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ABSTRACT

In common with other omics technologies, mass spectrometry (MS)-based proteomics produces
ever-increasing amounts of raw data, making their efficient analysis a principal challenge.
There is a plethora of different computational tools that process the raw MS data and derive
peptide and protein identification and quantification. During the last decade, there has been
dramatic progress in computer science and software engineering, including collaboration tools
that have transformed research and industry. To leverage these advances, we developed
AlphaPept, a Python-based open-source framework for efficient processing of large high-
resolution MS data sets. Using Numba for just-in-time machine code compilation on CPU and
GPU, we achieve hundred-fold speed improvements while maintaining clear syntax and rapid
development speed. AlphaPept uses the Python scientific stack of highly optimized packages,
reducing the code base to domain-specific tasks while providing access to the latest advances in
machine learning. We provide an easy on-ramp for community validation and contributions
through the concept of literate programming, implemented in Jupyter Notebooks of the
different modules. A framework for continuous integration, testing, and benchmarking
enforces solid software engineering principles. Large datasets can rapidly be processed as
shown by the analysis of hundreds of cellular proteomes in minutes per file, many-fold faster
than the data acquisiton. The AlphaPept framework can be used to build automated processing
pipelines using efficient HDFS5 based file formats, web-serving functionality and compatibility
with downstream analysis tools. Easy access for end-users is provided by one-click installation
of the graphical user interface, for advanced users via a modular Python library, and for
developers via a fully open GitHub repository.
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INTRODUCTION

Increasingly large data sets, combined with exponentially increasing computational power and
algorithmic advances, are transforming every aspect of science. This is accompanied and enabled by
developments in open and transparent science. The open-source community has been a particular
success, starting as a fringe movement to a recognized standard for software development, whose
value is embraced and adapted even by the largest technology companies. Public exposure supports
high code quality through scrutiny by developers from diverse backgrounds, while increasingly
sophisticated collaboration mechanisms allow rapid and robust development cycles. The most
advanced machine and deep learning research, for example, builds on open-source projects and
datasets and is itself open-source. These laudable developments reflect the core ideas of science and
present great opportunities in the ever more important computational fields.

In mass spectrometry (MS)-based proteomics, algorithms and computational frameworks have been
a cornerstone in interpreting the data, resulting in a large variety of different proteomic software
packages and algorithms, ranging from commercial, freely available to open source, exemplified by
and reviewed in (Vilikangas, Suomi, and Elo 2017; Chen et al. 2020). Typical computational
workflows comprise the detection of chromatographic features, peptide spectrum matching, all the
way through protein inference and quantification (Nesvizhskii, Vitek, and Aebersold 2007; Zhang et
al. 2020). Advances in (MS)-based proteomics are also being accelerated through the sharing of
datasets, such as publicly available data on the Proteome Exchange repository (Vizcaino et al. 2014;
Deutsch et al. 2017).

Prompted by the developments in the Python scientific environment and in collaborative development
tools, we developed AlphaPept, a Python-based open-source framework for efficient processing of
large amounts of high-resolution MS data. Our main design goals were accessibility, analysis speed,
and robustness of the code and the results. Accessibility refers to the idea of facilitating the
contribution of algorithmic ideas for (MS)-based proteomics, which is today typically limited to
bioinformatics experts. We decided on Python because its clear, easy-to-understand syntax, and
because the excellent supporting scientific libraries make it easier for developers from different
backgrounds to contribute to and implement new ideas. Using community-tested packages makes the
codebase more maintainable and robust, allowing us to focus on domain knowledge instead of
implementation details. We furthermore adopted a recent implementation of ‘literate programming’
(Knuth 1984), in which code and documentation are intertwined. Using the nbdev package, the
codebase is connected to extensive documentation in Jupyter Notebooks in a way that immediately
explains the algorithmic background, making it easier to understand the underlying principles and
documenting design decisions for others (Kluyver et al. 2016). With the help of the Numba package
for just-in-time compilation (JIT) of Python code (Lam, Pitrou, and Seibert 2015), AlphaPept
achieves extremely fast computation times. Furthermore, we implemented robust design principles
of software engineering on GitHub, such as continuous integration, deployment and extensive
automated validation.

Depending on the user, AlphaPept can be employed in multiple ways. A ‘one-click’ installer can be
freely downloaded for Windows, providing a web server-based graphical user interface (GUI) and a
command line interface; A Python library that allows re-use and modification of its functionality in
custom code, including in Jupyter Notebooks that have become a standard in data science and finally,
in a scalable could environment.

In the remainder of the paper, we describe the functionality of AlphaPept on the basis of nbdev
notebooks, such as feature finding, peptide identification and protein quantification. We demonstrate
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the capabilities of AlphaPept on small- and large-scale datasets. Finally, we demonstrate how
AlphaPept can be utilized as a proteomic workflow management system and how it can be integrated
with downstream analysis tools such as Perseus or the Clinical Knowledge Graph (CKG), (Santos et
al. 2020; Tyanova et al. 2016) and we provide an outlook on novel functionality to be incorporated
soon.

RESULTS

Overview of AlphaPept architecture - Academic software development is often highly innovative but
is rarely undertaken with dedicated funding or long term personnel stability. Such constraints have
successfully been mitigated by collaborative software engineering approaches and the collective
efforts of volunteers. This is exemplified in state of the art open-source projects such as NumPy
(Harris et al. 2020) and scikit-learn (Pedregosa et al. 2011). This paradigm has also been taken over
by relatively recent and highly popular deep learning frameworks like Google’s Tensorflow (Martin
Abadi et al. 2015) and Facebook’s PyTorch (Paszke et al. 2019) and is thought to lead to increased
code quality due to community exposure and a large testing audience. Inspired by these
developments, AlphaPept implements robust design principles of software engineering on GitHub,
such as continuous testing and integration. For instance, code contributions can be made via pull
requests which are automatically validated. By making the code publicly available and providing a
stringent testing environment, we hope to encourage contribution and testing from a diverse
background while maintaining very high code quality.

Organization in notebooks with nbdev allows us to collect documentation, code and tests in one place.
This enables us to automatically generate the documentation, extract production code and test
functionality by executing the notebooks. Furthermore, we extend the notion of unit and system
testing by including real world data sets on which the overall improvement of newly implemented
functionality is routinely evaluated. To continuously monitor system performance, summary statistics
are automatically uploaded to a database where they are visualized in a dashboard.

The advantages of high-level languages generally come at the price of execution speed, especially
for Python. As a result, this expressive language is often only used as a thin wrapper on C++ libraries.
In AlphaPept, we make use of the Numba project (Lam, Pitrou, and Seibert 2015), which allows us
to compile our Python algorithms directly with the industry-standard LLVM compiler (backend to
most C++ compilers and supercomputing languages such as Julia). This allows us to speed up our
code by orders of magnitude without losing the benefits of the intuitive Python syntax. Furthermore,
AlphaPept readily parallelizes computationally intensive parts of the underlying algorithms on
multiple CPU cores or — if available - Graphical Processor Units (GPUs) for further performance
gains.

As far as possible, AlphaPept uses the standard, but powerful packages of the Python data analysis
universe, namely NumPy for numerical calculations, pandas for spreadsheet-like data structures and
scikit-learn for machine learning (Fig. 1A). Furthermore, we chose the binary, high performance
HDFS file format, which is used across scientific areas, including ‘big data’ projects (see below). All
these packages are platform-independent, allowing deployment of AlphaPept on Windows, Mac and
Linux computers, including cloud environments.

An integral feature of AlphaPept development are Jupyter notebooks, which have become ubiquitous
in scientific computing. Using the nbdev package, each part of the MS-based proteomics workflow
is modularized into a separate notebook. This allows extensive documentation of the underlying
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algorithmic production code, which is automatically extracted from and synchronized with the
notebooks. Furthermore, the notebooks capture the background information of each part of the
computational proteomics workflow, making it much easier to understand the underlying principles.
We have found this to be an excellent way of developing software, which brings together the typical
cycle of exploration in notebooks with the production of a robust and tested code base. Figure 1B
shows an overview of the steps in the analysis of a typical proteomics experiment in AlphaPept
corresponding to the notebooks. These separate processing steps will be discussed in turn in the
sections below.
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Figure 1: AlphaPept ‘ecosystem’ and Modules

A AlphaPept relies on multiple community-tested packages. We use highly optimized libraries such as Numba,
NumPy, CuPy, scikit-learn, SciPy and pandas to achieve performant code. As GUI, we provide a browser-
based application built on streamlit. For data handling, the HDF5 file technology is used. The repository itself
is hosted on GitHub, the core code is documented in Jupyter Notebooks using the nbdev package. To ensure
maintainability, packages are continuously monitored for updates via dependabot. New code is automatically
validated using GitHub actions and summary statistics (timing, identifications and quantifications) are
uploaded to a mongoDB database and visualized. B All algorithmic code of AlphaPept is organized in Jupyter
Notebooks. For the key processing steps in the pipeline, such as importing raw data, Feature Finding, FASTA
processing, Searching, Recalibrating, Scoring, Quantifying and Matching, there are individual notebooks with
background information and the code.

Highly efficient and platform-independent MS data access — MS-based proteomics or metabolomics
generates complex data types of MS1 level features, variable length MS2 data and mappings between
them. Furthermore, data production rates are rapidly increasing, making robust and fast access a
central requirement. The different MS vendors have their own file formats, which may be highly
optimized but are meant to be accessed by their own software. We therefore faced the task of
extracting the raw data into an equally efficient but vendor-neutral format that could be accessed
rapidly.

First, AlphaPept needs to convert vendor specific raw files. For Thermo files we created a cross-
platform Python application programming interface (API) that can directly read .RAW MS data
(pyRawFileReader, Fig. 2a). It uses PythonNET for accessing Thermo’s RawFileReader .NET library
(Zeng, Wen-Feng 2021, 1), obviating the need for Thermo’s propietory MSFileReader. For
Windows, PythonNET is available by default as a part of Windows’ .NET Framework. For Linux
and MacOS, PythonNET requires the open-source Mono library. Although our solution uses stacked
APIs, loading the spectra of a Thermo .RAW file of 1.6 Gb into RAM takes only about one minute
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which can be speeded up even more by parallel file processing. Access to Bruker’s timsTOF raw data
is also directly handled from our Python code, in this case through a wrapper to the external
timsdata.dll C/C++ library, both made available by Bruker. In parallel with this publication, we
provide AlphaTims, a highly efficient package to access large ion mobility time-of-flight data through
Python slicing syntax and with ultra-fast access times (https://github.com/MannLabs/alphatims).

To accommodate raw data acquired through other vendors, we use Pyteomics (Goloborodko et al.
2013; Levitsky et al. 2019). This package allows reading mzML and other standard MS data formats
with Python. Thus, by first converting raw data with external software such as e.g. MSConvert
(Adusumilli and Mallick 2017), AlphaPept also provides a generic framework for all vendors.

As a storage technology, we chose HDF5 (Hierarchical Data Format 5), a standard originally
developed for synchrotron and other extremely large scale experimental data sets, that has now
become popular in a wide range of scientific fields (Folk et al. 2011). HDF5 has many benefits such
as independence of operating systems, arbitrary file size, extremely fast accession and a transparent,
flexible data structure. The latter is achieved by organizing HDFS5 files in groups and subgroups, each
containing arrays of arbitrary size and metadata which describes these arrays and (sub)groups. In the
last few years, it is also becoming more popular in the field of MS (Wilhelm et al. 2012, 5). AlphaPept
adopts the HDF5 technology via the Python’s h5py package (Collette 2013).

As an additional design choice we also store intermediate processing results in the HDF5 container,
so that individual processing steps can be performed in a modular way and from different computers.
This enables researchers to quickly implement and validate new ideas within the downstream
processing pipeline. Thus, for each new sample, AlphaPept creates a new .ms_data.hdf file and for
each step in the workflow, the file is extended by a new group (Fig. 2b). In this way, the .ms_data.hdf
file ensures full portability, transparency and reproducibility while being fast to access and with
minimal storage requirements. For example, the 1.6 Gb Thermo file mentioned above is converted to
a HDF5 file of 200 MB, all of which can be accessed in a total of 0.2 s (Fig. 2D).

We next provide functionality for MS data pre-processing, such as centroiding and extraction of the
n-most abundant fragments, should this not already have happened in the vendor software. MS1 and
MS2 scans form the two major subgroups in the HDF5 file. As HDFS5 files are not optimized for lists
of arrays with variable length, we convert the many individual spectra into a defined number of arrays,
each containing a single data type, but concatenating all spectra. These arrays are organized in two
sets: Spectrum metadata (spectrum number, precursor m/z, RT, etc), where each array position
corresponds to one spectrum; and spectrum data, where each array position corresponds to a single
m/z-intensity pair. To unambiguously match the spectrum datapoints to their metadata, an index array
is created. It is part of the first set of arrays and contains a pointer to the position of the first data pair
for each spectrum within the second set. The position of the last pair does not need to be stored as it
is implied by the start position of the next spectrum. Thereby, all m/z values and intensities for each
spectrum can easily be extracted with simple base Python slicing, while fixing the number arrays
contained in the hdf container. Loading data from HDF5 to RAMtakes less than a second, effectively
speeding up data accession more than 300-fold compared to loading the RAW file (Fig. 2d).
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Figure 2: Highly efficient and platform-independent MS data access

A MS data from different vendors is imported to an HDF5 container for fast and platform-independent data
access. To read Thermo data, we provide a Python application programming interface. Bruker data is accessed
via Bruker’s proprietary DLL. Additionally, generic data can be imported using the Pyteomics package. B The
output of each processing step is appended to the HDFS5, allowing processing in a modular way. C To
efficiently store MS spectra, multiple spectra of variable length are concatenated, and start indices are saved
in a lookup table. D HDF5 Accessing times. Loading data from HDF5 into memory takes less than 1s for a
typical 2h full proteome analysis of a HeLa sample acquired on a Thermo Orbitrap mass spectrometer.

Extracting isotope features — Having stored the MS peaks from all mass spectra in an efficient data
structure, we next determine isotope patterns over chromatographic elution profiles. This
computationally intensive task is crucial for subsequent peptide identification and quantification.
MaxQuant (Cox and Mann 2008) introduced the use of graphs for feature finding, which was then
improved upon by the Dinosaur tools (Teleman et al. 2016) and we also decided to follow this elegant
approach.

In the first step - called hill building — centroided peaks from adjacent scans are connected. As there
are millions of centroids, our first implementations using pure Python took several minutes of
computing time. We subsequently refactored the graph problem and parallelized it for CPUs using
Numba and CuPy for GPUs, resulting in a 300-fold speed up (about 1s on GPU). Since not every
user has access to GPUs, AlphaPept employs dedicated Python ‘decorators’, a metaprogramming
technique allowing a part of the program to modify its another part at compile time to transparently
switch between parallelized CPU, GPU and pure Python operation.
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In more detail, AlphaPept refines hills by first splitting them in case they have local minima indicating
two chromatographic elution peaks (Fig. 3B). Additionally, hills are removed whose elution profiles
do not conform to minimal criteria, like minimal length and the existence of local minima. To
efficiently connect hills, we compute summary statistics such as weighted average m/z value and a
bootstrap estimate of its precision. Hills within retention time boundaries are grouped into pre-isotope
patterns. To correctly separate co-eluting features, we generate seeds, which we extend in elution
time and check for consistency with a given charge state, similarity in elution profile and for
conformity with peptide isotope abundance properties via the averagine model (Senko, Beu, and
McLaffertycor 1995). This results in a feature (here a possible peptide precursor mass), which is
described by a table.

Feature finding on the Bruker timsTOF involves ion mobility as an additional dimension. Currently,
this functionality is provided by a Bruker component, which we linked into our workflow via a Python
wrapper, and is the only part that is not in natively included as Python code in AlphaPept. Instead,
this wrapper uses Python’s subprocess module, which can integrate other tools into AlphaPept just
as easily.

For a typical proteomics experiment performed on an Orbitrap instrument, Figure 3C provides an
overview of the number of data points from MS peaks to the final list of isotope patterns. Note that
AlphaPept can perform feature finding separately for each file as soon as it is acquired (described
below). Furthermore, although described here for MS1 precursors, the AlphaPept feature finder is
equally suited to MS2 data that occur in parallel reaction monitoring (PRM) or DIA acquisition
modes.

Centroids

A Hill extraction B

[] Numba + CuPy (1.2's) Split / Filter

ceee o 4 |Numba, threaded (2.8 s) SN\ -

E : ) ° : : H> .:. °
- = R
vogzons | |Numba (3.6 8) 5

£ | s @
Python (322.45) | Va4
g ¥ T T . = . °
101 102 103 >

Time (seconds) RT

Figure 3: Extracting isotope features

A Individual MS peaks of similar masses are connected over the retention time using a graph approach,
resulting in ‘hills’. Using a native Python implementation, hill extraction takes several minutes. Numba,
parallelization on CPUs or GPUs reduces hill extraction to seconds. B Extracted hills are refined by splitting
at local minima and only allowing well-formed elution profiles. C Starting with 20 million points for a typical
Thermo HeLa shotgun proteomics file, these are connected to approximately one million hills, which increased
to 1.5 million after hill splitting and filtering. Subsequent processing results in 200,000 pre-isotope patterns
that ultimately yield 230,000 isotope patterns due to assignment to specific charge states.

Peptide spectrum matching — The heart of a proteomics search engine is the matching of msms spectra
to peptides in a protein sequence database. AlphaPept parses FASTA files containing protein
sequences and descriptions, ‘digests’ them into peptides and calculates fragment masses according to
user specified rules and amino acid modifications (Fig 3D). We again use HDFS5 files, which enables
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efficient storage of fragment series despite their varying lengths. Generation of this database only
happens once per project and only takes minutes for typical organisms and modifications. From a
FASTA file of the human proteome, typically five million ‘in silico’ spectra of fragment masses are
generated. In case no enzyme cleavage rules are specified or for open search with wide precursor
mass tolerances, the fragments are instead generated on the fly to avoid excessive file sizes.

To achieve maximum speed, AlphaPept employs a very rapid fragment counting step to determine
initial peptide spectrum matches (PSMs). As this step only involves addition and subtraction of
elements in numerical arrays, the machine code produced by Numba is very efficient and easily
parallelized. This leaves a much smaller number of peptides that have at least a minimum number of
fragment matches to the experimental spectrum. (This is similar to the Morpheus score (Wenger and
Coon 2013), which also computes the fraction of msms signals accounted for by the match.) For the
human proteome and mass measurement accuracy of parts per million, the initial millions of
comparisons are decreased to a maximum of top-n remaining candidates per msms spectrum
(typically 10). This enables more computationally expensive scoring in a second step. Different
scores can be implemented in AlphaPept, and by default we chose the widely used X!Tandem score
(Craig and Beavis 2003). Note that the sole function of this score is to rank the PSMs, whereas
statistical significance is determined by counting reverse database hits and by machine learning (see
below).

We perform a first search for the purpose of recalibrating the mass scale as a function of elution time
(Fig. 4B). Here, we use weighted nearest neighbor regression instead of binning by retention time
(explained in the accompanying Jupyter Notebook). The k-nearest neighbors regressor that we
selected allows non-linear grouping in several dimensions simultaneously (retention time and mass
scale in the case of Orbitrap data and additionally ion mobility in the case of timsTOF data).

Having recalibrated the data, the main search is performed with an adapted precursor tolerance. We
furthermore calculate the matched ion intensity, matched ions, neutral loss matches for further use
and reporting together with charge, retention time and other data.

To demonstrate the speed up achieved by our architecture and the performance decorator, we timed
illustrative examples (Fig. 4C). On a HeLa cell line proteome acquired in a single run, comparing
260k spectra to 5 million database entries, the computing time in pure Python was about 23 h. This
decreased to 126 s when employing Numba (> 500x improvement), to 105 s when using Numba with
CuPy on GPU and further to 13 s on multi-threaded CPU (see companion Figure Notebook). The
GPU acceleration is not larger because the code is already very efficient on CPU and some workflow
tasks are memory bound instead of computationally bound. Improved memory management on GPU
could further decrease GPU computational time. In any case, AlphaPept reduces the PSM matching
step to an insignificant part total computation time.
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Figure 4 Database search

A The FASTA processing notebook contains functionality to calculate fragment masses from FASTA files
which are saved in an HDFS5 container for subsequent searches. B Initially, a first search is performed, and
masses are subsequently recalibrated. Based on this recalibration, a second search with more stringent
boundaries is performed. C Using the decorator strategy, the search can be drastically speeded up, from 23 h
in a pure Python implementation to seconds with Numba and CuPy.

Machine learning based scoring and FDR estimation - Assessing the confidence of PSMs requires a
scoring metric that separates true (correctly identified) from false (wrongly identified) targets in the
database. Multiple defined features are calculated by the AlphaPept search engine and used in a score
to rank the targets. A nonsense database of pseudo-reversed sequences where the terminal amino acid
remains unchanged (de Godoy et al. 2008) is used to directly estimate the False Discovery Rate (FDR)
by counting reverse hits. Score thresholds subsequently decide which targets should be considered
identified. To further validate this approach and to ensure accurate FDR estimation across different
development stages in AlphaPept, our GitHub testing routine includes an empirical two species FDR
test based on an ‘entrapment strategy’ (Muntel et al. 2019).

In recent years, machine learning has gained increasing momentum in science in general, but also in
its specific applications to MS data analysis. One of the first of these was the combination of multiple
scoring metrics to a combined discriminant score that best separates high scoring targets from decoys.
This was initially integrated into PSM scoring through an external reference dataset to train the
classifier (Keller et al. 2002). The widely used Percolator approach subsequently employed a semi-
supervised learning approach that was trained directly on the dataset itself (Kéll et al. 2007). This
automatically adapts the ML model to the experimental data and along with other MS analysis tools
(MacLean et al. 2010; Rost et al. 2014; Teleman et al. 2015; Fondrie and Noble 2021; Rosenberger
et al. 2017) we also employ semi-supervised learning for PSM scoring in AlphaPept.

The AlphaPept scoring module falls into five parts: (1) feature extraction for all candidate PSMs, (2)
selection of a candidate subset, (3) training of a machine learning classifier, (4) scoring of all
candidate PSMs and (5) FDR estimation by a target-decoy approach (Fig. 4A). Most features for
scoring the candidate PSMs are directly extracted from the search results, such as the number of b-
and y-ion hits and the matched ion intensity fraction. Some additional features are subsequently
determined, including the sequence length and the number of missed cleavages. After feature
extraction, a subset of candidate PSMs is selected with an initial 1% FDR threshold based only on
the X!Tandem score (Fig. 4B). Together with an equal number of randomly selected decoys, this
creates a balanced dataset for machine learning. This is split into training and test sets (20% vs. 80%)
and provides the input of a ML classifier. We chose a standard scikit-learn random forest classifier
as it performed similarly to XGBoost with fewer dependencies on other packages. We first identify
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optimal hyper-parameters for the classifier with a grid-search via five-fold cross-validation. The
resulting best classifier optimally separates target from decoy PSMs on the test set. Applying the
trained classifier to the entire set of candidate PSMs yields discriminant scores that are used to
estimate q-values based on the classical target-decoy competition approach.

The contribution of different features to the discriminant score for an exemplary tryptic HeLLa sample
is shown in Figure 4C. Interestingly, for our data, the number of matched y-ions alone outperforms
the basic search engine score and most of the top-ranking features are related to the number of
matched ions and their intensity. The ML algorithm markedly improved the separation of targets vs
decoys, retrieving a larger number of PSMs at every g-value (Fig. 4D). ML-based scoring in
AlphaPept improved identification rates by 15% at a 1% FDR at the PSMs level, in line with previous
efforts (Kill et al. 2007). AlphaPept allows ready substitution of the underlying PSM score and
machine learning algorithms. Furthermore, additional features to describe the PSMs are readily
integrated, such as ion mobility or predicted fragment intensities. We envision that this kind of
flexibility will enable continuous integration of improved workflows as well as novel ML techniques
into AlphaPept.

Once a set of PSMs at a defined FDR is identified, protein groups are determined via the razor protein
approach (Nesvizhskii and Aebersold 2005). Here, peptides that could potentially map to multiple
unique proteins are assigned to the protein group that already has most peptide evidence. We
determine protein-level g-values by selecting the best scoring precursor per protein, followed by FDR
estimation by target-decoy competition similar to the peptide level (Nesvizhskii 2010; Savitski et al.
2015; The et al. 2016; Gupta and Pevzner 2009). Finally, we validated the scoring and FDR
estimation in AlphaPept with the entrapment strategy mentioned above, by analyzing a HeLa sample
with a mixed species library, containing targets and decoys derived from both a human FASTA and
a FASTA from Arabidopsis thaliana. This revealed that AlphaPept provides accurate g-value
estimates, reporting approximately the same number of Arabidopsis thaliana proteins as decoy
proteins at 1% protein FDR.
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Figure 5: Machine learning-based scoring and FDR estimation

A We train a Random Forest (RF) classifier on a subset of candidate PSMs to distinguish targets from decoys
based on PSMs characteristics. A semi-supervised machine learning model is applied with the following steps:
(1) extraction of all candidate PSM scores, (2) selection of a PSM subset for machine learning, (3) training of
a RF classifier, and (4) application of the trained classifier to the full set of PSM candidates. Finally, the
probability of the RF prediction is used as a score for subsequent FDR control (5). B Training of the classifier
(step 4 in panel A) follows a train-test split scheme where only a fraction of the candidate subset is used for
training. Using stringent cross-validation, multiple hyperparameters are tested to achieve optimal RF
performance. The best classifier is benchmarked against the remaining test set. C Example feature importance
for an Orbitrap test set, where the number of y-ion hits is the highest contributing factor to the model. Note
that the RF algorithm can utilize any database identification score such as the X!Tandem score chosen here,
which is the second most important feature. See the AlphaPept workflow and files Notebook for an explanation
of features. D Optimized identification with the ML score. Compared to the X!Tandem score alone, the ML
optimization identified about 15% more PSMs for the same g-value.

Label-free quantification - The ultimate goal of a proteomics experiment is to derive functional
insights or assess biomarkers from quantitative changes at the protein level, to which peptide
identifications are only means to an end. Algorithmically this quantification step entails either the
determination of isotope ratios in the same scans (for instance SILAC, TMT or EASI-tag ratios) or
the somewhat more challenging problem of first integrating peaks and then deriving quantitative
ratios across samples (label-free quantification), which we focus on here. We initially adapted the
MaxLFQ pipeline for label-free quantitative proteomics data (Cox et al. 2014). The first task is to
determine normalization factors for each run as different LC MS/MS runs need to be compared —
potentially spaced over many months in which instrument performance may vary — and as total
loading amounts likewise vary for instance due to pipetting errors. The basic assumption is that the
majority of peptides are not differentially abundant between different samples. This allows deriving
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the run-specific normalization factors by minimizing the between-sample log peptide ratios (Cox et
al. 2014) (Note that this assumption is not always valid and can be restricted to certain protein
classes.). In a second step, adjusted intensities are derived for each protein, such that protein
intensities between different MS runs can be compared. To this end we derive the median peptide
fold changes that maximize consistency with the peptide evidence.

The normalization, as well as protein intensity profile construction, are quadratic minimization
problems of the normalization factors or the intensities, respectively. Such minimization problems
can be solved in various ways but one fundamental challenge is that these algorithms have a time
complexity of O(n?), meaning that the computation time increases quadratically with the number of
comparisons. One strategy to overcome this limitation is to only perform minimization on a subset
of all possible pairs (termed ‘FastLFQ’) (Cox et al. 2014). Despite this, the computation time of the
underlying solver will determine the overall runtime and accounts for the long run times on very large
datasets. However, a variety of very efficient solvers that are based on different algorithms are
contained in the Python SciPy package (SciPy 1.0 Contributors et al. 2020). To test these approaches,
we created an in silico test dataset with a known ground truth (see Quantification Notebook).
Comparing different solvers using our benchmarking set uncovered dramatic differences in precision,
runtime and success rate (Fig. 6A). Among the better performing algorithms were the least-squares
solvers that were previously used. The Broyden—Fletcher—Goldfarb—Shanno (L-BFGS-B),
Sequential Least Squares Programming (SLSQP) and Powell algorithms were particularly fast and
robust solutions being up to 16x quicker than the Trust Region Reflective algorithm (trf) from the
default least-squares solver. More remarkably, they were able to optimize much better to our known
ground truth. Of all four tested optimizers, the mean error of trf was, on average 24% worse. Being
able to readily switch between different solvers provided by SciPy allows us to fall back on other
solvers if the default solver fails, i.e. AlphaPept will switch from L-BFGS-B to Powell if the solution
does not converge.

We compared our method to MaxLFQ in a quantitative two-species benchmarking dataset, in which
E. coli proteins change their abundance by a factor of six between conditions, while human proteins
do not change (Meier et al. 2018). To specifically assess the benefits of the new optimization strategy,
we first tested the algorithm directly on the MaxQuant output (see companion Notebook for Figure
6). Both approaches clearly separated human and E. coli proteins, however, the standard deviation
was smaller when applying the AlphaPept optimization algorithm, which also has fewer outlier
quantifications (Fig 6B), supporting the analysis of the in-silico test set. Comparing results of the
complete workflow with AlphaPept on the same files further improved identifications and
quantifications.
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Figure 6: Algorithm selection and performance of label-free quantification

A Timings of different, highly optimized solvers from the SciPy ecosystem, to extract optimal protein intensity
ratios in AlphaPept. Solvers showed drastic differences in speed, closeness to ‘ground truth’, and proportion
of successful optimizations on in-silico test data. Based on these tests, AlphaPept employs a hybrid
optimization strategy that uses L-BFGS-B and Powell for optimized performance, robustness and speed. B
Comparing the AlphaPept LFQ solver on MaxQuant output data demonstrates similar separation in mixed-
species datasets with smaller standard deviations. C Applying AlphaPept directly on the same dataset further
improves identifications and quantification accuracy.

Match-between-runs (MBR) and dataset alignment — We implemented functionality to transfer the
identifications of MS1 features to unidentified MS1 features of other runs (match-between-runs).
First, we align multiple datasets on top of each other by applying a global offset in retention time,
mass and — where applicable — ion mobility. To determine offsets for all runs, we first compare all
possible pairs of runs and calculate the median offset from one dataset to another based on the
precursors that were identified in both. As these offsets are linear combinations of each other, i.e.,
the offset from dataset A to dataset C should be the offset from dataset A to B and B to C; this
becomes an overdetermined equation system, which we solve by a weighted linear regression model
with the number of shared precursors as weights.

After dataset alignment, we group precursors of multiple runs and determine their expected properties
as well as their probability density and create a library of precursors. Next, we take the unidentified
MSI features from each run and extract the closest match from the library of precursors. Finally, as
we know the probability density of each feature, we can calculate the Mahalanobis distance from
each identification transfer and use this as a probability estimate to assess the likelihood that a match
is correct. Further information about the alignment and matching algorithm can be found in the
Matching notebook.
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Benchmarking AlphaPept on large data sets — A prime goal of the AlphaPept effort is robustness and
speed. To showcase the usability of AlphaPept for large scale studies we re-analyzed 200 HeLa
proteomes from a recently published long-term performance test (Bian et al. 2020). To confirm
comparable identification performance in the initial analysis, which was done with MaxQuant, we
evaluated the number of uniquely identified protein groups and PSMs per group. This yielded a
median of 4277 unique protein groups and 43,872 unique peptides per experimentally defined group,
as expected. Next, we compared the protein level quantification. The median coefficient of variation
without our Python maxLFQ implementation was 27.1% and 9.2% after LFQ optimization. For 90%
of protein groups, CVs were below 20% with LFQ optimization and below 54% without.
Investigation of each computational task revealed that a large part is spent on importing raw data and
feature finding. Searching and scoring are highly optimized and contribute only a small fraction of
the overall computing time. Operations across files such as LFQ alignment and matching again make
up a large part of computation time.
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Figure 7: Benchmarking AlphaPept on 200 HeLa proteomes

A total of 200 DDA HeLa cell proteomes — the 10 cycle long term performance test from Kuster and
coworkers (181 Gbyte) (Bian et al. 2020)— was analyzed by AlphaPept. A Identification performance at the
protein group level. B Identification performance at the peptide level. C Quantification performance with or
without MaxLFQ optimization. For 90% of protein groups, CVs are below 20% and 54%, respectively. D
Timing of the AlphaPept computational pipeline. Search through scoring are highly optimized and contribute
little to overall computation time.

Continuous validation on standard datasets — Our current continuous integration pipeline uses a
range of data sets typical for MS workflows. These include standard single shot runs, such as HeLa
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quality control (QC) runs, as well as recently published studies. For every addition to the main branch
of the code base, AlphaPept reanalyzes these files fully automatically, allowing extensive systems
checks. Additionally, these checks can be manually triggered at any time and therefore enable swift
validation of proposed code changes prior to submitting pull-requests. This makes comparing studies
that were analyzed with different software versions much more transparent. To further increase this
idea of transparent performance tracking, we automatically upload summary statistics, such as
runtime, number of proteins and number of features for each run to a database and visualize these
metrics in a dashboard (Extended methods). Table 1 shows example tracking metrics from the
database.

Version Test file Processing time (min) Number of features Number of peptides
0.2.8 HelLa Orbitrap 19 218792 41777
0.2.8 Hela timsTOF 102 231545 54058
0.2.9 HelLa Orbitrap 19 218780 41939
0.2.9 HelLa timsTOF 113 231545 66776
0.2.10 HelLa Orbitrap 19 218779 41949
0.3.25 Hela timsTOF 105 664992 76217
0.3.26 HelLa Orbitrap 18 260709 53522
0.3.26 Hela timsTOF 88 664992 77464
0.3.27 HelLa Orbitrap 21 260622 54283
0.3.27 Hela timsTOF 89 664992 77162

Table 1: Example performance tracking metrics for different AlphaPept versions extracted
from the database.

AlphaPept user interface and server — A central element for any software tool is ease of use for the
end user. In the most basic setup, this is determined by the accessibility of the GUI. Following recent
trends, we decided on server-based technology for AlphaPept. In a basic setup, the web interface is
called by connecting to a local server instance on the user’s laptop or local workstation (Fig. 8A) via
a browser. For more demanding pipelines, AlphaPept can be run on a powerful processing PC and be
accessed from multiple other devices. This makes access to AlphaPept platform independent,
including mobile devices.

Adding server functionality typically comes at the cost of maintaining a dedicated API and
infrastructure. For AlphaPept we make use of a very recent but already very popular Python package
called streamlit (www.streamlit.com), which was developed to facilitate the sharing of machine
learning models. By only adding one additional Python package, we have access to a powerful and
responsive server infrastructure. Here, the web interface serves merely as an input wrapper to gather
the required settings and display results and starts the AlphaPept processing in the background.

AlphaPept workflow management system — Importantly, the server-based user interface extends the
processing functionality of AlphaPept from only processing individual experiments to a continuous
processing and monitoring framework. The core processing function of AlphaPept accepts a
dictionary-type document to process an experiment, with defined parameters per setting. To store
these settings, we chose YAML, a standard human-readable data-serialization language, resulting in
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files of only a few kilobytes in size. This ensures that they can be modified programmatically and
easily checked with common editors.

The settings structure is used by the AlphaPept GUI to build a folder-based workflow management
system. It creates three folders in the user folder (‘Queue’, ‘Failed’, and ‘Finished’) and monitors
them for new data. When defining a new experiment within the GUI, a settings YAML file is created
in the Queue folder, and the core function will start processing. This allows defining multiple
experiments, which will then be processed one after another. YAML files of processed runs will be
moved to the ‘Finished’ or ‘Failed’ folder (Fig. 8B).

We chose this folder-based processing queue as this allows manual inspection of the processing queue
by simply checking the files in the folders. Furthermore, computational alterations of the processing
queue are straightforward by writing custom scripts that copy settings files generated elsewhere to
the queue folder. AlphaPept has a file watcher module that can monitor folders for new raw files and
automatically add them to the processing queue immediately after acquisition is finished. Its modular
structure can easily be extended with custom code for integration into larger processing environments
with database-based queuing systems. Refer to the interface notebook, which calls the wrapper
function and allows customization of the pipeline.

Visualization of results and continuous processing — For visualization of tabular or summary statistics
results, our streamlit application utilizes the ‘Finished’ folder structure where it stores readily
accessible summary information of previously processed files (Fig. 8C). AlphaPept has a History tab
that compiles these previous results to show performance over time or across analyzed MS runs (Fig.
8D). Here, the user can choose to plot various summary statistics such as identified proteins or
peptides as well as chromatographic information such as peak width or peak tailing. As a particular
use case, this provides a standard interface which allows instant QC run evaluation in combination
with the file watcher.

To inspect an individual experiment, AlphaPept’s browser interface can also plot identification and
quantification summary information. Furthermore, basic data analysis functions such as volcano or
scatter plots and Principal Component Analysis (PCA) are provided. This is based on streamlit and
scikit-learn functionality and can therefore be readily extended. AlphaPept exports the analysis results
(quantified proteins and peptides) in tabular format to the specified results path so that it can be
readily used for other downstream processing tools such as Perseus (Tyanova et al. 2016) or the
recently introduced CKG (Santos et al. 2020).

AlphaPept deployment and integration — The utility of a computational tool critically depends on
how well it can be integrated into existing workflows. To enable maximum flexibility and to address
all major use cases, AlphaPept offers multiple ways to install and integrate it.

First, we provide a one-click installer solution that is packaged for a standard Windows system
obviating additional installation routines. It provides a straightforward interface to the web-based
GUI. We chose Windows for the one-click solution as it is the base OS for the vendor-provided
acquisition and analysis software and most users. The one-click installation also has a command-line
interface (CLI) for integration into data pipelines.

Next, AlphaPept can be used as a module in the same way as other Python packages. This requires
setting up a Python environment to run the tool, which also contains all the functionality of the
previously described CLI and GUI. Compared to the Windows one-click installer, the Python module
extends the compatibility to other operating systems. While Python code is in principle cross-
platform, some third-party packages can be platform bound, such as the Bruker feature finder or
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DLLs required to read proprietary file types. The modular nature of the AlphaPept file system allows
to preprocess files and continue the analysis on a different system (e.g., feature finding and file
conversion on a Windows acquisition PC and processing on a Mac system).

Finally, the Python module makes the individual functions available to any Python program. This is
particularly useful to integrate only parts of a workflow in a script or to optimize an individual
workflow step. Besides the nbdev notebooks that contain the AlphaPept core code, we provide several
sandboxing Jupyter Notebooks that show how individual workflow steps can be called and modified.
In this way, AlphaPept allows the creation of completely customized workflows.
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Figure 8: Alphapept user interface, workflow management, deploying and integrating

A The AlphaPept GUI is based on a server architecture that can be installed on a workstation and used locally.
Additionally, it can be installed on a server and accessed remotely from multiple workstations in the network.
B AlphePept processing pipeline. The AlphaPept GUI creates three folders for its processing system. New
experiments are defined within the interface and saved as YAML files in the Queue folder with automatically
triggered processing. C Example plots from the History and Results Tab in AlphaPept: Overview of the
number of features, peptides and protein groups per injected sample (left panel). Graphing retention time
tailing as a function of acquistion date, as an illustration of using AlphaPept for quality assurance.

AlphaPept processing times — To give the reader an impression of typical processing timings for each
of these deployment variants, we ran AlphaPept on various hardware for several use cases: laptop,
office PC, workstation and cloud (Table 1). AlphaPept can be readily employed with cloud providers
such as Amazon Web Services. We tested our default testing pipeline (see timing table below) on
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two different Amazon EC2 instances (t3a.2xlarge: 0.42 Eur/h and t3.xlarge: 0.22 Eur/h), an incurred
computational costs of 0.22 and 3.82 Euros for one 120 min Orbitrap HeLa file and 8 timsTOF files,
respectively, when processed in a European location. Computational costs can be further improved
by choosing resource-optimized hardware or buying compute power in advance.

For a typical proteomics laboratory, we envision AlphaPept running in continuous mode, to
automatically process all new files. This allows continuous feedback about experiments while
drastically speeding up computation when subsequently combining multiple processed files into
experiments and experiments into an overall study, because the computational steps that do not
change (e.g., raw conversion, database generation or feature finding) can be reused. To illustrate this,
the test set with 8 Bruker files from PXDO010012 takes 194 minutes on a Workstation with
preprocessing and 23 minutes when using preprocessed files.

Laptop Office Pc Workstation Cloud | Cloud Il
Macbook Pro Optiplex 7080 Custom AWS (t3a.2xlarge) AWS (t3.xlarge)
macOS Big Sur Windows 10 Windows 10 Windows Server Windows Server
i92.3GHzx 8 i9 3.7 GHz x10 i9 3.5 GHz x12 EPIC 2.2 GHz x4 | XEON 2.4 GHz x2
32 Gb RAM 64 Gb RAM 128 Gb RAM 32 Gb RAM 16 Gb RAM
IRT Sample* 1 1 2 3 2
(Thermo) Full
23 16 19 40 41
Full
HelLa 120 min 6 4 5 11 12
(Thermo) Preprocessed
36 17 21 46 73
Full
PXD006109 - 6 30 8 S 18 24
files (Thermo) Preprocessed
IRT Sample ** 1 2 3 2
(Bruker) Full
** 57 111 131 399
Full
HelLa 120 min 6 6 7 16 19
(Bruker) Preprocessed
** 242 194 790 893
Full
PXD010012 - 8 62 24 23 85 132
files (Bruker) Preprocessed

Table 2: Running times of AlphaPept for various hardware (timings in minutes)
* IRT = low complexity mixture of peptides (internal retention time standard)
** to process Bruker files on Mac Os X, we preprocessed them on Windows

Being able to import AlphaPept as a Python package also lowers the entry barrier of proteomics
analysis workflows for individual researchers and laboratories with little computational
infrastructure, as it makes it compatible with platforms like Google Colab, a free cloud-based
infrastructure built on top of Jupyter notebooks with GPUs. This allows processing without having
to set up software on specialized hardware and allows direct modification of the underlying
algorithms. We provide an explanatory notebook for running a workflow on Google Colab, including
a 120 min HeLa example file that has been convered on the Windows acquisition computer. This also
highlights how the modular HDF5 file format allows us to move the MS data between operating
systems.

DISCUSSION
Here we have introduced AlphaPept, a computational proteomics framework where the relevant

algorithms are written in Python itself, rather than Python being used only as a scripting layer on top
of compiled code. This architectural choice allows the user to inspect and even modify the code and
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enables seamless integration with the tools of the increasingly powerful and popular Python scientific
ecosystem. The major drawback of such an approach would have been the slow execution speed of
pure Python, however extensive use of the Numba just in time compiler — on multiple CPUs or a
GPU - makes AlphaPept exceptionally fast, as we have shown in this manuscript. Together with the
use of recently developed browser-based deployment, AlphaPept covers the full range of potential
users from novice users to systems administrators wishing to build large cloud pipelines.

A related and important design objective of AlphaPept was to enable a diverse user community and
invite community participation in its further development. To ensure quality, reproducibility and
stability, we implemented a large suite of mechanisms from unit through end-to-end tests via
automatic deployment tools. This in turn allows us to streamline the integration of community
contributions after rigorous assessment. Furthermore, GitHub provides state-of-the-art tools and
mechanisms to allow the effective collaboration of diverse and dispersed developer communities.

Currently, AlphaPept provides functionality for DDA proteomics but we are in the process of
enabling analysis of DIA data, ultra-fast access to and visualization of ion mobility data (AlphaTims,
https://github.com/MannLabs/alphatims), deep learning for predicted peptide properties and
improved quantification, all made possible by its modular design.

One of the large goals of AlphaPept is to ‘democratize’ access to computational proteomics. To this
end, besides implementation in Python, we adopted the ‘literate programming’ paradigm which
integrates documentation and code. We adopted the nbdev package, providing both beginner and
expert computational proteomics researchers with an easy and interactive ‘on ramp’. In our case this
takes the form of currently 12 Jupyter notebooks dealing with all the major sub tasks of the entire
computational pipeline from database creation, raw data import all the way to the final report of the
results. We imagine that students and researchers with novel algorithmic ideas can use this paradigm
to add their functionality in a transparent and efficient manner, without having to re-create the entire
pipeline. This could especially enable increasingly powerful machine learning and deep learning
technologies to be integrated into computational proteomics (Torun et al. 2021; Wen et al. 2020;
Meyer 2021).
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Software and Data availability

AlphaPept is fully open-source and is freely available under an Apache license at
https://github.com/MannLabs/alphapept. All data is available on GitHub or the Max-Planck datashare
as test data. Each notebook / file contains respective download links for the files used.The results in
this manuscript were obtained with AlphaPept version 0.3.26 if not otherwise indicated.
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MM and MTS conceived the core idea of the AlphaPept framework and MM wrote the first iteration
of the search algorithm. MTS wrote the Thermo feature finder, quantification and downstream
processing modules, code structure and user interface. EV contributed file importing functionality.
IB extended the scoring functionality with ML and FDR control. SW added HDF file handling,
revised the general code structure and added performance functions. WFZ and CA contributed and
improved quantification. JS critically reviewed testing and documentation. RI and MG contributed
to GPU support and code acceleration. All authors contributed ideas, performed testing and wrote the
manuscript.

EXTENDED METHODS

Notebook availability.

All notebooks are available in the repository on GitHub. The documentation created based on the
notebooks is available here: https://mannlabs.github.io/alphapept/. Additional information about
code not covered in the Notebooks presented here can be found in the Documentation
(https://mannlabs.github.io/alphapept/additional code.html).

A cloud hosted Notebook with an example data file is provided at the free Google Colab site:
https://colab.research.google.com/drive/163L TlyzBCDgyCkSJiikbmsnny EiQ7SG?usp=sharing

MongoDB Dashboard

The continuous integration pipeline has the action “Performance test pyinstaller”. This action
freezes the current Python environment into an executable and runs the test files. The results of
these tests are uploaded to a noSQL database (MongoDB) for the tested version number. Key
performance metrics are visualized in charts here:
https://charts.mongodb.com/charts-alphapept-itfxv/public/dashboards/5f671dcf-becd6-4d90-8494-
8c7f724b727b

timsTOF and Orbitrap HeLa samples — The test files comprise representative single run analyses of
complex proteome samples. Human HeLa cancer cells were lysed in reduction and alkylation buffer
with chloroacetamide as previsouly described (Kulak et al. 2014), and proteins were enzymatically
digested with LysC and trypsin. The resulting peptides were de-salted and purified on
styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS) StageTips before injection into an
EASY nLC 1200 nanoflow chromatography system (Thermo Scientific). The samples were loaded
on a 50 cm x 75 um column packed in-house with 1.9 uym Cis beads and fitted with a laser-pulled
emitter tip. Separation was performed during 120 min with a binary gradient at a flow rate of
300 nL/min. The LC system was coupled online to either a quadrupole Orbitrap (Thermo Scientific
Orbitrap Exploris 480) or a trapped ion mobility — quadrupole time-of-flight (Bruker timsTOF Pro 2)
mass spectrometer. Data were acquired with standard data-dependent top15 (Orbitrap) and PASEF
methods (timsTOF), respectively.
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timsTOF and Orbitrap iRT samples — 11 iRT peptides (https://biognosys.com/product/irt-kit/) were
separated via a 5.6 min Evosep gradient (200 “samples per day”) yielding test data with low
complexity, that facilitated quick testing of computational functionality. An Evosep One liquid
chromatography system (Evosep) was coupled online with a trapped ion mobility spectrometry
(TIMS) quadrupole time-of-flight (TOF) mass spectrometer (timsTOF pro, Bruker Daltonics). iRT
standards (Biognosys) were loaded onto Evotips according to the manufacturers’ instructions and
separated with a 4 cm x 150 pm reverse-phase column with 3 pm Cig-beads (Pepsep). The analytical
column was connected with a zero-dead volume emitter (10 um) placed in a nano-electrospray ion
source (CaptiveSpray source, Bruker Daltonics). Mobil phase A contained 0.1 vol% formic acid and
water and mobil phase B of 0.1 vol% formic acid and acetonitrile. The sample was acquired with the
dda-PASEF acquisition mode. Each topN acquisition mode contained four PASEF MS/MS scans and
the accumulation and ramp time were both 100 ms. Only multiply charged precursors over the
intensity threshold of 2500 arbitrary units (a.u.) and within a m/z-range of 100 — 1700 were subjected
to fragmentation. Peptides that reached the target intensity of 20,000 a.u. were excluded for 0.4 min.
The quadrupole isolation width was set to 2 Th below m/z of 700 and 3 Th above a m/z value of 700.
The ion mobility (IM) range was configured to 0.6 — 1.51 Vs cm™ and calibrated with three Agilent
ESI-L TuneMix Ions (m/z, IM: 622.02, 0.98 Vs cm2; 922.01, 1.19 Vs cm; 1221.99, 1.38 Vs cm™).
The collision energy was decreased as a function of the ion mobility, starting at 1.6 Vs cm with 59
eV and ending at 0.6 Vs cm™ with 20 eV.
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