

1 **Evidence for a selective link between cooperation and individual recognition**

2
3 James P. Tumulty^{1*}, Sara E. Miller¹, Steven M. Van Belleghem², Hannah I. Weller³, Christopher
4 M. Jernigan¹, Sierra Vincent¹, Regan J. Staudenraus¹, Andrew W. Legan¹, Timothy J.
5 Polnaszek⁴, Floria M. K. Uy^{1a}, Alexander Walton⁵, Michael J. Sheehan^{1*}

6
7 *Authors for correspondence

8 JPT: james.tumulty@gmail.com

9 MJS: msheehan@cornell.edu

10
11 1. Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and
12 Behavior, Cornell University, Ithaca, NY 14853

13 2. Department of Biology, University of Puerto Rico – Rio Piedras, Rio Piedras, PR 00925

14 3. Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912

15 4. Department of Biology, Belmont Abbey College, Belmont, NC, 28012

16 5. Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA,
17 50011

18 a. Current address: Department of Biology, University of Rochester, Rochester, NY, 14627

19

20

21 Keywords: individual recognition, cooperation, social cognition, cognitive evolution, identity
22 signals, paper wasp

23 **Abstract**

24

25 The ability to recognize and discriminate among others is a frequent assumption of models of
26 the evolution of cooperative behavior. At the same time, cooperative behavior has been
27 proposed as a selective agent favoring the evolution of individual recognition abilities. While
28 theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities
29 and cooperative behavior with fitness or evidence of selection are elusive. Here, we provide
30 evidence of a fitness link between individual recognition and cooperation in the paper wasp
31 *Polistes fuscatus*. Nest founding females in northern populations frequently form cooperative
32 multiple foundress nests and possess highly variable facial patterns that mediate individual
33 recognition. We describe a dearth of cooperative nesting, low phenotypic diversity, and a lack of
34 individual recognition in southern populations. In a common garden experiment, northern co-
35 foundress associations successfully reared offspring while all cooperative southern groups
36 failed to rear any offspring, suggesting a fitness link between individual recognition and
37 successful cooperation. Consistent with a selective link between individual recognition and
38 cooperation, we find that rates of cooperative co-nesting correlate with identity-signaling color
39 pattern diversity across the species' range. Moreover, genomic evidence of recent positive
40 selection on cognition loci likely to mediate individual recognition is substantially stronger in
41 northern compared to southern *P. fuscatus* populations. Collectively, these data suggest that
42 individual recognition and cooperative nesting behavior have co-evolved in *P. fuscatus* because
43 recognition helps mediate conflict among co-nesting foundresses. This work provides evidence
44 of a specific cognitive phenotype under selection because of social interactions, supporting the
45 idea that social behavior can be a key driver of cognitive evolution.

46 **Introduction**

47 The relationship between cognitive abilities and social structure is of long-standing interest to
48 biologists. The social intelligence hypothesis (or social brain hypothesis) posits that selection
49 pressures associated with social relationships in complex societies are an evolutionary driver of
50 cognitive complexity^{1–3}. For highly social animals, the abilities to track relationships within the
51 group, cooperate with others, and predict how other individuals will behave in certain situations
52 are considered to be cognitively challenging tasks that may impact individual fitness. Support for
53 this hypothesis comes from comparative studies showing that cognitive performance^{4–6} and
54 neuroanatomical proxies for cognition^{1,7–9} covary with proxies for social complexity, such as
55 group size or mating system. Recently, general cognitive performance has been linked to group
56 size and fitness in Australian magpies¹⁰. Additional indirect evidence of selection on cognition
57 imposed by social systems comes from studies of brain gene expression showing, for example,
58 shared transcriptomic signatures of monogamy across divergent vertebrate clades¹¹. However,
59 the evidence for the social intelligence hypothesis has come into question because predicted
60 patterns do not hold for some clades and the use of different proxies for cognition and social
61 complexity yields conflicting results^{12–17}. More importantly, because of the reliance on such
62 proxies, it has been difficult to identify specific cognitive traits that are under selection to
63 facilitate social interactions.

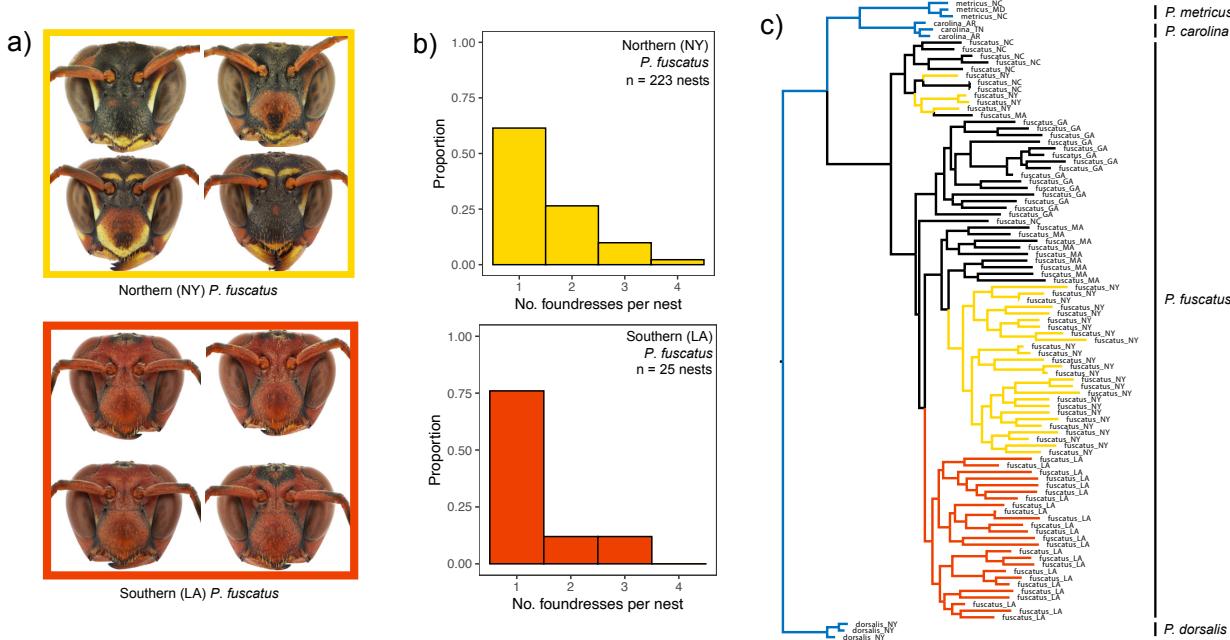
64 Models for the evolution of cooperation frequently invoke animal recognition abilities as
65 key mechanisms facilitating the evolution of cooperative behaviors^{18–21}. Whereas kin recognition
66 facilitates cooperation between relatives²², individual recognition has been identified as a
67 building block of social cognition because it allows for cooperation between unrelated
68 individuals²³. Theory indicates that individual recognition enables cooperation because it allows
69 for the identification of group members and reciprocity between individuals^{18,19,24,25}. Indirect
70 evidence of the fitness benefits of individual recognition for cooperative relationships comes
71 from studies showing that territorial animals have higher reproductive success when they have
72 familiar neighbors^{26–28}. This result is presumably due to the decreased costs of conflict with
73 territory neighbors when neighborhoods have stable compositions and established “dear
74 enemy” relationships, in which they respect mutual territory boundaries and are less aggressive
75 to each other than they are to strangers^{29,30}. Whether individuals that do or do not recognize
76 others vary in fitness outcomes in relation to cooperative behavior, however, has received less
77 empirical attention. Overall, a major limitation to our understanding of the evolution of social
78 cognition is direct evidence of a selective advantage of individual recognition in cooperative
79 groups.

80 Here, we test the hypothesis that cooperative nesting selects for individual recognition in
81 the northern paper wasp (*Polistes fuscatus*). This species provides an excellent study system
82 for understanding the relationship between individual recognition and cooperation because both
83 behaviors have been reported to vary across populations of this species^{31,32}. Female *P. fuscatus*
84 found nests in the spring, either as solitary foundresses or cooperatively with other foundresses.
85 When females found nests cooperatively, they establish an aggression-based dominance
86 hierarchy that determines the amounts of reproduction and work that each individual does^{33–35}.
87 Conflict among co-foundresses manifests in aggression between individuals and egg-eating³⁶.
88 Individual recognition has been hypothesized to function as a behavioral mechanism that
89 maintains stable dominance hierarchies and minimizes conflict among co-foundresses³⁷. The

90 evolution of individual recognition in *P. fuscatus* is associated with increased phenotypic
91 diversity due to the evolution of individually distinctive facial color patterns which function as
92 identity signals and facilitate recognition^{38,39} as well as perceptual and cognitive mechanisms
93 related to recognition^{40,41}. However, a selective link between cooperation and individual
94 recognition has yet to be demonstrated. Within-species variation in recognition and patterns of
95 cooperation^{31,32} provides a powerful system to test for an evolutionary relationship between the
96 two traits. In this paper, we test the hypothesis that cooperation selects for individual recognition
97 using a combination of (1) common garden fitness assays of cooperative nesting behavior
98 between populations with and without recognition, (2) an analysis of geographic clines in identity
99 signaling and cooperation, and (3) population genomic analyses of the strength of selection on
100 cognition loci. These three distinct lines of evidence are all consistent with an evolutionary
101 scenario where cooperation among paper wasp co-foundresses has selected for individual
102 recognition, an evolutionarily novel cognitive ability in northern *P. fuscatus* populations.

103

104


105 **Results**

106

107 **Northern and southern populations of *Polistes fuscatus* differ in color pattern diversity 108 and rates of cooperation**

109 Northern populations of *Polistes fuscatus* in New York and Michigan have highly variable color
110 patterns on their faces^{38,39,42}, Fig. 1a), regularly form multi-foundress cooperative nests⁴³, and
111 have been shown experimentally to recognize individuals^{42,44}. Here, we identified *P. fuscatus*
112 populations at the southern end of the species range in Louisiana and coastal Georgia that have
113 relatively invariant red faces and low levels of cooperative nesting (Fig. 1a, b). Using whole
114 genome resequencing, we confirmed that these wasps are *P. fuscatus*. Wasps from these
115 southern populations are closely related to those from northern populations, with low genetic
116 differentiation between populations ($F_{ST} = 0.07$), matching previous findings of long-distance
117 gene flow in *P. fuscatus*⁴⁵. Further, wasps collected from across the range form a monophyletic
118 clade, with wasps from southern populations interspersed with more northern populations (Fig.
119 1c and S1).

120

121
122 **Figure 1. Northern and southern populations differ in face color pattern diversity and**
123 **cooperation rates.** a) Photographs of the faces of wasps from New York (northern; top)

124 and Louisiana (southern; bottom), representing the diversity of face color patterns observed in these

125 two populations. b) Histograms showing the distribution of the number of foundresses per nest

126 in New York and Louisiana populations, demonstrating greater cooperation in New York. c) A

127 phylogeny generated from SNP data from whole genome sequencing of *Polistes fuscatus* from

128 across the geographic range, confirming that samples from northern and southern populations

129 cluster together as a monophyletic clade, indicating they belong to the same species. Three

130 closely related species (*P. metricus*, *P. carolina*, and *P. dorsalis*) are included as outgroups.

131 Species name and US state of origin are given for each DNA sample. Branches are colored to

132 highlight samples from New York (yellow) and Louisiana (red), samples from North Carolina,

133 Massachusetts, and Georgia are black, and outgroups are colored in blue. See Fig. 5 for

134 example faces of *P. fuscatus* from other populations.

135
136

137 **Populations differ in individual recognition behavior**

138 Individual variation in color patterns of female *P. fuscatus* from New York and Michigan has

139 previously been shown to mediate individual recognition^{38,42}. Conversely, the lack of color

140 pattern variation in other species of *Polistes* is associated with a lack of individual recognition³⁹.

141 Therefore, we reasoned that southern *P. fuscatus* populations lacking variable color patterning

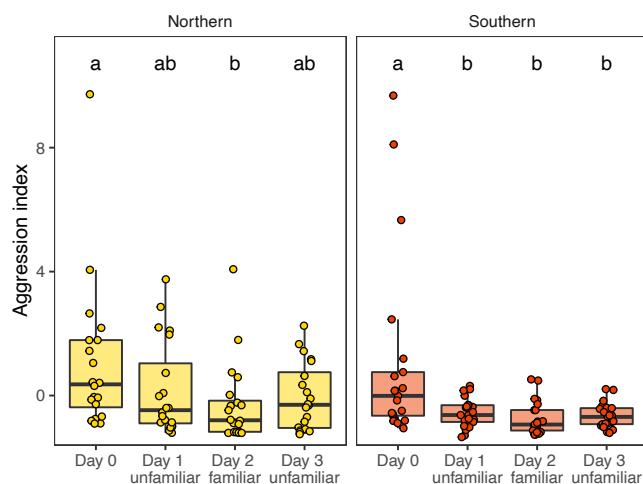
142 would also fail to show individual recognition. To test for individual recognition, we compared

143 aggression between encounters of familiar and unfamiliar wasps from populations at the

144 northern and southern portions of the range of *P. fuscatus*, following previous studies^{32,39,44,46}.

145 We compared the aggression between pairs of wasps that interacted for the first time (Day 0,

146 'unfamiliar') with their aggression when they met again two days later (Day 2, 'familiar'). We


147 controlled for the possibility of a general decrease in aggression over time that was not specific

148 to a particular individual by also measuring the aggression between pairs of unfamiliar wasps on

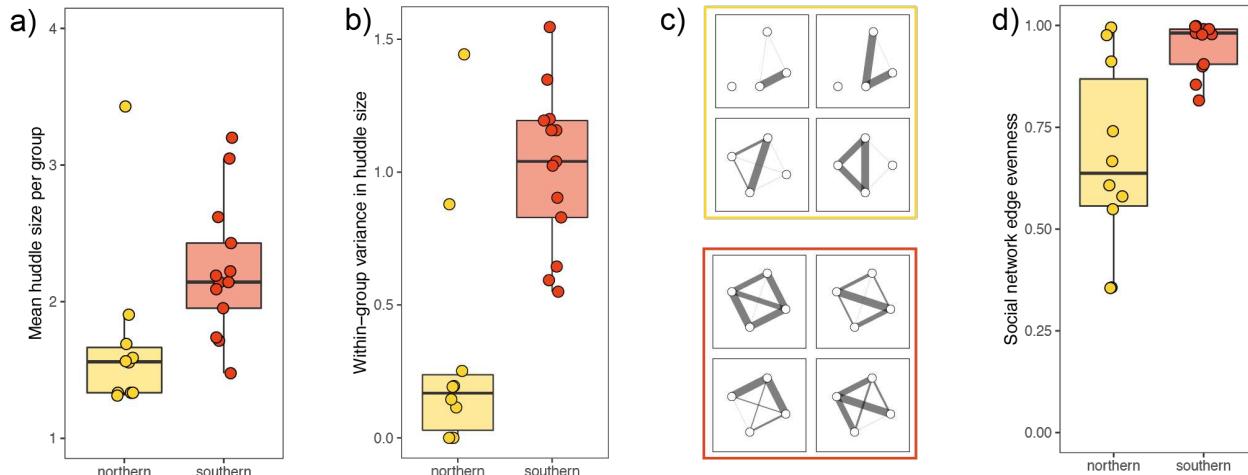
149 Day 1 and Day 3 of the experiment ($n = 40$ northern wasps, 42 southern wasps, 164 total trials).
150 To compare the behavior of wasps from these two populations in the same experiment and at
151 the same life stage, we collected foundress-destined female wasps (“gynes”) in the fall from
152 northern and southern populations and overwintered them in the lab so they could emerge from
153 overwintering at the same time in a controlled environment.

154 Wasps from both populations interacted most aggressively on the first day (Day 0) of the
155 experiment (Fig. 2). There were significant differences in aggression between days for both
156 northern ($\chi^2 = 10.66, p = 0.014$) and southern wasps ($\chi^2 = 21.78, p < 0.001$). However, only
157 northern wasps showed evidence of individual recognition; northern wasps were significantly
158 less aggressive to familiar individuals they encountered on Day 2 compared with the first time
159 they encountered these individuals on Day 0 ($t = 3.21, p = 0.010$). However, they did not show
160 significantly less aggression to other unfamiliar individuals on Day 1 ($t = 1.79, p = 0.288$) or Day
161 3 ($t = 2.11, p = 0.159$) relative to their initial aggression on Day 0. In contrast, southern wasps
162 showed a general decrease in aggression after Day 0 regardless of whether the wasp they were
163 interacting with was familiar or unfamiliar. Compared with Day 0, southern wasps were
164 significantly less aggressive on Day 1 ($t = 3.25, p = 0.009$), Day 2 ($t = 4.36, p < 0.001$), and Day
165 3 ($t = 3.45, p = 0.005$). Overall, these data indicate that southern wasps use simpler decision
166 rules and show a generalized decrease in aggression with repeated social interactions, while
167 the decrease in aggression of northern wasps was specific to particular individuals they had
168 encountered previously.

169

170
171 **Figure 2.** Results from experiments testing for individual recognition in northern and southern
172 populations. On Day 2, wasps interacted with the same individual they interacted with on Day 0,
173 while on Days 1 and 3, they interacted with individuals they had never encountered before.
174 Different letters indicate days that are significantly different from each other from post-hoc
175 comparisons within each population. Boxplots and individual data points show the aggression
176 index computed from a PCA of the total numbers and durations of aggressive behaviors
177 exhibited by both wasps during the trials.

178


179

180 **Recognition abilities are associated with differences in social organization between**
181 **populations**

182 The ability to recognize and discriminate among potential social partners is predicted to shape
183 social networks and influence how animals interact with each other^{47,48}. Therefore, we assessed
184 whether recognition differences between northern and southern populations manifested in
185 different social organizations and interactions. We established a lab common garden
186 experiment in which the lab-overwintered foundresses were housed in groups of four individuals
187 per enclosure. Each enclosure included four nesting huts, construction paper to provide nesting
188 material, and *ad libitum* food and water. These groups were composed of three individuals from
189 one nest of origin and another individual from a different nest. This design was chosen to reflect
190 how cooperative nesting associations are often thought to occur, with co-foundresses often
191 being former nestmates, but with unrelated foundresses sometimes joining nests^{33,49}. We
192 constructed social networks based on nocturnal associations of individuals before nests were
193 established; paper wasps often “huddle” together in groups (or “cluster”, *sensu* West-Eberhard,
194 1969) when they are not on a nest. Therefore, we recorded which individuals were huddling
195 together each night.

196 Social networks varied between enclosures of northern versus southern wasps. The
197 mean huddle size per group was larger for southern wasps than northern wasps ($W = 20, p =$
198 0.006, Fig. 3a), and the within-group variance in huddle size was greater for southern wasps
199 than northern wasps ($W = 16, p = 0.003$, Fig. 3b). These results suggest that southern wasps
200 are more gregarious but form less stable associations than northern wasps. We tested this idea
201 more directly by using these associations to construct social networks for each group. From
202 these social networks, we computed what we define here as “edge evenness”. Analogous to
203 species evenness in ecology⁵⁰, edge evenness describes how evenly distributed relationships
204 are across the network. Networks in which individuals interact at similar rates with all other
205 individuals in the network have higher edge evenness than those in which some pairs or trios of
206 individuals have stronger relationships than others. Social networks of southern wasps showed
207 relatively even associations among individuals with little apparent sub-structure in the network
208 (Fig. 3c, Fig. S3). In contrast, networks of northern wasps were characterized by stronger
209 associations between pairs or trios of individuals to the exclusion of other individuals (Fig. 3c,
210 Fig. S2). The edge evenness of southern wasps was greater than that of northern wasps ($W =$
211 19, $p = 0.003$, Fig. 3d). Overall, these data suggest that southern wasps are more gregarious
212 but less discriminating about who they associate with.

213

214
215 **Figure 3. Pre-nesting associations of northern wasps are smaller, more stable, and less**
216 **evenly distributed across the social network compared with those of southern wasps.** a)

217 Mean number of individuals per huddle (huddle size) per group prior to nest establishment. b)

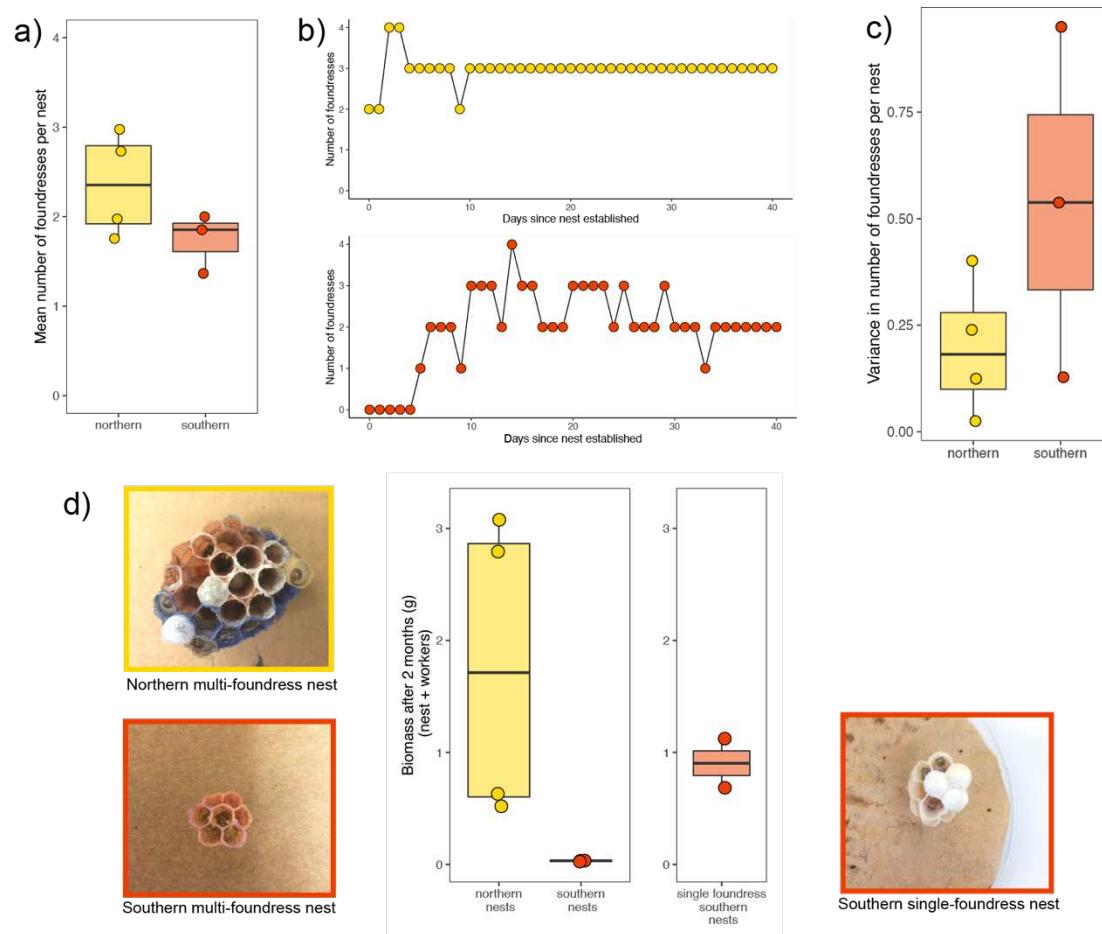
218 Within-group variance in huddle size across observation days. c) Representative social

219 networks derived from pre-nesting association data for northern (top) and southern (bottom)

220 wasps (networks for all groups can be found in supplemental figures S2 and S3). d) Edge

221 evenness of social networks for northern and southern wasps. Higher values indicate

222 connections are relatively evenly distributed among individuals in a network, while lower values


223 indicate more skewed networks with stronger subgroups within the network.

224
225
226 **Cooperative southern nests are unsuccessful and fail to rear brood**
227 Individual recognition in *P. fuscatus* is hypothesized to be an important behavioral mechanism
228 stabilizing dominance hierarchies and reducing conflict among co-foundresses³⁷. Therefore, we
229 monitored the groups of wasps in the lab common garden experiment to compare the nesting
230 success of multi-foundress wasps from both populations. Wasps from both populations started
231 nests in the lab at similar rates. Among the groups that initiated nests in the lab, southern
232 groups showed less stable nesting associations and less evidence of successful cooperation.
233 Nests began with small pedicels attached to the ceilings of the cardboard huts and then were
234 built out several cells at a time. In total, 4 northern groups and 3 southern groups tended nests.
235 The nests were established between 4 and 12 days after housing. Interestingly, both northern
236 and southern nests had multiple foundresses, and the mean number of foundresses per nest
237 was similar between populations (Fig. 4a). However, the number of foundresses observed on a
238 nest was not stable through time, and foundress number varied more for some nests than
239 others (Fig. 4b). Overall, there was a trend of greater variance in the number of foundresses per
240 nest for southern nests than northern nests (Fig. 4c), suggesting southern foundress
241 associations were less stable.

242 Strikingly, all the southern multi-foundress nests failed to develop; these nests were built
243 to between 7 and 8 cells, and eggs were laid in these cells, but the eggs never developed into
244 larvae and the nests were never expanded with additional cells. In fact, new eggs continued to
245 be laid in cells throughout the two months of the experiment, clearly indicating previous eggs

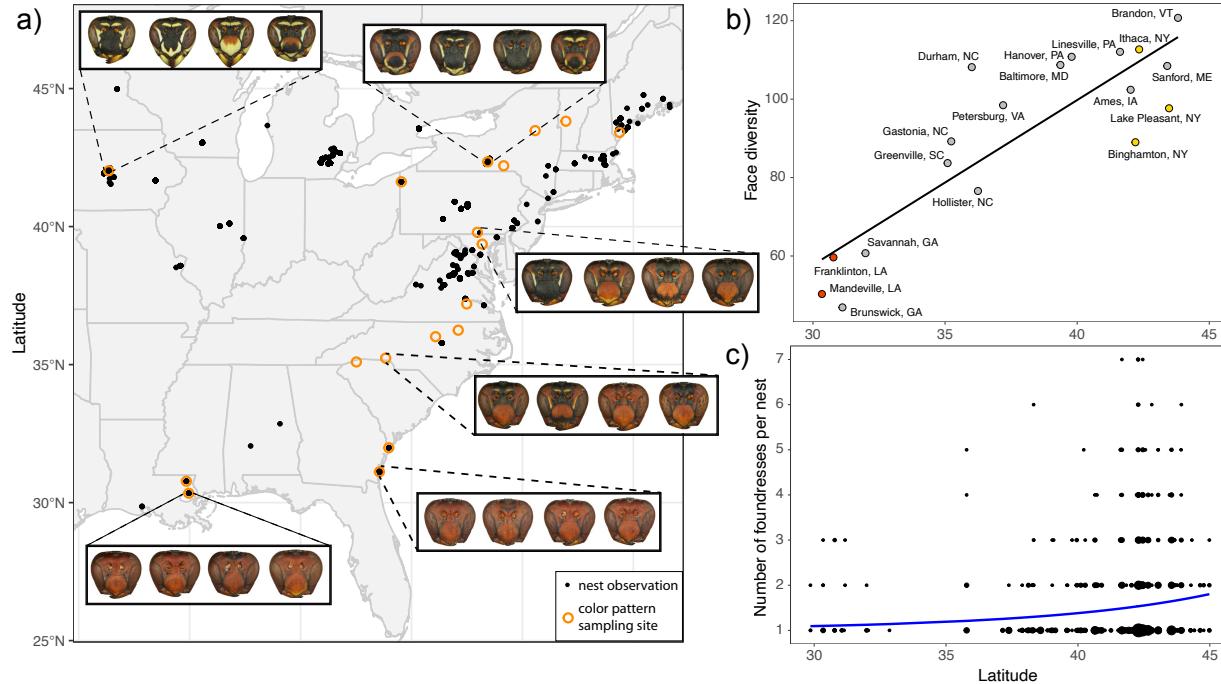
246 were eaten or removed by foundresses on the nest (Fig. 4d). In contrast, all the northern multi-
247 foundress nests developed normally, with eggs developing into larvae and pupae (Fig. 4d).
248 Cells continued to be added to these nests, and the number of cells after two months ranged
249 from 17 to 31. Two northern nests had workers successfully emerge after two months. Overall,
250 the biomass of northern nests was much greater than that of southern nests at the end of two
251 months (Fig. 4d). Additionally, we know that the failure of southern multi-foundress nests to
252 develop in our lab was not due to some problem with housing conditions that were specific to
253 southern wasps, because two solitarily housed southern wasps built successful nests and
254 reared offspring to pupation as single foundresses under the same lab conditions at the same
255 time (Fig. 4d). This nesting experiment suggests that instability and conflict among southern co-
256 foundresses prevented nesting success, providing evidence that individual recognition in
257 northern populations is key to enabling stable dominance hierarchies and successful
258 cooperation among co-foundresses.

259
260

261
262 **Figure 4. Southern multi-foundress nests failed to rear offspring.** a) The mean number of
263 foundresses per nest. b) The number of foundresses observed on a nest each day, for two
264 example nests, displaying differences in the stability of foundress associations for different
265 nests. c) Variance in the number of foundresses per nest. d) Nest biomass after two months of

266 development, with photographs of example nests for each population. Also shown are nest
267 biomass for southern single-foundress nests, which displayed normal development under the
268 same conditions.

269
270

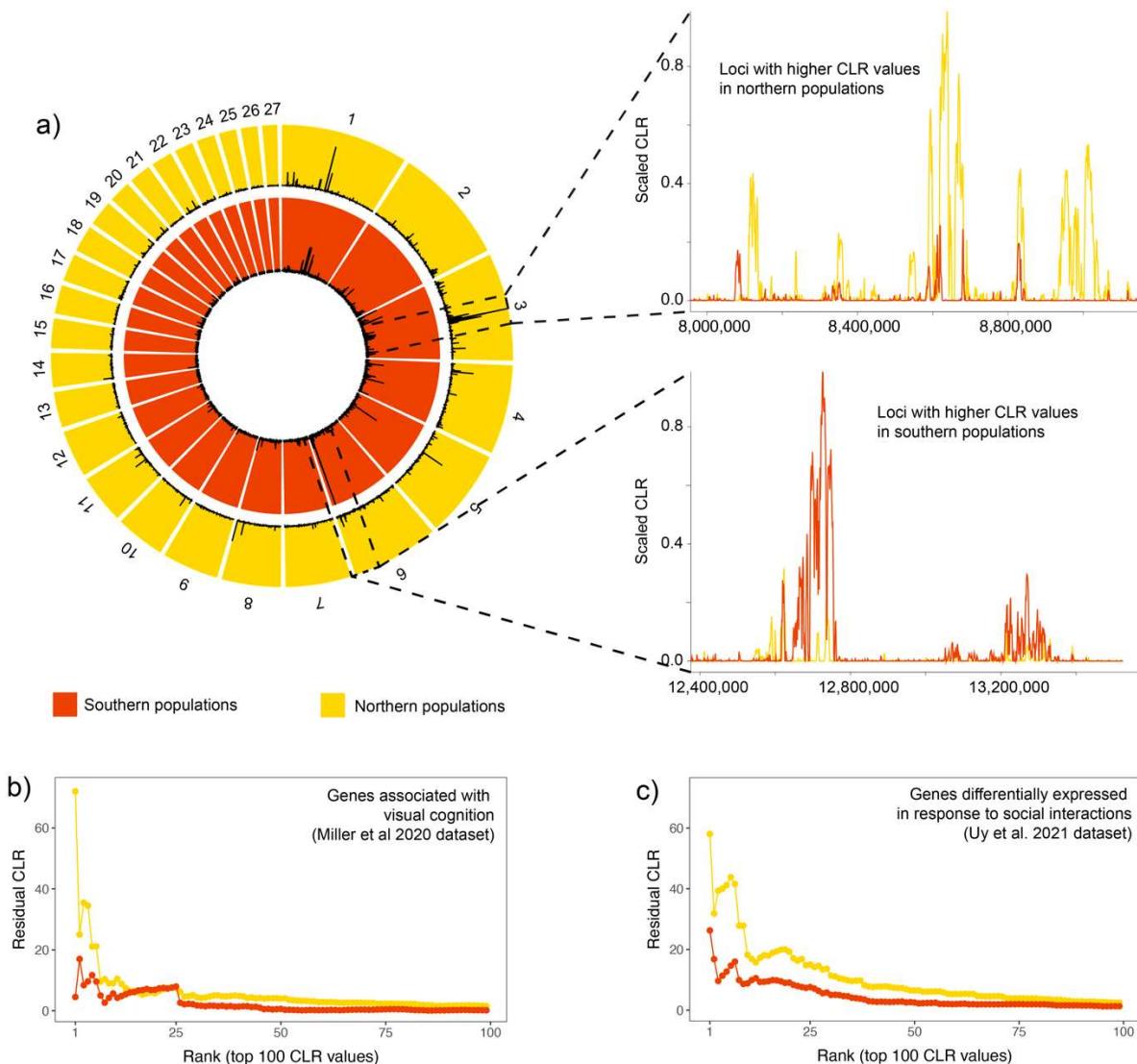

271 **Identity signal diversity is associated with geographic variation in cooperation rates**

272 Comparisons of recognition and nesting behavior between the northern and southern
273 populations of *P. fuscatus* provide empirical support for the hypothesis that mediation of conflict
274 and cooperation among co-nesting foundresses has been a selective agent favoring individual
275 recognition in this species. If cooperative nesting has been a selective agent favoring the
276 evolution of individual recognition in *P. fuscatus*, then identity signals that facilitate recognition
277 should co-vary with rates of cooperative nesting across the species range, with regions with
278 higher rates of cooperative nesting also showing greater color pattern diversity.

279 We collected female *P. fuscatus* across the East Coast of North America, spanning
280 much of its latitudinal geographic range, and measured color pattern diversity (Fig. 5a). We
281 chose to focus on the latitudinal gradient because of previous work suggesting cooperation
282 rates in the north are higher for this species³¹. To quantify color pattern variation, we
283 photographed faces and used a novel multi-step methodology for extracting homologous color
284 patterns from images. We first normalized the lighting in the photos and aligned face images
285 using homologous landmarks. We then segmented the images by color, by forcing each pixel to
286 the nearest of three colors: yellow, red, or black (example images in Fig. S6). Finally, we
287 subjected these color-segmented face images to a PCA and used a statistically significant set of
288 24 components to characterize variation among faces (Fig. S7, Table S2). We only sampled
289 one wasp per nest to reduce the possibility that individuals in the sample were close relatives
290 who might bias samples to being more homogeneous since color patterning is highly heritable in
291 this species⁵¹. We computed the pairwise Euclidean distance between faces in PCA space for
292 each site and took the mean of these distances as our measure of face diversity for a site.
293 There was a strong positive relationship between latitude and face diversity in a site ($R^2 = 0.74$,
294 $F_{1,16} = 46.1$, $p < 0.001$; Fig. 5b). The relative lack of facial diversity was especially pronounced in
295 the southernmost populations from Louisiana and coastal Georgia, which occur below 32°
296 latitude (Fig. 5b). Compared with these southernmost populations, face diversity was about 1.6
297 times higher at around 35° latitude in South and North Carolina, with diversity increasing further
298 in more northern populations (Fig. 5b).

299 We observed nesting behavior in southern wasp populations and added these data to
300 previously published datasets of nesting behavior in *P. fuscatus*^{31,43}. There is a positive
301 relationship between the number of foundresses per nest and latitude ($z = 6.81$, $p < 0.001$, $n =$
302 2,021 nests, Fig. 5c), consistent with the findings of earlier studies³¹. At the southern end of the
303 range, the majority of foundresses nest solitarily, whereas at the northern end of the range,
304 most foundresses are part of cooperative groups (e.g. 56% solitary in Louisiana, 60%
305 cooperative in New York). Additionally, the occasional cooperative nests that were observed in
306 the southern portion of the range never had more than 3 foundresses. At northern latitudes,
307 large nesting associations of 4 or 5 foundresses occur with some regularity, and groups of 6 or
308 7 foundresses are observed as well (Fig. 5c). Results from these two clinal datasets are

309 consistent with the hypothesis that cooperation selects for individual recognition by favoring
310 individuals who signal their identity.
311



312
313 **Figure 5. Color pattern diversity and cooperative nesting rates both increase with**
314 **latitude.** a) Map of sampling locations for color pattern diversity and cooperation rates of *P.*
315 *fuscatus* wasps. Black points represent nest observations taken from the WASPnest dataset^{31,43}
316 as well as new observations reported in this paper. Orange open circles mark sites where we
317 collected and photographed wasps to measure color pattern variation. Also shown are
318 photographs of representative individuals from several sites to demonstrate the color pattern
319 variation across the range. b) The relationship between face diversity and latitude across the
320 range of sampling sites fit with a linear regression line. Face diversity was measured as the
321 mean distance between faces within a population in PCA scores computed from color
322 segmented images. Points representing sites in Louisiana are colored red, and those
323 representing sites in New York are colored yellow. c) The relationship between the number of
324 foundresses per nest and latitude fit with a zero-truncated Poisson regression line. The sizes of
325 points are scaled according to the number of observations

326
327 **Genomic evidence of selection on cognition associated with individual recognition**
328 Previous population genomics studies of northern *P. fuscatus* populations identified multiple
329 strong recent selective sweeps in genomic regions related to learning, memory, and visual
330 processing⁵². Evidence of selection on learning, memory, and visual processing was
331 substantially weaker in two closely related species, *P. metricus* and *P. dorsalis*, which lack
332 individual recognition, suggesting that the patterns of selection in northern *P. fuscatus*
333 populations may be associated with individual recognition. If the signatures of selection on these
334 loci are the result of an evolutionary advantage of individual recognition in the more cooperative

335 northern populations, these same loci are predicted to show weaker or no evidence of selection
336 in southern populations due to the absence of individual recognition. Therefore, we repeated
337 this analysis using southern populations to directly compare evidence of recent selective
338 sweeps between northern and southern populations. Selective sweeps were identified using
339 SweepFinder2⁵³, which uses deviations in the local site frequency spectrum to generate a
340 composite likelihood ratio (CLR) of a selective sweep in that genomic region. Larger CLR values
341 provide evidence of stronger selection, more recent selection, selection on newer mutations, or
342 some combination of these phenomena⁵².

343 Both northern and southern populations show evidence of recent strong positive
344 selection, with some selective sweeps shared across populations and other selective sweeps
345 that are unique to only one population (Fig. 6a, S8). We assessed patterns of selection on loci
346 that likely contribute to cognitive abilities underlying individual recognition using two
347 approaches. First, we compared scaled CLR values between northern and southern populations
348 for loci annotated with gene ontology (GO) terms related to learning, memory, and visual
349 processing, directly replicating the previously published analysis of northern *P. fuscatus*
350 populations⁵². Scaled CLR values for these annotated “visual cognition genes” were elevated in
351 both populations, but there was a significant interaction between population and gene type
352 (gene type: $\chi^2 = 82.43, p < 0.001$; population: $\chi^2 = 268.73, p < 0.001$; gene type \times population: χ^2
353 = 28.50, $p < 0.001$), indicating that selection on visual cognition genes is stronger in northern
354 populations than southern populations (Fig. 6b). Second, we compared scaled CLR values
355 between northern and southern populations for genes that are differentially expressed during
356 social interactions in northern *P. fuscatus*⁵⁴. Experimental evidence for differential regulation in
357 response to social interactions suggests these genes could play a role in recognition behavior in
358 this species. Again, we find evidence of stronger selection on socially regulated genes in
359 northern compared to southern populations (gene type: $\chi^2 = 206.56, p < 0.001$; population: $\chi^2 =$
360 78.85, $p < 0.001$; gene type \times population: $\chi^2 = 78.69, p < 0.001$; Fig. 6c). Rather than comparing
361 the relative evidence of selection across all genes, we can also ask whether genes in these two
362 datasets are overrepresented among the most strongly selected genes. We find greater
363 enrichment of strongly selected genes in northern compared to southern populations for both
364 GO term and socially regulated gene sets (Table S3). Together, these data show that,
365 compared with southern populations, selection in the north has been stronger on genes that are
366 likely involved in the perceptual and cognitive abilities of wasps to recognize individuals and
367 mediate social interactions.

368
369

370 **Figure 6: Stronger and more recent selection on candidate cognition loci in northern**
371 **populations.** a) Comparison of scaled composite likelihood ratio (CLR) values between
372 northern (outer) and southern (inner) populations for the largest 27 scaffolds in the *P. fuscatus*
373 genome. CLR values have been smoothed over 10,000 bp windows. Examples of regions
374 where CLR values are greater in the north (top) and south (bottom) are shown. b & c) Residual
375 CLR values for the top 100 CLR values of putative social cognition genes from datasets of a)
376 genes with gene ontology (GO) terms related to learning, memory, and visual processing and b)
377 genes that are differentially expressed in response to social interactions in northern populations.
378 Both data sets show that northern populations have elevated signatures of selection on putative
379 social cognition genes.

380
381

382 **Discussion**

383 Despite longstanding interest in the evolutionary relationship between social organization and
384 recognition, direct evidence that recognition abilities are under selection for social interactions

385 has been missing. This limitation is due, in part, to the fact that within-species variation in
386 recognition abilities has rarely been documented. Using within-species variation in cooperation
387 and individual recognition in the northern paper wasp (*Polistes fuscatus*), we provide three
388 distinct lines of evidence that together provide strong support for the hypothesis that
389 cooperation selects for individual recognition. First, in a common garden lab nesting experiment,
390 southern wasps lacking individual recognition (Figs 1-2) were more gregarious but had less
391 stable social networks. Southern multi-foundress nests failed to successfully rear offspring,
392 providing evidence of a direct fitness consequence of the absence of individual recognition in
393 cooperative groups (Figs 3-4). Second, across the range of this species, color pattern diversity
394 co-varies with rates of cooperation such that identity signals used for individual recognition are
395 most apparent in the more cooperative northern populations (Fig 5). This pattern is consistent
396 with expectations of selection favoring signalers who signal their identity to facilitate recognition
397 in cooperative populations^{38,55-57}. Third, genomic analyses reveal stronger signatures of
398 selection in northern populations, compared with southern populations, on genes related to
399 visual cognition and social experience (Fig 6). This pattern is consistent with expectations of
400 selection favoring improved perceptual and cognitive abilities to recognize individuals in more
401 cooperative populations^{23,58,59}.

402

403 **Evolution of recognition abilities**

404 The adaptive value of recognition and discrimination is often conceptualized as the
405 shifting of optimal thresholds for “accepting” or “rejecting” individuals⁶⁰⁻⁶². There are many
406 examples of plastic shifts in acceptance thresholds showing that animals often adjust decision
407 rules in an adaptive way^{e.g.,63-66}, but less work has documented evolutionary changes in the
408 decision rules that determine acceptance thresholds⁶⁷. The results of our behavioral
409 experiments suggest that southern *P. fuscatus* foundresses universally reject or accept
410 conspecific foundresses depending on the context. Wasps from these populations are
411 characterized by a lack of individual recognition, a generalized decrease in aggression to
412 conspecifics through time, and gregarious, indiscriminate huddling behavior in pre-nesting
413 associations. Similar patterns of aggression to southern *P. fuscatus* were seen in the closely
414 related (and also rarely cooperatively nesting) *P. metricus* using the same trial design³⁹. Thus,
415 decision rules of southern *P. fuscatus* likely represent the ancestral state for this species.
416 Therefore, the evolution of individual recognition in *P. fuscatus* is associated with increasing the
417 specificity of acceptance and rejection decision rules depending on specific individuals rather
418 than behavioral context, as evidence of discriminating behavior was observed in all behavioral
419 experiments. The result that individual recognition in wasps evolved from an ancestral state of
420 context-dependent universal acceptance provides an important example of how the decision
421 rules guiding acceptance thresholds may be targets of selection during the evolution of
422 recognition systems.

423 Our results have multiple implications for how social complexity relates to the cognitive
424 demands of social life⁶⁸⁻⁷⁰. First, our results add to a growing literature demonstrating that group
425 size and social complexity are not the same^{9,70-72}. Initial expectations might be that individual
426 recognition should be associated with larger social groups in general. This pattern is observed
427 in the finding that the number of foundresses per nest and signal identity information covary
428 latitudinally in *P. fuscatus* (Fig. 1b; Fig. 5c). However, southern wasps actually formed larger

429 huddles, on average, but these huddles were less stable. Social network analysis revealed that
430 northern wasps had stronger relationships among sub-sets of individuals to the exclusion of
431 others, while southern wasps had relatively evenly distributed relationships across the network.
432 This result is consistent with the idea that individual recognition allows for relational social
433 complexity within groups^{48,71} and highlights that group size alone may be a poor proxy for social
434 complexity in many contexts. Second, our work provides insights into which features of social
435 relationships may drive increased cognitive complexity. Social interactions can involve
436 cooperation and/or conflict, and both have been hypothesized to be cognitively
437 demanding^{17,69,73–76}. The common garden nesting experiments suggest that conflict among co-
438 nesting foundresses is a main driver of selection for individual recognition. The southern wasps
439 failed to rear offspring because of oophagy, a sign of conflict among the foundresses. These
440 data argue for a role of recognition in facilitating cooperation by managing conflict.

441 Results from the common garden experiments shed light on the behavioral mechanisms
442 favoring recognition but are only one means to test for evidence of selection linking cooperation
443 and individual recognition. The results of our geographic sampling of color pattern and
444 cooperation are consistent with expectations of selection favoring individuals who signal their
445 identity to facilitate recognition in cooperative populations^{38,55–57}. The extensive variation in color
446 patterns within and between populations of *P. fuscatus* has long been a source of consternation
447 and puzzlement for students of paper wasps^{77,78}. Geographic variation in color patterning is
448 commonly reported in insects and other animals and is frequently linked to selection imposed by
449 the abiotic environment, predation, or sexual selection^{e.g., 79–84}. Our data suggest social selection
450 among female foundresses is the driver of color pattern variation in *P. fuscatus*. These data add
451 to a growing body of research showing that identity information in signals often correlates with
452 measures of social complexity, suggesting social environments can impose selection on signals
453 to make individuals more recognizable^{85–90}.

454

455 **Evidence for recent evolution of individual recognition in *P. fuscatus***

456 Individual recognition appears to be evolutionarily derived and unique to *P. fuscatus*
457 among closely related species^{39,91}. Further, population genomic analyses have revealed multiple
458 selective sweeps within the last few thousand years that are enriched for genes likely involved
459 in individual recognition, such as genes related to visual processing, cognition, learning, and
460 memory⁵². Many of these selective sweeps occurred since the last glacial maximum when the
461 Laurentide Ice Sheet covered much of the current northern range of *P. fuscatus*⁹². Together with
462 our results demonstrating individual recognition and identity signals are absent in southern
463 populations (Figs 2 and 5), these studies suggest a hypothesis in which ancestral populations
464 lacking identity signals with low rates of cooperation recently evolved individual recognition as
465 an adaptation to enable successful cooperation as the species expanded northward following
466 the last glacial retreat. The ecological factors that favor cooperation at northern latitudes are
467 currently unknown, but cooperative nesting decreases the probability of nest failure before
468 workers emerge³⁴, and shorter summers in northern climates might reduce the probability that
469 solitary foundresses can make multiple nesting attempts and still succeed. It will be important to
470 test this hypothesis in the future.

471

472 **Why do southern populations lack individual recognition?**

473 Given the low population genetic structure at the continental scale of *P. fuscatus*⁴⁵,
474 population differences in color patterning and selection on social cognition suggest multiple
475 possibilities for why we do not observe individual recognition or color pattern diversity in
476 southern populations. First, it may be the case that alleles related to individual recognition arose
477 recently in northern populations and have yet to reach southern populations. Evidence for this
478 scenario comes from a previous analysis of selection in this species that demonstrated that
479 many selective sweeps involved recent *de novo* mutations⁵². However, the lack of population
480 structure suggests that the recent evolution of individual recognition is unlikely to fully explain
481 the geographic pattern of coloration and recognition abilities, as we would expect recognition-
482 associated alleles to quickly spread if they were beneficial in all populations. Indeed, migration
483 of alleles under strong selection in northern populations into southern populations may explain
484 some, though not all, of the shared signatures of selection found here. Another possibility is that
485 individual recognition is costly in *P. fuscatus*, meaning it is only favorable when rates of
486 cooperation are sufficiently high to make the benefits of recognition outweigh these costs. In
487 particular, the cognitive abilities related to recognition are assumed to be costly in terms of
488 growth and maintenance of the requisite neural tissues^{93–95}. Low rates of cooperation in
489 southern populations may then remove the potential benefits of the cognitive mechanisms
490 related to individual recognition, so the alleles for these traits are selected against. Lack of
491 recognition behavior would then also remove benefits of signaling identity via distinctive color
492 patterns. A similar model may explain the lack of individual recognition described in a *P.*
493 *fuscatus* population in mountainous regions of central Pennsylvania with relatively low rates of
494 cooperation and relatively low color pattern diversity³². However, models of identity signal
495 evolution suggest that increased signal diversity may be favored even under very small fitness
496 benefits provided the costs of distinctiveness are very small or non-existent⁵⁶. Thus, the
497 absence of color pattern diversity in the southern populations suggests that there may be
498 selection either against particular color pattern variants involved in identity signaling or selection
499 favoring the red facial color pattern that is common throughout the Gulf coast region. Future
500 comparative analyses of clinal variation in alleles associated with cognition and color patterning
501 will be useful to help discriminating among the hypotheses raised by the present dataset.

502

503 **Conclusions**

504 Social structure and cognitive abilities vary widely among animals. The extent to which they are
505 linked has been an ongoing subject of debate, often involving proxies of both social behavior
506 and cognition. Using three distinct types of studies examining common garden fitness assays,
507 geographic patterns of behavior and signal diversity, and population genomic analyses of
508 selection on cognition loci, we provide cohesive evidence that cooperation favors the evolution
509 of individual recognition. Individual recognition is a bedrock of many complex social behaviors.
510 Our study demonstrates that understanding the factors that shape the evolution of specific
511 cognitive abilities rather than just brain size or other proxies of general cognition can provide
512 clear evidence for a link between social behavior and cognitive evolution.

513

514

515 **Methods**

516

517 **Individual recognition experiment**

518 Experiments were performed on lab overwintered *P. fuscatus* gynes that were collected in the
519 fall of 2019, from Northern (NY and ME) and southern (LA) populations. Individuals were
520 overwintered in plastic deli cups along with their nestmates, and provided water and sugar, as
521 well as crumpled construction paper in which to hide. They were overwintered for approximately
522 three months at 4°C for northern wasps and 10°C for southern wasps, to account for natural
523 differences in winter temperatures between these populations. Following overwintering, wasps
524 were weighed, paint-marked on their thorax (Testors enamel paint), and housed individually in
525 deli cups for 5-6 days before the start of the experiment at a temperature of approximately 23°C
526 with 12:12 light–dark cycle.

527 Separately for each population, we ranked individuals by weight to create three weight
528 classes of similarly sized individuals. We then paired individuals together such that they always
529 encountered other individuals from different nests but from the same weight class. These
530 criteria resulted in 40 northern and 42 southern wasps for the experiment. On Day 0 of the
531 experiment, pairs of wasps were placed together in plastic petri dishes and their interactions
532 were filmed for 45 mins. Immediately following this trial, the pair was housed together a new deli
533 cup overnight to give the individuals additional time to become familiar with each other. Between
534 9 and 10 AM the next morning (Day 1) these paired wasps were then put into solitary housing
535 where they remained for the rest of the experiment. On Day 1 and 3 of the experiment, wasps
536 were paired and filmed interacting as described above but with new individuals they had never
537 encountered before. On Day 2 of the experiment, they were paired again with the same
538 individual they interacted with on Day 0. We additionally controlled for potential day effects by
539 starting the experiment for half of the wasps on one day and the other half on the subsequent
540 day. All interaction trials occurred during the afternoon (13:00-18:00) at temperatures ranging
541 from 25 to 26°C.

542 We scored aggressive behaviors for the first 15 minutes of each trial using BORIS⁹⁶. Our
543 ethogram was developed based on a combination of established ethograms for *Polistes*³⁵, and
544 our own preliminary observations of the aggressive behaviors that are common in this type of
545 experiment. We scored the following as point behaviors (instantaneous behaviors that are
546 counted for each occurrence): dart, a rapid forward movement towards another individual; snap,
547 open mandibles towards another individual; bite, mandibles closing on another individual; kick,
548 rapid leg extension that appeared to push off or push away another individual. We scored the
549 following as state behaviors (behaviors that have durations) and denoted the start and stop
550 times: approach, orienting and moving towards another wasp to engage in an interaction;
551 chase, one wasp pursuing another wasp who appears to be avoiding the interaction;
552 antennation, probing another individual with antennae; grapple, wrestling-type behaviors with
553 both individuals engaged with biting and kicking. Each behavior was coded to one of the two
554 subjects. Observers were blind to treatments and experiment day when scoring behaviors.

555 For each trial ($n = 164$), we summed the total numbers of point behaviors, and summed
556 the durations of all state behaviors. We included all behaviors associated with aggressive
557 physical interactions (approach, bite, dart, dodge, kick, snap, antennation, chase, and grapple)
558 in a principal components analysis (centered and scaled) using the ‘prcomp’ function in R. We
559 took the first principal component, which explained 33% of the variation, as an aggression index
560 (see Table S1 for factor loadings). For statistical models, the aggression index was log-

561 transformed to better meet assumptions of parametric tests. Separately for each population, we
562 fit linear mixed effects models of the aggression index using the *lme4* package⁹⁷, with
563 experiment day as a fixed effect and cohort as a random effect. Tukey adjusted post-hoc
564 comparisons among experiment days were performed using the *emmeans* package⁹⁸.
565

566 **Common garden lab nesting experiment**

567 Lab overwintered wasps from the recognition trials were individually marked and housed in
568 groups of four individuals: three individuals from one nest of origin and another individual from a
569 different nest. Groups of wasps were housed in enclosures consisting of two 36.8 cm × 22.2 cm
570 × 24.8 plastic Kritter Keepers (Lee's Aquarium & Pet Products) stacked on top of each other,
571 with ventilation holes drilled into the sides and top. Four 10 cm × 10 cm cardboard nesting "huts"
572 were attached to the top of the enclosure to provide each wasp the option to either nest alone or
573 co-found a nest with other individuals. Each enclosure was provided with ample crumpled
574 cardboard paper to provide nesting material, as well as a sugar cube, honey, water, and, once
575 nests were established, an *ad libitum* variety of larval insects (waxworms (*Galleria mellonella*),
576 hornworms (*Manduca sexta*), and mealworms (*Tenebrio molitor*); Rainbow Mealworms). Wasps
577 were kept in a temperature-controlled room under conditions meant to mimic warm summertime
578 environments to stimulate nesting (14:10 light-dark cycle, 25-28°C daytime temperature, 21-
579 25°C nighttime temperature, 20-40% humidity).

580 Before the lights came on each morning, we recorded the location of each individual
581 relative to other individuals in the group as either: alone – greater than one body length from
582 any other individual; in proximity – within one body length of another individual; or huddled –
583 touching or close enough to be capable of touching another individual. Once a nest was
584 established in an enclosure, we also recorded which individuals were on or next to the nest
585 overnight for the duration of the experiment. Individuals often leave the nest to forage or acquire
586 nesting materials during the day but return and remain on the nest at night^{31,35}. Therefore,
587 nighttime surveys provide a reliable measure of which individuals are associated with the nest.
588 During these surveys we also visually inspected nests, counted cells, and recorded the most
589 advanced larval stage observed in a nest. In total, 8 groups started nests, but one nest was
590 quickly abandoned after only one day and is not included in nest descriptive statistics. We
591 measured nest development by weighing all nests two months after housing.

592 We analyzed pre-nesting associations for the first two weeks of the experiment because
593 all nests were established by two weeks into the experiment. For groups that did not build a
594 nest, we used the full two weeks of data. For groups that built a nest, we only used data from
595 before the nest was established. Similarly, 4 individuals from 4 different groups died during the
596 experiment, so for these groups we also only used data from before one individual in the group
597 died. Note, conclusions did not change when restricting the data of all groups to observations
598 that occurred before any nests or deaths (first 4 days of the experiment). To compute
599 descriptive statistics of the number of individuals per huddle (huddle size), we first computed the
600 mean huddle size per group-per day, and then used these numbers to compute grand mean
601 and variance for each group. We statistically compared the mean and variance in huddle size
602 using Wilcoxon rank sum tests. Because of the small sample size of numbers of nests, we only
603 report descriptive statistics of foundress associations and nest development.
604

605 **Social network analysis**

606 We used the pre-nesting huddle data (above) to construct social networks for each group.
607 Connections between individuals (“edges”) were weighted depending on whether individuals
608 were huddled together (weight = 2) or simply in proximity (weight = 1). From these social
609 networks, we computed what we define here as “edge evenness”, which is analogous to the
610 species evenness metric in ecology, derived from the Shannon diversity index⁵⁰. Edge
611 evenness (J') was computed as

$$612 J' = \frac{H'}{\ln(S)}$$

613
614 where S is the number of possible edges in the network, in our case 6 for a 4-individual network,
615 and H' is the Shannon diversity index
616

$$617 H' = - \sum_{i=1}^S p_i \ln(p_i)$$

618
619 where p_i is the proportion of weight of the i th edge in the network relative to the sum of all
620 weights in the network. Edge evenness describes how evenly distributed edge weights are
621 across the network. Networks in which individuals interact at the same rates with all other
622 individuals in the network have an edge evenness of 1, while lower values indicate skewed
623 networks in which some pairs or trios of individuals have stronger relationships than others. We
624 statistically compared edge evenness between populations using Wilcoxon rank sum tests.
625

626 **Photography and color pattern measurement**

627 Individuals were captured using nets, freeze-killed, and stored in a -20°C freezer for
628 preservation. To photograph faces, we first removed the head and the antennae to allow full
629 view of the color pattern. We photographed faces under standardized lighting conditions in the
630 lab in a photographic tent using a Canon 6D camera and Canon 100mm macro lens. We
631 confirmed that *P. fuscatus* faces do not reflect light in the ultraviolet range (Fig. S4), therefore
632 standard camera equipment captures the full range of color variation in this species. Specimens
633 were illuminated with bright, diffuse light to minimize shadows and glare by positioning three
634 lights (compact fluorescent) facing away from the specimen to reflect off the walls of the
635 photographic tent and surrounding the specimen with a cylinder of translucent plastic. To control
636 for potential slight differences in lighting across days, we also photographed three spectrally flat
637 gray standards (90%, 27%, and 3% reflectance: Color-aid gray set) under identical conditions
638 during each photography session⁹⁹.

639 Although there is some minor variation in brightness and hue within colors, it is clear that
640 the meaningful variation among individuals occurs in patterns of black, red/brown, and yellow
641 (Fig. 1, 5, S6). These three colors are present in most populations of this species and are also
642 the primary colors observed across species of *Polistes*. Therefore, our goal in this analysis was
643 not to measure color *per se*, but to objectively quantify color pattern and compare patterns in
644 homologous regions across individuals. To do so, we first used the MICA toolbox⁹⁹ to normalize
645 the light levels across photographs using the gray standards photographed during each session.

646 We then converted these normalized and linearized images using a CIE XYZ cone catch model
647 that was specific to our camera and photography illuminant (Fig. S5) using the chart-based
648 cone-catch model procedure in the MICA toolbox. We exported these images as .jpg files and
649 adjusted the maximum pixel value to 0.4 out of 1 to make the image appear bright on the screen
650 but without any pixel values being oversaturated.

651 We then used the R packages *patternize*¹⁰⁰ and *recolorize*¹⁰¹ to align images, map color
652 patterns, and analyze variation. First, we added 8 landmarks to each face image and then used
653 the 'alignLan' function in *patternize* to align all of the images by these landmarks and mask
654 areas of the image that fell outside of the main regions of interest, encompassing the clypeus,
655 inner eye region, and frons (see Fig. S6). Then, we used *recolorize* to classify pixels in these
656 masked images to three color clusters: black, red, and yellow. To do so, we first obtained a
657 color palette by running an initial color segmentation step on a subset of 30 images that
658 appeared representative of these three colors using the 'histogram' method with 6 bins per color
659 channel using the 'recolorize' function and then implementing the 'recluster' function using a
660 similarity cutoff of 15%. These parameters were chosen based on trial and error to create color
661 segmented images that appeared similar to the color patterns in the original images. We
662 clustered the colors by similarity to three color clusters and took the weighted average of these
663 three clusters which resulted in a color palette corresponding to the black, red/brown, and
664 yellow present in the images. We created a separate color palette for the southernmost
665 populations (Louisiana and Georgia) using a different set of 30 images from these populations
666 because these wasps tend to have darker reds than those in more northerly populations.
667 Finally, we classified the pixels of all images to the nearest of these three colors in the palettes
668 using the 'imposeColors' function in *recolorize*.

669 To quantify variation among individuals, we converted the images back to rasters
670 consisting of a stack of three binary rasters corresponding to pixel assignments for each of the
671 three colors. Because we were interested in pattern variation, we treated the slightly different
672 black and red colors of the northern and southern wasps as equivalent. We then analyzed
673 variation using *patternize* and computed a principal components analysis of these rasters which
674 yielded 269 components corresponding to the 269 images in the data set. We reduced this
675 dataset to 24 statistically significant components (Fig. S7, Table S2), which were determined
676 using permutation parallel analysis in the *jackstraw* package¹⁰². We then computed pairwise
677 Euclidian distances between points in this multi-dimensional PCA space and quantified within-
678 site face diversity as the mean pairwise distance between points collected from the same site.
679

680 Cooperative nesting data

681 We obtained data on the number of foundresses per nest across the latitudinal range of
682 this species using a combination of existing datasets compiled in WASPnest^{31,43} and our own
683 observations of nesting behavior. For the WASPnest dataset, we restricted the dataset to
684 observations where the number of foundresses was directly reported. We also excluded
685 observations where the exact number of foundresses were unclear, for example if a paper
686 simply stated that nests were "multi-foundress" without providing the number. We supplemented
687 this dataset with our own observations of foundress associations across the range, including in
688 some key populations at the southern end of the range. We observed nests early in the season
689 before workers emerged. We also observed nests early in the morning or on cool and rainy

690 days when all individuals associated with a nest tend to be on the nest. In total, this dataset
691 consisted of 2,021 nest observations. We statistically analyzed the relationship between the
692 number of foundresses per nest and latitude using a zero-truncated Poisson regression using
693 the VGAM package¹⁰³.

694

695 **Genomic analyses**

696 To confirm that northern and southern *P. fuscatus* were the same species, we collected and
697 sequenced the genomes of unrelated female *P. fuscatus* from five populations: New York ($n =$
698 30), Massachusetts ($n = 10$), North Carolina ($n = 8$), Georgia ($n = 15$), and Louisiana ($n = 25$).
699 As an outgroup, we included three individuals each from three closely related species (*P.*
700 *carolina*, *P. dorsalis*, and *P. metricus*) with sympatric ranges. Sample information is provided in
701 Table S4.

702 Paired-end 150-bp Nextera libraries were sequenced on the Illumina HiSeq 2000. All
703 samples were aligned to the *P. fuscatus* reference genome⁵² using the Burrow-Wheeler Aligner
704 (v.0.7.13)¹⁰⁴. Variants were identified using GATK (v3.8)¹⁰⁵ and hard filtered to remove low
705 confidence variants, following the methods described in⁴⁵.

706 To examine the relationship between samples, we constructed a phylogenetic tree with
707 SNPhylo (v20160204)¹⁰⁶, a program designed to rapidly build phylogenetic trees from large SNP
708 datasets. To reduce the size of the dataset, variants were first filtered with VCFtools¹⁰⁷ to retain
709 only a single, informative, high-quality, biallelic SNP every 1,000 bp using the options: --max-
710 alleles 2 --mac 0.1 --max-missing-count 10 --min-meanDP 3 --max-meanDP 1200 --minQ 20 --
711 thin 1000. SNPhylo was run with 500 rounds of bootstrapping. We further explored relatedness
712 between samples by conducting a PCA of genetic variants using Tassel5¹⁰⁸. Lastly, we
713 calculated genetic differentiation between the most distant populations, New York and
714 Louisiana, using Weir-Cockerham FST, implemented in VCFtools.

715

716 **Recent selection in northern versus southern wasps**

717 Using the 40 re-sequenced *P. fuscatus* genomes from Georgia and Louisiana, we looked for
718 evidence of selective sweeps in southern wasps with SweepFinder2⁵³. SweepFinder2 uses
719 deviations in the local site frequency spectrum to infer selective sweeps, generating a
720 composite likelihood ratio (CLR) value for each window. CLR values are larger when selection is
721 stronger, more recent, and/or acting on new mutations rather than standing genetic variation⁵².
722 We compared CLR values for the southern population to CLR values that were generated for a
723 prior study of northern populations⁵². Northern CLR values were calculated from the same 40
724 wasps from New York and Massachusetts described above. We included two sampling sites in
725 each analysis to avoid detecting selective sweeps caused by local adaptation. CLR values
726 between northern and southern wasps were scaled by the maximum CLR value in each dataset,
727 generating scaled CLR. Values were compared in 1000 bp windows across the genome and
728 plots were constructed with BioCircos¹⁰⁹. For each gene in the genome, as well as the region +/-
729 5000 bp upstream/downstream of that gene, we calculated a maximum scaled CLR value.

730 Genes in the *P. fuscatus* genome had been previously classified as potential targets of
731 selection for cognitive evolution if annotated with one of the following Gene Ontology (GO)
732 terms: cognition (GO:0050890), mushroom body development (GO:0016319), visual behavior
733 (GO:0007632), learning or memory (GO:0007611), and eye development (GO:0001654). Out of

734 11,935 genes, 1,088 genes were considered potentially related to the perceptual and cognitive
735 mechanisms of individual recognition (hereafter: 'visual cognition genes'). We also categorized
736 genes based on whether or not they showed evidence of differential expression in response to
737 social experience based on data published in⁵⁴. For both data sets, to statistically compare
738 scaled CLR values between populations and gene categories, we log transformed scaled CLR
739 values to improve linearity and fit linear mixed effects models using the *lme4* package, with
740 population (northern or southern), gene type (GO term dataset: visual cognition gene or other;
741 differential expression dataset: yes or no), and their interaction as fixed effects, and gene
742 identity as a random effect. We evaluated the significance of fixed effects and their interaction
743 using type III ANOVAs using the *car* package, and we report Wald chi-square test statistics. We
744 visualized population-specific elevation of CLR values for candidate social cognition loci by
745 computing the residual CLR value per locus. To do this, we generated expected CLR values by
746 randomly selecting 100 sets of n non-candidate loci, where n is the number of candidate loci for
747 a dataset, i.e., $n = 1,088$ genes based on visual cognition GO terms, $n = 733$ genes for socially
748 regulated genes. We then ranked each set by decreasing CLR value and took the mean CLR
749 value at each rank across the 100 sets to estimate expected CLR values for n random loci¹¹⁰.
750 We also ranked the observed CLR values for candidate loci and took the difference between the
751 observed CLR value and expected CLR value for each rank as the residual CLR. These
752 residuals thus control for potential population differences in CLR values across the genome and
753 allow visualization of potential differences in the elevation of CLR values for candidate loci.
754

755 **Data accessibility**

756 New sequence data for samples from Louisiana and Georgia have been deposited to the NCBI
757 sequence read archive in project PRJNA761367. Samples from other populations are available
758 in project PRJNA482994. All other data will be made publicly available on Dryad upon
759 publication.

760

761 **Acknowledgements**

762 We thank the state parks departments of New York, Pennsylvania, Virginia, North Carolina,
763 South Carolina, Georgia, Alabama, and Louisiana for permission to collect paper wasps. We
764 thank Benjamin Brack for assistance in setting up behavioral experiments and Lilly Woodward
765 for help processing photographs. This research was funded by a National Science Foundation
766 CAREER grant to MJS (DEB-1750394) and a grant from the National Institutes of Health to MJS
767 (DP2-GM128202). AW was supported by an NSF EDGE grant to A. Toth and MJS (1827567).

768

769 **Author contributions**

770 JPT and MJS conceived of and designed the project; JPT and CMJ designed and performed the
771 individual recognition experiment; JPT performed other behavioral experiments; JPT, CMJ, SV,
772 RS, AWL, TJP, FMKU, and AW collected data; SMVB and HIW developed code for color
773 pattern analysis; JPT analyzed non-genomic data; SEM and MJS analyzed genomic data; MJS
774 secured funding; JPT, SEM, and MJS wrote the first draft of the paper; and all authors reviewed
775 and edited the paper.

776 **References**

- 777 1. Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. *Journal of Human*
778 *Evolution* **20**, 469–493 (1992).
- 779 2. Humphrey, N. K. The social function of intellect. *Growing points in ethology* **37**, 303–317 (1976).
- 780 3. Jolly, A. Lemur Social Behavior and Primate Intelligence. *Science* **153**, 501–506 (1966).
- 781 4. Bond, A. B., Kamil, A. C. & Balda, R. P. Social complexity and transitive inference in corvids. *Animal*
782 *Behaviour* **65**, 479–487 (2003).
- 783 5. Forss, S. I. F., Willems, E., Call, J. & van Schaik, C. P. Cognitive differences between orangutan
784 species: a test of the cultural intelligence hypothesis. *Sci Rep* **6**, 30516 (2016).
- 785 6. MacLean, E. L., Merritt, D. J. & Brannon, E. M. Social complexity predicts transitive reasoning in
786 prosimian primates. *Animal Behaviour* **76**, 479–486 (2008).
- 787 7. Barton, R. A. Neocortex size and behavioural ecology in primates. *Proc. R. Soc. Lond. B* **263**, 173–
788 177 (1996).
- 789 8. Sandel, A. A. *et al.* Assessing sources of error in comparative analyses of primate behavior:
790 Intraspecific variation in group size and the social brain hypothesis. *Journal of Human Evolution* **94**,
791 126–133 (2016).
- 792 9. Shultz, S. & Dunbar, R. I. M. The evolution of the social brain: Anthropoid primates contrast with
793 other vertebrates. *Proceedings of the Royal Society B: Biological Sciences* **274**, 2429–2436 (2007).
- 794 10. Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group
795 size and affects fitness in Australian magpies. *Nature* **554**, 364–367 (2018).
- 796 11. Young, R. L. *et al.* Conserved transcriptomic profiles underpin monogamy across vertebrates. *Proc*
797 *Natl Acad Sci USA* **116**, 1331–1336 (2019).
- 798 12. Beauchamp, G. & Fernández-Juricic, E. Is there a relationship between forebrain size and group
799 size in birds? *Evolutionary Ecology Research* **6**, 833–842 (2004).
- 800 13. DeCasien, A. R., Williams, S. A. & Higham, J. P. Primate brain size is predicted by diet but not
801 sociality. *Nat Ecol Evol* **1**, 0112 (2017).

802 14. Farris, S. M. & Schulmeister, S. Parasitoidism, not sociality, is associated with the evolution of
803 elaborate mushroom bodies in the brains of hymenopteran insects. *Proc. R. Soc. B.* **278**, 940–951
804 (2011).

805 15. González-Forero, M. & Gardner, A. Inference of ecological and social drivers of human brain-size
806 evolution. *Nature* **557**, 554–557 (2018).

807 16. Holekamp, K. E. Questioning the social intelligence hypothesis. *Trends in Cognitive Sciences* **11**,
808 65–69 (2007).

809 17. Iwaniuk, A. N. & Arnold, K. E. Is cooperative breeding associated with bigger brains? A comparative
810 test in the Corvida (Passeriformes). *Ethology* **110**, 203–220 (2004).

811 18. Crowley, P. H. *et al.* Evolving cooperation: the role of individual recognition. *Biosystems* **37**, 49–66
812 (1996).

813 19. Dugatkin, L. Animal cooperation among unrelated individuals. *Naturwissenschaften* **89**, 533–541
814 (2002).

815 20. Hamilton, W. D. The genetical evolution of social behaviour. II. *Journal of Theoretical Biology* **7**, 17–
816 52 (1964).

817 21. Sheehan, M. J., Miller, C. & Reeve, H. K. Identity signaling and patterns of cooperative behavior.
818 *Integrative and Comparative Biology* **57**, 580–588 (2017).

819 22. Penn, D. J. & Frommen, J. G. Kin recognition: an overview of conceptual issues, mechanisms and
820 evolutionary theory. in *Animal Behaviour: Evolution and Mechanisms* (ed. Kappeler, P.) 55–85
821 (Springer Berlin Heidelberg, 2010). doi:10.1007/978-3-642-02624-9_3.

822 23. Seyfarth, R. M. & Cheney, D. L. Social cognition. *Animal Behaviour* **103**, 191–202 (2015).

823 24. Stevens, J. R., Cushman, F. A. & Hauser, M. D. Evolving the Psychological Mechanisms for
824 Cooperation. *Annu. Rev. Ecol. Evol. Syst.* **36**, 499–518 (2005).

825 25. Trivers, R. L. The evolution of reciprocal altruism. *The Quarterly Review of Biology* **46**, 35–57
826 (1971).

827 26. Beletsky, L. D. & Orians, G. H. Familiar neighbors enhance breeding success in birds. *Proceedings
828 of the National Academy of Sciences of the United States of America* **86**, 7933–6 (1989).

829 27. Grabowska-Zhang, A. M., Wilkin, T. A. & Sheldon, B. C. Effects of neighbor familiarity on
830 reproductive success in the great tit (*Parus major*). *Behavioral Ecology* **23**, 322–333 (2012).

831 28. Siracusa, E. R. *et al.* Familiar neighbors, but not relatives, enhance fitness in a territorial mammal.
832 *Current Biology* **31**, 438-445.e3 (2021).

833 29. Tumulty, J. P. Dear Enemy Effect. in *Encyclopedia of Animal Cognition and Behavior* (eds. Vonk, J.
834 & Shackelford, T.) 1–4 (Springer International Publishing, 2018). doi:10.1007/978-3-319-47829-
835 6_693-1.

836 30. Wilson, E. O. *Sociobiology: The New Synthesis*. (Harvard University Press, 1975).

837 31. Sheehan, M. J. *et al.* Different axes of environmental variation explain the presence vs. extent of
838 cooperative nest founding associations in *Polistes* paper wasps. *Ecology Letters* **18**, 1057–1067
839 (2015).

840 32. Tibbetts, E. A. *et al.* Individual recognition and individual identity signals in *Polistes fuscatus* wasps
841 vary geographically. *Animal Behaviour* **176**, 87–98 (2021).

842 33. Jandt, J. M., Tibbetts, E. A. & Toth, A. L. *Polistes* paper wasps: a model genus for the study of
843 social dominance hierarchies. *Insect. Soc.* **61**, 11–27 (2014).

844 34. Reeve, H. K. *Polistes*. in *The Social Biology of Wasps* (eds. Ross, K. G. & Matthews, R. W.) 99–148
845 (Comstock Publishing Associates, 1991).

846 35. West-Eberhard, M. J. The Social Biology of Polistine Wasps. *Miscellaneous Publications, Museum*
847 *of Zoology, University of Michigan* **15**, 1–101 (1969).

848 36. Reeve, H. K. & Nonacs, P. Social contracts in wasp societies. *Nature* **359**, 823–825 (1992).

849 37. Tibbetts, E. A. & Sheehan, M. J. Individual Recognition and the Evolution of Learning and Memory
850 in *Polistes* Paper Wasps. in *Handbook of Invertebrate Learning and Memory* (eds. Menzel, R. &
851 Benjamin, P.) 561–571 (Elsevier Inc., 2013). doi:10.1016/B978-0-12-415823-8.00042-3.

852 38. Sheehan, M. J. & Tibbetts, E. A. Evolution of identity signals: frequency-dependent benefits of
853 distinctive phenotypes used for individual recognition. *Evolution* **63**, 3106–13 (2009).

854 39. Sheehan, M. J. & Tibbetts, E. A. Selection for individual recognition and the evolution of
855 polymorphic identity signals in *Polistes* paper wasps. *Journal of Evolutionary Biology* **23**, 570–7
856 (2010).

857 40. Sheehan, M. J. & Tibbetts, E. A. Specialized face learning is associated with individual recognition
858 in paper wasps. *Science* **334**, 1272–1276 (2011).

859 41. Tibbetts, E. A., Wong, E. & Bonello, S. Wasps use social eavesdropping to learn about individual
860 rivals. *Current Biology* **30**, 3007-3010.e2 (2020).

861 42. Tibbetts, E. A. Visual signals of individual identity in the wasp *Polistes fuscatus*. *Proceedings of the
862 Royal Society of London B: Biological Sciences* **269**, 1423–8 (2002).

863 43. Miller, S. E. *et al.* WASPnest: A worldwide assessment of social Polistine nesting behavior. *Ecology*
864 **0**, 1236498 (2018).

865 44. Sheehan, M. J. & Tibbetts, E. A. Robust long-term social memories in a paper wasp. *Current
866 Biology* **18**, R851-2 (2008).

867 45. Bluher, S. E., Miller, S. E. & Sheehan, M. J. Fine-scale population structure but limited genetic
868 differentiation in a cooperatively breeding paper wasp. *Genome Biology and Evolution* **12**, 701–714
869 (2020).

870 46. Dreier, S., van Zweden, J. S. & D'Ettorre, P. Long-term memory of individual identity in ant queens.
871 *Biology letters* **3**, 459–62 (2007).

872 47. Gokcekus, S., Firth, J. A., Regan, C. & Sheldon, B. C. Recognising the key role of individual
873 recognition in social networks. *Trends in Ecology & Evolution* S0169534721001828 (2021)
874 doi:10.1016/j.tree.2021.06.009.

875 48. Sheehan, M. J. & Bergman, T. J. Is there an evolutionary trade-off between quality signaling and
876 social recognition? *Behavioral Ecology* **27**, 2–13 (2016).

877 49. Reeve, H. K., Starks, P. T., Peters, J. M. & Nonacs, P. Genetic support for the evolutionary theory of
878 reproductive transactions in social wasps. *Proc. R. Soc. Lond. B* **267**, 75–79 (2000).

879 50. Pielou, E. C. The measurement of diversity in different types of biological collections. *Journal of
880 Theoretical Biology* **13**, 131–144 (1966).

881 51. Sheehan, M. J., Choo, J. & Tibbetts, E. A. Heritable variation in colour patterns mediating individual
882 recognition. *Royal Society Open Science* **4**, 161008 (2017).

883 52. Miller, S. E. *et al.* Evolutionary dynamics of recent selection on cognitive abilities. *Proceedings of
884 the National Academy of Sciences of the United States of America* **117**, 3045–3052 (2020).

885 53. DeGiorgio, M., Huber, C. D., Hubisz, M. J., Hellmann, I. & Nielsen, R. SweepFinder2: increased
886 sensitivity, robustness and flexibility. *Bioinformatics* **32**, 1895–1897 (2016).

887 54. Uy, F. M. K. *et al.* Dynamic neurogenomic responses to social interactions and dominance
888 outcomes in female paper wasps. *PLoS Genet* **17**, e1009474 (2021).

889 55. Beecher, M. D. Signalling systems for individual recognition: an information theory approach. *Animal
890 Behaviour* **38**, 248–261 (1989).

891 56. Dale, J., Lank, D. B. & Reeve, H. K. Signaling individual identity versus quality: a model and case
892 studies with ruffs, queleas, and house finches. *The American Naturalist* **158**, 75–86 (2001).

893 57. Tibbetts, E. A., Mullen, S. P. & Dale, J. Signal function drives phenotypic and genetic diversity: the
894 effects of signalling individual identity, quality or behavioural strategy. *Philosophical Transactions of
895 the Royal Society B: Biological Sciences* **372**, 20160347 (2017).

896 58. Miller, S. E., Sheehan, M. J. & Reeve, H. K. Coevolution of cognitive abilities and identity signals in
897 individual recognition systems: Selection on senders and receivers. *Philosophical Transactions of
898 the Royal Society B: Biological Sciences* **375**, (2020).

899 59. Wiley, R. H. Specificity and multiplicity in the recognition of individuals: implications for the evolution
900 of social behaviour. *Biological Reviews* **88**, 179–95 (2013).

901 60. Reeve, H. K. The evolution of conspecific acceptance thresholds. *The American Naturalist* **133**,
902 407–435 (1989).

903 61. Scharf, H. M., Suarez, A. V., Reeve, H. K. & Hauber, M. E. The evolution of conspecific acceptance
904 threshold models. *Philosophical Transactions of the Royal Society B: Biological Sciences* **375**,
905 20190475 (2020).

906 62. Sherman, P. W., Reeve, H. K. & Pfennig, D. W. Recognition systems. in *Behavioral ecology: An
907 evolutionary approach* (eds. Krebs, J. R. & Davies, N. B.) 69–96 (Blackwell Science Ltd, 1997).

908 63. Downs, S. G. & Ratnieks, F. L. W. Adaptive shifts in honey bee (*Apis mellifera* L.) guarding behavior
909 support predictions of the acceptance threshold model. *Behavioral Ecology* **11**, 326–333 (2000).

910 64. Mora-Kepfer, F. Context-dependent acceptance of non-nestmates in a primitively eusocial insect.
911 *Behavioral Ecology and Sociobiology* **68**, 363–371 (2014).

912 65. Pfennig, D. W. & Reeve, H. K. Neighbor recognition and context-dependent aggression in a solitary
913 wasp, *Sphecius speciosus* (Hymenoptera: Sphecidae). *Ethology* **80**, 1–18 (1989).

914 66. Steiger, S. & Müller, J. K. From class-specific to individual discrimination: Acceptance threshold
915 changes with risk in the partner recognition system of the burying beetle *Nicrophorus vespilloides*.
916 *Animal Behaviour* **80**, 607–613 (2010).

917 67. Tumulty, J. P., Lange, Z. K. & Bee, M. A. Identity signaling, identity reception, and the evolution of
918 social recognition in a Neotropical frog. *bioRxiv* (2021) doi:10.1101/2021.04.25.441331.

919 68. de Waal, F. B. & Tyack, P. L. *Animal Social Complexity*. (Harvard University Press, 2003).

920 69. Dunbar, R. I. M. & Shultz, S. Evolution in the social brain. *Science* **317**, 1344–7 (2007).

921 70. Freeberg, T. M., Dunbar, R. I. M. & Ord, T. J. Social complexity as a proximate and ultimate factor in
922 communicative complexity. *Philosophical Transactions of the Royal Society B: Biological Sciences*
923 **367**, 1785–801 (2012).

924 71. Bergman, T. J. & Beehner, J. C. Measuring social complexity. *Animal Behaviour* **103**, 203–209
925 (2015).

926 72. Godfrey, R. K. & Gronenberg, W. Brain evolution in social insects: advocating for the comparative
927 approach. *J Comp Physiol A* **205**, 13–32 (2019).

928 73. Byrne, R. & Whiten, A. *Machiavellian intelligence*. (Oxford University Press, 1994).

929 74. Frith, U. & Frith, C. The social brain: allowing humans to boldly go where no other species has
930 been. *Phil. Trans. R. Soc. B* **365**, 165–176 (2010).

931 75. Gavrilets, S. & Vose, A. The dynamics of Machiavellian intelligence. *Proceedings of the National
932 Academy of Sciences* **103**, 16823–16828 (2006).

933 76. Thornton, A. & McAuliffe, K. Cognitive consequences of cooperative breeding? A critical appraisal:
934 Cognitive consequences of cooperative breeding. *J Zool* **295**, 12–22 (2015).

935 77. Bequaert, J. C. An introductory study of Polistes in the United States and Canada with descriptions
936 of some new North and South American forms (Hymenoptera; Vespidae). *Journal of the New York*
937 *Entomological Society* **48**, 1–31 (1940).

938 78. Enteman, W. M. *Coloration in polistes*. vol. 19 (Carnegie Institution, 1904).

939 79. de Souza, A. R., Turillazzi, S., Lino-Neto, J. & Santini, G. Colder environments may select for darker
940 paper wasps. *Biol. J. Linn. Soc.* (2016) doi:10.1111/bij.12910.

941 80. Grether, G. F., Hudon, J. & Millie, D. F. Carotenoid limitation of sexual coloration along an
942 environmental gradient in guppies. *Proc. R. Soc. Lond. B* **266**, 1317–1322 (1999).

943 81. Hoekstra, H. E., Drumm, K. E. & Nachman, M. W. Ecological genetics of adaptive color
944 polymorphism in pocket mice: geographic variation in selected and neutral genes. *Evolution* **58**,
945 1329–1341 (2004).

946 82. Mallet, J. Speciation, raction, and color pattern evolution in Heliconius butterflies: evidence from
947 hybrid zones. in *Hybrid zones and the evolutionary process* (ed. Harrison, R. G.) 226–260 (Oxford
948 University Press, 1993).

949 83. McLean, C. A. & Stuart-Fox, D. Geographic variation in animal colour polymorphisms and its role in
950 speciation: Geographic variation in polymorphism. *Biol Rev* **89**, 860–873 (2014).

951 84. Twomey, E., Vestergaard, J. S., Venegas, P. J. & Summers, K. Mimetic divergence and the
952 speciation continuum in the mimic poison frog *Ranitomeya imitator*. *The American Naturalist* **187**,
953 205–224 (2016).

954 85. Aubin, T. & Jouventin, P. How to vocally identify kin in a crowd: the penguin model. *Advances in the*
955 *Study of Behavior* **31**, 243–277 (2002).

956 86. Caves, E. M., Stevens, M., Iversen, E. S. & Spottiswoode, C. N. Hosts of avian brood parasites
957 have evolved egg signatures with elevated information content. *Proceedings of the Royal Society B:*
958 *Biological Sciences* **282**, (2015).

959 87. Medvin, M. B., Stoddard, P. K. & Beecher, M. D. Signals for parent-offspring recognition: a
960 comparative analysis of begging calls of cliff swallows and barn swallows. *Animal Behaviour* **45**,
961 841–850 (1993).

962 88. Pollard, K. A. & Blumstein, D. T. Social group size predicts the evolution of individuality. *Current*
963 *Biology* **21**, 413–7 (2011).

964 89. Smith-Vidaurre, G., Perez-Marrufo, V. & Wright, T. F. Individual vocal signatures show reduced
965 complexity following invasion. *Animal Behaviour* **179**, 15–39 (2021).

966 90. Wilkinson, G. S. Social and vocal complexity in bats. in *Animal Social Complexity* (eds. de Waal, F.
967 B. & Tyack, P. L.) 322–341 (Harvard University Press, 2003).

968 91. Sheehan, M. J., Straub, M. A. & Tibbetts, E. A. How does individual recognition evolve? Comparing
969 response to identity information in *Polistes* species with and without individual recognition. *Ethology*
970 **120**, 169–79 (2014).

971 92. Clark, P. U. *et al.* The Last Glacial Maximum. *Science* **325**, 710–714 (2009).

972 93. Gronenberg, W. & Liebig, J. Smaller brains and optic lobes in reproductive workers of the ant
973 *Harpegnathos*. *Naturwissenschaften* **86**, 343–345 (1999).

974 94. Kotrschal, A. *et al.* Artificial selection on relative brain size in the guppy reveals costs and benefits of
975 evolving a larger brain. *Current Biology* **23**, 168–171 (2013).

976 95. Laughlin, S. B., de Ruyter Van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural
977 information. *Nature neuroscience* **1**, 36–41 (1998).

978 96. Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio
979 coding and live observations. *Methods Ecol Evol* **7**, 1325–1330 (2016).

980 97. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4.
981 *Journal of Statistical Software* **67**, 1–48 (2015).

982 98. Venth, R. V. *emmeans: Estimated Marginal Means, aka Least-Squares Means*. (2021).

983 99. Troscianko, J. & Stevens, M. Image calibration and analysis toolbox - a free software suite for
984 objectively measuring reflectance, colour and pattern. *Methods in Ecology and Evolution* **6**, 1320–
985 1331 (2015).

986 100. Van Belleghem, S. M. *et al.* patternize: An R package for quantifying colour pattern variation.
987 *Methods Ecol Evol* **9**, 390–398 (2018).

988 101. Weller, H. *recolorize: Color-based Image Segmentation*. (2021).

989 102. Chung, N. C. & Storey, J. D. Statistical significance of variables driving systematic variation in high-
990 dimensional data. *Bioinformatics* **31**, 545–554 (2015).

991 103. Yee, T. W. *Vector generalized linear and additive models: with an implementation in R*. (Springer,
992 2015).

993 104. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform.
994 *Bioinformatics* **26**, 589–595 (2010).

995 105. Van der Auwera, G. A. *et al.* From FastQ data to high-confidence variant calls: the genome analysis
996 toolkit best practices pipeline. *Current Protocols in Bioinformatics* **43**, (2013).

997 106. Lee, T.-H., Guo, H., Wang, X., Kim, C. & Paterson, A. H. SNPhylo: a pipeline to construct a
998 phylogenetic tree from huge SNP data. *BMC Genomics* **15**, 162 (2014).

999 107. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158 (2011).

1000 108. Glaubitz, J. C. *et al.* TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline.
1001 *PLoS ONE* **9**, e90346 (2014).

1002 109. Cui, Y. *et al.* BioCircos.js: an interactive Circos JavaScript library for biological data visualization on
1003 web applications. *Bioinformatics* **32**, 1740–1742 (2016).

1004 110. Lewis, J. J., Van Belleghem, S. M., Papa, R., Danko, C. G. & Reed, R. D. Many functionally
1005 connected loci foster adaptive diversification along a neotropical hybrid zone. *Sci. Adv.* **6**, eabb8617
1006 (2020).

1007