

1

AlphaPept, a modern and open framework for MS-based

proteomics

Maximilian T. StraussÁ*!!, Isabell BludauÁ, Wen-Feng ZengÁ, Eugenia VoytikÁ, Constantin AmmarÁ,

Julia SchessnerÁ, Rajesh Ilango!, Michelle Gill!, Florian MeierÁ,$, Sander WillemsÁ, Matthias MannÁ*,**

Á Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry,

Martinsried, Germany

** NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen,

Copenhagen, Denmark

! Nvidia Corporation, Santa Clara, CA, USA

!! OmicEra Diagnostics GmbH, Planegg, Germany

$ Functional Proteomics, Jena University Hospital, Jena, Germany

* To whom correspondence should be addressed; mstrauss@biochem.mpg.de or

mmann@biochem.mpg.de

ABSTRACT

In common with other omics technologies, mass spectrometry (MS)-based proteomics produces

ever-increasing amounts of raw data, making their efficient analysis a principal challenge.

There is a plethora of different computational tools that process the raw MS data and derive

peptide and protein identification and quantification. During the last decade, there has been

dramatic progress in computer science and software engineering, including collaboration tools

that have transformed research and industry. To leverage these advances, we developed

AlphaPept, a Python-based open-source framework for efficient processing of large high-

resolution MS data sets. Using Numba for just-in-time machine code compilation on CPU and

GPU, we achieve hundred-fold speed improvements while maintaining clear syntax and rapid

development speed. AlphaPept uses the Python scientific stack of highly optimized packages,

reducing the code base to domain-specific tasks while providing access to the latest advances in

machine learning. We provide an easy on-ramp for community validation and contributions

through the concept of literate programming, implemented in Jupyter Notebooks of the

different modules. A framework for continuous integration, testing, and benchmarking

enforces solid software engineering principles. Large datasets can rapidly be processed as

shown by the analysis of hundreds of cellular proteomes in minutes per file, many-fold faster

than the data acquisiton. The AlphaPept framework can be used to build automated processing

pipelines using efficient HDF5 based file formats, web-serving functionality and compatibility

with downstream analysis tools. Easy access for end-users is provided by one-click installation

of the graphical user interface, for advanced users via a modular Python library, and for

developers via a fully open GitHub repository.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

2

INTRODUCTION

Increasingly large data sets, combined with exponentially increasing computational power and

algorithmic advances, are transforming every aspect of science. This is accompanied and enabled by

developments in open and transparent science. The open-source community has been a particular

success, starting as a fringe movement to a recognized standard for software development, whose

value is embraced and adapted even by the largest technology companies. Public exposure supports

high code quality through scrutiny by developers from diverse backgrounds, while increasingly

sophisticated collaboration mechanisms allow rapid and robust development cycles. The most

advanced machine and deep learning research, for example, builds on open-source projects and

datasets and is itself open-source. These laudable developments reflect the core ideas of science and

present great opportunities in the ever more important computational fields.

In mass spectrometry (MS)-based proteomics, algorithms and computational frameworks have been

a cornerstone in interpreting the data, resulting in a large variety of different proteomic software

packages and algorithms, ranging from commercial, freely available to open source, exemplified by

and reviewed in (Välikangas, Suomi, and Elo 2017; Chen et al. 2020). Typical computational

workflows comprise the detection of chromatographic features, peptide spectrum matching, all the

way through protein inference and quantification (Nesvizhskii, Vitek, and Aebersold 2007; Zhang et

al. 2020). Advances in (MS)-based proteomics are also being accelerated through the sharing of

datasets, such as publicly available data on the Proteome Exchange repository (Vizcaíno et al. 2014;

Deutsch et al. 2017).

Prompted by the developments in the Python scientific environment and in collaborative development

tools, we developed AlphaPept, a Python-based open-source framework for efficient processing of

large amounts of high-resolution MS data. Our main design goals were accessibility, analysis speed,

and robustness of the code and the results. Accessibility refers to the idea of facilitating the

contribution of algorithmic ideas for (MS)-based proteomics, which is today typically limited to

bioinformatics experts. We decided on Python because its clear, easy-to-understand syntax, and

because the excellent supporting scientific libraries make it easier for developers from different

backgrounds to contribute to and implement new ideas. Using community-tested packages makes the

codebase more maintainable and robust, allowing us to focus on domain knowledge instead of

implementation details. We furthermore adopted a recent implementation of 8literate programming9

(Knuth 1984), in which code and documentation are intertwined. Using the nbdev package, the

codebase is connected to extensive documentation in Jupyter Notebooks in a way that immediately

explains the algorithmic background, making it easier to understand the underlying principles and

documenting design decisions for others (Kluyver et al. 2016). With the help of the Numba package

for just-in-time compilation (JIT) of Python code (Lam, Pitrou, and Seibert 2015), AlphaPept

achieves extremely fast computation times. Furthermore, we implemented robust design principles

of software engineering on GitHub, such as continuous integration, deployment and extensive

automated validation.

Depending on the user, AlphaPept can be employed in multiple ways. A 8one-click9 installer can be

freely downloaded for Windows, providing a web server-based graphical user interface (GUI) and a

command line interface; A Python library that allows re-use and modification of its functionality in

custom code, including in Jupyter Notebooks that have become a standard in data science and finally,

in a scalable could environment.

In the remainder of the paper, we describe the functionality of AlphaPept on the basis of nbdev

notebooks, such as feature finding, peptide identification and protein quantification. We demonstrate

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

3

the capabilities of AlphaPept on small- and large-scale datasets. Finally, we demonstrate how

AlphaPept can be utilized as a proteomic workflow management system and how it can be integrated

with downstream analysis tools such as Perseus or the Clinical Knowledge Graph (CKG), (Santos et

al. 2020; Tyanova et al. 2016) and we provide an outlook on novel functionality to be incorporated

soon.

RESULTS

Overview of AlphaPept architecture - Academic software development is often highly innovative but

is rarely undertaken with dedicated funding or long term personnel stability. Such constraints have

successfully been mitigated by collaborative software engineering approaches and the collective

efforts of volunteers. This is exemplified in state of the art open-source projects such as NumPy

(Harris et al. 2020) and scikit-learn (Pedregosa et al. 2011). This paradigm has also been taken over

by relatively recent and highly popular deep learning frameworks like Google9s Tensorflow (Martín

Abadi et al. 2015) and Facebook9s PyTorch (Paszke et al. 2019) and is thought to lead to increased

code quality due to community exposure and a large testing audience. Inspired by these

developments, AlphaPept implements robust design principles of software engineering on GitHub,

such as continuous testing and integration. For instance, code contributions can be made via pull

requests which are automatically validated. By making the code publicly available and providing a

stringent testing environment, we hope to encourage contribution and testing from a diverse

background while maintaining very high code quality.

Organization in notebooks with nbdev allows us to collect documentation, code and tests in one place.

This enables us to automatically generate the documentation, extract production code and test

functionality by executing the notebooks. Furthermore, we extend the notion of unit and system

testing by including real world data sets on which the overall improvement of newly implemented

functionality is routinely evaluated. To continuously monitor system performance, summary statistics

are automatically uploaded to a database where they are visualized in a dashboard.

The advantages of high-level languages generally come at the price of execution speed, especially

for Python. As a result, this expressive language is often only used as a thin wrapper on C++ libraries.

In AlphaPept, we make use of the Numba project (Lam, Pitrou, and Seibert 2015), which allows us

to compile our Python algorithms directly with the industry-standard LLVM compiler (backend to

most C++ compilers and supercomputing languages such as Julia). This allows us to speed up our

code by orders of magnitude without losing the benefits of the intuitive Python syntax. Furthermore,

AlphaPept readily parallelizes computationally intensive parts of the underlying algorithms on

multiple CPU cores or 3 if available - Graphical Processor Units (GPUs) for further performance

gains.

As far as possible, AlphaPept uses the standard, but powerful packages of the Python data analysis

universe, namely NumPy for numerical calculations, pandas for spreadsheet-like data structures and

scikit-learn for machine learning (Fig. 1A). Furthermore, we chose the binary, high performance

HDF5 file format, which is used across scientific areas, including 8big data9 projects (see below). All

these packages are platform-independent, allowing deployment of AlphaPept on Windows, Mac and

Linux computers, including cloud environments.

An integral feature of AlphaPept development are Jupyter notebooks, which have become ubiquitous

in scientific computing. Using the nbdev package, each part of the MS-based proteomics workflow

is modularized into a separate notebook. This allows extensive documentation of the underlying

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

4

algorithmic production code, which is automatically extracted from and synchronized with the

notebooks. Furthermore, the notebooks capture the background information of each part of the

computational proteomics workflow, making it much easier to understand the underlying principles.

We have found this to be an excellent way of developing software, which brings together the typical

cycle of exploration in notebooks with the production of a robust and tested code base. Figure 1B

shows an overview of the steps in the analysis of a typical proteomics experiment in AlphaPept

corresponding to the notebooks. These separate processing steps will be discussed in turn in the

sections below.

Figure 1: AlphaPept 8ecosystem9 and Modules
A AlphaPept relies on multiple community-tested packages. We use highly optimized libraries such as Numba,

NumPy, CuPy, scikit-learn, SciPy and pandas to achieve performant code. As GUI, we provide a browser-
based application built on streamlit. For data handling, the HDF5 file technology is used. The repository itself

is hosted on GitHub, the core code is documented in Jupyter Notebooks using the nbdev package. To ensure

maintainability, packages are continuously monitored for updates via dependabot. New code is automatically
validated using GitHub actions and summary statistics (timing, identifications and quantifications) are

uploaded to a mongoDB database and visualized. B All algorithmic code of AlphaPept is organized in Jupyter

Notebooks. For the key processing steps in the pipeline, such as importing raw data, Feature Finding, FASTA

processing, Searching, Recalibrating, Scoring, Quantifying and Matching, there are individual notebooks with
background information and the code.

Highly efficient and platform-independent MS data access 3 MS-based proteomics or metabolomics

generates complex data types of MS1 level features, variable length MS2 data and mappings between

them. Furthermore, data production rates are rapidly increasing, making robust and fast access a

central requirement. The different MS vendors have their own file formats, which may be highly

optimized but are meant to be accessed by their own software. We therefore faced the task of

extracting the raw data into an equally efficient but vendor-neutral format that could be accessed

rapidly.

First, AlphaPept needs to convert vendor specific raw files. For Thermo files we created a cross-

platform Python application programming interface (API) that can directly read .RAW MS data

(pyRawFileReader, Fig. 2a). It uses PythonNET for accessing Thermo9s RawFileReader .NET library

(Zeng, Wen-Feng 2021, 1), obviating the need for Thermo9s propietory MSFileReader. For

Windows, PythonNET is available by default as a part of Windows9 .NET Framework. For Linux

and MacOS, PythonNET requires the open-source Mono library. Although our solution uses stacked

APIs, loading the spectra of a Thermo .RAW file of 1.6 Gb into RAM takes only about one minute

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

5

which can be speeded up even more by parallel file processing. Access to Bruker9s timsTOF raw data

is also directly handled from our Python code, in this case through a wrapper to the external

timsdata.dll C/C++ library, both made available by Bruker. In parallel with this publication, we

provide AlphaTims, a highly efficient package to access large ion mobility time-of-flight data through

Python slicing syntax and with ultra-fast access times (https://github.com/MannLabs/alphatims).

To accommodate raw data acquired through other vendors, we use Pyteomics (Goloborodko et al.

2013; Levitsky et al. 2019). This package allows reading mzML and other standard MS data formats

with Python. Thus, by first converting raw data with external software such as e.g. MSConvert

(Adusumilli and Mallick 2017), AlphaPept also provides a generic framework for all vendors.

As a storage technology, we chose HDF5 (Hierarchical Data Format 5), a standard originally

developed for synchrotron and other extremely large scale experimental data sets, that has now

become popular in a wide range of scientific fields (Folk et al. 2011). HDF5 has many benefits such

as independence of operating systems, arbitrary file size, extremely fast accession and a transparent,

flexible data structure. The latter is achieved by organizing HDF5 files in groups and subgroups, each

containing arrays of arbitrary size and metadata which describes these arrays and (sub)groups. In the

last few years, it is also becoming more popular in the field of MS (Wilhelm et al. 2012, 5). AlphaPept

adopts the HDF5 technology via the Python9s h5py package (Collette 2013).

As an additional design choice we also store intermediate processing results in the HDF5 container,

so that individual processing steps can be performed in a modular way and from different computers.

This enables researchers to quickly implement and validate new ideas within the downstream

processing pipeline. Thus, for each new sample, AlphaPept creates a new .ms_data.hdf file and for

each step in the workflow, the file is extended by a new group (Fig. 2b). In this way, the .ms_data.hdf

file ensures full portability, transparency and reproducibility while being fast to access and with

minimal storage requirements. For example, the 1.6 Gb Thermo file mentioned above is converted to

a HDF5 file of 200 MB, all of which can be accessed in a total of 0.2 s (Fig. 2D).

We next provide functionality for MS data pre-processing, such as centroiding and extraction of the

n-most abundant fragments, should this not already have happened in the vendor software. MS1 and

MS2 scans form the two major subgroups in the HDF5 file. As HDF5 files are not optimized for lists

of arrays with variable length, we convert the many individual spectra into a defined number of arrays,

each containing a single data type, but concatenating all spectra. These arrays are organized in two

sets: Spectrum metadata (spectrum number, precursor m/z, RT, etc), where each array position

corresponds to one spectrum; and spectrum data, where each array position corresponds to a single

m/z-intensity pair. To unambiguously match the spectrum datapoints to their metadata, an index array

is created. It is part of the first set of arrays and contains a pointer to the position of the first data pair

for each spectrum within the second set. The position of the last pair does not need to be stored as it

is implied by the start position of the next spectrum. Thereby, all m/z values and intensities for each

spectrum can easily be extracted with simple base Python slicing, while fixing the number arrays

contained in the hdf container. Loading data from HDF5 to RAMtakes less than a second, effectively

speeding up data accession more than 300-fold compared to loading the RAW file (Fig. 2d).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

6

Figure 2: Highly efficient and platform-independent MS data access
A MS data from different vendors is imported to an HDF5 container for fast and platform-independent data

access. To read Thermo data, we provide a Python application programming interface. Bruker data is accessed

via Bruker9s proprietary DLL. Additionally, generic data can be imported using the Pyteomics package. B The

output of each processing step is appended to the HDF5, allowing processing in a modular way. C To
efficiently store MS spectra, multiple spectra of variable length are concatenated, and start indices are saved

in a lookup table. D HDF5 Accessing times. Loading data from HDF5 into memory takes less than 1s for a

typical 2h full proteome analysis of a HeLa sample acquired on a Thermo Orbitrap mass spectrometer.

Extracting isotope features 3 Having stored the MS peaks from all mass spectra in an efficient data

structure, we next determine isotope patterns over chromatographic elution profiles. This

computationally intensive task is crucial for subsequent peptide identification and quantification.

MaxQuant (Cox and Mann 2008) introduced the use of graphs for feature finding, which was then

improved upon by the Dinosaur tools (Teleman et al. 2016) and we also decided to follow this elegant

approach.

In the first step - called hill building 3 centroided peaks from adjacent scans are connected. As there

are millions of centroids, our first implementations using pure Python took several minutes of

computing time. We subsequently refactored the graph problem and parallelized it for CPUs using

Numba and CuPy for GPUs, resulting in a 300-fold speed up (about 1s on GPU). Since not every

user has access to GPUs, AlphaPept employs dedicated Python 8decorators9, a metaprogramming

technique allowing a part of the program to modify its another part at compile time to transparently

switch between parallelized CPU, GPU and pure Python operation.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

7

In more detail, AlphaPept refines hills by first splitting them in case they have local minima indicating

two chromatographic elution peaks (Fig. 3B). Additionally, hills are removed whose elution profiles

do not conform to minimal criteria, like minimal length and the existence of local minima. To

efficiently connect hills, we compute summary statistics such as weighted average m/z value and a

bootstrap estimate of its precision. Hills within retention time boundaries are grouped into pre-isotope

patterns. To correctly separate co-eluting features, we generate seeds, which we extend in elution

time and check for consistency with a given charge state, similarity in elution profile and for

conformity with peptide isotope abundance properties via the averagine model (Senko, Beu, and

McLaffertycor 1995). This results in a feature (here a possible peptide precursor mass), which is

described by a table.

Feature finding on the Bruker timsTOF involves ion mobility as an additional dimension. Currently,

this functionality is provided by a Bruker component, which we linked into our workflow via a Python

wrapper, and is the only part that is not in natively included as Python code in AlphaPept. Instead,

this wrapper uses Python9s subprocess module, which can integrate other tools into AlphaPept just

as easily.

For a typical proteomics experiment performed on an Orbitrap instrument, Figure 3C provides an

overview of the number of data points from MS peaks to the final list of isotope patterns. Note that

AlphaPept can perform feature finding separately for each file as soon as it is acquired (described

below). Furthermore, although described here for MS1 precursors, the AlphaPept feature finder is

equally suited to MS2 data that occur in parallel reaction monitoring (PRM) or DIA acquisition

modes.

Figure 3: Extracting isotope features
A Individual MS peaks of similar masses are connected over the retention time using a graph approach,

resulting in 8hills9. Using a native Python implementation, hill extraction takes several minutes. Numba,

parallelization on CPUs or GPUs reduces hill extraction to seconds. B Extracted hills are refined by splitting
at local minima and only allowing well-formed elution profiles. C Starting with 20 million points for a typical

Thermo HeLa shotgun proteomics file, these are connected to approximately one million hills, which increased

to 1.5 million after hill splitting and filtering. Subsequent processing results in 200,000 pre-isotope patterns

that ultimately yield 230,000 isotope patterns due to assignment to specific charge states.

Peptide spectrum matching 3 The heart of a proteomics search engine is the matching of msms spectra

to peptides in a protein sequence database. AlphaPept parses FASTA files containing protein

sequences and descriptions, 8digests9 them into peptides and calculates fragment masses according to

user specified rules and amino acid modifications (Fig 3D). We again use HDF5 files, which enables

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

8

efficient storage of fragment series despite their varying lengths. Generation of this database only

happens once per project and only takes minutes for typical organisms and modifications. From a

FASTA file of the human proteome, typically five million 8in silico9 spectra of fragment masses are

generated. In case no enzyme cleavage rules are specified or for open search with wide precursor

mass tolerances, the fragments are instead generated on the fly to avoid excessive file sizes.

To achieve maximum speed, AlphaPept employs a very rapid fragment counting step to determine

initial peptide spectrum matches (PSMs). As this step only involves addition and subtraction of

elements in numerical arrays, the machine code produced by Numba is very efficient and easily

parallelized. This leaves a much smaller number of peptides that have at least a minimum number of

fragment matches to the experimental spectrum. (This is similar to the Morpheus score (Wenger and

Coon 2013), which also computes the fraction of msms signals accounted for by the match.) For the

human proteome and mass measurement accuracy of parts per million, the initial millions of

comparisons are decreased to a maximum of top-n remaining candidates per msms spectrum

(typically 10). This enables more computationally expensive scoring in a second step. Different

scores can be implemented in AlphaPept, and by default we chose the widely used X!Tandem score

(Craig and Beavis 2003). Note that the sole function of this score is to rank the PSMs, whereas

statistical significance is determined by counting reverse database hits and by machine learning (see

below).

We perform a first search for the purpose of recalibrating the mass scale as a function of elution time

(Fig. 4B). Here, we use weighted nearest neighbor regression instead of binning by retention time

(explained in the accompanying Jupyter Notebook). The k-nearest neighbors regressor that we

selected allows non-linear grouping in several dimensions simultaneously (retention time and mass

scale in the case of Orbitrap data and additionally ion mobility in the case of timsTOF data).

Having recalibrated the data, the main search is performed with an adapted precursor tolerance. We

furthermore calculate the matched ion intensity, matched ions, neutral loss matches for further use

and reporting together with charge, retention time and other data.

To demonstrate the speed up achieved by our architecture and the performance decorator, we timed

illustrative examples (Fig. 4C). On a HeLa cell line proteome acquired in a single run, comparing

260k spectra to 5 million database entries, the computing time in pure Python was about 23 h. This

decreased to 126 s when employing Numba (> 500x improvement), to 105 s when using Numba with

CuPy on GPU and further to 13 s on multi-threaded CPU (see companion Figure Notebook). The

GPU acceleration is not larger because the code is already very efficient on CPU and some workflow

tasks are memory bound instead of computationally bound. Improved memory management on GPU

could further decrease GPU computational time. In any case, AlphaPept reduces the PSM matching

step to an insignificant part total computation time.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

9

Figure 4 Database search
A The FASTA processing notebook contains functionality to calculate fragment masses from FASTA files

which are saved in an HDF5 container for subsequent searches. B Initially, a first search is performed, and

masses are subsequently recalibrated. Based on this recalibration, a second search with more stringent
boundaries is performed. C Using the decorator strategy, the search can be drastically speeded up, from 23 h

in a pure Python implementation to seconds with Numba and CuPy.

Machine learning based scoring and FDR estimation - Assessing the confidence of PSMs requires a

scoring metric that separates true (correctly identified) from false (wrongly identified) targets in the

database. Multiple defined features are calculated by the AlphaPept search engine and used in a score

to rank the targets. A nonsense database of pseudo-reversed sequences where the terminal amino acid

remains unchanged (de Godoy et al. 2008) is used to directly estimate the False Discovery Rate (FDR)

by counting reverse hits. Score thresholds subsequently decide which targets should be considered

identified. To further validate this approach and to ensure accurate FDR estimation across different

development stages in AlphaPept, our GitHub testing routine includes an empirical two species FDR

test based on an 8entrapment strategy9 (Muntel et al. 2019).

In recent years, machine learning has gained increasing momentum in science in general, but also in

its specific applications to MS data analysis. One of the first of these was the combination of multiple

scoring metrics to a combined discriminant score that best separates high scoring targets from decoys.

This was initially integrated into PSM scoring through an external reference dataset to train the

classifier (Keller et al. 2002). The widely used Percolator approach subsequently employed a semi-

supervised learning approach that was trained directly on the dataset itself (Käll et al. 2007). This

automatically adapts the ML model to the experimental data and along with other MS analysis tools

(MacLean et al. 2010; Röst et al. 2014; Teleman et al. 2015; Fondrie and Noble 2021; Rosenberger

et al. 2017) we also employ semi-supervised learning for PSM scoring in AlphaPept.

The AlphaPept scoring module falls into five parts: (1) feature extraction for all candidate PSMs, (2)

selection of a candidate subset, (3) training of a machine learning classifier, (4) scoring of all

candidate PSMs and (5) FDR estimation by a target-decoy approach (Fig. 4A). Most features for

scoring the candidate PSMs are directly extracted from the search results, such as the number of b-

and y-ion hits and the matched ion intensity fraction. Some additional features are subsequently

determined, including the sequence length and the number of missed cleavages. After feature

extraction, a subset of candidate PSMs is selected with an initial 1% FDR threshold based only on

the X!Tandem score (Fig. 4B). Together with an equal number of randomly selected decoys, this

creates a balanced dataset for machine learning. This is split into training and test sets (20% vs. 80%)

and provides the input of a ML classifier. We chose a standard scikit-learn random forest classifier

as it performed similarly to XGBoost with fewer dependencies on other packages. We first identify

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

10

optimal hyper-parameters for the classifier with a grid-search via five-fold cross-validation. The

resulting best classifier optimally separates target from decoy PSMs on the test set. Applying the

trained classifier to the entire set of candidate PSMs yields discriminant scores that are used to

estimate q-values based on the classical target-decoy competition approach.

The contribution of different features to the discriminant score for an exemplary tryptic HeLa sample

is shown in Figure 4C. Interestingly, for our data, the number of matched y-ions alone outperforms

the basic search engine score and most of the top-ranking features are related to the number of

matched ions and their intensity. The ML algorithm markedly improved the separation of targets vs

decoys, retrieving a larger number of PSMs at every q-value (Fig. 4D). ML-based scoring in

AlphaPept improved identification rates by 15% at a 1% FDR at the PSMs level, in line with previous

efforts (Käll et al. 2007). AlphaPept allows ready substitution of the underlying PSM score and

machine learning algorithms. Furthermore, additional features to describe the PSMs are readily

integrated, such as ion mobility or predicted fragment intensities. We envision that this kind of

flexibility will enable continuous integration of improved workflows as well as novel ML techniques

into AlphaPept.

Once a set of PSMs at a defined FDR is identified, protein groups are determined via the razor protein

approach (Nesvizhskii and Aebersold 2005). Here, peptides that could potentially map to multiple

unique proteins are assigned to the protein group that already has most peptide evidence. We

determine protein-level q-values by selecting the best scoring precursor per protein, followed by FDR

estimation by target-decoy competition similar to the peptide level (Nesvizhskii 2010; Savitski et al.

2015; The et al. 2016; Gupta and Pevzner 2009). Finally, we validated the scoring and FDR

estimation in AlphaPept with the entrapment strategy mentioned above, by analyzing a HeLa sample

with a mixed species library, containing targets and decoys derived from both a human FASTA and

a FASTA from Arabidopsis thaliana. This revealed that AlphaPept provides accurate q-value

estimates, reporting approximately the same number of Arabidopsis thaliana proteins as decoy

proteins at 1% protein FDR.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

11

Figure 5: Machine learning-based scoring and FDR estimation
A We train a Random Forest (RF) classifier on a subset of candidate PSMs to distinguish targets from decoys
based on PSMs characteristics. A semi-supervised machine learning model is applied with the following steps:

(1) extraction of all candidate PSM scores, (2) selection of a PSM subset for machine learning, (3) training of

a RF classifier, and (4) application of the trained classifier to the full set of PSM candidates. Finally, the
probability of the RF prediction is used as a score for subsequent FDR control (5). B Training of the classifier

(step 4 in panel A) follows a train-test split scheme where only a fraction of the candidate subset is used for

training. Using stringent cross-validation, multiple hyperparameters are tested to achieve optimal RF

performance. The best classifier is benchmarked against the remaining test set. C Example feature importance
for an Orbitrap test set, where the number of y-ion hits is the highest contributing factor to the model. Note

that the RF algorithm can utilize any database identification score such as the X!Tandem score chosen here,

which is the second most important feature. See the AlphaPept workflow and files Notebook for an explanation
of features. D Optimized identification with the ML score. Compared to the X!Tandem score alone, the ML

optimization identified about 15% more PSMs for the same q-value.

Label-free quantification - The ultimate goal of a proteomics experiment is to derive functional

insights or assess biomarkers from quantitative changes at the protein level, to which peptide

identifications are only means to an end. Algorithmically this quantification step entails either the

determination of isotope ratios in the same scans (for instance SILAC, TMT or EASI-tag ratios) or

the somewhat more challenging problem of first integrating peaks and then deriving quantitative

ratios across samples (label-free quantification), which we focus on here. We initially adapted the

MaxLFQ pipeline for label-free quantitative proteomics data (Cox et al. 2014). The first task is to

determine normalization factors for each run as different LC MS/MS runs need to be compared 3

potentially spaced over many months in which instrument performance may vary 3 and as total

loading amounts likewise vary for instance due to pipetting errors. The basic assumption is that the

majority of peptides are not differentially abundant between different samples. This allows deriving

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

12

the run-specific normalization factors by minimizing the between-sample log peptide ratios (Cox et

al. 2014) (Note that this assumption is not always valid and can be restricted to certain protein

classes.). In a second step, adjusted intensities are derived for each protein, such that protein

intensities between different MS runs can be compared. To this end we derive the median peptide

fold changes that maximize consistency with the peptide evidence.

The normalization, as well as protein intensity profile construction, are quadratic minimization

problems of the normalization factors or the intensities, respectively. Such minimization problems

can be solved in various ways but one fundamental challenge is that these algorithms have a time

complexity of O(n2), meaning that the computation time increases quadratically with the number of

comparisons. One strategy to overcome this limitation is to only perform minimization on a subset

of all possible pairs (termed 8FastLFQ9) (Cox et al. 2014). Despite this, the computation time of the

underlying solver will determine the overall runtime and accounts for the long run times on very large

datasets. However, a variety of very efficient solvers that are based on different algorithms are

contained in the Python SciPy package (SciPy 1.0 Contributors et al. 2020). To test these approaches,

we created an in silico test dataset with a known ground truth (see Quantification Notebook).

Comparing different solvers using our benchmarking set uncovered dramatic differences in precision,

runtime and success rate (Fig. 6A). Among the better performing algorithms were the least-squares

solvers that were previously used. The Broyden3Fletcher3Goldfarb3Shanno (L-BFGS-B),

Sequential Least Squares Programming (SLSQP) and Powell algorithms were particularly fast and

robust solutions being up to 16x quicker than the Trust Region Reflective algorithm (trf) from the

default least-squares solver. More remarkably, they were able to optimize much better to our known

ground truth. Of all four tested optimizers, the mean error of trf was, on average 24% worse. Being

able to readily switch between different solvers provided by SciPy allows us to fall back on other

solvers if the default solver fails, i.e. AlphaPept will switch from L-BFGS-B to Powell if the solution

does not converge.

We compared our method to MaxLFQ in a quantitative two-species benchmarking dataset, in which

E. coli proteins change their abundance by a factor of six between conditions, while human proteins

do not change (Meier et al. 2018). To specifically assess the benefits of the new optimization strategy,

we first tested the algorithm directly on the MaxQuant output (see companion Notebook for Figure

6). Both approaches clearly separated human and E. coli proteins, however, the standard deviation

was smaller when applying the AlphaPept optimization algorithm, which also has fewer outlier

quantifications (Fig 6B), supporting the analysis of the in-silico test set. Comparing results of the

complete workflow with AlphaPept on the same files further improved identifications and

quantifications.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

13

Figure 6: Algorithm selection and performance of label-free quantification
A Timings of different, highly optimized solvers from the SciPy ecosystem, to extract optimal protein intensity

ratios in AlphaPept. Solvers showed drastic differences in speed, closeness to 8ground truth9, and proportion

of successful optimizations on in-silico test data. Based on these tests, AlphaPept employs a hybrid
optimization strategy that uses L-BFGS-B and Powell for optimized performance, robustness and speed. B

Comparing the AlphaPept LFQ solver on MaxQuant output data demonstrates similar separation in mixed-

species datasets with smaller standard deviations. C Applying AlphaPept directly on the same dataset further

improves identifications and quantification accuracy.

Match-between-runs (MBR) and dataset alignment 3 We implemented functionality to transfer the

identifications of MS1 features to unidentified MS1 features of other runs (match-between-runs).

First, we align multiple datasets on top of each other by applying a global offset in retention time,

mass and 3 where applicable 3 ion mobility. To determine offsets for all runs, we first compare all

possible pairs of runs and calculate the median offset from one dataset to another based on the

precursors that were identified in both. As these offsets are linear combinations of each other, i.e.,

the offset from dataset A to dataset C should be the offset from dataset A to B and B to C; this

becomes an overdetermined equation system, which we solve by a weighted linear regression model

with the number of shared precursors as weights.

After dataset alignment, we group precursors of multiple runs and determine their expected properties

as well as their probability density and create a library of precursors. Next, we take the unidentified

MS1 features from each run and extract the closest match from the library of precursors. Finally, as

we know the probability density of each feature, we can calculate the Mahalanobis distance from

each identification transfer and use this as a probability estimate to assess the likelihood that a match

is correct. Further information about the alignment and matching algorithm can be found in the

Matching notebook.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

14

Benchmarking AlphaPept on large data sets 3 A prime goal of the AlphaPept effort is robustness and

speed. To showcase the usability of AlphaPept for large scale studies we re-analyzed 200 HeLa

proteomes from a recently published long-term performance test (Bian et al. 2020). To confirm

comparable identification performance in the initial analysis, which was done with MaxQuant, we

evaluated the number of uniquely identified protein groups and PSMs per group. This yielded a

median of 4277 unique protein groups and 43,872 unique peptides per experimentally defined group,

as expected. Next, we compared the protein level quantification. The median coefficient of variation

without our Python maxLFQ implementation was 27.1% and 9.2% after LFQ optimization. For 90%

of protein groups, CVs were below 20% with LFQ optimization and below 54% without.

Investigation of each computational task revealed that a large part is spent on importing raw data and

feature finding. Searching and scoring are highly optimized and contribute only a small fraction of

the overall computing time. Operations across files such as LFQ alignment and matching again make

up a large part of computation time.

Figure 7: Benchmarking AlphaPept on 200 HeLa proteomes
A total of 200 DDA HeLa cell proteomes 3 the 10 cycle long term performance test from Kuster and

coworkers (181 Gbyte) (Bian et al. 2020)3 was analyzed by AlphaPept. A Identification performance at the
protein group level. B Identification performance at the peptide level. C Quantification performance with or

without MaxLFQ optimization. For 90% of protein groups, CVs are below 20% and 54%, respectively. D

Timing of the AlphaPept computational pipeline. Search through scoring are highly optimized and contribute
little to overall computation time.

Continuous validation on standard datasets 3 Our current continuous integration pipeline uses a

range of data sets typical for MS workflows. These include standard single shot runs, such as HeLa

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

15

quality control (QC) runs, as well as recently published studies. For every addition to the main branch

of the code base, AlphaPept reanalyzes these files fully automatically, allowing extensive systems

checks. Additionally, these checks can be manually triggered at any time and therefore enable swift

validation of proposed code changes prior to submitting pull-requests. This makes comparing studies

that were analyzed with different software versions much more transparent. To further increase this

idea of transparent performance tracking, we automatically upload summary statistics, such as

runtime, number of proteins and number of features for each run to a database and visualize these

metrics in a dashboard (Extended methods). Table 1 shows example tracking metrics from the

database.

Version Test file Processing time (min) Number of features Number of peptides

0.2.8 HeLa Orbitrap 19 218792 41777

0.2.8 HeLa timsTOF 102 231545 54058

0.2.9 HeLa Orbitrap 19 218780 41939

0.2.9 HeLa timsTOF 113 231545 66776

0.2.10 HeLa Orbitrap 19 218779 41949

...

0.3.25 HeLa timsTOF 105 664992 76217

0.3.26 HeLa Orbitrap 18 260709 53522

0.3.26 HeLa timsTOF 88 664992 77464

0.3.27 HeLa Orbitrap 21 260622 54283

0.3.27 HeLa timsTOF 89 664992 77162

Table 1: Example performance tracking metrics for different AlphaPept versions extracted

from the database.

AlphaPept user interface and server 3 A central element for any software tool is ease of use for the

end user. In the most basic setup, this is determined by the accessibility of the GUI. Following recent

trends, we decided on server-based technology for AlphaPept. In a basic setup, the web interface is

called by connecting to a local server instance on the user9s laptop or local workstation (Fig. 8A) via

a browser. For more demanding pipelines, AlphaPept can be run on a powerful processing PC and be

accessed from multiple other devices. This makes access to AlphaPept platform independent,

including mobile devices.

Adding server functionality typically comes at the cost of maintaining a dedicated API and

infrastructure. For AlphaPept we make use of a very recent but already very popular Python package

called streamlit (www.streamlit.com), which was developed to facilitate the sharing of machine

learning models. By only adding one additional Python package, we have access to a powerful and

responsive server infrastructure. Here, the web interface serves merely as an input wrapper to gather

the required settings and display results and starts the AlphaPept processing in the background.

AlphaPept workflow management system 3 Importantly, the server-based user interface extends the

processing functionality of AlphaPept from only processing individual experiments to a continuous

processing and monitoring framework. The core processing function of AlphaPept accepts a

dictionary-type document to process an experiment, with defined parameters per setting. To store

these settings, we chose YAML, a standard human-readable data-serialization language, resulting in

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

16

files of only a few kilobytes in size. This ensures that they can be modified programmatically and

easily checked with common editors.

The settings structure is used by the AlphaPept GUI to build a folder-based workflow management

system. It creates three folders in the user folder (8Queue9, 8Failed9, and 8Finished9) and monitors

them for new data. When defining a new experiment within the GUI, a settings YAML file is created

in the Queue folder, and the core function will start processing. This allows defining multiple

experiments, which will then be processed one after another. YAML files of processed runs will be

moved to the 8Finished9 or 8Failed9 folder (Fig. 8B).

We chose this folder-based processing queue as this allows manual inspection of the processing queue

by simply checking the files in the folders. Furthermore, computational alterations of the processing

queue are straightforward by writing custom scripts that copy settings files generated elsewhere to

the queue folder. AlphaPept has a file watcher module that can monitor folders for new raw files and

automatically add them to the processing queue immediately after acquisition is finished. Its modular

structure can easily be extended with custom code for integration into larger processing environments

with database-based queuing systems. Refer to the interface notebook, which calls the wrapper

function and allows customization of the pipeline.

Visualization of results and continuous processing 3 For visualization of tabular or summary statistics

results, our streamlit application utilizes the 8Finished9 folder structure where it stores readily

accessible summary information of previously processed files (Fig. 8C). AlphaPept has a History tab

that compiles these previous results to show performance over time or across analyzed MS runs (Fig.

8D). Here, the user can choose to plot various summary statistics such as identified proteins or

peptides as well as chromatographic information such as peak width or peak tailing. As a particular

use case, this provides a standard interface which allows instant QC run evaluation in combination

with the file watcher.

To inspect an individual experiment, AlphaPept9s browser interface can also plot identification and

quantification summary information. Furthermore, basic data analysis functions such as volcano or

scatter plots and Principal Component Analysis (PCA) are provided. This is based on streamlit and

scikit-learn functionality and can therefore be readily extended. AlphaPept exports the analysis results

(quantified proteins and peptides) in tabular format to the specified results path so that it can be

readily used for other downstream processing tools such as Perseus (Tyanova et al. 2016) or the

recently introduced CKG (Santos et al. 2020).

AlphaPept deployment and integration 3 The utility of a computational tool critically depends on

how well it can be integrated into existing workflows. To enable maximum flexibility and to address

all major use cases, AlphaPept offers multiple ways to install and integrate it.

First, we provide a one-click installer solution that is packaged for a standard Windows system

obviating additional installation routines. It provides a straightforward interface to the web-based

GUI. We chose Windows for the one-click solution as it is the base OS for the vendor-provided

acquisition and analysis software and most users. The one-click installation also has a command-line

interface (CLI) for integration into data pipelines.

Next, AlphaPept can be used as a module in the same way as other Python packages. This requires

setting up a Python environment to run the tool, which also contains all the functionality of the

previously described CLI and GUI. Compared to the Windows one-click installer, the Python module

extends the compatibility to other operating systems. While Python code is in principle cross-

platform, some third-party packages can be platform bound, such as the Bruker feature finder or

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

17

DLLs required to read proprietary file types. The modular nature of the AlphaPept file system allows

to preprocess files and continue the analysis on a different system (e.g., feature finding and file

conversion on a Windows acquisition PC and processing on a Mac system).

Finally, the Python module makes the individual functions available to any Python program. This is

particularly useful to integrate only parts of a workflow in a script or to optimize an individual

workflow step. Besides the nbdev notebooks that contain the AlphaPept core code, we provide several

sandboxing Jupyter Notebooks that show how individual workflow steps can be called and modified.

In this way, AlphaPept allows the creation of completely customized workflows.

Figure 8: Alphapept user interface, workflow management, deploying and integrating
A The AlphaPept GUI is based on a server architecture that can be installed on a workstation and used locally.

Additionally, it can be installed on a server and accessed remotely from multiple workstations in the network.

B AlphePept processing pipeline. The AlphaPept GUI creates three folders for its processing system. New
experiments are defined within the interface and saved as YAML files in the Queue folder with automatically

triggered processing. C Example plots from the History and Results Tab in AlphaPept: Overview of the

number of features, peptides and protein groups per injected sample (left panel). Graphing retention time

tailing as a function of acquistion date, as an illustration of using AlphaPept for quality assurance.

AlphaPept processing times 3 To give the reader an impression of typical processing timings for each

of these deployment variants, we ran AlphaPept on various hardware for several use cases: laptop,

office PC, workstation and cloud (Table 1). AlphaPept can be readily employed with cloud providers

such as Amazon Web Services. We tested our default testing pipeline (see timing table below) on

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

18

two different Amazon EC2 instances (t3a.2xlarge: 0.42 Eur/h and t3.xlarge: 0.22 Eur/h), an incurred

computational costs of 0.22 and 3.82 Euros for one 120 min Orbitrap HeLa file and 8 timsTOF files,

respectively, when processed in a European location. Computational costs can be further improved

by choosing resource-optimized hardware or buying compute power in advance.

For a typical proteomics laboratory, we envision AlphaPept running in continuous mode, to

automatically process all new files. This allows continuous feedback about experiments while

drastically speeding up computation when subsequently combining multiple processed files into

experiments and experiments into an overall study, because the computational steps that do not

change (e.g., raw conversion, database generation or feature finding) can be reused. To illustrate this,

the test set with 8 Bruker files from PXD010012 takes 194 minutes on a Workstation with

preprocessing and 23 minutes when using preprocessed files.

Laptop
Macbook Pro
macOS Big Sur
i9 2.3 GHz x 8
32 Gb RAM

Office Pc
Optiplex 7080
Windows 10
i9 3.7 GHz x10
64 Gb RAM

Workstation
Custom
Windows 10
i9 3.5 GHz x12
128 Gb RAM

Cloud I
AWS (t3a.2xlarge)
Windows Server
EPIC 2.2 GHz x4
32 Gb RAM

Cloud II
AWS (t3.xlarge)
Windows Server
XEON 2.4 GHz x2
16 Gb RAM

IRT Sample*
(Thermo) Full

1 1 2 3 2

HeLa 120 min

(Thermo)

Full
23 16 19 40 41

Preprocessed
6 4 5 11 12

PXD006109 - 6
files (Thermo)

Full
36 17 21 46 73

Preprocessed
30 8 s 18 24

IRT Sample
(Bruker) Full

** 1 2 3 2

HeLa 120 min
(Bruker)

Full
** 57 111 131 399

Preprocessed
6 6 7 16 19

PXD010012 - 8
files (Bruker)

Full
** 242 194 790 893

Preprocessed
62 24 23 85 132

Table 2: Running times of AlphaPept for various hardware (timings in minutes)

* IRT = low complexity mixture of peptides (internal retention time standard)

** to process Bruker files on Mac Os X, we preprocessed them on Windows

Being able to import AlphaPept as a Python package also lowers the entry barrier of proteomics

analysis workflows for individual researchers and laboratories with little computational

infrastructure, as it makes it compatible with platforms like Google Colab, a free cloud-based

infrastructure built on top of Jupyter notebooks with GPUs. This allows processing without having

to set up software on specialized hardware and allows direct modification of the underlying

algorithms. We provide an explanatory notebook for running a workflow on Google Colab, including

a 120 min HeLa example file that has been convered on the Windows acquisition computer. This also

highlights how the modular HDF5 file format allows us to move the MS data between operating

systems.

DISCUSSION

Here we have introduced AlphaPept, a computational proteomics framework where the relevant

algorithms are written in Python itself, rather than Python being used only as a scripting layer on top

of compiled code. This architectural choice allows the user to inspect and even modify the code and

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

19

enables seamless integration with the tools of the increasingly powerful and popular Python scientific

ecosystem. The major drawback of such an approach would have been the slow execution speed of

pure Python, however extensive use of the Numba just in time compiler 3 on multiple CPUs or a

GPU - makes AlphaPept exceptionally fast, as we have shown in this manuscript. Together with the

use of recently developed browser-based deployment, AlphaPept covers the full range of potential

users from novice users to systems administrators wishing to build large cloud pipelines.

A related and important design objective of AlphaPept was to enable a diverse user community and

invite community participation in its further development. To ensure quality, reproducibility and

stability, we implemented a large suite of mechanisms from unit through end-to-end tests via

automatic deployment tools. This in turn allows us to streamline the integration of community

contributions after rigorous assessment. Furthermore, GitHub provides state-of-the-art tools and

mechanisms to allow the effective collaboration of diverse and dispersed developer communities.

Currently, AlphaPept provides functionality for DDA proteomics but we are in the process of

enabling analysis of DIA data, ultra-fast access to and visualization of ion mobility data (AlphaTims,

https://github.com/MannLabs/alphatims), deep learning for predicted peptide properties and

improved quantification, all made possible by its modular design.

One of the large goals of AlphaPept is to 8democratize9 access to computational proteomics. To this

end, besides implementation in Python, we adopted the 8literate programming9 paradigm which

integrates documentation and code. We adopted the nbdev package, providing both beginner and

expert computational proteomics researchers with an easy and interactive 8on ramp9. In our case this

takes the form of currently 12 Jupyter notebooks dealing with all the major sub tasks of the entire

computational pipeline from database creation, raw data import all the way to the final report of the

results. We imagine that students and researchers with novel algorithmic ideas can use this paradigm

to add their functionality in a transparent and efficient manner, without having to re-create the entire

pipeline. This could especially enable increasingly powerful machine learning and deep learning

technologies to be integrated into computational proteomics (Torun et al. 2021; Wen et al. 2020;

Meyer 2021).

Acknowledgements

We thank Sven Brehmer, Wiebke Timm, Konstantin Schwarze and Sebastian Wehner from Bruker

Daltonik for providing support with the feature finder for Bruker data. Further, we thank Andreas

Brunner, Igor Paron, Patricia Skowronek and Mario Oroshi for providing sample files and

descriptions and feedback on the QC pipeline. Xie-Xuan Zhou contributed to discussions and testing.

We are grateful of the feedback, testing and support from our group members and colleagues at

OmicEra Diagnostics GmbH for testing.

Abbreviations

API (application programming interface), CLI (command-line interface), DDA (data-dependent

acquisition), DIA (data-independent acquisition), FDR (false discovery rate), GPU (graphical

processor unit), GUI (graphical user interface), HDF5 (hierarchical data format 5), JIT (just-in-

time), L-BFGS-B (Broyden3Fletcher3Goldfarb3Shanno), ML (machine learning), MS (mass

spectrometry), MS/MS (tandem mass spectrometry), PASEF (Parallel Accumulation3Serial

Fragmentation), PRM (parallel reaction monitoring), PSM (peptide spectrum match), QC (quality

control), RF (random forest), SLSQP (sequential least squares programming), trf (Trust Region

Reflective algorithm).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

20

Keywords

Mass spectrometry, Python, open-source, proteomics, open-source, search algorithm, proteome

informatics

Software and Data availability

AlphaPept is fully open-source and is freely available under an Apache license at

https://github.com/MannLabs/alphapept. All data is available on GitHub or the Max-Planck datashare

as test data. Each notebook / file contains respective download links for the files used.The results in

this manuscript were obtained with AlphaPept version 0.3.26 if not otherwise indicated.

Author contributions

MM and MTS conceived the core idea of the AlphaPept framework and MM wrote the first iteration

of the search algorithm. MTS wrote the Thermo feature finder, quantification and downstream

processing modules, code structure and user interface. EV contributed file importing functionality.

IB extended the scoring functionality with ML and FDR control. SW added HDF file handling,

revised the general code structure and added performance functions. WFZ and CA contributed and

improved quantification. JS critically reviewed testing and documentation. RI and MG contributed

to GPU support and code acceleration. All authors contributed ideas, performed testing and wrote the

manuscript.

EXTENDED METHODS

Notebook availability.

All notebooks are available in the repository on GitHub. The documentation created based on the

notebooks is available here: https://mannlabs.github.io/alphapept/. Additional information about

code not covered in the Notebooks presented here can be found in the Documentation

(https://mannlabs.github.io/alphapept/additional_code.html).

A cloud hosted Notebook with an example data file is provided at the free Google Colab site:

https://colab.research.google.com/drive/163LTlyzBCDgyCkSJiikbmsnny_EiQ7SG?usp=sharing

MongoDB Dashboard

The continuous integration pipeline has the action <Performance test pyinstaller=. This action

freezes the current Python environment into an executable and runs the test files. The results of

these tests are uploaded to a noSQL database (MongoDB) for the tested version number. Key

performance metrics are visualized in charts here:

https://charts.mongodb.com/charts-alphapept-itfxv/public/dashboards/5f671dcf-bcd6-4d90-8494-

8c7f724b727b

timsTOF and Orbitrap HeLa samples 3 The test files comprise representative single run analyses of

complex proteome samples. Human HeLa cancer cells were lysed in reduction and alkylation buffer

with chloroacetamide as previsouly described (Kulak et al. 2014), and proteins were enzymatically

digested with LysC and trypsin. The resulting peptides were de-salted and purified on

styrenedivinylbenzene reversed-phase sulfonate (SDB-RPS) StageTips before injection into an

EASY nLC 1200 nanoflow chromatography system (Thermo Scientific). The samples were loaded

on a 50 cm x 75 µm column packed in-house with 1.9 µm C18 beads and fitted with a laser-pulled

emitter tip. Separation was performed during 120 min with a binary gradient at a flow rate of

300 nL/min. The LC system was coupled online to either a quadrupole Orbitrap (Thermo Scientific

Orbitrap Exploris 480) or a trapped ion mobility 3 quadrupole time-of-flight (Bruker timsTOF Pro 2)

mass spectrometer. Data were acquired with standard data-dependent top15 (Orbitrap) and PASEF

methods (timsTOF), respectively.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

21

timsTOF and Orbitrap iRT samples 3 11 iRT peptides (https://biognosys.com/product/irt-kit/) were

separated via a 5.6 min Evosep gradient (200 <samples per day=) yielding test data with low

complexity, that facilitated quick testing of computational functionality. An Evosep One liquid

chromatography system (Evosep) was coupled online with a trapped ion mobility spectrometry

(TIMS) quadrupole time-of-flight (TOF) mass spectrometer (timsTOF pro, Bruker Daltonics). iRT

standards (Biognosys) were loaded onto Evotips according to the manufacturers9 instructions and

separated with a 4 cm x 150 µm reverse-phase column with 3 µm C18-beads (Pepsep). The analytical

column was connected with a zero-dead volume emitter (10 µm) placed in a nano-electrospray ion

source (CaptiveSpray source, Bruker Daltonics). Mobil phase A contained 0.1 vol% formic acid and

water and mobil phase B of 0.1 vol% formic acid and acetonitrile. The sample was acquired with the

dda-PASEF acquisition mode. Each topN acquisition mode contained four PASEF MS/MS scans and

the accumulation and ramp time were both 100 ms. Only multiply charged precursors over the

intensity threshold of 2500 arbitrary units (a.u.) and within a m/z-range of 100 3 1700 were subjected

to fragmentation. Peptides that reached the target intensity of 20,000 a.u. were excluded for 0.4 min.

The quadrupole isolation width was set to 2 Th below m/z of 700 and 3 Th above a m/z value of 700.

The ion mobility (IM) range was configured to 0.6 3 1.51 Vs cm-2 and calibrated with three Agilent

ESI-L TuneMix Ions (m/z, IM: 622.02, 0.98 Vs cm-2; 922.01, 1.19 Vs cm-2; 1221.99, 1.38 Vs cm-2).

The collision energy was decreased as a function of the ion mobility, starting at 1.6 Vs cm-2 with 59

eV and ending at 0.6 Vs cm-2 with 20 eV.

REFERENCES

Adusumilli, Ravali, and Parag Mallick. 2017. <Data Conversion with ProteoWizard MsConvert.= In

Proteomics, edited by Lucio Comai, Jonathan E. Katz, and Parag Mallick, 1550:339368.

Methods in Molecular Biology. New York, NY: Springer New York.

https://doi.org/10.1007/978-1-4939-6747-6_23.

Bian, Yangyang, Runsheng Zheng, Florian P. Bayer, Cassandra Wong, Yun-Chien Chang, Chen

Meng, Daniel P. Zolg, et al. 2020. <Robust, Reproducible and Quantitative Analysis of

Thousands of Proteomes by Micro-Flow LC3MS/MS.= Nature Communications 11 (1):

157. https://doi.org/10.1038/s41467-019-13973-x.

Chen, Chen, Jie Hou, John J. Tanner, and Jianlin Cheng. 2020. <Bioinformatics Methods for Mass

Spectrometry-Based Proteomics Data Analysis.= International Journal of Molecular

Sciences 21 (8): 2873. https://doi.org/10.3390/ijms21082873.

Collette, Andrew. 2013. Python and HDF5. O9Reilly.

Cox, Jürgen, Marco Y. Hein, Christian A. Luber, Igor Paron, Nagarjuna Nagaraj, and Matthias

Mann. 2014. <Accurate Proteome-Wide Label-Free Quantification by Delayed

Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ.= Molecular &

Cellular Proteomics 13 (9): 2513326. https://doi.org/10.1074/mcp.M113.031591.

Cox, Jürgen, and Matthias Mann. 2008. <MaxQuant Enables High Peptide Identification Rates,

Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification.=

Nature Biotechnology 26 (12): 1367372. https://doi.org/10.1038/nbt.1511.

Craig, Robertson, and Ronald C. Beavis. 2003. <A Method for Reducing the Time Required to

Match Protein Sequences with Tandem Mass Spectra.= Rapid Communications in Mass

Spectrometry 17 (20): 2310316. https://doi.org/10.1002/rcm.1198.

Deutsch, Eric W., Attila Csordas, Zhi Sun, Andrew Jarnuczak, Yasset Perez-Riverol, Tobias

Ternent, David S. Campbell, et al. 2017. <The ProteomeXchange Consortium in 2017:

Supporting the Cultural Change in Proteomics Public Data Deposition.= Nucleic Acids

Research 45 (D1): D110031106. https://doi.org/10.1093/nar/gkw936.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

22

Folk, Mike, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. <An

Overview of the HDF5 Technology Suite and Its Applications.= In Proceedings of the

EDBT/ICDT 2011 Workshop on Array Databases - AD 911, 36347. Uppsala, Sweden: ACM

Press. https://doi.org/10.1145/1966895.1966900.

Fondrie, William E., and William S. Noble. 2021. <Mokapot: Fast and Flexible Semisupervised

Learning for Peptide Detection.= Journal of Proteome Research, February,

acs.jproteome.0c01010. https://doi.org/10.1021/acs.jproteome.0c01010.

Godoy, Lyris M. F. de, Jesper V. Olsen, Jürgen Cox, Michael L. Nielsen, Nina C. Hubner, Florian

Fröhlich, Tobias C. Walther, and Matthias Mann. 2008. <Comprehensive Mass-

Spectrometry-Based Proteome Quantification of Haploid versus Diploid Yeast.= Nature 455

(7217): 1251354. https://doi.org/10.1038/nature07341.

Goloborodko, Anton A., Lev I. Levitsky, Mark V. Ivanov, and Mikhail V. Gorshkov. 2013.

<Pyteomics4a Python Framework for Exploratory Data Analysis and Rapid Software

Prototyping in Proteomics.= Journal of The American Society for Mass Spectrometry 24 (2):

30134. https://doi.org/10.1007/s13361-012-0516-6.

Gupta, Nitin, and Pavel A. Pevzner. 2009. <False Discovery Rates of Protein Identifications: A

Strike against the Two-Peptide Rule.= Journal of Proteome Research 8 (9): 4173381.

https://doi.org/10.1021/pr9004794.

Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,

David Cournapeau, Eric Wieser, et al. 2020. <Array Programming with NumPy.= Nature

585 (7825): 357362. https://doi.org/10.1038/s41586-020-2649-2.

Käll, Lukas, Jesse D Canterbury, Jason Weston, William Stafford Noble, and Michael J MacCoss.

2007. <Semi-Supervised Learning for Peptide Identification from Shotgun Proteomics

Datasets.= Nature Methods 4 (11): 923325. https://doi.org/10.1038/nmeth1113.

Keller, Andrew, Alexey I. Nesvizhskii, Eugene Kolker, and Ruedi Aebersold. 2002. <Empirical

Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and

Database Search.= Analytical Chemistry 74 (20): 5383392.

https://doi.org/10.1021/ac025747h.

Kluyver, Thomas, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,

Jonathan Frederic, Kyle Kelley, et al. 2016. <Jupyter Notebooks - a Publishing Format for

Reproducible Computational Workflows.= In Positioning and Power in Academic

Publishing: Players, Agents and Agendas, edited by Fernando Loizides and Birgit Scmidt,

87390. IOS Press. https://eprints.soton.ac.uk/403913/.

Knuth, D. E. 1984. <Literate Programming.= The Computer Journal 27 (2): 973111.

https://doi.org/10.1093/comjnl/27.2.97.

Kulak, Nils A, Garwin Pichler, Igor Paron, Nagarjuna Nagaraj, and Matthias Mann. 2014.

<Minimal, Encapsulated Proteomic-Sample Processing Applied to Copy-Number

Estimation in Eukaryotic Cells.= Nature Methods 11 (3): 319324.

https://doi.org/10.1038/nmeth.2834.

Lam, Siu Kwan, Antoine Pitrou, and Stanley Seibert. 2015. <Numba: A LLVM-Based Python JIT

Compiler.= In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure

in HPC - LLVM 915, 136. Austin, Texas: ACM Press.

https://doi.org/10.1145/2833157.2833162.

Levitsky, Lev I., Joshua A. Klein, Mark V. Ivanov, and Mikhail V. Gorshkov. 2019. <Pyteomics

4.0: Five Years of Development of a Python Proteomics Framework.= Journal of Proteome

Research 18 (2): 709314. https://doi.org/10.1021/acs.jproteome.8b00717.

MacLean, Brendan, Daniela M. Tomazela, Nicholas Shulman, Matthew Chambers, Gregory L.

Finney, Barbara Frewen, Randall Kern, David L. Tabb, Daniel C. Liebler, and Michael J.

MacCoss. 2010. <Skyline: An Open Source Document Editor for Creating and Analyzing

Targeted Proteomics Experiments.= Bioinformatics 26 (7): 966368.

https://doi.org/10.1093/bioinformatics/btq054.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

23

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. https://www.tensorflow.org/.

Meier, Florian, Philipp E. Geyer, Sebastian Virreira Winter, Juergen Cox, and Matthias Mann.

2018. <BoxCar Acquisition Method Enables Single-Shot Proteomics at a Depth of 10,000

Proteins in 100 Minutes.= Nature Methods 15 (6): 440348. https://doi.org/10.1038/s41592-

018-0003-5.

Meyer, Jesse G. 2021. <Deep Learning Neural Network Tools for Proteomics.= Cell Reports

Methods 1 (2): 100003. https://doi.org/10.1016/j.crmeth.2021.100003.

Muntel, Jan, Tejas Gandhi, Lynn Verbeke, Oliver M. Bernhardt, Tobias Treiber, Roland Bruderer,

and Lukas Reiter. 2019. <Surpassing 10 000 Identified and Quantified Proteins in a Single

Run by Optimizing Current LC-MS Instrumentation and Data Analysis Strategy.=

Molecular Omics 15 (5): 348360. https://doi.org/10.1039/C9MO00082H.

Nesvizhskii, Alexey I. 2010. <A Survey of Computational Methods and Error Rate Estimation

Procedures for Peptide and Protein Identification in Shotgun Proteomics.= Journal of

Proteomics 73 (11): 209232123. https://doi.org/10.1016/j.jprot.2010.08.009.

Nesvizhskii, Alexey I., and Ruedi Aebersold. 2005. <Interpretation of Shotgun Proteomic Data.=

Molecular & Cellular Proteomics 4 (10): 1419340. https://doi.org/10.1074/mcp.R500012-

MCP200.

Nesvizhskii, Alexey I, Olga Vitek, and Ruedi Aebersold. 2007. <Analysis and Validation of

Proteomic Data Generated by Tandem Mass Spectrometry.= Nature Methods 4 (10): 7873

97. https://doi.org/10.1038/nmeth1088.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, et al. 2019. <PyTorch: An Imperative Style, High-Performance Deep

Learning Library.= In Advances in Neural Information Processing Systems 32, edited by H.

Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R.

Garnett, 8024335. Curran Associates, Inc. http://papers.neurips.cc/paper/9015-pytorch-an-

imperative-style-high-performance-deep-learning-library.pdf.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, et al. 2011. <Scikit-Learn: Machine Learning in Python.=

Journal of Machine Learning Research 12 (85): 2825330.

Rosenberger, George, Isabell Bludau, Uwe Schmitt, Moritz Heusel, Christie L Hunter, Yansheng

Liu, Michael J MacCoss, et al. 2017. <Statistical Control of Peptide and Protein Error Rates

in Large-Scale Targeted Data-Independent Acquisition Analyses.= Nature Methods 14 (9):

921327. https://doi.org/10.1038/nmeth.4398.

Röst, Hannes L, George Rosenberger, Pedro Navarro, Ludovic Gillet, Saaa M Miladinovi�, Olga T

Schubert, Witold Wolski, et al. 2014. <OpenSWATH Enables Automated, Targeted

Analysis of Data-Independent Acquisition MS Data.= Nature Biotechnology 32 (3): 219323.

https://doi.org/10.1038/nbt.2841.

Santos, Alberto, Ana R. Colaço, Annelaura B. Nielsen, Lili Niu, Philipp E. Geyer, Fabian Coscia,

Nicolai J Wewer Albrechtsen, Filip Mundt, Lars Juhl Jensen, and Matthias Mann. 2020.

<Clinical Knowledge Graph Integrates Proteomics Data into Clinical Decision-Making.=

Preprint. Bioinformatics. https://doi.org/10.1101/2020.05.09.084897.

Savitski, Mikhail M., Mathias Wilhelm, Hannes Hahne, Bernhard Kuster, and Marcus Bantscheff.

2015. <A Scalable Approach for Protein False Discovery Rate Estimation in Large

Proteomic Data Sets.= Molecular & Cellular Proteomics 14 (9): 239432404.

https://doi.org/10.1074/mcp.M114.046995.

SciPy 1.0 Contributors, Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, et al. 2020. <SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python.= Nature Methods 17 (3): 261372. https://doi.org/10.1038/s41592-

019-0686-2.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

24

Senko, Michael W., Steven C. Beu, and Fred W. McLaffertycor. 1995. <Determination of

Monoisotopic Masses and Ion Populations for Large Biomolecules from Resolved Isotopic

Distributions.= Journal of the American Society for Mass Spectrometry 6 (4): 229333.

https://doi.org/10.1016/1044-0305(95)00017-8.

Teleman, Johan, Aakash Chawade, Marianne Sandin, Fredrik Levander, and Johan Malmström.

2016. <Dinosaur: A Refined Open-Source Peptide MS Feature Detector.= Journal of

Proteome Research 15 (7): 2143351. https://doi.org/10.1021/acs.jproteome.6b00016.

Teleman, Johan, Hannes L Röst, George Rosenberger, Uwe Schmitt, Lars Malmström, Johan

Malmström, and Fredrik Levander. 2015. <DIANA4Algorithmic Improvements for

Analysis of Data-Independent Acquisition MS Data.= Bioinformatics 31 (4): 555362.

https://doi.org/10.1093/bioinformatics/btu686.

The, Matthew, Michael J. MacCoss, William S. Noble, and Lukas Käll. 2016. <Fast and Accurate

Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.=

Journal of The American Society for Mass Spectrometry 27 (11): 1719327.

https://doi.org/10.1007/s13361-016-1460-7.

Torun, Furkan M., Sebastian Virreira Winter, Sophia Doll, Felix M. Riese, Artem Vorobyev,

Johannes B. Mueller-Reif, Philipp E. Geyer, and Maximilian T. Strauss. 2021. <Transparent

Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics

Data.= Preprint. Biochemistry. https://doi.org/10.1101/2021.03.05.434053.

Tyanova, Stefka, Tikira Temu, Pavel Sinitcyn, Arthur Carlson, Marco Y Hein, Tamar Geiger,

Matthias Mann, and Jürgen Cox. 2016. <The Perseus Computational Platform for

Comprehensive Analysis of (Prote)Omics Data.= Nature Methods 13 (9): 731340.

https://doi.org/10.1038/nmeth.3901.

Välikangas, Tommi, Tomi Suomi, and Laura L. Elo. 2017. <A Comprehensive Evaluation of

Popular Proteomics Software Workflows for Label-Free Proteome Quantification and

Imputation.= Briefings in Bioinformatics, May. https://doi.org/10.1093/bib/bbx054.

Vizcaíno, Juan A, Eric W Deutsch, Rui Wang, Attila Csordas, Florian Reisinger, Daniel Ríos, José

A Dianes, et al. 2014. <ProteomeXchange Provides Globally Coordinated Proteomics Data

Submission and Dissemination.= Nature Biotechnology 32 (3): 223326.

https://doi.org/10.1038/nbt.2839.

Wen, Bo, Wen0Feng Zeng, Yuxing Liao, Zhiao Shi, Sara R. Savage, Wen Jiang, and Bing Zhang.

2020. <Deep Learning in Proteomics.= PROTEOMICS 20 (21322): 1900335.

https://doi.org/10.1002/pmic.201900335.

Wenger, Craig D., and Joshua J. Coon. 2013. <A Proteomics Search Algorithm Specifically

Designed for High-Resolution Tandem Mass Spectra.= Journal of Proteome Research 12

(3): 1377386. https://doi.org/10.1021/pr301024c.

Wilhelm, Mathias, Marc Kirchner, Judith A.J. Steen, and Hanno Steen. 2012. <Mz5: Space- and

Time-Efficient Storage of Mass Spectrometry Data Sets.= Molecular & Cellular Proteomics

11 (1): O111.011379. https://doi.org/10.1074/mcp.O111.011379.

Zeng, Wen-Feng. 2021. Jalew188/PyRawDataReader: PyRawDataReader v0.1 (version v0.1).

Zenodo. https://doi.org/10.5281/ZENODO.5053708.

Zhang, Fangfei, Weigang Ge, Guan Ruan, Xue Cai, and Tiannan Guo. 2020. <Data0Independent

Acquisition Mass Spectrometry0Based Proteomics and Software Tools: A Glimpse in

2020.= PROTEOMICS 20 (17318): 1900276. https://doi.org/10.1002/pmic.201900276.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted July 26, 2021. ; https://doi.org/10.1101/2021.07.23.453379doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.23.453379
http://creativecommons.org/licenses/by/4.0/

