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Abstract

Predictive processing is emerging as a common computational hypothesis to account for
diverse psychological functions subserved by a brain, providing a systems-level framework for
characterizing structure-function relationships of its distinct substructures. Here, we contribute to
this framework by examining gradients of functional connectivity as a low dimensional spatial
representation of functional variation in the brain and demonstrating their computational
implications for predictive processing. Specifically, we investigated functional connectivity
gradients in the cerebral cortex, the cerebellum, and the hippocampus using resting-state
functional MRI data collected from large samples of healthy young adults. We then evaluated
the degree to which these structures share common principles of functional organization by
assessing the correspondence of their gradients. We show that the organizing principles of
these structures primarily follow two functional gradients consistent with the existing hierarchical
accounts of predictive processing: A model-error gradient that describes the flow of prediction
and prediction error signals, and a model-precision gradient that differentiates regions involved
in the representation and attentional modulation of such signals in the cerebral cortex. Using
these gradients, we also demonstrated triangulation of functional connectivity involving distinct
subregions of the three structures, which allows characterization of distinct ways in which these
structures functionally interact with each other, possibly subserving unique and complementary
aspects of predictive processing. These findings support the viability of computational
hypotheses about the functional relationships between the cerebral cortex, the cerebellum, and
the hippocampus that may be instrumental for understanding the brain’s dynamics within its

large-scale predictive architecture.
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Introduction

Predictive processing is emerging as a common neurocomputational hypothesis to
account for diverse psychological functions subserved by a brain "2. A variety of specific
proposals abound, but they are united by three hypothesized components that are thought to be
implemented in a hierarchical arrangement within the brain’s architecture: (i) Prediction signals
that the brain constructs using memory, also variously referred to as a generative or an internal
model 3, “top-down” processing “°, a forward model "=, and “feedback” '%; (ii) incoming sense
data from the body’s sensory surfaces encoded as the differences from predicted sensory
inputs, called prediction errors, “bottom-up” processing, an inverse model, and “feedforward”
signals; and (iii) precision signals that modulate predictions and prediction errors, corresponding
to various attention signals '"'2. Prediction errors are potential teaching signals, but their
capacity to update the model is thought to depend on how they are weighted by predicted
precision signals, which are interpreted as the value of the information they provide, or
“salience” '* (see ' for a discussion of precision and salience). Prediction signals are also
thought to be weighted by their estimated value to explain the incoming sense data, similarly
weighted by precision signals "3

To date, predictive processing hypotheses have been offered to describe the

computational capacities of several structures within the vertebrate brain, including the cerebral

1,6,13,15— 7-9,20

cortex 19 the cerebellum , and the hippocampus 2'~%*. Integrating these hypotheses
into a systems-level framework for understanding brain structure-function relationships has the
potential to computationally unify a variety of psychological and biological phenomena that are
typically studied separately. In this paper, we contribute to this framework by examining
gradients of functional connectivity, which reduce the dimensionality of complex brain
connectivity data to describe continuous transitions in connectivity within a given structure and

potentially offer parsimonious organizing principles to describe structure-function relationships

2526 |ntrinsic brain networks are often described in terms of patterns or modes of activity that


https://doi.org/10.1101/2021.09.01.456844
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.01.456844; this version posted October 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4

reflect the similarity between the activity in different regions (i.e., functional connectivity).
Functional connectivity gradients take this one step further by examining the patterns based on
the similarity—not between activity—but between functional connectivity. Specifically, we
investigated the degree of correspondence in functional connectivity gradients across the
cerebral cortex, the cerebellum, and the hippocampus to test the hypothesis that these
structures share common principles of functional organization that are consistent with the
current hierarchical predictive processing accounts. Characterizing the coordination of functional
connectivity gradients could be useful for formulating novel hypotheses about the role of these
structures in the brain’s internal model of the body in the world, all in the ultimate service of
predictive regulation of the body (i.e., allostasis) #’.

To identify such connectivity gradients, previous research capitalized on intrinsic
functional connectivity derived from functional magnetic resonance imaging (fMRI) data
collected when the brain is not being deliberately probed with an external task 22°. Studies
focusing on the cerebral cortex have most commonly revealed two gradients identifying gradual

30-35

changes in connectivity profiles , which are consistent with the hypothesized role of different

cortical areas in predictive processing *°. Previous research has also identified gradients that

37,38 39-41
)

characterize the functional organization of the cerebellar cortex and the hippocampus
suggesting that it may be possible to discover coordination in the connectivity gradients across
these structures and the cerebral cortex. Functional coordination across different structures in

the brain is also suggested by evidence describing learning systems across the cerebral cortex

20,42 43,44

and cerebellum , cerebral cortex and hippocampus , and cerebellum and hippocampus
449 However, to our knowledge, no published study to date has examined how the functional
organization of one structure relates to another, and what such functional correspondence might
reveal about the contribution of these learning systems to the brain’s predictive processing

architecture.
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In the present study, we investigated the correspondence between intrinsic functional
connectivity gradients in the cerebral cortex, the cerebellum, and the hippocampus using fMRI
data collected at wakeful rest from large samples of healthy young adult participants. We
derived functional connectivity gradients for each structure via diffusion map embedding, an
established technique to nonlinearly reduce the dimensionality of large-scale connectivity data
%031 'We chose to examine our findings from the perspective of the cerebral cortex to consider
how the cerebellar and the hippocampal gradients might align along the cerebral cortical
gradients. We projected the cerebellar and hippocampal gradients onto the cerebral cortex to
discover the common axes of functional organization. Finally, we performed a series of seed-
based analyses of intrinsic functional connectivity to further characterize the functional
correspondence between these gradients. This procedure allowed us to triangulate the three
structures along a given connectivity gradient hypothesized to support particular aspects of
predictive processing implemented in the brain. Finally, we evaluated the extent to which these
findings were consistent with the computational hypothesis of predictive processing.

Results

We examined the functional organization of the cerebral cortex, the cerebellum, and the
hippocampus using fMRI data collected during wakeful rest from healthy young adult
participants in the Human Connectome Project (HCP, n = 1,003) 2 as our primary sample and
in the Brain Genomics Superstruct Project (GSP, n = 1,102) °*** as our validation sample.

Following prior work on connectivity gradients 323841

, we analyzed the vertex-/voxel-wise
similarity of intrinsic functional connectivity patterns in these structures based on the group
average dense connectivity matrices via diffusion map embedding °**'. Diffusion map
embedding identifies multiple axes of variation in functional connectivity as continuous
gradients, without ascribing each vertex or voxel to a singular functional unit (e.g., network).

This feature allowed us to comprehensively examine the organizing principles of functional

connectivity in the cerebral cortex, the cerebellum, and the hippocampus and evaluate their
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correspondence. Unless otherwise noted, all reported findings in the following sections were
obtained using the HCP dataset. Overall similar results were obtained with the GSP dataset,
with slight differences in the distribution of gradient values across the major subfields in the
hippocampus (Supplementary Fig. S$2). This is likely due to differences in the voxel resolution
during data acquisition that had affected the ability to detect subfield specificity in the GSP
dataset.
Two principal functional gradients of the cerebral cortex consistent with a predictive processing
account of brain function

To derive functional gradients of the cerebral cortex, we first constructed a subset of the
whole-brain group average functional connectivity matrix with all cortical vertices, which we
used as input to diffusion map embedding. From this analysis, we identified principal gradients
that describe the maximal variance in functional connectivity patterns in the cerebral cortex,
replicating those identified by prior work 2°3°*23¢ (Fig. 1 and Supplementary Fig. S1). These
three gradients collectively explained >70% of variance in the data in both the HCP and GSP
samples, with each accounting for >10%, as previously observed *°. Gradient 1 (G+)
corresponded to a well-documented gradient consistent with cytoarchitectural evidence in the
cerebral cortex >>°". We refer to G4 as a model-error gradient, which we previously
characterized as being anchored at one end by ensembles that can be described as initiating
the prediction signals that constitute the brain’s internal model of its body in the world (e.g.,
default mode network), as well as those that estimate the precision of such signals (i.e., the
model’s priors) (e.g., frontoparietal control network) 3. At the other end, this gradient was
anchored by ensembles important for processing the sensory inputs that continually confirm or
refine predictions, through supplying prediction errors (e.g., exteroceptive sensory networks) as
well as those that estimate the precision of prediction error signals (e.g., salience network).
Gradient 3 (Gs) was consistent with a model-precision gradient that distinguishes between

ensembles hypothesized to be involved in the representation of prediction and prediction error
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signals (e.g., default mode and exteroceptive sensory networks) and those involved in the
implementation of attentional modulation—or precision—over those signals (e.g., salience,
frontoparietal, and dorsal attention networks) "¢, We also identified Gradient 2 (G,) replicating
prior work, although its interpretation remains speculative. This gradient is anchored by
ensembles primarily involved in the sensory representation of visual information at one end, and
those involved in the representation of non-visual (somatosensory/motor, auditory,

interoceptive) domains and multimodal integration at the other.
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Fig. 1. The principal gradients of human cerebral cortex based on the HCP data (n = 1,003).
Functional connectivity gradients are a low dimensional spatial representation of connectivity
profiles, such that the proximity of colors can be interpreted as greater similarity of connectivity
patterns *2. (a) The three most dominant gradients of the cerebral cortex projected onto an inflated
cortical surface (left hemisphere only). These gradients replicate previous findings and identify
model-error (Gradient 1), visual-sensorimotor (Gradient 2), and model-precision (Gradient 3)
gradients. (b) Box plots show the median and distribution of gradient values separately for each
of the canonical functional network **. The networks are ordered by the mean value. Vertices
belonging with the so-called default mode and “limbic” networks are shown in the same color, as
these networks are not always distinguished in the literature °® and both contain agranular, limbic
tissue '’. (c) A scree plot showing the proportion of variance explained by each of the ten gradients
derived from diffusion map embedding. (d) A scatterplot depicting the relationship between
Gradient 1 and Gradient 3, where each dot represents a cerebral cortical vertex color-coded by
the corresponding network assignment.
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The principal functional gradients of the cerebellum and the hippocampus

To characterize the functional organization of the cerebellum and the hippocampus, we
derived functional connectivity gradients separately for the cerebellum, left hippocampus, and
right hippocampus. We first constructed group average functional connectivity matrices between
all cerebellar voxels and all cortical vertices, as well as between all hippocampal voxels and all
cortical vertices, which were used as input for diffusion map embedding. We derived cerebellar
and hippocampal gradients by interrogating cerebello-cortical and hippocampo-cortical
connectivity, respectively, rather than using connectivity within each structure, given our goal to
characterize the functional organization of these structures in terms of their relation to the
cerebral cortex. This approach is consistent with that of prior work examining functional
gradients in the hippocampus and subcortical structures *°41°-%" The resulting gradients,
therefore, represented the most dominant dimensions of spatial variability in functional
connectivity patterns with the cerebral cortex within each structure.

In the cerebellum, we identified two gradients consistent with prior work on cerebellar
gradients %, Together, these gradients explained >60% of the variance in the data, with G
accounting for >50% and G2 accounting for >10% in both the HCP and GSP samples. G;
captured a bilateral dissociation of lobules IV, V, and VI and lobule VIl from the posterior part of
Crus | and Il and the medial part of lobule IX, whereas G; distinguished bilaterally the anterior
parts of Crus | and Crus Il along with lobule VlIb from the rest of the cerebellar cortex (Fig. 2a
and Supplementary Fig. S2a). In the hippocampus, we also identified two gradients consistent
with available evidence on hippocampal gradients *'. These gradients together explained >50%
of the variance in the data within each hemisphere, with Gy accounting for >30% and G-
accounting for >20% of variance in both datasets. G generally captured spatial variation in
functional connectivity along the longitudinal axis of the hippocampus, whereas the variation
captured by G, was observed in both the longitudinal axis and the transverse (i.e., medial-

lateral) axis (Fig. 2b and Supplementary Fig. S2b). To properly understand G in terms of
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hippocampal microstructure ', we performed Mann-Whitney tests to compare the distribution of
gradient values for the major subfields within each hemisphere: Subicular complex, CA1-3, and
CA4-dentate gyrus (CA4-DG), which were derived from the established segmentation protocol
%2 This analysis revealed that G, was anchored by the subiculum at one end and CA1-3 and
CA4-DG at the other (p < .001), with no significant differences between the CA subfields. G4
better distinguished the CA subfields, with CA1-3 showing the highest values overall, followed

by subiculum and then the CA4-DG (p < .001).

a. Gradient | b. Gradient | 02
* %k
. | R L 0.l o M ****x**** 04{°
g 3
300 £03
z ‘ “ Z k-2
& & = -0l %02
| % & ] g
§ e ; £ -02 £
\ o — CAI3 ol .
N i -03 CAIDG Ce e e .,
Y N——— ~——— Subiculum 0.0
— 2 4 6 8 10
X 04 Left Right Gradient #
-5 -+
Gradient 2 Subfield ROIs
0.10 F E
= %
-4 o2 i 005
Ee A ; B
z . 3 000
“Arasan > o
o - £ -005
DN ’ & G-on0 CAI-3
N — —— CA4/IDG
Y T -0.15 —— Subiculum
X
Left Right
- .+ =B T+

Fig. 2. The principal gradients of human cerebellum and hippocampus based on the HCP data (n
= 1,003). (a) The two most dominant gradients of the cerebellum replicated previous findings 2.
(b) The most dominant gradient of the hippocampus replicated previous findings *' and identified
an anterior-posterior dissociation along the longitudinal axis, which also differentiated the major
hippocampal subfields. The second most dominant gradient was also consistent with differences
by hippocampal microstructure, with the subiculum exhibiting highest gradient values overall
compared with the other two subregions. Box plots show the median and distribution of G, values
per subfields separately for each hemisphere. Asterisks denote significant (***p <.001, **p <.001)
differences relative to the other two subfields. DG = dentate gyrus. A figure illustrating the
hippocampal subfields within the right hippocampus (red = CA1-3, blue = CA4-DG, green =
subiculum) was reproduced from %2 with permission.

Gradient-informed triangulation of intrinsic functional connectivity between the cerebral cortex,
the cerebellum, and the hippocampus
Next, we calculated functional connectivity maps for the cerebral cortex weighted as a

factor of gradient values for cerebellar and hippocampal gradients *¢°. This procedure allowed
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us to characterize these gradients in terms of their relations to the cerebral cortex. To calculate
voxel-wise gradient-weighted functional connectivity with the cerebral cortex, we multiplied the
group average cerebello-cortical (or hippocampo-cortical) functional connectivity matrix by a
vector of voxel-wise values from cerebellar (or hippocampal) gradients. The weighted
connectivity matrix was then reduced to a single cortical surface map representing the degree of
connectivity between the cerebellum (or hippocampus) and the cerebral cortex along a
particular gradient. For example, to characterize how cerebellar G relates to the cerebral
cortex, we multiplied each row of the cerebello-cortical functional connectivity matrix (rows =
cerebellar voxels, columns = cortical vertices) by the corresponding G+ value for that particular
cerebellar voxel obtained from diffusion map embedding. In this way, the pattern of functional
connectivity between each cerebellar voxel and all cortical vertices was weighted by its position
on cerebellar G4. The Gi-weighted cerebello-cortical connectivity values in this matrix were
summed over all rows (i.e., all cerebellar voxels), resulting in a single cortical representation
(projection) of this cerebellar gradient. We repeated this procedure for each gradient derived for
the cerebellum and the hippocampus.

We then quantitatively assessed the correspondence between the cerebral cortical
gradients (Fig. 1 and Supplementary Fig. S1) and the gradient-weighted functional
connectivity maps of the cerebellum (Fig. 2a and Supplementary Fig. S2a) and the
hippocampus (Fig. 2b and Supplementary Fig. S2b) by computing vertex-wise Spearman’s
rank correlations, while statistically controlling for autocorrelations . The model-error gradient
in the cerebral cortex (G1) showed the strongest statistical correspondence to cerebellar G4 and
hippocampal G2; the weighted functional connectivity maps of cerebellar G4 and hippocampal
G2 showed moderate, statistically significant correspondence. The model-precision cortical
gradient (Gs) similarly showed strong correspondence to cerebellar G, and hippocampal G4,
with the weighted connectivity maps of cerebellar Gz and hippocampal G+ also showing strong

correspondence (all p’s <.001) (Fig. 3 and Supplementary Fig. S3).
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Fig. 3. Gradient-weighted functional connectivity maps of the cerebellum and the hippocampus.
(a) Cerebellar G1 captured a dissociation in functional connectivity most consistent with cortical
G4, from ensembles including the default mode and frontoparietal networks to those including the
exteroceptive sensory and salience networks (i.e., the model-error gradient). In contrast,
cerebellar G, captured a dissociation in connectivity most consistent with cortical Gs, from
ensembles including the default mode and exteroceptive networks to those including the
frontoparietal and salience networks (i.e., the model-precision gradient). Box plots and
scatterplots represent similar information as described in Fig. 1b, but here they are based on
gradient-weighted functional connectivity maps. (b) Hippocampal G+ captured a dissociation in
functional connectivity most consistent with cortical Gs, whereas hippocampal G, captured a
dissociation in connectivity most consistent with cortical G1. (¢) A similarity matrix illustrating the
magnitude (Spearman’s r) of correlation between cortical gradients and gradient-weighted
functional connectivity maps of the cerebellum and the hippocampus. Highlighted in yellow are
the strongest cortico-cerebellar or cortico-hippocampal associations identifying the
correspondence of gradients between a pair of structures (all p’'s < .001). p-values associated

with the entire correlation matrix is included as part of Supplementary Fig. $5). FC, functional
connectivity.
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A series of seed-based analyses of intrinsic functional connectivity between the three
structures allowed us to further characterize the connectivity profiles for the cortical, cerebellar,
and hippocampal gradients. This analysis was conducted separately for the cortical model-error
gradient (G+) and its corresponding hippocampal (G2) and cerebellar (G1) gradients, and for the
cortical model-precision (G3) and its corresponding hippocampal (G+) and cerebellar (G>),
gradients (Fig. 3¢). Seed regions of interest (ROIs) were defined as the vertices/voxels with the
top and bottom 10% values on each gradient, resulting in two ROIs per structure per gradient.
We then computed the mean BOLD activity time course based on all vertices/voxels within each
ROI and correlated it with the time course of every vertex/voxel in the other two structures. If the
connectivity gradients indeed correspond to one another across the three structures, then we
should expect that the vertices/voxels representing the top (bottom) 10% of each gradient show
stronger functional connectivity with each other than with other parts of these structures.

Results of this analysis based on the HCP data are summarized in Fig. 4 (for results
based on the GSP data, see Supplementary Fig. S4). Fig. 4A-C illustrate three of the seed
ROls used in this analysis, generated by identifying the vertices/voxels in each structure
showing the top 10% of the gradient values along the cortical model-precision gradient as well
as its corresponding cerebellar and hippocampal gradients (i.e., areas of each structure
potentially more related to the representation of prediction and error signals). The same
procedure was repeated with the vertices/voxels anchoring the bottom 10% of these gradients,
yielding a set of ROIs representing the areas of each structure potentially more related to
precision signals modulating prediction and error signals (Fig. 4D-F). In the hippocampus, the
voxels anchoring the top and bottom 10% were exclusively localized to CA1-3 along the
longitudinal axis. We defined the ROls following the same procedure for the cortical model-error
gradient and the corresponding cerebellar and hippocampal gradients, yielding a set of ROls
anchoring the top 10% of the vertices/voxels representing the areas of each structure potentially

more related to the internal model (prediction signals) (Fig. 4G-l) as well as those ROls
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anchoring the bottom 10% of the vertices/voxels representing the areas of each structure
potentially more related to processing of sense data from the periphery (prediction error signals)
(Fig. 4J-L). In the hippocampus, the voxels anchoring the top 10% (middle subregions) were
localized to the subiculum medially and to CA1-3 laterally, whereas those anchoring the bottom
10% (anteroventral subregions) were predominantly localized to CA1-3.

The vertices representing the top 10% of the cortical model-precision gradient Gs
(primarily those within the default mode network; Fig. 4A) showed relatively stronger positive
functional connectivity with areas of the cerebellum overlapping with the top 10% of the voxels
in cerebellar G, (parts of lobule I-VI, posterior Crus I/ll, and posterior lobule VIII/IX; Fig. 4B) and
with areas of the hippocampus overlapping with the top 10% of the voxels in hippocampal G+
(dorsal anterior subregions; Fig. 4C), compared with other parts of the target structures. We
identified similar patterns of spatial overlap in functional connectivity when using the top 10%
voxels in cerebellar G2 and in hippocampal G, as seed ROIs. Similarly, the vertices representing
the bottom 10% of the cortical model-precision gradient Gz (primarily those within the salience
and frontoparietal networks; Fig. 4D) showed relatively stronger positive functional connectivity
with areas of the cerebellum overlapping with the bottom 10% of the voxels in cerebellar G2
(anterior parts of Crus /Il and lobule VIIb; Fig. 4E) and with areas of the hippocampus
overlapping with the bottom 10% of the voxels in hippocampal G (posterior-most subregions),
compared with other parts of the target structures.

We identified such pattern of functional connectivity triangulation similarly for the cortical
model-error gradient and the corresponding cerebellar and hippocampal gradients, although
there was overall less specificity in the connectivity pattern (Fig. 4, right). Specifically, the
vertices representing the top 10% of cortical model-error G4 (primarily the default mode network;
Fig. 4G) showed relatively stronger and positive functional connectivity with areas of the
cerebellum overlapping with the top 10% of the voxels in cerebellar G1 (parts of Crus I/l and

posterior lobule 1X; Fig. 4H) and the areas of the hippocampus overlapping with the top 10% of
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the voxels in hippocampal G2 (middle lateral and medial subregions; Fig. 4l). Similarly, the
vertices representing the bottom 10% of cortical model-error G1 (primarily the somatomotor
network; Fig. 4J) showed relatively stronger positive functional connectivity with areas of the
cerebellum overlapping with the bottom 10% of the voxels in cerebellar G, (lobules IV, V, VI,
and VIII; Fig. 4K) and the areas of the hippocampus overlapping with the bottom 10% of
hippocampal G; (ventral anterior subregions; Fig. 4L). Triangulation of functional connectivity
appeared less specific along the model-error gradient, as the cortical and cerebellar subregions
relevant for this gradient showed widespread connectivity throughout the hippocampus. These
results point to the possibility that the distinct subregions of the cerebral cortex, the cerebellum,
and the hippocampus form functional circuits that may contribute to the brain’s large-scale
implementation of predictive processing. Importantly, we replicated this pattern of connectivity in
a large, independent sample of healthy young adults (Supplementary Fig. $4), suggesting that

our results are robust to variations in data acquisition parameters and preprocessing methods.

Tri ion of FC along 2 Model: ision gradient Triangulation of FC along an Model-Error gradient

(A) Top 10% of cortical G3 (more model) (8) Top 10% of cerebelar Gy (C) Top 10% of hippocampal G| (G) Top 10% of cortical G| (more model) (H) Top 10% of cerebeltar G| () Top 10% of hippocampal Gy

() Bottom 10% of cortical G| (more error) (K) Bottom 10% of cerebellar G, (1) Bottom 10% of hippocampal Gy
(D) Bottom 10% of cortical G3 (more precision) () Bottom 10% of cerebelar G (F) Bottom 10% of hippocampal G|

£ 3

> w =
g
Weighted FC between (E)(F) and the cerebral cortex  Weighted FC between (D)(F) and the cerebellum  Wei ighted FC between (D)(E) and the hippocampus Weighted FC between (K)(L) and the cerebral cortex  Weighted FC between ()(L) and the cerebellum  Weighted FC between ()(K) and the hippocampus
-
‘ F = = R
£ % £ 3
> = X = .
F,, W Y. B §
D@ D@ v @

Fig. 4. Triangulation of intrinsic functlonal connectivity between the cerebral cortex the
cerebellum, and the hippocampus along the cortical model-precision (left) and the cortical model-
error (right) gradients in the HCP (n = 1,003) data. (A) Seed region of interest (ROI) representing
the top 10% of the vertices in cortical model-precision Gs. (B) Seed ROI representing the top 10%
of the voxels in cerebellar G,. (C) Seed ROI representing the top 10% of the voxels in hippocampal
Gs1. (D) Seed ROI representing the bottom 10% of the vertices in cortical model-precision Gs. (E)
Seed ROl representing the bottom 10% of the voxels in cerebellar G,. (F) Seed ROI representing
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the bottom 10% of the voxels in hippocampal G1. (G) Seed ROI representing the top 10% of the
vertices in cortical model-error G4. (H) Seed ROI representing the top 10% of the voxels in
cerebellar G+. (I) Seed ROI representing the top 10% of the voxels in hippocampal G.. (J) Seed
ROI representing the bottom 10% of the vertices in cortical model-error G. (K) Seed ROI
representing the bottom 10% of the voxels in cerebellar G1. (L) Seed ROI representing the bottom
10% of the voxels in hippocampal Gz. Functional connectivity maps shown here for a given
structure were calculated through a combination of binarization and inclusive masking of the
contributing maps as well as proportional thresholding (see Methods). We expect, and indeed
observe, that there is remarkable spatial overlap between a given seed ROI (e.g., the top 10% of
the vertices in cortical model-precision G3) and areas of the same structure functionally connected
to parts of the other two structures anchoring the same end of the gradient (e.g., the top 10% of
the voxels in cerebellar Gz and hippocampal G1).

Discussion

Accumulating evidence reveals that the organization of the cerebral cortex 30-32-36.64-66,

38,59 39-41,67,68

the cerebellum , and the hippocampus can be described with multiple gradients of
structural and functional features in humans. In the cerebral cortex, converging evidence from
network-, circuit-, and cytoarchitectural-levels of analysis suggest that such gradients can be

interpreted as the organizing principles underlying predictive processing 36:°%:56:69.70

, guiding the
flow of prediction signals, prediction error signals, and precision signals. In the present study,
analyses of two large datasets, consisting of more than 2,000 participants, revealed that there
are corresponding connectivity gradients across the cerebral cortex, the cerebellum, and the
hippocampus, suggesting that these gradients might be meaningfully interpreted within a
common computational framework. These results, and the specific computational hypotheses
that they suggest, represent an important step toward an integrative account of brain function,
building upon the existing literature on brain functional gradients that has so far largely focused
on single regions without interrogating their interactions 3%4161.71,
Functional connectivity gradients as a common neural architecture for predictive processing
The principal cortical gradient was anchored, at one end, by ensembles that can be
described as initiating the prediction signals that constitute the brain’s internal model of its body

in the world (e.g., default mode network), as well as the ensembles that estimate the precision

of such signals (e.g., frontoparietal control network). At the other end, this gradient was
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anchored by ensembles important for processing sensory inputs that continually confirm or

refine the internal model (e.g., exteroceptive sensory networks) as well as those that estimate

1336 and references therein

the precision of prediction error signals (e.g., salience network) (see
regarding the roles of cortical ensembles). Although in the present work we refer to this gradient

as a model-error gradient, it has also been variably called by previous studies an internal-

t36 t32

external gradient *°* and a transmodal-primary sensorimotor gradient °<. This gradient is
consistent with a key structural hypothesis supported by more than 30 years of tract-tracing of
distinctive cortico-cortical connections in mammalian brains *>*"2 that describes the flow of
prediction and prediction error signals throughout the cerebral cortex on the basis of

cytoarchitectural properties (Fig. 5).

a Agranular Granular b
Cortex

Cortex Motor

Layer Layer

Prediction
v

Al v

Vi

Insula Primary
Auditory Cortex
Primary )
Visual Cortex Anterior
I Cingulate
I
Prediction

Vi
Error

Hippocampus

Fig. 5. A gradient of predictive processing in the cerebral cortex. (a) Prediction signals originate
in the deep layers (Layers V and VI) of less differentiated cortical areas (e.g., agranular cortex
with undifferentiated Layers Il and Ill and without a Layer IV) and terminate in superficial layers
of areas with a more developed laminar structure (e.g., dysgranular cortices with differentiated
Layers Il and Ill and a rudimentary Layer IV or granular cortices with differentiated Layers Il and
Il and a well-defined Layer IV). Prediction signals, as they cascade from agranular cortices to
highly granular primary sensory areas, can be described as perceptual inferences that arise from
the lossy compression that occurs during learning #'°. Prediction error signals flow in the opposite
direction, originating in the superficial layers (Il and IIl) with more laminar differentiation and
terminating in the deep layers (V and V1) of areas with less differentiated laminar architecture (66
as discussed in 2; see also recent work by 67, 68). This cytoarchitectural gradient is thought to
support information compression in the cerebral cortex. Prediction errors are compressed and
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reduced in dimensionality '*” as they flow from the upper layers of highly granular primary

sensory regions (whose upper layers contain many smaller pyramidal neurons with fewer
connections) to less granular motor cortex "* and other heteromodal regions (whose upper layers
contain fewer but larger pyramidal neurons with many more connections), and finally to
dysgranular and agranular limbic regions. (b) This structural model of cortico-cortical connections
successfully predicts the flow of information in frontal, temporal, and parietal cortices in
experiments with monkeys and cats >>*°. Figure adopted from 2, with permission.

Additional tract-tracing and optogenetic evidence support the involvement of this
gradient in predictive processing. For instance, it has been shown that long-range connections
exist between cortical limbic areas (e.g., anterior cingulate cortex) and primary sensory areas
(e.g., V1) °, which are two areas that anchor the ends of the model-error gradient, with the
former thought to send sensory prediction signals to the latter "®. Such evidence is in line with
other findings that a substantial fraction of activity in the visual cortex does not derive from

incoming visual input per se ""®

, consistent with observations that the majority of synapses in
V1 originate from top-down sources 2. Multimodal evidence also demonstrates the
correspondence between the model-error gradient with regional variability in intracortical myelin
8 as well as cellular density and soma size *, further substantiating the role of this gradient as a
primary organizing principle in the cerebral cortex.

Recent research also describes this model-error gradient as important for learning and
meaning-making. Unanticipated sense data (i.e., prediction errors), as they propagate from
primary sensory regions (the external pole of this gradient) to agranular limbic regions (the
internal pole), undergo lossy compression and are reduced in dimensionality "'%"3. This
process of information compression has also been described as conceptual learning ™ or
construction of “generic priors” consisting of low-dimensional representations of the most
frequent behavioral states ®. Such dimensionality reduction allows the brain to represent a large
amount of information with a smaller population of neurons by decreasing redundancy and
increasing efficiency, because smaller populations of neurons are summarizing statistical

regularities in the spiking patterns of larger populations of neurons in the sensorimotor regions.

Moving in the direction from internal to external poles, it is hypothesized that the low-
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dimensional, multimodal summaries are generatively reassembled as prediction signals in
agranular limbic cortices, becoming successively decompressed and particularized as
perceptual inferences (also called embodied simulations) that propagate out to more
architecturally granular regions at the external pole '*. These hypotheses are consistent with

” 3285 and “bow-tie” ® descriptions of cortical networks.

“core-periphery

The second gradient in the cerebral cortex distinguished ensembles associated with the
representation of prediction and prediction error signals (anchored in nodes from the sensory
and default mode networks) from those involved in the implementation of attentional modulation
to set the precision of these signals (with nodes from frontoparietal and salience networks) %,
where “attention” is defined not in terms of properties of subjective awareness but as signals
that modulate the firing rate of neurons. It has been hypothesized that the frontoparietal network
estimates the precision of prediction signals or priors, possibly suppressing or inhibiting
prediction ensembles whose priors are very low '3. In contrast, the salience network may alter
the gain on prediction error signals as they propagate from the sensory periphery, reflecting
confidence in the reliability and quality of incoming sensory information as well as its predicted
relevance for allostasis and motor control '*. During some tasks, these modulatory networks
cohere into a single “task positive” network ® or a “multiple demand” system .

Our results lend support to the hypothesis that the cerebral cortex, the cerebellum, and
the hippocampus all share common axes of functional organization. Regarding the cerebellum,
we largely replicated across samples prior work on functional connectivity gradients in this
structure *. The most dominant gradient in the cerebellum has been characterized as a gradual
transition from areas involved in motor function to those implicated in non-motor functions
involved in cognitive, social, and emotional tasks % |t is anchored at one end by the default
mode and frontoparietal control networks and at the other end by the somatomotor and salience

networks, consistent with the cortical model-error gradient. The second cerebellar gradient

showed preferential functional connectivity with the default mode and somatomotor networks at
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one end and the frontoparietal and salience networks at the other ®. This gradient has been
interpreted as reflective of differences in relation to “task-focus” *® that preferentially engages
networks in the presence of higher cognitive load &’; this is consistent with the cortical model-
precision gradient in the present study.

Turning to the hippocampus, the most dominant gradient that has been identified in the
hippocampus captures variation in functional connectivity along its longitudinal axis 31,
consistent with evidence identifying gradual changes in anatomical connectivity, gene
expression, and electrophysiological response properties along this axis 8", The largest
difference in functional connectivity between the anterior and posterior subregions has been
observed with the frontoparietal and salience networks, with the posterior (septal) hippocampus
showing stronger positive connectivity with these networks, and the default mode and
somatomotor networks at the anterior (uncal) end *'. Our results generally confirmed this
pattern, which is consistent with the model-precision gradient of the cerebral cortex. The second
hippocampal gradient seems to correspond to hippocampal microstructure, primarily isolating
the subiculum from the CA subfields. This result is in line with prior evidence characterizing
distinct subfields with variation in connectivity, computational roles, and myeloarchitectural
maturation %7, Also consistent with our finding, the subiculum was found to show stronger
functional connectivity with the default mode network than the other subfields, whereas CA1-3
showed stronger connectivity with the somatosensory, somatomotor, and visual networks 41- this
gradient thus appears to be consistent with the model-error gradient in the cerebral cortex.
These observations were confirmed with our vertex-wise analysis of correspondence in
functional connectivity gradients across structures, suggesting that the model-error and model-
precision gradients may represent the common axes of functional organization capturing the
coordination of prediction, prediction error, and precision signals. This evidence has important
implications for understanding the computational mechanisms underlying functional coordination

across these structures.
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Coordination of cortical and cerebellar connectivity gradients
A traditional view of cortico-cerebellar interactions is that the cerebellum estimates the

sensory state of the body by anticipating the consequences of a motor command °2°42

, possibly
as a means to compensate for the relatively slower temporal scale in which sensory feedback
signals are processed in the cerebral cortex %', In sensorimotor coordination, current evidence
suggests that the cerebellar cortex (e.g., lobules V and VI) receives efferent copies of motor

commands from Layer V of the primary motor cortex via the pontine nuclei %

and predicts the
expected sensory consequences of those commands '°%'°", The inferior olive in the medulla
oblongata is thought to play a critical role as one comparator of the predictions about the
sensory consequences of motor commands from the cerebellum vs. the actual sensory input
conveyed via afferent projections from the spinal cord %% Prediction errors, i.e., the difference
between the predicted and actual sensory inputs, are relayed to the premotor and primary motor
cortices via the ventrolateral thalamus, as well as to motor neurons and interneurons in the
lower brainstem and spinal cord to adjust motor movements online '°. These cerebellar-
mediated sensory prediction error signals are important for refining motor outputs as well as
future sensory predictions 2.

An evolutionary perspective on the cerebellum helps to elaborate and modify this view to
hypothesize the functional value of the coordinated cortico-cerebellar connectivity gradients
identified in this work. The brains of all major groups of vertebrates include a cerebellum 194195,
In fish, for example, the cerebellum-like structure allows the brain to model expected patterns of
peripheral sensory input related to predictable water currents and the animal’s own movement,
and adaptively filter the sensory consequences of these sensory signals, which in turn helps the
fish detect unpredictable, behaviorally relevant sensory events and compute the corresponding

sensory prediction errors more effectively '°°. From this perspective, the cerebellum (and

cerebellum-like structures) might be thought of as a sensory structure running a sensory model
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of the body in the world, which has been elaborated in land vertebrates, and particularly in
mammals, in the service of complex motor control.

In humans, the cerebellum receives ascending sensory inputs from the dorsal
spinocerebellar tract (via the medulla), while at the same time also receiving from the ventral
spinocerebellar tract (via the pons) copies of motor commands originally sent to spinal motor
neurons '%’; these latter signals can be considered corollary discharge '°. In the cerebral cortex,
corollary discharge of motor commands are thought to serve as sensory prediction signals
1315109 and the same may be true for corollary discharge signals reaching the cerebellum
42108110 Convergence of sensory predictions and incoming sense data would allow the
cerebellum to compare the two sources of information, possibly resulting in the computation of
sensory prediction errors. Both Purkinje cells and granule cells in the cerebellar cortex are
thought to be involved in this comparison process '%’. Given these lines of evidence, one
possibility is that the cerebellum might send these modeled prediction error signals to the
primary motor cortex to rapidly adjust motor control faster than cortical sensory prediction errors
can be computed, in addition to sending its descending prediction signals to the effector organs
via the brainstem. These cerebellar prediction errors might also be compared to the sensory
prediction errors computed in the cerebral cortex.

This logic helps us speculate on the functional significance of cerebellar G1, whose
connectivity patterns correspond to the model-error gradient within the cerebral cortex. For
instance, one novel hypothesis is that, at one end, the cerebellum’s predictions about sensory
prediction errors might be available to adjust motor and sensory predictions that originate in the
default mode network, whose precision may be modulated by the frontoparietal network. These
cerebellar prediction errors might be able to modulate activity of these networks faster than
cortically computed sensory prediction errors, which are computed relatively more slowly. At the
other end of this gradient, cerebellar modeled sensory prediction errors might be available to

compare with sensory prediction errors modeled in the cerebral cortex, in the cortical sensory
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networks. Consistent with this hypothesis, current theories of cerebellar function posit that such
predictive mechanisms may generalize to perceptual activity "#>'""=""* For instance, in visual
perception, the cerebellum is thought to be critical for predicting incoming sensory information
based on sequence detection and updating predictions based on the statistics of the sensory
environment '">7'?°_ Visual information is conveyed polysynaptically from visual association
cortical areas to cerebellar lobules VI and VIl via the pons '?'%2, From the perspective of the
cerebellum, this information may represent sensory prediction error signals from the cerebral
cortex. Visual inputs also reach the cerebellum from primary sensory receptors (e.g., via the
superior colliculus) "2, which may allow the cerebellum to generate and update predictions
about future sensory experiences. Collectively, one overarching hypothesis concerning cortico-
cerebellar interaction is that both the cerebral cortex and the cerebellum are capable of
computing sensory prediction errors and are possibly exchanging and comparing them to more
efficiently update the brain’s internal model of its body in the world. This is just one example of a
novel hypothesis suggested by the correspondence of connectivity gradients observed in this
study, which provides a fruitful avenue for future research using anatomical,
electrophysiological, and lesion data across species.

Recent evidence also suggests that the cerebellum may be involved in estimating the
precision of sensory prediction errors, consistent with the organization of cerebellar G-
corresponding to the model-precision gradient in the cerebral cortex. During motor learning, the
brain controls error sensitivity (i.e., the extent to which the brain changes the motor commands
in the trial following an error) by learning relatively more from small and consistent errors than
from larger and variable ones '>>'?*_ This learning mechanism depends critically on the memory
of errors that accumulates during training, which exists independently of two traditional forms of
motor memory (memory of perturbations and of actions) '2*. Although motor learning can occur
on different time scales with different error sensitivities '2°, the memory of errors is thought to

exert its influence through the error sensitivity of the fast learning process '?®. Therefore, one
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possibility is that the cerebellum rapidly estimates the reliability of sensory prediction errors,
conveying this information to parts of the cerebral cortex (e.g., the premotor areas such as the
anterior mid cingulate cortex within the salience network) where it is further used to update
precision estimates about sensory prediction error signals.

Microanatomical and connectivity evidence further supports the hypothesis that the
cerebellum can exert rapid modulation of signals in the cerebral cortex via coordinated
gradients. The majority of cerebellar neurons are granule cells, which can generate action
potentials that are relatively short-lived and at much higher frequencies than neurons in the
cerebral cortex %. Deep cerebellar nuclei, which are the gateway of cerebellar output, can also
be modulated to fire up to 100+ Hz on average '%. These physiological properties may allow the
cerebellum to rapidly modulate prediction, prediction error, and precision signals in the cerebral
cortex in a domain-general fashion. Despite the fact that the cerebral cortex and the cerebellum

are connected to each other only by way of polysynaptic circuits %

, Numerous nonprimary
sensorimotor (e.g., parietal association, parahippocampal, occipitotemporal, and prefrontal)
areas of the cerebral cortex project to the cerebellar cortex via the cortico-ponto-cerebellar
paths '?®. The neocortical areas that project to specific parts of the cerebellar cortex via the pons
are also the target of efferent projections from the same cerebellar cortical areas via the
thalamus '2*='3!. These parallel, reciprocally-connected circuits might provide an anatomical
substrate for the coordinated functional connectivity gradients identified in this study. Overall,
our findings extend prior work in the functional parcellation of the cerebellum 388%132-134 by,
suggesting the potential mechanisms underlying the contribution of cortico-cerebellar
interactions to the brain’s predictive processing.
Coordination of cortical and hippocampal connectivity gradients

A traditional view of cortico-hippocampal interactions is that the cerebral cortex

generates predictions based on the sensory statistics of the environment, whereas the

hippocampus—uwhich itself generates prediction signals—reweights and alters the cortical
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signals according to the goals of the organism **#4. This mechanism draws upon the functional
loop between the hippocampus, the entorhinal cortex, and the neocortex. Cortical afferents to
the hippocampus carry highly compressed, multi-modal summaries of sensory information via
the entorhinal cortex '*°, whose Layer Il and lll project widely to the DG, CA1-CA4, and the
subiculum via the perforant path *''**. From the perspective of the hippocampus, these signals
may represent prediction error signals from the cerebral cortex. Subcortical projections to the
hippocampus include those from the medial septum, amygdala, anterior thalamic nuclei,
supramammillary nucleus of the hypothalamus, as well as several brainstem nuclei such as the

136,137

ventral tegmental area, periaqueductal gray, and locus coeruleus , possibly carrying
information about the sensory state of the body including energy and metabolic requirements.
The hippocampus may integrate information coming from these sources in its own internal
architecture to generate predictions about future experiences; this mechanism may as well be
one way in which the hippocampus performs the reweighting and adjustment of cortical
predictions.

Hippocampal signals reach back out to the cerebral cortex through various routes to
achieve these adjustments. Specifically, CA1 and the subiculum in turn project out to Layer V
and VI of the entorhinal cortex '*° as well as widespread multimodal association areas in the
cerebral cortex including the medial frontal cortex, temporal pole, orbitofrontal cortex, anterior

138,139 3nd to some extent

and posterior cingulate cortices, parietal and inferotemporal cortices
lateral frontal cortex '*8. From the perspective of the cerebral cortex, these signals may
represent prediction errors consisting of multi-modal information generated from within the

hippocampus '0-142

, which could then be unpacked and particularized as they are integrated
with the cerebral cortex’s internal model. By adjusting the representations in the cerebral cortex,
the hippocampus may help ensure that the subsequent prediction signals generated based on

the cortex’s internal model are not slaves to the statistics of the external sensory environment
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and instead more in line with the goals of the animal (i.e., weighted for the current and perdicted
conditions of the body's internal environment) .

One novel hypothesis emerging from the findings of the current study is that the
hippocampal connectivity gradients together characterize the role of the hippocampus in
adjusting prediction signals in the service of allostasis along the entire cortical sheet. That is, the
two most dominant connectivity gradients of the hippocampus might actually be considered a
single gradient with three functional anchors along the longitudinal axis. At the posterior end of
the hippocampus (corresponding to the bottom 10% of hippocampal G in the current study),
functional connectivity was stronger with the cortical attentional networks, suggesting the role of
hippocampal neurons in this area in tuning the precision signals acting on prediction and
prediction error signals in the cerebral cortex. The posterior (septal in rodents) hippocampus
receives ascending interoceptive prediction errors from the medial septum '*® and from the
supramammilary nucleus of the hypothalamus '**, which could reweight sensory statistics based
on the internal state of the body. The medial septum is critical for the generation of theta

frequency oscillations observed in the hippocampus 4146

, which are important for the
hippocampus’ role in generating predicted sequences of sensory events **. The medial septum
also mediates the effect of vagus nerve (parasympathetic afferents) stimulation on hippocampal
theta oscillations '*~'°. This may suggest the posterior hippocampus’ involvement in using
interoceptive information to guide processing of event sequences.

In the middle of the hippocampus (corresponding to the top 10% of hippocampal G1 and
Gz), functional connectivity was stronger with the default mode network in the cerebral cortex.
This network is critical for initiating prediction signals constituting the cerebral cortex’s internal
model constructed from past experiences '*°. This network is also key for conceptual
processing "', and on one hypothesis prediction signals can be thought of as low-dimensional,

conceptual representations that guide the conceptualization (i.e., categorization) of incoming

sensory information in the service of efficient bodily regulation . The middle portion of the
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hippocampus, therefore, may interact with the default mode network in the cerebral cortex to
categorize sensory inputs and give them meaning, where “meaning” includes the generation of
visceromotor and motor action plans to deal with that particular event in a specific context 3. In
this way, the hippocampus may also contribute to interoceptive predictions — by sending
anticipated sensory consequences of visceromotor changes to the primary interoceptive cortex
1517 and therefore a change in affect (e.g., mood).

At the anterior end of the hippocampus (corresponding to the bottom 10% of
hippocampal G;), functional connectivity was stronger with the somatosensory and
somatomotor cortices, suggesting the role of hippocampal neurons in this area in sending motor
and sensory predictions to the cerebral cortex, possibly along with visceromotor predictions
given the presence of visceral maps within the primary motor cortex '°%'%3, Preferential
connectivity with the sensorimotor cortices in the anterior (vs. posterior) hippocampus in
humans is consistent with available evidence “°®'%*_|n rodents, the temporal (i.e., anterior) two
thirds of CA1 passing through the longitudinal association bundles project to the primary
visceral sensory area and the supplementary somatosensory area '*°, which may correspond to
the functional connection observed in this study. The attentional-conceptual-
(viscero)sensorimotor gradient in the hippocampus, therefore, may characterize the
hippocampus’ contribution to predictive processing in the brain, which involves the refinement of
representations in the cerebral cortex regardless of whether they are content-based or
modulatory. Such tripartite organization of hippocampal function is consistent with prior work in
non-human primates and rodents characterizing the topographic organization of hippocampal-
entorhinal interconnections, where the anterior, middle, and posterior subregions of the
hippocampus exhibit preferential connections with the medial, intermediate, and lateral bands of
the entorhinal cortex, respectively *°~'°8 This entorhinal mediolateral gradient in turn appears to
be associated with distinct patterns of functional connectivity in humans, although evidence is

still preliminary given the limited spatial coverage of the data "°. Future work examining whole-
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brain high-resolution fMRI data is warranted to clarify the mechanisms underlying signal flow
and integration along a neocortical, entorhinal, and hippocampal functional loop.

Notably, our findings meaningfully extend the existing accounts of the functional
organization of hippocampus identified in humans %% by demonstrating evidence supporting
the role of cortico-hippocampal interactions in domain-general computational processes. Much
of the prior work examining longitudinal-axis functional specialization within the hippocampus
has focused on characterizing it by distinct patterns of functional interaction with nearby
structures in the medial temporal lobe or with a broader set of cortical regions that are
canonically considered part of the default mode network; this specialization has been most
typically linked to different aspects of episodic memory **1611¢4-171 "Qyr findings are consistent
with recent evidence showing that hippocampal functional specialization along its longitudinal
axis reflects its relevance not just for memory but across multiple functional domains "%, thus
underscoring the importance of adopting a more domain-general view of hippocampal function
than traditionally thought in the memory literature.

Coordination of cerebellar and hippocampal connectivity gradients

Finally, the current findings of coordinated connectivity gradients offer novel insights to
probe observations that are relatively understudied in the literature, such as the interaction
between the cerebellum and the hippocampus. Emerging evidence suggests the existence of a

cerebello-hippocampal learning system #°-49.173.174

, although its computational and functional
architecture are relatively less well studied when compared to the other learning systems
discussed. Viral tracing studies have so far identified polysynaptic connections between these
structures mediated by regions including the supramammillary nucleus of the hypothalamus,
medial septum, and ventrolateral/laterodorsal thalamus “®'">. There is also evidence pointing to
the existence of direct connections between cerebellar and hippocampal subregions in humans

7% The present findings reinforce the importance of testing specific hypotheses, for instance,

about event segmentation and sequence processing in which both structures have been
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(separately) implicated *>"7"77=18_Fyture work should investigate the complementary
contributions of cortico-cerebellar, cortico-hippocampal, and cerebello-hippocampal interactions
to the brain’s internal model, which might be characterized by their dissociable involvement in
processing different types of information and/or on different timescales.
Conclusions

The present results offer the opportunity to synthesize evidence across literatures, each
targeting a different set of brain regions, into a common neurocomputational framework based
on the principles of predictive processing. Our hypotheses, while speculative, illustrate the value
of connectivity gradients in innovating specific questions about the computational aspects of
brain function, with the model-error and model-precision gradients as two common axes of
information processing in the brain. Future work might specifically address these questions, as
well as probe modulation of connectivity gradient coordination across structures by explicit task
demands or by clinical conditions in which neural mechanisms subserving predictive processing
are hypothesized to be dysfunctional '®"'®2. The results might offer a coherent,
neurobiologically-inspired research program to unite the study of mind and behavior, collapsing
the artificial boundaries between cognitive, perceptual, affective, motor, and even social
phenomena. This evidence might also provide a common framework for understanding more
broadly the neurocomputational basis of mental disorders, neurodegenerative disorders, and

physical disorders.

Methods

A full description of the datasets, data processing, and analytical approaches is provided
as part of Supplementary Methods. Briefly, we analyzed two large resting-state fMRI datasets,
both of which are publicly available. The primary dataset consisted of 1,003 participants from
the HCP WU-Minn Consortium *? (HCP1200 2017 data release; Mage = 28.71, SDage = 3.71, 470

males, 533 females; four 15 min runs per participant). Specifically, we utilized the group
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average preprocessed dense functional connectome data generated via the HCP pipelines
183184 These data took the form of a 91,282 x 91,282 matrix representing the magnitude of
functional connectivity between all cortical vertices and subcortical voxels; the hippocampus
was represented as part of the subcortical volume space '®%. A secondary, validation dataset
was defined with an independent group of 1,139 participants from the GSP (Mage = 21.24, SDage
= 2.70, 467 males, 672 females; two 6 min runs per participant) >>**. We performed

58,185 after which we

preprocessing of the GSP dataset using a surface-based pipeline
generated the group average whole-brain vertex-/voxel-wise functional connectivity matrix.
From these group-level functional connectivity matrices, we extracted (1) cortico-cortical,
(2) cerebello-cortical, and (3) hippocampo-cortical connections, which were used as input for
diffusion map embedding, a non-linear data dimensionality reduction technique that allows
calculation of functional connectivity gradients as a low-dimensional representation of spatial
variation in connectivity profiles °>*'. We performed post hoc characterization and interpretation
of the observed functional gradients at various levels, including comparisons with the
topography of canonical functional networks ** and examination of gradient value distributions
across major hippocampal subfields ®2. To interpret the correspondence between
cerebellar/hippocampal and cerebral cortical connectivity gradients, we computed gradient-

weighted functional connectivity in cortical space ¢*°

and quantified the degree of spatial
correlation while non-parametrically accounting for autocorrelations ©. Finally, to further
demonstrate the correspondence between the cortical, cerebellar, and hippocampal functional
gradients in terms of connectivity, we performed a seed-based functional connectivity analysis
by targeting the vertices/voxels that occupied the top and bottom 10% of each gradient. This

procedure enabled triangulation of intrinsic functional connectivity between distinct subregions

of the three structures that corresponded to a common connectivity gradient.
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Data Availability

The HCP dataset is publicly available at https://db.humanconnectome.org. The GSP dataset is

publicly available at

https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/25833. The fMRI

data derivatives generated in this work will be made available at

https://github.com/yutakatsumi/PredProcGradients.
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