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Abstract

Dysregulation of intercellular communication is a well-established hallmark of aging. To
better understand how this process contributes to the aging phenotype, we built scAgeCom, a
comprehensive atlas presenting how cell-type to cell-type interactions vary with age in 23
mouse tissues. We first created an R package, scDiffCom, designed to perform differential
intercellular communication analysis between two conditions of interest in any mouse or
human single-cell RNA-seq dataset. The package relies on its own list of curated
ligand-receptor interactions compiled from seven established studies. We applied this tool to
single-cell transcriptomics data from the Tabula Muris Senis consortium and the Calico
murine aging cell atlas. All the results can be accessed online, using a user-friendly,
interactive web application (https://scagecom.org). The most widespread changes we
observed include upregulation of immune system processes, inflammation and lipid
metabolism, and downregulation of extracellular matrix organization, growth, development

and angiogenesis. More specific interpretations are also provided.
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Introduction

Aging remains a poorly understood biological process despite affecting most organisms .
One of the difficult aspects to model is how the dynamics of OMICs and tissue homeostasis
influence each other throughout the lifespan. To gain new insights on how to bridge this gap,
we focused our attention on intercellular communication (ICC). Dysregulation of ICC has
been defined as a hallmark of aging >* and has recently been proposed as one of the causes
leading to the cell-to-cell stochasticity arising with age *. Well-known communication
deregulations include inflammaging (a chronic low-grade age-associated inflammation) °,

6 increase in senescence-associated secretory phenotype

impaired immune surveillance
(SASP) 7, altered communication between stem cells and their niche *°, remodeling of the
extracellular matrix %! 12,
Interestingly, interventions involving extracellular signals have been shown to partially
reverse some of the aging phenotypes. This includes targeting endocrine mediators such as
insulin-like peptides and growth hormones '*'*, the use of anti-inflammatory compounds ">,

heterochronic tissue transplants and heterochronic parabiosis '*2°.

and changes in endocrine and neuronal communication

Direct measurement of intercellular communication is complicated and usually depends on
the type of mediators considered, such as surface receptors, soluble factors, extracellular
vesicles ! or even mitochondria 2. However, recent studies have shown that specific aspects
of ICC can be inferred from single-cell gene expression data *>**. Following the pioneer study
that drafted the first comprehensive database of ligand-receptor interactions (LRIs) %, and
based on the development of statistical tools dedicated to building cell-type to cell-type
communication networks
communication analyses alongside the workflow of single-cell transcriptomic studies. This
notably includes recent aging articles on the mouse brain **, on the mouse mammary gland >,
on several rat tissues *°, on the primate cardiopulmonary system ** and on human skin
fibroblasts *’. However, the ICC analyses performed in some of those studies suffer from
several limitations, as they rely on tools designed to detect interactions rather than to

, it is now becoming standard to perform intercellular

investigate how the interactions change between two biological conditions (e.g., young/old,
healthy/sick). Indeed, the main approach so far has been to detect interactions in young and
old samples independently, and then to focus on signals appearing or disappearing with age.
As a result, this method does not account for interactions that are detected in both conditions
but are nevertheless changing significantly, and it also disregards the magnitude of the signal
variation. More importantly, this approach lacks a statistical test to assess the significance of
those changes and thus to evaluate if they are due to noise or to a true biological effect.

To alleviate such limitations, we built a new statistical framework specifically designed to
perform differential analysis in intercellular communication. Our resulting R package,
scDiffCom, can be applied to any human or mouse scRNA-seq dataset to analyze changes in
ICC between two given conditions in a given tissue. scDiffCom includes a collection of
around 5000 curated ligand-receptor interactions that we have retrieved from seven publicly
available resources 2. The typical output of the package is a table of detected cell-type to
cell-type interactions indicating, in particular, their strength and how they are regulated
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between the two conditions of interest. To facilitate the interpretation of these results, we
implemented an over-representation test to determine the dominant variations at the gene,
cell-type or functional level. In addition, the package provides several visualization tools.

We used scDiffCom on several published scRNA-seq datasets from the Tabula Muris Senis
consortium ** and the Calico murine aging cell atlas * to create scAgeCom, a large-scale atlas
of age-related intercellular communication changes across 23 mouse tissues. Samples
obtained from male and female mice or from different experimental techniques were treated
separately to avoid any confounding factors. The results are hosted and accessible via an
online web application (https://scagecom.org) that contains both tissue-specific analyses and
a global section summarizing changes shared across multiple tissues.

Our aging-related analysis supports previous knowledge regarding intercellular
communication, depicting, 1) a widespread upregulation of immune system processes,
inflammation and lipid metabolism, and 2) a downregulation of extracellular matrix
organization, growth, development and angiogenesis. Despite significant differences across
sex and experimental techniques, we were able to predict the ligands, receptors and cell types
that might play key roles in such dysregulation. Due to its generality and to the large number
of tissues considered, we believe that scAgeCom contains a large amount of generated data,
waiting to be interpreted, which might provide the community with new therapeutic targets
and new hypotheses regarding the relationship between aging and intercellular
communication.

Results

Collection of ligand-receptor interactions from existing databases

As with other methods analyzing intercellular communication from scRNA-seq data, our
approach first relied on the collection of ligand-receptor interactions (LRIs). In order to
maximize the variety of interaction types, we retrieved LRIs from seven publicly available
resources: CellChat ?°, CellPhoneDB ?’, CellTalkDB *, NATMI/connectomeDB2020 2,
ICELLNET *°, NicheNet *!, and SingleCellSignalR ** (Methods - Fetching ligand-receptor
interactions). Several processing steps were then necessary to obtain consistent human and
mouse collections of curated LRIs (Methods - Processing ligand-receptor interactions). This
means retaining only curated interactions, converting human genes to mouse orthologs for the
human-only resources, and including both simple and complex LRIs. Simple LRIs are
interactions involving a single-gene ligand with a single-gene receptor, e.g., Apoe:Ldlr. On
the other hand, a complex interaction involves heteromeric ligands or receptors, e.g.,
Col3al:ltgal-Itghl.

Our approach resulted in 4741 mouse LRIs (simple: 3627, complex: 1114) and 4787 human
LRIs (simple: 3650, complex: 1137) directly accessible from our R package scDiffCom (see
also Supplemental Data 1). Fig.1a shows how those LRIs are distributed according to their
database of origin. Whenever possible, we also included in Supplemental Data 1 the sources
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used by each of the seven databases to curate their interactions, including references to
PubMed identifiers, FANTOMS5 %, HPMR “, HPRD *, IUPHAR *, Reactome * or KEGG *.

Functional annotation of ligand-receptor interactions

We annotated all LRIs with a standardized and consistent framework (Methods - Annotating
ligand-receptor interactions with GO terms and KEGG pathways). We first associated gene
ontology (GO) terms * to each interaction in a way that conveys biological meaning related
as much as possible to the interaction itself rather than to each gene independently. Simply
taking the intersection between the ligand GO terms and receptor GO terms would have
resulted in a significant number of empty intersections (as most genes are annotated with
specific GO terms and not all parent terms). Instead, as shown in Fig.1b, we associated to
each LRI all GO terms formed by the intersection of two sets of nodes: 1) the nodes of the
GO graph made of the ligand GO terms with their ancestors and 2) the nodes of the
corresponding receptor GO graph. Since this method is prone to attaching lowly informative
terms (namely those near the root of the GO graph), we also computed and indicated the level
of each GO term (namely its depth in the GO graph) to facilitate downstream analysis. In
addition to GO terms, we added KEGG pathways * to each LRI if all genes present in the
interaction were part of the pathway. All annotations are directly accessible from scDiffCom.

Differential cell-cell communication analysis with scDiffCom

We designed a bioinformatics method, available within the R package scDiffCom, to detect
cell-type to cell-type communication patterns that significantly change between two
conditions in a given scRNA-seq dataset (Fig.2). Prior to the analysis, the dataset must be
formatted as an R Seurat object “°* and contain cells annotated by cell types and by the two
conditions on which the differential analysis will be performed. The package then considers
all possible interactions between a cell-type pair, based on the ligand-receptor interactions
described in the previous section. We call each of those potential signals a cell-cell interaction
(CCI). Each CCI is then assigned a score (independently in each condition) based on the
expression of the genes in the respective cells (Methods - CCI score based on the geometric
mean). A statistical procedure comprising two tests is finally performed to establish how
likely each CCI is to correspond to an actual biological interaction and to be significantly
differentially expressed between the two given conditions.

The first test consists in assessing the biological relevance of each CCI (in each condition
independently) based on combining previously published approaches (Methods - CCI
detection and differential analyses). To be considered detected, a CCI has to: 1) not be lowly
expressed (based on the number and percentage of cells expressing each gene), 2) be specific,
as originally defined by the authors of CellPhoneDB #’° (this relies on a permutation test
explained below), and 3) have a large enough score (compared to the other remaining CCIs).
The permutation test shuffles the cell-type annotation attached to each cell to estimate how
specific to a given emitter-receiver cell-type pair a particular ligand-receptor interaction is.
This allows the removal of non-specific CCls that are likely not biologically relevant.
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Alongside the detection analysis, we implemented a second permutation test to assess if the
score of each CCI significantly changes between the two conditions of interest (Methods -
CClI detection and differential analyses). This consists of randomly exchanging the condition
label of each cell to see whether the test statistic, the difference between the CCI scores of
each condition, is different from zero. Choosing permutation tests was motivated by the fact
that they are non-parametric, i.e. they make no assumptions regarding the distributions of the
underlying variables *°. This was particularly useful in this context, as there is no obvious
way to model the CCI score distribution. In addition, permutation tests can be applied to
unbalanced and low sample size scenarios, which frequently appear in single-cell studies.

Finally, based on both the detection and differential analysis, each CCI is classified into one
of four possible categories, further referred to as "regulation" (Methods - CCI classification).
It can either be up-regulated (UP), down-regulated (DOWN), stable (FLAT), or correspond to
a non-significant change (NSC). As such, the main output of scDiffCom is a table that
contains all detected CCIs with relevant information including their regulation, log
fold-changes, adjusted p-values and scores for each condition.

We note that the most computationally demanding part of this workflow is to perform the
permutation tests and therefore special care was taken to optimize them. Moreover,
scDiffCom can easily be run in parallel. A toy model analysis (1000 permutations on a
dataset of 1000 cells and 5 cell types) takes a couple of minutes if run sequentially on a
single-core computer. A more realistic example (10000 permutations on 3107 cells and 16
cell types) was measured to take around 9 minutes when run in parallel on 30 cores.

Over-representation analysis and visualization

Every single detected CCI returned by our analysis corresponds to a communication signal
whose change (or absence of change) between the two conditions can be interpreted on its
own. However, as it is typical to detect several thousands of CCIs in a single tissue,
scDiffCom also performs an over-representation analysis (ORA) to extract the dominant
differential patterns (Methods - Fishers exact test to find over-represented signals). ORA
measures the statistical association between CCI classes (UP, DOWN or FLAT) and CCI
features of interest, e.g., gene, cell-type or functional annotation. For instance, it can evaluate
if a given ligand-receptor interaction takes part in up-regulated CCIs more than expected by
chance. Results can be sorted according to an over-representation score that combines the odd
ratio (OR) and adjusted p-value returned by the test: ORAscore =
log2 OR - (— log10 adj. pval).

ORA is performed on the following categories: LRIs, ligands, receptors, emitter-receiver
cell-type pairs, emitter cell types, receiver cell types, GO terms and KEGG pathways. It is
useful to analyze ligands and receptors alone to see if some ligands take part in various
regulated CClIs involving different receptors (or vice-versa). The same logic is valid for the
cell types. Moreover, scDiffCom offers the opportunity to perform ORA on additional
user-defined attributes.
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Finally, scDiffCom provides two tools to produce images of the over-represented results
(Methods - Visualization Tools). First, the function PlotORA displays the top
over-represented signals of a given category and regulation with their odds ratios and
adjusted p-values. Second, the function BuildNetwork creates and displays a network
representation of the over-represented cell-type pairs, as will be illustrated below. Other types
of data visualization can be created from direct calls to standard R graphic packages and are
therefore not implemented in scDiffCom.

Preparation and annotation of scRNA-seq aging datasets

We used the developed package to create a comprehensive murine atlas of age-related
intercellular communication changes by applying scDiffCom to scRNA-seq datasets obtained
from the Tabula Muris Senis (TMS) consortium ** and the Calico murine aging cell atlas **
(Methods - Fetching and preparing scRNA-seq datasets). These studies offer high-quality
cell-type annotations: following standard cell clustering techniques ', TMS relied on experts
to manually curate their cell-type classification, whereas Calico assigned cell types to their
cells based on a semi-supervised neural network using the first Tabula Muris study 3 as
training data.

After data pre-processing, we retained 58 distinct datasets corresponding to 23 organs
distributed across 5 categories: TMS FACS (male), TMS FACS (female), TMS Droplet (male),
TMS Droplet (female) and Calico Droplet (male) (Fig.3). FACS and Droplet refer to the two
experimental techniques used by the original studies. We kept male and female samples
separate to avoid possible confounding effects. Cells from different time points were
classified as either young or old, as the two conditions on which scDiffCom performs the
differential analysis. To integrate the 5 types of datasets and facilitate comparisons, we
standardized the cell-type names across datasets, regrouped very specific categories into
broader ones, and annotated them with cell-type families (Methods — Cell-type
characterization).

The dataset preparation revealed that most tissues do not share the same cell types across the
five experimental and sex categories. As shown in Fig.3, the number of cell types in the lung
varies from 12 to 18. Moreover, some important cell types were not captured at all due to
technical limitations (e.g., adipocytes in adipose tissues). As such, one must keep in mind that
our results can only convey a partial representation of what is expected to happen in vivo.

scAgeCom: a mouse aging atlas of intercellular communication

We applied scDiffCom to each of the 58 aforementioned datasets, performing differential
analysis between young and old cells using 10000 permutations and default parameters (as
defined in Methods). To facilitate access to this large amount of data, we created a Shiny
application (Method - Building and deploying scAgeComShiny). This website, available at
https://scagecom.org, provides both a tissue-specific section, displaying results for each
dataset independently and a global section summarizing the dominant signals shared across
datasets.
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Fig.4a-c illustrate the interactive tables and plots provided to explore detected CCls and their
age-regulation in each dataset. Several filtering options are available to restrict interactions to
a subset of cell types, LRIs or functional annotations. Results of the over-representation
analysis are available as graphs and tables for cell-type-centric, gene-centric and
function-centric investigations (Fig.4d-f).

The high number of datasets analyzed allowed us to perform a global analysis to investigate
age-related communication changes shared across multiple tissues. We used the signals
returned by the over-representation analysis in each dataset. For each annotation, e.g., the GO
term T cell differentiation or the LRI B2m:Cd3g, we counted the number of datasets in which
it was over-represented (Fig.5). This allowed us to create tables with the keywords that were
overrepresented in the largest number of tissues.

Aging dysregulates multiple aspects of intercellular communication

Over the 58 datasets considered, we detected 382522 CCIs (5% UP, 13% DOWN, 56%
FLAT, 26% NSC), corresponding to an average of 98 detected LRIs (SD = 77) between any
cell-type pair. The nature and age-regulation of the detected CCls strongly vary across
datasets, sex and experimental techniques, as shown in Fig. 6. The tissues from TMS FACS
(male) clearly show a larger fraction of down-regulated CCls compared to all other datasets
including those from TMS FACS (female). Unsurprisingly, we also observe more variability
and noise (namely more NSC CCIs) in FACS compared to Droplet. Those observations are
partially explained in the Discussion below.

The global section of the atlas reveals several broad mechanisms dysregulated with age. First,
consistently with the literature, we observe a major up-regulation of inflammatory and
immune system processes. GO terms over-represented in more than half of the tissues include
immune response, immune Ssystem process, defense response, T cell differentiation,
cytokine/chemokine-mediated signaling pathway, lymphocyte migration, positive regulation
of adaptive immune response, regulation of B cell activation, regulation of viral life
cycle/process and KEGG pathways such as antigen processing and presentation,
cytokine-cytokine receptor interaction, Epstein-Barr virus infection. Analysis of cell-type
families reveals that the interaction leukocyte-leukocyte is up-regulated in 16 tissues and that
the interactions from endothelial, connective and stem cells towards leukocytes are each
up-regulated in at least 5 tissues. From the gene perspective, the interactions that are
overrepresented in the highest number of tissues (9 to 15 out of 23 tissues) include
B2m:Cd3g, B2m:Cd3d, Tnfsf12:Tnfrsfl2a, H2-D1/K1/Q6:Cd8b1, Mif:Cd74, Hmgbl:Thbd,
and Ccl5 interacting with different chemokine receptors such as Ccri2, Ccrl and Ccer5 in 6, 4
and 4 tissues, respectively.

A second up-regulated process is related to lipid metabolism, with GO terms like lipid
metabolic process, cellular lipid metabolic process, lipid catabolic process, lipoprotein
metabolic process, regulation of lipid localization, fatty acid biosynthetic process. Apoe is
over-represented as an up-regulated ligand in 16 tissues, mostly via its interactions with Sdc4,
Lrpl and Ldlr. However, this pattern is mainly found in 7MS FACS (male) and happens to be
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reversed in four TMS FACS (female) tissues. Along the same line, App:Lrpl0, is
over-represented among down-regulated signals in 8 tissues from TMS FACS (male) but
up-regulated in 4 tissues from TMS FACS (female) and 3 tissues from TMS Droplet (female).

The most over-represented processes among signals down-regulated with age are related to
the extracellular matrix (ECM) and adhesion. This includes the GO terms biological
adhesion, cell adhesion, extracellular matrix organization, extracellular structure
organization, cell junction assembly, cell-matrix adhesion and the KEGG pathways
ECM-receptor interaction, focal adhesion, adherens junction. The main corresponding LRIs
involve collagens, fibronectins and laminins interacting with integrins, mostly between
connective tissue cells, epithelial cells and endothelial cells.

In addition to the changes undergone by the ECM, interactions related to growth,
development, survival, differentiation and angiogenesis are also significantly down-regulated
with age. Relevant GO terms include anatomical structure morphogenesis/development, cell
morphogenesis, developmental process and growth, response to growth factor, regulation of
cell cycle, Notch signaling pathway, regulation of angiogenesis and KEGG pathways include
PI3K-Akt signaling pathway, Wnt signalling pathway. Genes such as Fgfl, Wnt5a, Bmp2,
Angptl, Tgfbl, Tgfb3, Vegfa, Bmp6, Notch2, Fgfrl, Fgfr2, Tgfbr2, Egfr, Gpil are
over-represented in down-regulated CCls in 5 to 13 tissues. Cell-type pair over-representation
also indicates down-regulation of communication among stem cells (6 tissues) and from stem
cells towards endothelial cells (5 tissues).

The results reported so far only represent a fraction of the global signals present in our atlas.
Tissue-specific results provide even more leads to be investigated, including age-regulated
CCls specific to an organ or cell type and therefore not showing up as over-represented. For
instance, we noticed the down-regulation of multiple communication links towards intestinal
crypt cells and Lama? in the large intestine; the up-regulation of Sost (sclerostin) and
communication links towards podocytes in the kidney; the down-regulation of Notch
signalling in the bone marrow; and the down-regulation of Hgf and 7gf/b in hepatic
sinusoidal endothelial cells. Unfortunately, investigating all these signals is outside the scope
of this article; however, we hope that scAgeCom will encourage other researchers to access
our database for this purpose.

Discussion

In this work, we present a package to perform differential intercellular communication
analysis as well as a comprehensive database of age-related mouse cell-cell interactions.
From a technical point of view, our results illustrate the importance of performing a proper
statistical analysis when comparing intercellular signals extracted from scRNA-seq data.
Variability and noise were indeed responsible for the classification of 26% of the detected
CCIs as NSC interactions (non-significant change), namely those with a fold change larger
than 1.5 but a non-significant adjusted p-value. Had we not used a statistical test and based
our analysis solely on the appearance and disappearance of CCIs between the two conditions,
as in some previous studies, 82.5% of those NSC signals (i.e., 82256 CCls) would have been
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falsely considered to be age-regulated. Moreover, such an approach would have missed all
CCIs detected in both conditions but nevertheless showing a significant change with age,
namely 16678 interactions in our case.

Fig.6 shows that there are significant disparities in the results depending on experimental
techniques and sex. Previous comparisons of single-cell sequencing techniques > have
claimed that Drop-seq, by using unique molecular identifiers (UMI), is less subject to
amplification noise than Smart-seq2, potentially explaining why we observe less NSC CCls
in TMS Droplet and Calico Droplet than in TMS FACS. The other differences can be
explained by several factors. First, different datasets sometimes compare different age groups
(Fig.3). Second, due to experimental limitations, captured cell types are rarely the same
between two datasets of the same tissue. For example, as previously shown in Fig.3 for the
Lung, there are 16 cell types in TMS FACS (male) against 12 cell types in TMS Droplet
(male), resulting in more detected CCls in the former than the latter dataset (22540 vs. 11372)
and in a different distribution of the percentage of UP/DOWN/FLAT/NCS CCls (Fig.6). We
also emphasize that the pronounced down-regulation observed in TMS FACS (male) datasets
(Fig.6) was reported in a previous study performed on TMS datasets .

We now provide more specific interpretations of the main biological results reported above.
Regarding the increase of immune response processes with age, we observed that the ligand
B2m (B2-microglobulin) is over-represented among up-regulated CCls in 17 tissues. B2m has
already been recognized as a gene consistently overexpressed with age * and as a pro-aging
circulating factor whose elevated level negatively affects cognitive functions and
neurogenesis in the mouse hippocampus ¢, Our results indicate that the increased secretion of
the ligand B2m with age is systemic and appears to target T cells via their receptors Cd3g,
Cd3d and to a lesser extent Cd247 (explaining the occurrence of the GO term T cell
differentiation). This could be a sign of increased antigen presentation on MHC class I. Such
a widespread pattern might also indicate detrimental effects of B2m not limited to the brain
and reinforce the idea that this protein might be a potential therapeutic target, as previously
suggested *’.

Regarding the increase in inflammation with age, our results show a global
over-representation of the terms cytokine- and chemokine-mediated pathways, and of the
ligands Ccl5, Mif and Hmgbl. Those ligands are known Senescence-Associated Secretory
Phenotype (SASP) factors, but we cannot confirm from our analysis whether they are really
emitted by senescent cells. Follow-up studies, such as for example a cross-analysis between
scAgeCom and the SASP atlas *, might allow us to explore such senescence-related
hypotheses more precisely. Here, we only mention that the two most over-represented
up-regulated LRIs that we reported earlier, Mif:Cd74 and Hmgb1:Thbd, actually seem to play
compensatory roles in the context of senescence and inflammation. Indeed, it has been
reported that macrophage migration inhibitory factor (Mif), a pleiotropic cytokine, can
prevent cellular senescence and rejuvenate mesenchymal stem cells from age-induced
senescence via CD74/AMPK/FOXO3a and autophagy in both rats and humans **%. Along
the same line, the high-mobility group box chromosomal protein 1 (Hmgbl) has
proinflammatory effects when binding to RAGE/Ager ® but its sequestration by
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62 According to our results,

Hmgbl:Thbd is over-represented as up-regulated in 9 tissues and Hmgbl:Ager in 3 tissues,
pointing towards a global over-emission of Hmgbl with age that tissues might try to
compensate by over-expressing Thbd.

thrombomodulin acts as an anti-inflammatory mechanism

Changes in lipid metabolism with age are known to have an important impact on the lifespan
and age-related diseases . Our most intriguing results concern the widespread deregulation
of Apoe, its receptor and App. We indeed observed a general over-emission of Apoe and an
under-emission of App in most tissues at least in TMS FACS (male). In the brain, those genes
are known to play a role in the pathology of Alzheimer’s disease (AD). App is the precursor
of amyloid beta (AP) peptides *, Apoe is a known regulator of AP clearance ® and
interactions between App and Apoe receptors influence AP metabolism and toxicity ¢,
Much less research has been performed on the function of App outside the central nervous
system %, but some studies point towards its role in several pathologies such as in obesity
70 in the skin 7', in the intestine ">, where it is modulated by diet ", and in muscles ™,
™. Taken together, those studies and our results
suggest that changes with age in App intercellular trafficking might lead to a variety of
tissue-specific diseases.

particularly at neuromuscular junctions

The two main down-regulated processes reported in our results, namely changes in the ECM
and development/growth/proliferation, are partially interdependent. They have in common
the under-expression of integrins, which typically act as bidirectional mediators between the
cytoplasm and the extracellular space and regulate mechanisms such as cell migration,
adhesion, proliferation, apoptosis, tumor progression and senescence °. The multiple
functions of these proteins and their deregulation that we observe across multiple organs
(most notably when they interact with collagen) suggest they might play key roles in the
structural decline of tissues with age. They are also consistently down-regulated in signaling
involving stem cells, potentially impacting their maintenance and homeostasis, as suggested
in previous articles '°.

A subpart of the development/growth/proliferation pathway concerns the global
down-regulation of angiogenesis and qualitative changes occurring in vessels. Several studies
have previously reported a decline with age in capillary density and in the formation of new
blood vessels "7, even leading some authors to postulate an “angiogenesis hypothesis of
aging” ™. Our analysis reveals that the pair Gpil :Amfr, mainly detected from or to endothelial
cells, is over-represented among down-regulated CCIs in 11 tissues. Glucose-6-phosphate
isomerase functions as an autocrine motility factor that stimulates endothelial cell motility .
This LRI could be an important regulator of microvascular aging and its therapeutic potential
seems worth investigating. Moreover, we found down-regulation of angiopoietin-1 (4ngpt!l)
in 7 tissues, which could lead to the formation of leaky vessels, as vessel stability relies on
the balance of Angptl and Angpt2 *'.

Finally, we conclude with some of the limitations of using gene expression of ligands and
receptors to infer intercellular communication activity. First, using mRNA counts as a proxy
for the actual level of secreted proteins may lead to an overestimation of some intercellular
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interactions, as we assume that all transcripts participate in signalling, even though a fraction
of them might be produced for intracellular processes. Second, it is not always clear how
some interactions (e.g., App:Lrp10) are shared between cells, and which fraction of them are
autocrine rather than paracrine. Third, by only looking at ligands and receptors, our method
does not assess changes in other players acting in downstream signalling. Fourth, we do not
consider all possible types of intercellular mediators and we do not investigate inter-tissue
interactions such as endocrine signals. Despite these limitations, we hope that our atlas will
be useful for the community and lead to new hypotheses on intercellular communication and
aging to be further tested.

Methods

Fetching ligand-receptor interactions

We downloaded LRIs from the most recent versions (as of March 21, 2021) of seven publicly
available databases. Data from CellChat, NicheNet, and SingleCellSignalR were directly
accessed from their associated R packages. Data from CellPhoneDB, CellTalkDB,
connectomeDB2020 and ICELLNET were fetched online from their respective websites. All
details regarding download dates and links are directly accessible from our package
scDiffCom. We initially also retrieved LRIs from an eighth database, LRBaseDb from
scTensor *, but we did not consider it further as all curated LRIs present in it were derived
from the seven others mentioned above.

Processing ligand-receptor interactions

We analyzed the documentation and annotations of each resource to only keep their curated
LRIs. We removed the interactions that were only bioinformatically predicted, such as from
protein-protein interaction networks. We checked that gene symbols were HGNC approved *
and, when mouse data were available, MGI approved %. If mouse LRIs were not provided
(namely  for  CellPhoneDB, connectomeDB2020, ICELLNET, NicheNet and
SingleCellSignalR), we converted human LRIs to their mouse equivalent by retrieving high
confidence orthology information from Ensembl version 102 * accessed through the R
package biomaRt *.

LRIs from each resource were combined in a single list. Special care was taken to avoid
duplicates arising from the same interactions given in opposite directions (e.g., G1:G2 versus
G2:Gl), typically for juxtacrine signalling where the notion of ligand or receptor can
sometimes be arbitrary.

As some of the resources only provide simple interactions, some of their LRIs could be
incomplete. To partially correct this effect, we removed simple LRIs present in such
databases if they were also found in complex databases, but only in a complex form. For
instance, we removed Col3al:Itgbl, given in SingleCellSignalR, as it always appears in a
complex form in CellPhoneDB, such as in Col3al:Itgal-Itgbl.
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We manually verified the combined list of LRIs and removed about 200 of them that we
considered miss-curated, e.g., Mapkl:Fgfr2, Calml:AdcyS8, Gnas:Adcyl, Hsp90aal:Cfir. To
do so, we first annotated each gene with descriptions from MyGene.Info ***" and categories
from OmniPath ®. We then identified genes that seemed unlikely to participate in
intercellular communication. Finally, we explored the interactions involving those genes and
evaluated the evidence supporting their existence. Some of the removed LRIs relied on
publications describing intracellular interactions that had been misinterpreted as intercellular,
e.g., Loo et al. ¥ is presented as evidence for Hsp90aal:Cftr, but the paper does not mention
intercellular communication.

Annotating ligand-receptor interactions with GO terms and KEGG pathways

LRIs were annotated with GO terms by following the graph-based approach in Fig.1b. GO
terms associated with each gene were retrieved from Ensembl version 102 * accessed
through the R package biomaRt *. For a given LRI, we used the R package ontoProc *° to
build the ligand and receptor ontology subgraphs, whose nodes included their respective GO
terms and ancestors up to the root node. For complex LRIs including, e.g., multiple ligand
genes, we considered the union of the terms associated with each ligand gene. The final LRI
GO terms were those present in both the ligand and the receptor subgraphs, i.e., the
intersection of those graphs at node-level.

To annotate LRIs with KEGG pathways, we used the R package KEGGREST ' to retrieve all
pathways associated with a given gene. For each LRI, we then only retained the pathways
that included both the ligand gene(s) and receptor gene(s).

CCI score based on the geometric mean
For each cell-cell interaction in the form (emitter cell type, receiver cell type, ligand(s),

receptor(s)), a score ¢ is computed in each condition as the geometric mean ¢ = e e,

between the averaged expression e 5 of the ligand gene in the emitter cells and the averaged
expression e, of the receptor gene in the receiver cells (based on normalized

non-log-transformed read counts/UMIs). In the case of complex LRIs with multiple ligand
genes (or receptor genes) involved, e (or eR) is given by the minimum value from the set of

average expressions of those genes.

Defining a CCI score is a standard approach when investigating intercellular communication
from scRNA-seq data #**, although the way of computing the score varies between studies.
Here, the choice of the geometric mean (similar to SingleCellSignalR) rather than the
arithmetic mean (as used by CellPhoneDB) is motivated by several advantages. The first one
is that the geometric mean tends towards zero if either e ore, tends to zero. This implies

that when a highly expressed ligand is combined with a lowly expressed receptor (or
vice-versa) the score is not dominated by the large ligand value, as it would have been the
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case with the arithmetic mean. Along the same line, although transcript counts or UMIs only
give an indirect representation of protein levels *2, molecular interactions are usually modeled
by the law of mass action * which is by essence multiplicative and not additive in protein
concentrations. Finally, the geometric mean provides a clear interpretation of the log
fold-change of the scores between the two conditions of interest. Indeed, we see that the log
fold-change of the CCI score across two hypothetical conditions A and B corresponds to the
(arithmetic) average between the respective ligand and receptor log fold-changes,

—\Cﬁ) = (log( .

(pB eL,B eR,B
log(5) = log( -5 + log(

CCI detection and differential analyses

Our approach relies on three permutation tests to assess if a CCI is 1) cell-type pair specific
in condition A, 2) cell-type pair specific in condition B and 3) differentially expressed
between A and B. To be computationally more efficient, the three tests are done together as
part of a single iteration loop. All threshold parameters described below can be adjusted by
the users.

Given m cell types and [ LRIs that are found in the scRNA-seq dataset, scDiffCom builds a
table of m” - 1 hypothetical CCls. For each CCI, we compute the CCI scores ¢ 4 and P the
log fold change lo g(ch/ (pA) and the variables n and dij corresponding to the number and

fraction of emitter cells expressing the ligand (i = L) or receiver cells expressing the receptor
(i = R) in either condition (j €{4, B}). A CCI is deemed not expressed in condition j if
(nLJ, < 5or Uy < 5)and (dL,j < 0.1or dRJ, < 0.1).

Only the CCls expressed in at least A or B are passed to the iteration loop. At each iteration k,

three independent operations are done: 1) shuffling the cell-type labels of cells from
~k
condition A and returning the random score ¢ 438 the k-th element of the null distribution

~k
representing the random variable dDA, 2) same for condition B, returning ¢ g to form the null

distribution of CDB, and 3) keeping the original cell-type labels but shuffling the A and B

condition labels, and returning the random score difference 5 = (p]; - (pZ~ to form the null
distribution of the random variable A. After iterating, the true values ¢, P and
0 = ¢®,— @, are compared to the three null distributions in order to compute the two
one-sided specificity p-values p,= P(dJA > (pA) and P, = P((DB > (pB), and the
differential two-sided p-value Py= P (|A] > |6]). Those p-values are then adjusted for false

discovery rate according to the Benjamini-Hochberg procedure **.
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A CCI is considered detected in condition j €{A, B} if 1) it is expressed, 2) it is specific,
based on the specificity p-values (p;ld]' < 0.05), and 3) its score is among the top 80% of all

the specific CCI scores of both conditions, namely ®; > q, (20), where q, (x) is the x-th
B AB

A,

percentile of the scores. A CCI is called differentially expressed if paDlg' < 0.05 and
llog(¢ /9 )| = log(1.5).

CC(I classification

We only kept CCls detected in at least one of the two conditions. They are then classified into
four categories: 1) UP when p‘gg' < 0.05 and logfc = log(1.5), 2) DOWN when

adj.

Ppp = 0.05 and logfc <— log(1.5), 3) FLAT when |logfc| < log(1.5) and 4) NSC

(non-significant change) when paDC;j' > 0.05 and |logfc| = log(1.5).

The detection analysis was used to remove biologically irrelevant interactions, but not to
predict actual changes. Using the detection test for this purpose was indeed prone to return
false-positive varying signals, i.e., CCIs that seem to appear or disappear because they
fluctuate around the detection threshold, but which are in reality not differentially expressed.
Using the aging datasets as benchmarking data, we considered all possible outcomes
(Supplemental Data 2) and only noticed a marginal number of seemingly contradictory cases
between the two tests, such as disappearing CCIs with positive log fold change. Those are for
instance due to a reduction of the fraction of expressing cells, despite the increase of the
signal, hence our decision to prioritize the classification of the CCIs based on the differential
test.

Fisher’s exact test to find over-represented signals

Over-representation analysis (ORA) is used to evaluate frequent patterns in categorical data,
for example, to find if a particular feature of CCls, e.g., the annotation with the GO term T
cell differentiation, is more frequent in up-regulated CCls compared to all other CCls. This
statistical association is measured by compiling the corresponding 2x2 contingency table
(up-regulated/not up-regulated vs annotated/not annotated) and applying Fisher's exact test.
We performed this procedure for every CCI feature (all GO Terms, KEGG pathways, LRIs,
ligands, receptors, cell types) and classes (UP, DOWN, FLAT). It returns an odds ratio (OR)
and a p-value adjusted for multiple testing according to the Benjamini-Hochberg procedure *.
In some instances (e.g., pattern ranking, plots), to sort the results based on a single value, we
combined the OR and the p-value to create an ORA score, by adapting the gene-significance
score (m-value) used in differential gene expression analysis and GSEA *:
ORA score = log2 OR - (— log10 pval).
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Visualization Tools in scDiffCom

We implemented two functions in scDiffCom to visualize the over-representation results.
scDiffCom::PlotORA displays the top over-represented keywords of a given category and
regulation. It is implemented on top of the R package ggplot2 %. scDiffCom::BuildNetwork
shows on a summary graph the over-represented cell types and cell-type pairs. It relies on the
R package igraph *7 for internal computations and on the R package visNetwork ** for the
interactive rendering.

Fetching and preparing scRNA-seq datasets

We downloaded the latest version (as of March 21, 2021) of Tabula Muris Senis from the
Amazon S3 czb-tabula-muris-senis repository and the Calico dataset from the calicolabs
website. They had been preprocessed and annotated with the python toolkit Scanpy * prior to
our work, and we converted the resulting h5ad files to R Seurat objects.

As stated in the original TMS article **, FACS and Droplet refer to the technique used to
capture the cells, namely 1) cell sorting in microtiter well plates followed by Smart-seq2
library preparation and full-length sequencing and 2) cell capture by microfluidic droplets as
per the 10x Genomics protocol followed by 3’ end counting. The Calico data were
exclusively obtained using the Droplet technique. Regarding the mice age, TMS provided
multiple time points that needed to be grouped into young and old categories. We removed
I-month-old and 30-month-old cells to avoid bias due to developmental or longevity-related
processes. Therefore, we compared 3-month-old to 18/24-month-old cells from TMS and
7/8-month-old cells to 22/23-month-old cells from Calico. Finally, we filtered out tissues that
were missing one age group (e.g., TMS Droplet Fat only contained old cells).

The cells from each dataset were sequenced together. However, we decided to regroup TMS
FACS Brain_Mpyeloid and Brain Non-myeloid as the former only contained two cell types
(macrophage and microglial cell) and that merging the datasets allowed us to infer
interactions with the other parts of the brain. We verified that this did not significantly alter
the interactions detected in each dataset independently.

Cell-type characterization

In each dataset, we standardized the names of the cell types based on Cell Ontology standards
1% e.g., atrial myocyte was renamed as regular atrial cardiac myocyte. We also regrouped
some specialized cell clusters, e.g., CD4+ and CD8+ T cells, in order to increase sample size
and avoid overlapping cell types. These overlaps were exceptionally kept in some tissues, for
instance, the undetermined myeloid leukocytes in the Lung dataset from Calico Droplet
(male) overlap with some specialized cell types such as classical monocytes, but were worth
keeping as distinct categories. Finally, we classified the cell types in 10 families to facilitate
downstream analyses: endothelial cells, epithelial cells, connective tissue cells, leukocytes,
stem cells, neurons, glial cells, muscle cells, erythroid lineage cells, and hematopoietic
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precursor cells. The list of all cell types with their new names and family annotations is
available in Supplemental Data 3.

Building and deploying scAgeComShiny

We used the R package golem '*! to build the Shiny App scAgeComShiny which contains all
scAgeCom results. Interactive scatter plots were built with plotly ', which was also used to
display the GO Terms treemaps. Those were internally computed with the R package rrvgo
19 according to the original method from REVIGO '™, To deploy the application, we first
used golem to create a Docker image of the scAgeComShiny app and then serve it with the
containerized version of ShinyProxy open source middleware.
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Code availability

R package scDiffCom: https://github.com/Cyrillagger/scDiffCom

R scripts for the aging analysis: https://github.com/Cyrill.agger/scAgeCom

Golem package for the Shiny app: https://github.com/CyrilLagger/scAgeComShiny
Docker image of the Shiny app: https://hub.docker.com/r/ursueugen/scagecom
scAgeCom website: http://scagecom.org/
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Fig.1: Distribution and annotation of ligand-receptor interactions
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Fig.1: Repartition and annotation of ligand-receptor interactions in scDiffCom. a) UpSet
plot showing the distribution of the 4741 curated mouse LRIs in terms of the seven databases
of origin. Each column of the UpSet plot corresponds to one segment in an equivalent Venn
diagram. Simplex/Complex distinguishes between LRIs composed of a single ligand gene
and a single receptor gene from LRIs containing a heteromeric ligand or a heteromeric
receptor. b) Representation of the method used to assign GO terms to an LRI. It consists of
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intersecting the nodes of the two subgraphs made from the GO terms and ancestor GO terms
of the ligand (blue) and receptor (red).

19


https://doi.org/10.1101/2021.08.13.456238
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.13.456238; this version posted August 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Fig.2: scDiffCom workflow
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Fig.2: Workflow summary of scDiffCom. Read counts/UMIs from the single-cell dataset

are aggregated by cell types and conditions (1).

Genes are then joined with our database of

ligand-receptor interactions (2) to build all the potential cell-cell interactions that can occur
between cell types (3). Statistical permutation tests are then performed to evaluate the
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biological significance of each CCI and its differential expression (4). They are then
classified based on several computed variables such as their scores, p-values and log

fold-change (5). Results are returned in a convenient format for downstream analyses and
interpretation (6).
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Fig.3 The 58 aging scRNA-seq datasets used to build scAgeCom
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Fig.3: The 58 aging scRNA-seq datasets used to build scAgeCom. Repartition of the
datasets according to their experimental/sex category (x-axis) and the tissue concerned
(y-axis). Each rectangle represents a dataset and contains the number of detected cell types.
The x-axis labels show information about the age of the mouse samples being compared.
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Fig.4: tissue-specific figures available in scAgeCom
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Fig.4: Visualization of tissue-specific analysis results in scAgeCom. Those plots are
available for each of the 58 datasets present in our atlas scAgeCom. As an illustration, they
are given here for the Bladder from TMS Droplet (male). a) The volcano plot shows the CCI
distribution by aging log fold-change and adjusted p-value and highlights the differences
among the four classes of CClIs. b) The score plot displays CClIs in terms of young and old
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scores, allowing for better visualization of the initial and final values that yield the absolute
CCI score changes with age. For example, it can discriminate between CCls undergoing
similar change with age but having different young and old scores. This plot also highlights
stable (FLAT) CCI with high scores, which may play an important role in intercellular
communication regardless of age. ¢) The Ligand vs Receptor FC plot captures the log
fold-change of the ligand and the log fold-change of the receptor. Our approach combines the
ligand and receptor expressions into a single score, thereby losing some information, which
this graph recovers a posteriori. It illustrates if the change with age in a given CCI is driven
by the ligand or the receptor. d) Network representing which emitter cell types, receiver cell
types and cell-type pairs are over-represented as either up-regulated, down-regulated, stable,
or both up and down-regulated with age. The latter scenario is realized when both up and
down-regulated LRIs are significantly present. ¢) GO Treemap is obtained by merging
over-represented GO terms by semantic similarity and provides a useful high-level summary.
Here, only up-regulated biological processes are shown, but the same plots are available for
down-regulated terms as well as GO molecular functions and cellular components. f) Top
over-represented LRIs, based on their ORA score. Here we show up-regulated interactions,
but similar plots are available for the other cases, as well as for ligand and receptor genes
alone. Marker size and color encode adjusted p-value and odds ratio respectively, which
together determine the ORA Score.
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Fig.5: examples of cross-tissue information available in scAgeCom

a) Up-regulated GO biological processes

Number of tissues in which GO Biological Processes are over-represented among
UP-regulated cell-cell interactions

Overall TMS TMS TMS TMS Calico GO
GO Term FACS FACS Droplet  Droplet  Droplet Level
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b) T cell differentiation over-representation
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Fig.5: Presentation of the cross-tissue results available in scAgeCom. a) For each category
on which over-representation analysis has been performed and for each regulation with age
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(UP, DOWN, FLAT), we provide a table that summarizes the number of tissues in which a
particular keyword is over-represented. An example is given here for the up-regulated GO
biological processes. b) For each keyword of any category, we also provide a summary plot
that shows how it is over-represented across the 58 datasets we analyzed. An example is
given here for the GO term T cell differentiation.
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Fig.6 Repartition of the age-regulated CCls in each dataset

TMS FACS (male)  TMS FACS (female)  TMS Droplet (male)  TMS Droplet (female) Calico Droplet (male)
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Fig.6: Stacked bar representation of the age-regulation of CCIs across tissues and data
source. For each of the 58 datasets, the colored bar indicates the percentage of UP, DOWN,
FLAT and NSC CCls.
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