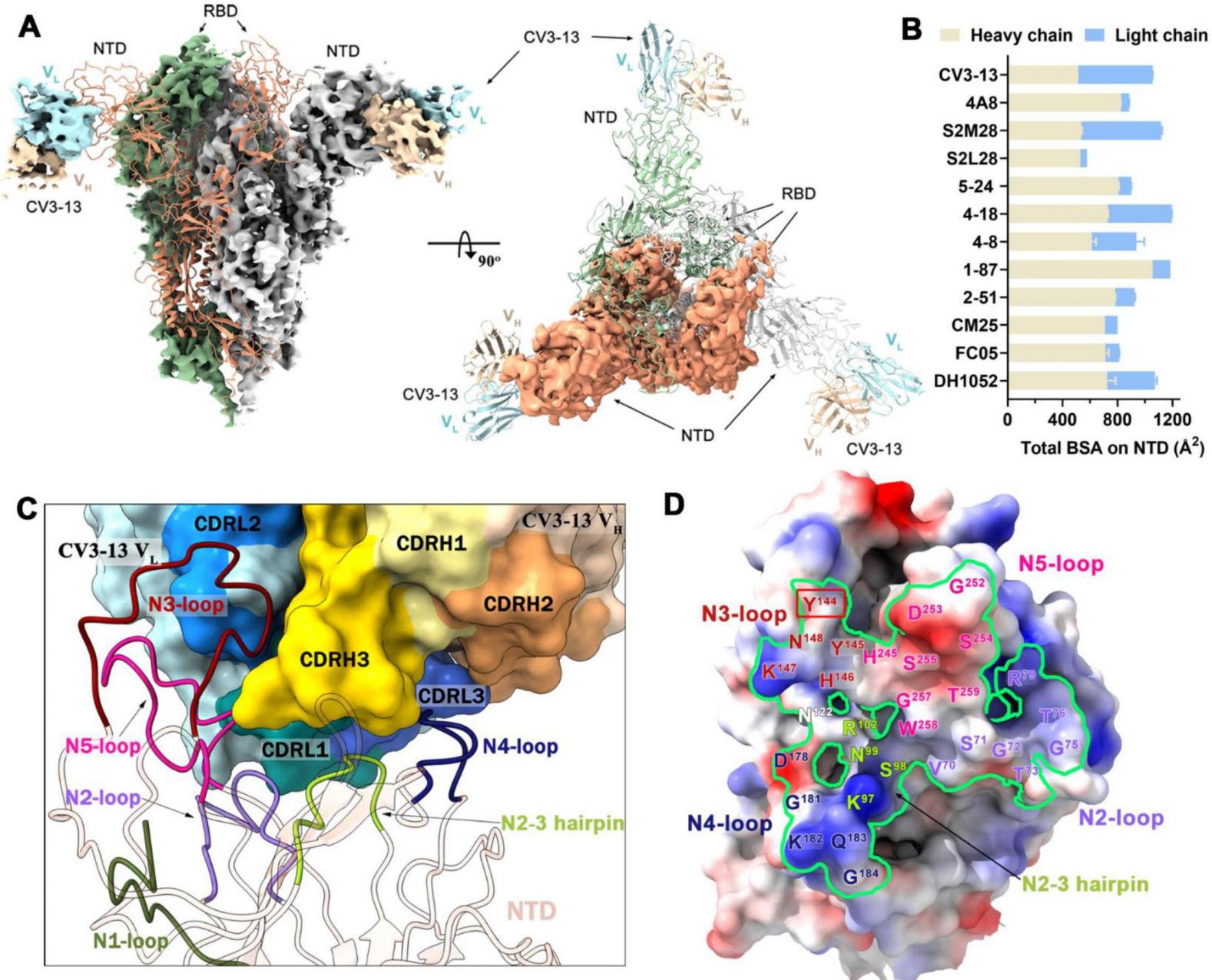


Figure 3

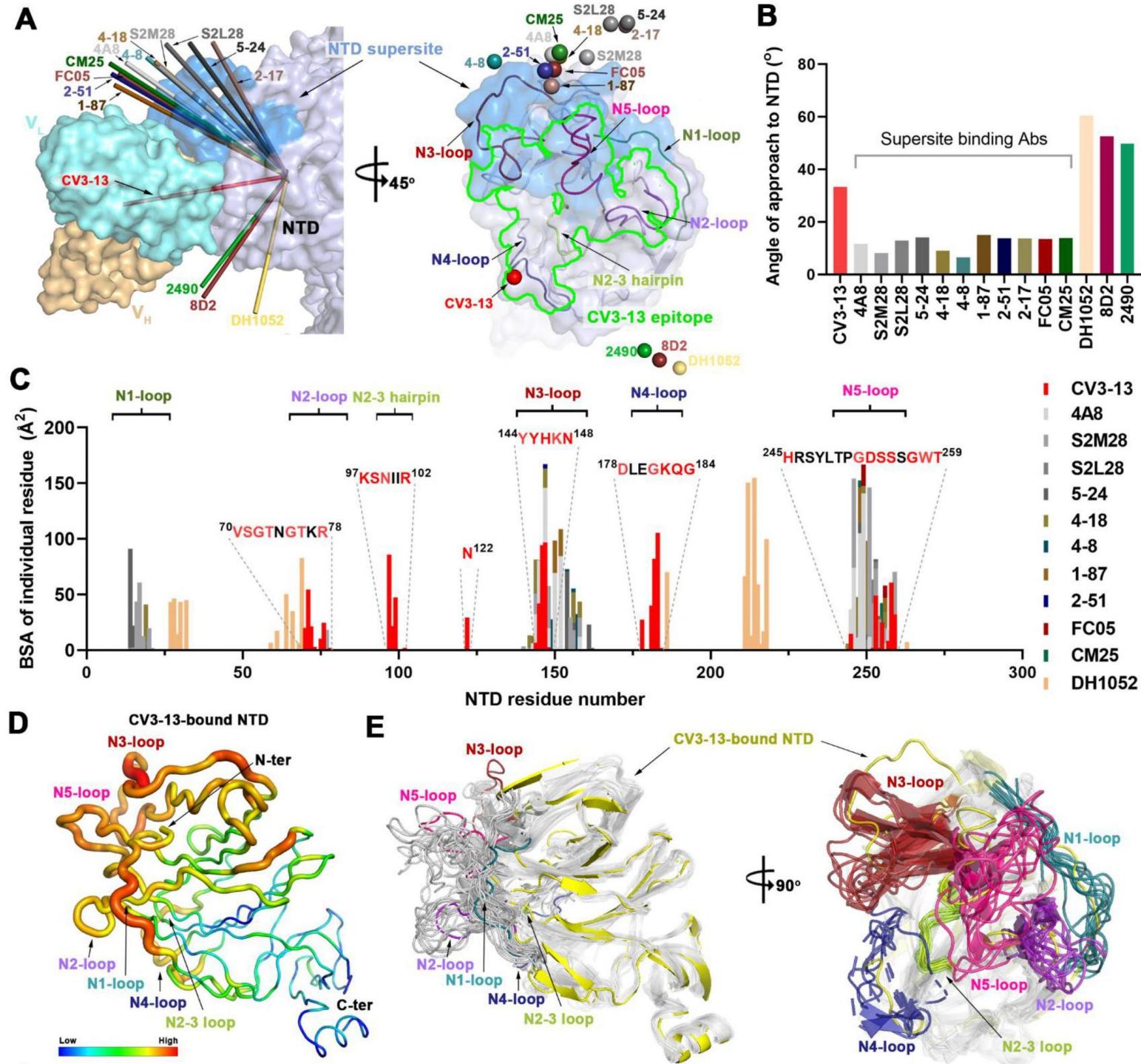


Figure 4

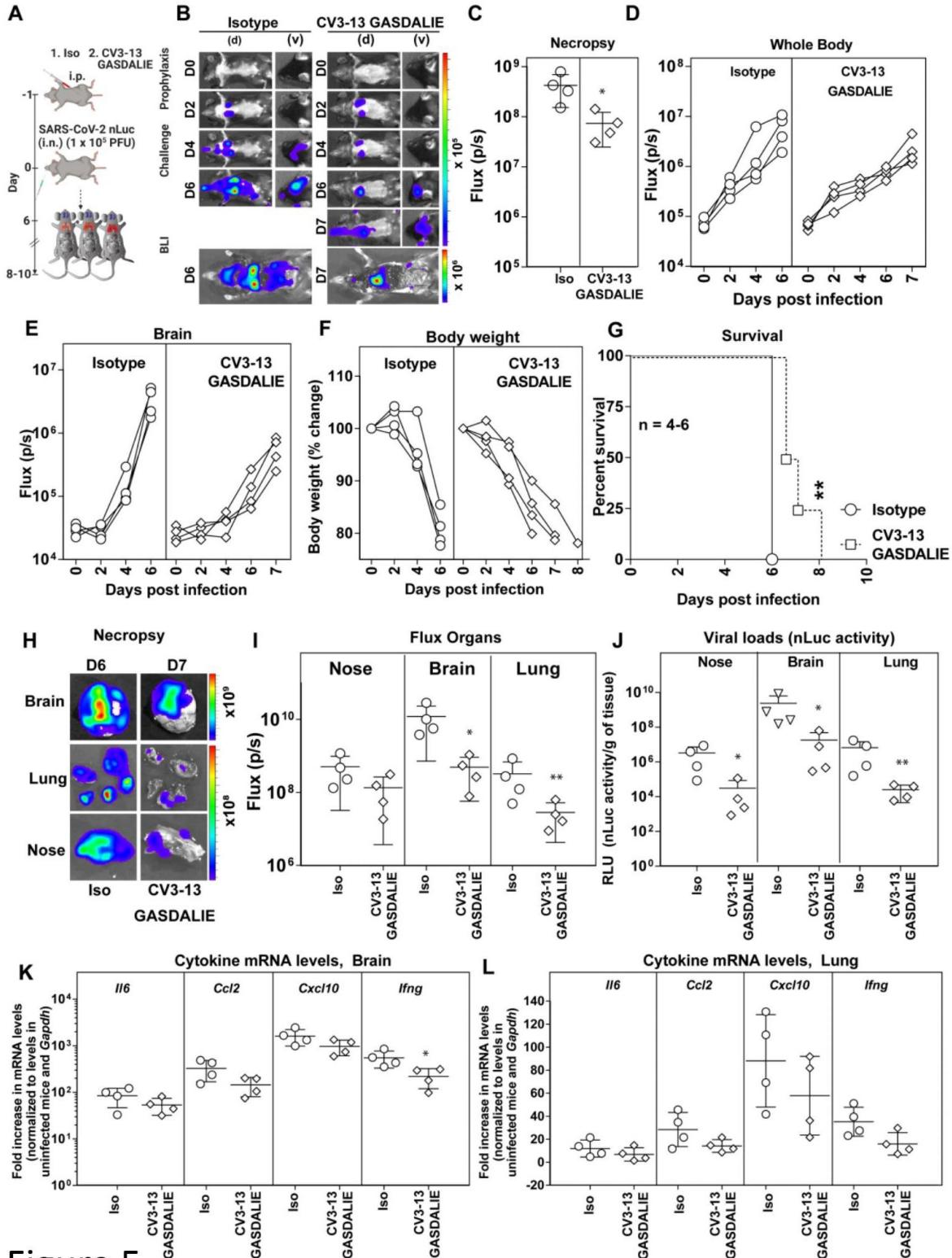
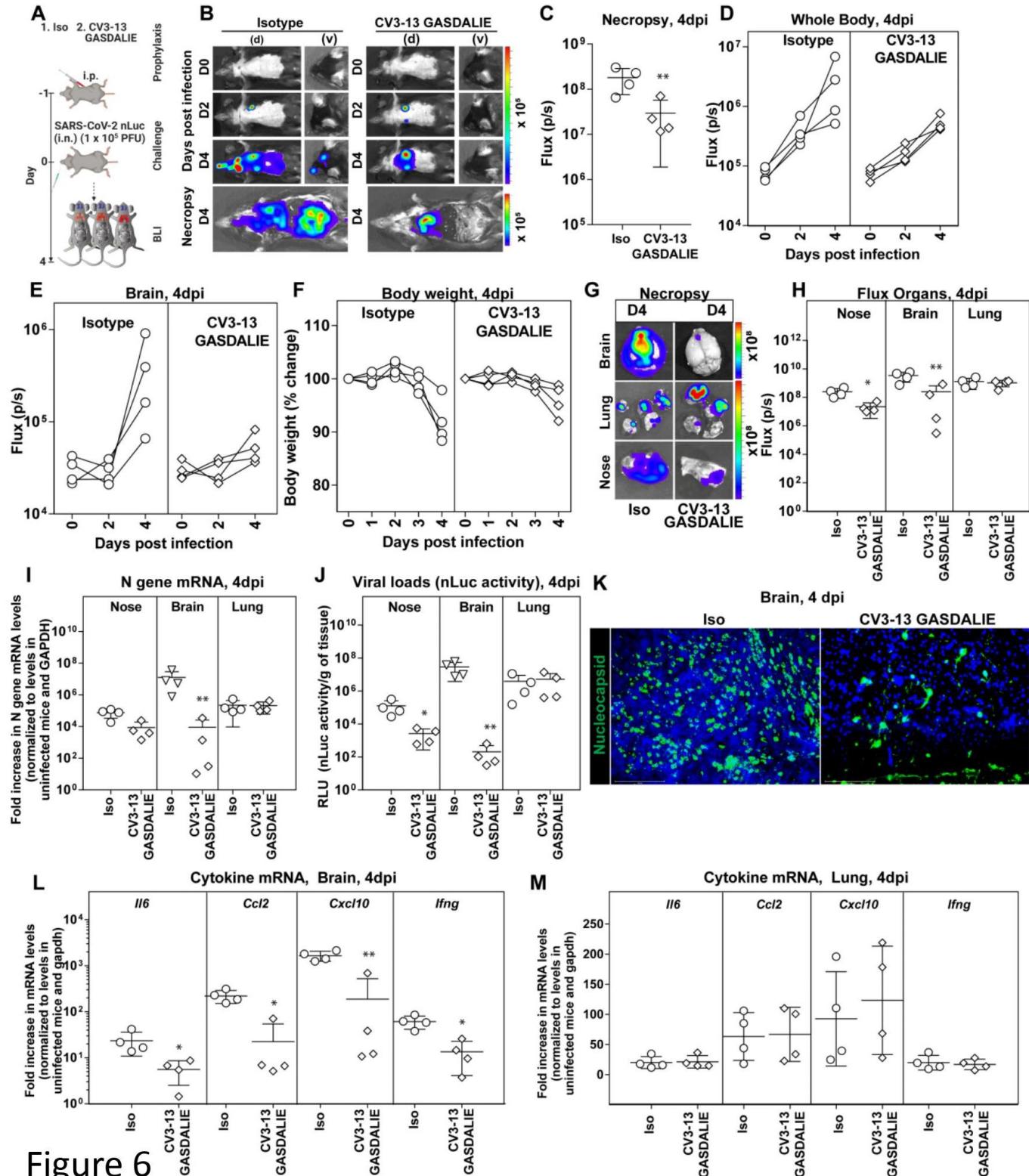
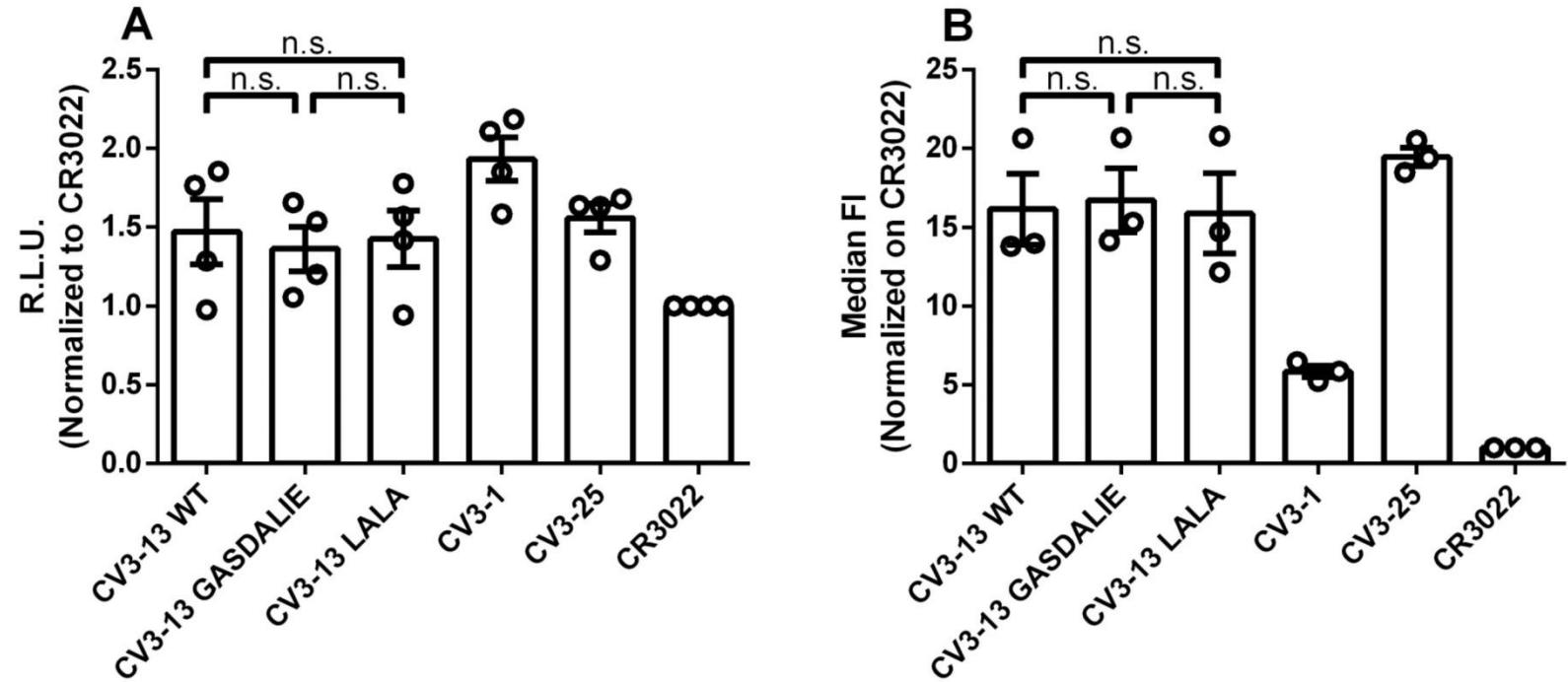
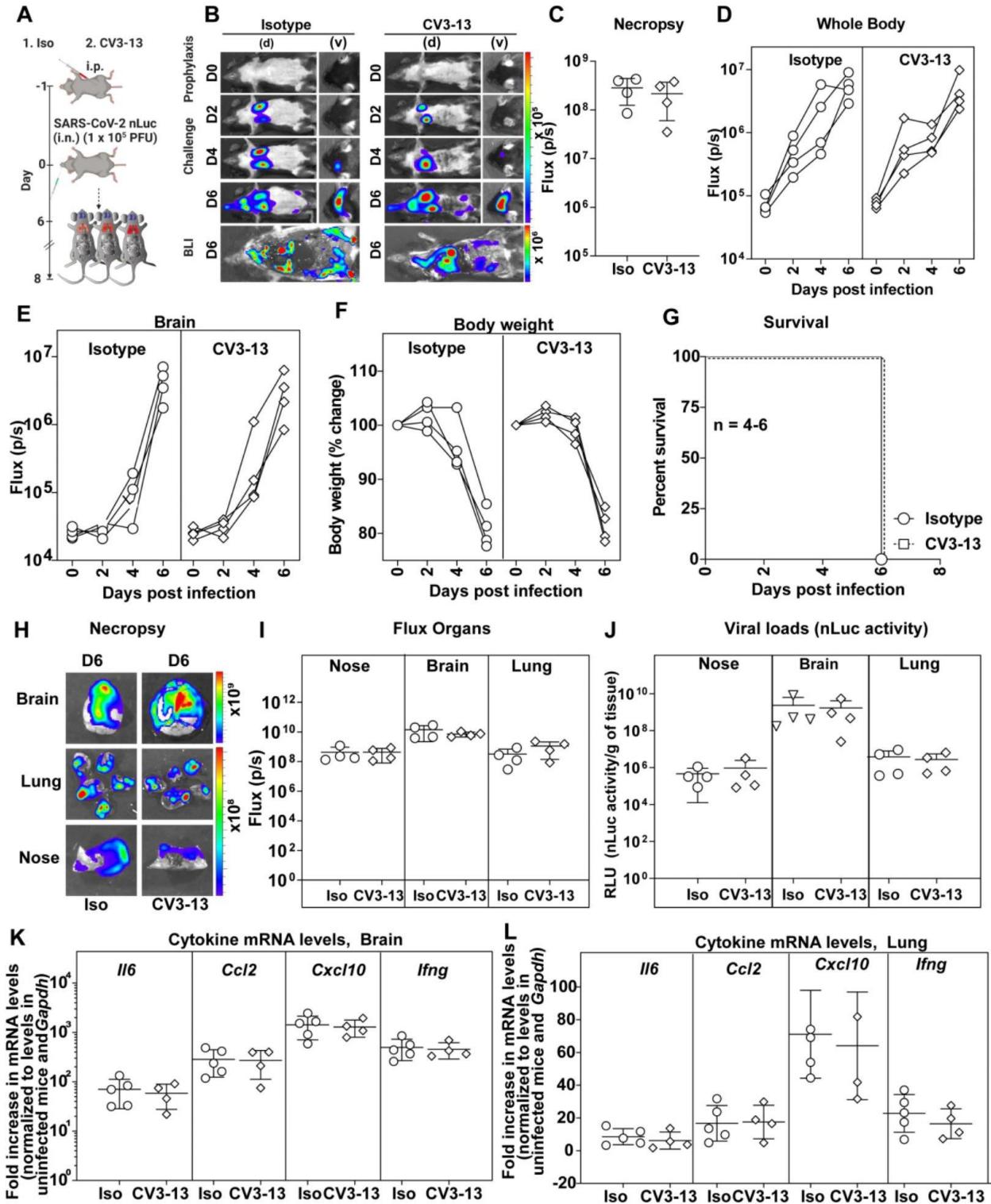
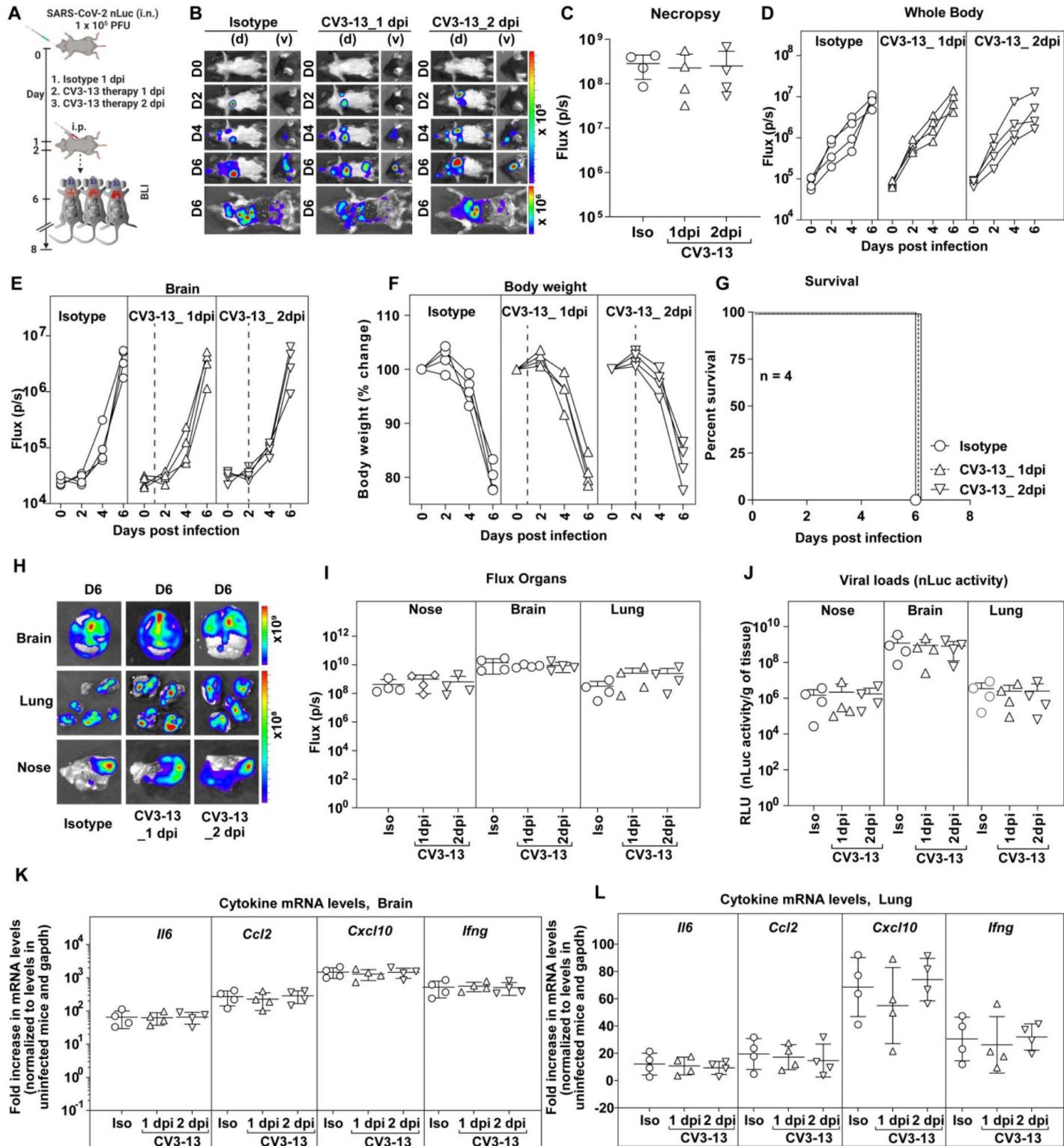
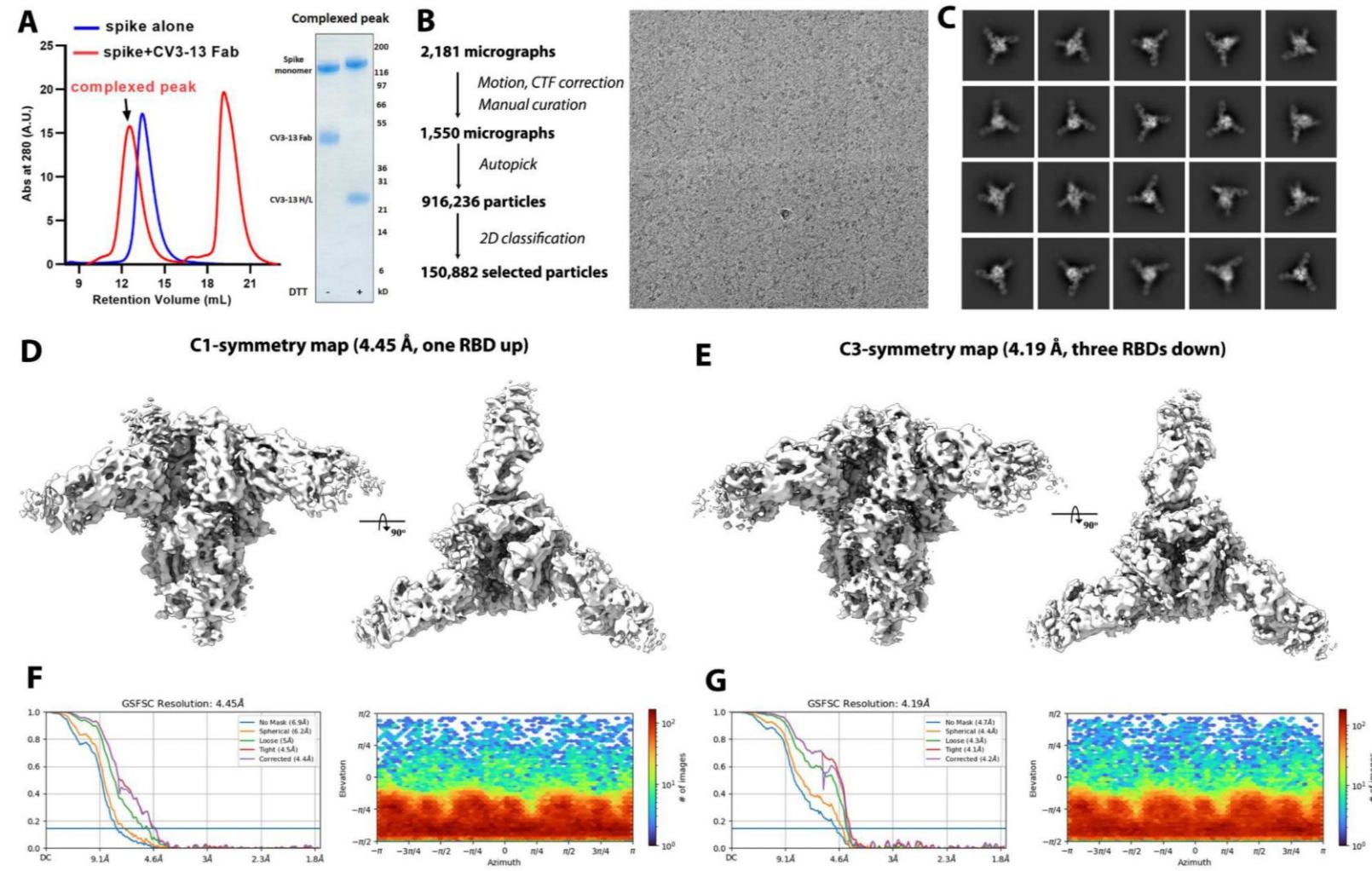
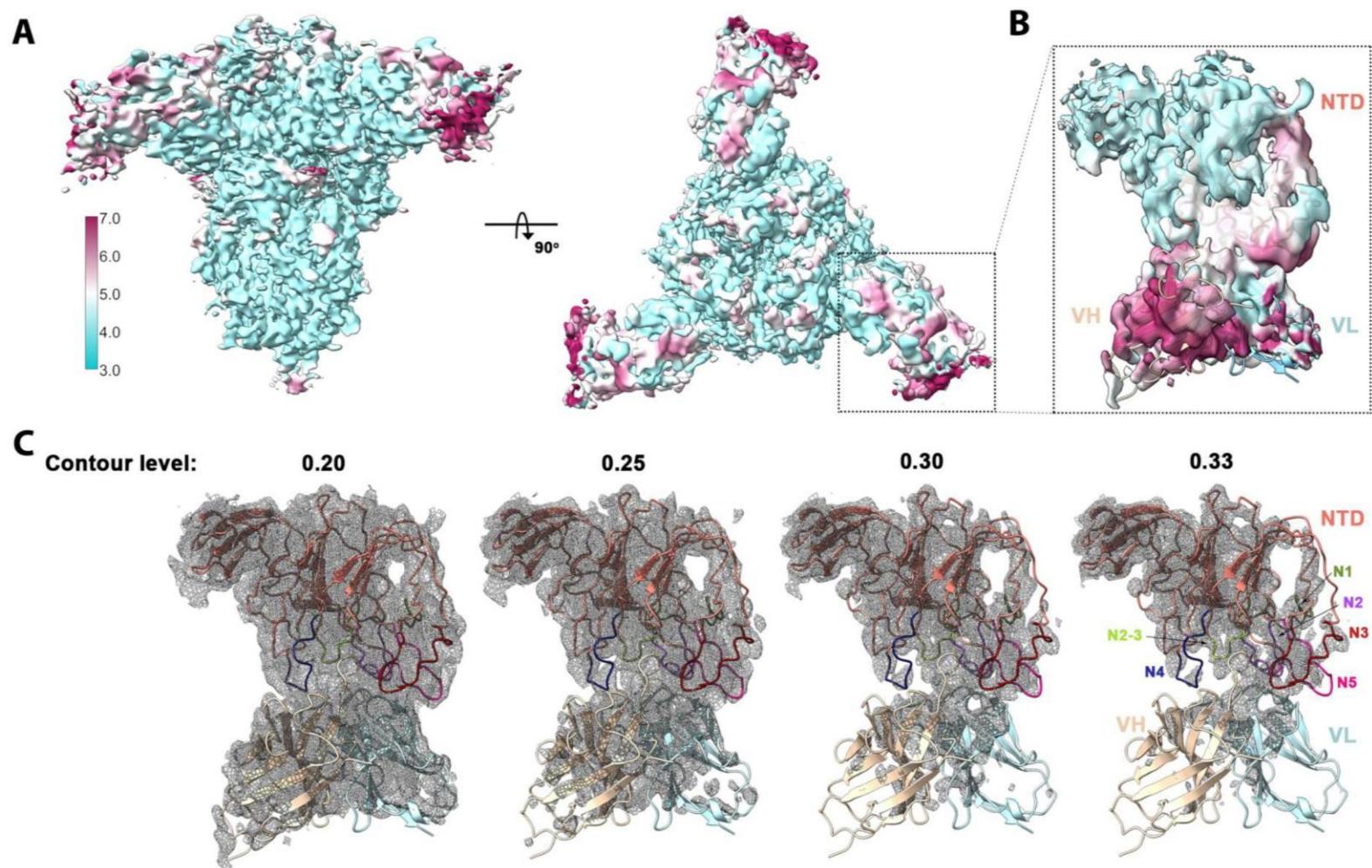


Figure 5

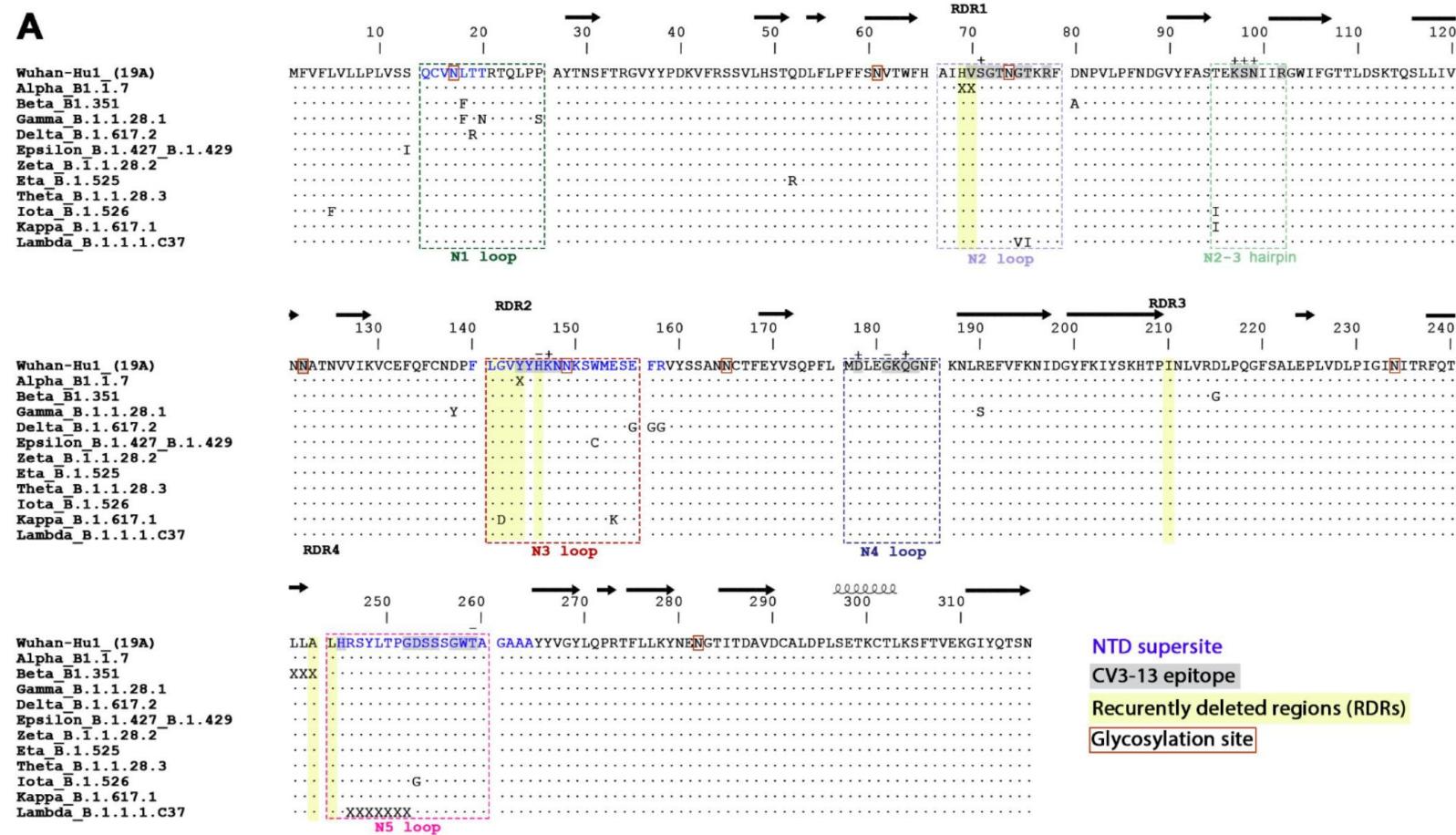





Figure 6

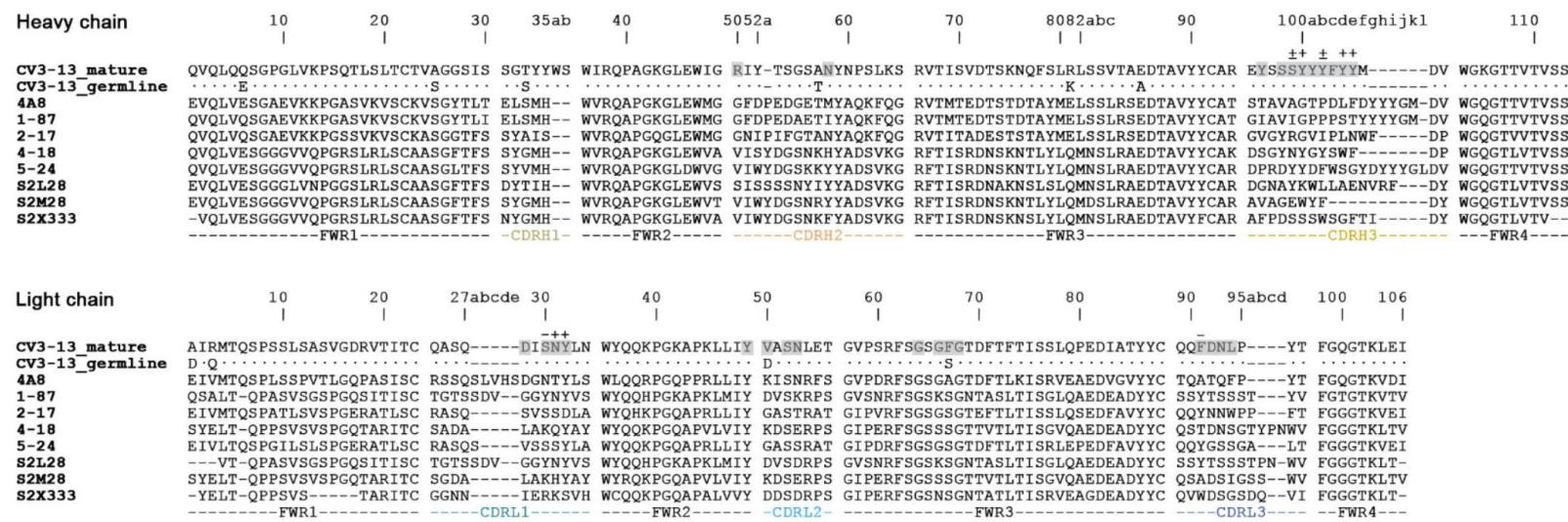

Supplemental Figure 1


Supplemental Figure 2

Supplemental Figure 3



Supplemental Figure 4



Supplemental Figure 5

A

B

Supplemental Figure 6