

1 **Title: A Lethal Genetic Incompatibility between Naturally Hybridizing Species in**
2 **Mitochondrial Complex I**

3

4 **Authors:** Benjamin M. Moran^{1,2*}, Cheyenne Y. Payne^{1,2}, Daniel L. Powell^{1,2}, Erik N. K.
5 Iverson³, Shreya M. Banerjee¹, Angel Madero¹, Theresa R. Gunn¹, Quinn K. Langdon¹, Fang
6 Liu⁴, Rowan Matney⁴, Kratika Singhal⁴, Ryan D. Leib⁴, Osvaldo Hernandez-Perez², Russell
7 Corbett-Detig^{5,6}, Judith Frydman^{1,7}, Manfred Schartl^{8,9}, Justin C. Havird³, Molly Schumer^{1,2,10*}

8

9 **Affiliations:**

10 ¹Department of Biology, Stanford University, Stanford, CA, USA

11 ²Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo,
12 Mexico

13 ³Department of Integrative Biology, University of Texas, Austin, TX, USA

14 ⁴Stanford University Mass Spectrometry Core, Stanford University, Stanford, CA, USA

15 ⁵Genomics Institute, University of California, Santa Cruz, CA, USA

16 ⁶Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA

17 ⁷Department of Genetics, Stanford University, Stanford, CA, USA

18 ⁸The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666

19 ⁹Developmental Biochemistry, Biozentrum, University of Würzburg, 97070 Würzburg, Germany

20 ¹⁰Hanna H. Gray Fellow, Howard Hughes Medical Institute, Stanford, CA, USA

21

22 *Correspondence: benmoran@stanford.edu, schumer@stanford.edu

23 **Abstract**

24

25 The evolution of reproductive barriers is the first step in the formation of new species and
26 can help us understand the diversification of life on Earth. These reproductive barriers often take
27 the form of “hybrid incompatibilities,” where genes derived from two different species no longer
28 interact properly. Theory predicts that hybrid incompatibilities involving multiple genes should
29 be common and that rapidly evolving genes will be more likely to cause incompatibilities, but
30 there has been sparse empirical data to evaluate these predictions. Here, we describe a
31 mitonuclear incompatibility involving three genes within respiratory Complex I in naturally
32 hybridizing swordtail fish species. Individuals with specific mismatched protein combinations
33 fail to complete embryonic development while those heterozygous for the incompatibility have
34 reduced function of Complex I and unbalanced representation of parental alleles in the
35 mitochondrial proteome. We document the evolutionary history of the genes involved and
36 localize the protein-protein interactions most likely to contribute to the incompatibility. This
37 work thus provides the first glimpse into the genetic architecture, physiological impacts, and
38 evolutionary origin of a multi-gene incompatibility impacting naturally hybridizing species.

39

40

41 **Introduction**

42

43 Biologists have long been fascinated by the question of how new species are formed and
44 what mechanisms maintain isolation between them. One key factor in the formation and
45 maintenance of new species is the emergence of genetic incompatibilities that reduce viability or
46 fertility in hybrids. When species diverge from each other, they accumulate unique sets of
47 mutations¹. As originally described by the Dobzhansky-Müller model of hybrid incompatibility
48 (DMI model^{2,3}), when these mutations are brought together in hybrids, they may interact poorly,
49 given that they have never been tested against one another by selection. Due to the technical
50 challenges of identifying these interactions⁴, only a dozen genes involved in hybrid
51 incompatibilities have been precisely mapped⁵ and exploration of the functional and evolutionary
52 causes of hybrid incompatibilities has been limited to a small number of cases in model
53 organisms⁴.

54 This knowledge gap leaves key predictions about the genetic architecture of hybrid
55 incompatibilities and the evolutionary processes that drive their emergence untested. For one,
56 theory suggests that incompatibilities should be more common within dense gene networks, both
57 because the number of potentially incompatible genotypes explodes as the complexity of the
58 genetic interaction increases and because genes involved in such interactions are expected to be
59 tightly co-evolving^{6,7}. Consistent with this prediction, mutagenesis experiments have highlighted
60 the sensitivity of multi-protein interactions to changes in any of their components⁶. However,
61 genetic interactions are notoriously difficult to detect empirically except in systems with
62 especially powerful genetic tools⁸, and this problem is exacerbated with complex genetic
63 interactions^{9,10}. Such technical challenges may explain their rarity in the empirical literature⁶ (but

64 see^{8,11-13}). Another largely untested prediction is that rapid molecular evolution will increase the
65 rate at which incompatibilities accumulate between species^{4,5,14}. While several incompatibilities
66 identified to date show signatures of positive selection, it is unclear how unusual rates of protein
67 evolution are in genes involved in hybrid incompatibilities relative to the genomic
68 background^{5,14}.

69 Another open question is the degree to which the genes that become involved in hybrid
70 incompatibilities are predictable from their molecular or evolutionary properties. The
71 mitochondrial genome, in particular, has been proposed as a hotspot for the accumulation of
72 genetic incompatibilities^{15,16}. Mitochondria are essential for energy production in nearly all
73 eukaryotic organisms¹⁷. In addition to this critical role, the particularities of mitochondrial
74 inheritance and function might drive the rapid evolution of hybrid incompatibilities between
75 species. Uniparental inheritance of mitochondria is predominant in animals, plants, and some
76 fungi¹⁸, creating the potential for sexually antagonistic selection^{19,20}. In many animals,
77 mitochondrial genomes also experience elevated mutation rates relative to the nuclear genome
78 which, combined with reduced effective population size and a lack of recombination, results in
79 up to $\sim 25\times$ higher mitochondrial substitution rates in some species²¹⁻²³. At the same time, nuclear
80 and mitochondrial gene products must directly interact with each other in key steps of ATP
81 synthesis, increasing the likelihood of coevolution between these genomes^{24,25}. These molecular
82 and evolutionary factors suggest that interactions between mitochondrial- and nuclear-encoded
83 proteins could play an outsized role in the emergence of hybrid incompatibilities¹⁵.

84 Although few studies have successfully identified the individual genes underlying hybrid
85 incompatibilities^{4,5}, crosses in numerous species have provided indirect evidence for the
86 prevalence of mitonuclear incompatibilities, since hybrid viability often depends on the identity

87 of the maternal species^{26–29}. However, the field has struggled to move beyond these coarse-scale
88 patterns, especially in non-model systems where large mapping experiments can be infeasible.
89 Despite predictions that mitonuclear incompatibilities play a disproportionate role in the
90 evolution of reproductive isolation, few studies have mapped mitonuclear incompatibilities to the
91 single gene level^{30–33} and none of those identified to date have been studied in species that
92 naturally hybridize.

93 As we begin to identify the individual genes underlying hybrid incompatibilities, the next
94 frontier is evaluating the processes that drive their evolution. Here, we use an integrative
95 approach to precisely map the genetic basis of a lethal mitonuclear hybrid incompatibility in
96 swordtail fish and to uncover its evolutionary history. Sister species *Xiphophorus birchmanni*
97 and *X. malinche* began hybridizing in the last ~100 generations in multiple river systems³⁴ after
98 premating barriers were disrupted by habitat disturbance³⁵, and are a powerful system to study
99 the emergence of hybrid incompatibilities in young species. Despite their recent divergence³⁶
100 (~250,000 generations; 0.5% divergence per basepair), some hybrids between *X. birchmanni* and
101 *X. malinche* experience strong selection against incompatibilities^{36,37}. One incompatibility
102 causing hybrid melanoma has been previously mapped in this system and population genetic
103 patterns suggest that dozens may be segregating in natural hybrid populations^{36–39}. Moreover, the
104 ability to generate controlled crosses^{40,41} and the development of high-quality genomic
105 resources^{39,42} makes this system particularly tractable for identifying hybrid incompatibilities that
106 impact natural populations and characterizing their evolution. Leveraging data from controlled
107 laboratory crosses and natural hybrid zones, we pinpoint two *X. birchmanni* genes that are lethal
108 when mismatched with the *X. malinche* mitochondria in hybrids, explore the developmental and
109 physiological effects of this incompatibility, and trace its evolutionary history.

110 **Admixture Mapping Reveals a Lethal Mitonuclear Incompatibility**

111

112 To identify loci under selection in *X. birchmanni* × *X. malinche* hybrids, we generated
113 ~1X low-coverage whole-genome sequence data for 943 individuals from an F₂ laboratory cross
114 and 359 wild-caught hybrid adults, and applied a hidden Markov model to data at 629,661
115 ancestry-informative sites along the genome in order to infer local ancestry (~1 informative site
116 per kb^{38,43}; Methods, Supplementary Information 1.1.1-1.1.4). Using these results, we found
117 evidence for a previously unknown incompatibility between the nuclear genome of *X.*
118 *birchmanni* and the mitochondrial genome of *X. malinche* (Supplementary Information 1.1.5-
119 1.1.11). Our first direct evidence for this incompatibility came from controlled laboratory crosses
120 (Methods, Supplementary Information 1.1.1). Because the cross is largely unsuccessful in the
121 opposite direction, all lab-bred hybrids were the offspring of F₁ hybrids generated between *X.*
122 *malinche* females and *X. birchmanni* males and harbored a mitochondrial haplotype derived from
123 the *X. malinche* parent species. Offspring of F₁ intercrosses are expected to derive on average
124 50% of their genome from each parent species. This expectation is satisfied genome-wide and
125 locally along most chromosomes in F₂ hybrids (on average 50.3% *X. malinche* ancestry; Fig. S1).
126 However, we detected six segregation distorters genome-wide⁴¹, with the most extreme signals
127 falling along a 6.5 Mb block of chromosome 13 and an 4.9 Mb block of chromosome 6 (Fig. 1A;
128 Fig. 1D).

129 Closer examination of genotypes in the chromosome 13 region showed that almost none
130 of the surviving individuals harbored homozygous *X. birchmanni* ancestry in a 3.75 Mb
131 subregion (Fig. 1C; Fig. S2; 0.1% observed vs 25% expected). This pattern is unexpected even in
132 the case of a lethal nuclear-nuclear incompatibility (where simulations indicate that we should

133 recover homozygous *X. birchmanni* ancestry in ~10% of surviving individuals; Supplementary
134 Information 1.1.1), but is consistent with a lethal mitonuclear incompatibility. Using
135 approximate Bayesian computation (ABC) approaches we asked what strength of selection
136 against *X. birchmanni* ancestry in this region was consistent with the genotypes and ancestry
137 deviations observed. We estimated posterior distributions of selection and dominance
138 coefficients and inferred that selection on this genotype in F₂s is largely recessive and essentially
139 lethal (maximum a posteriori estimate $h = 0.12$ and $s = 0.996$, 95% credible interval $h = 0.010$ -
140 0.194 and $s = 0.986-0.999$; Fig. 1B; Fig. S3; Methods; Supplementary Information 1.2.1-1.2.2).

141 The degree of segregation distortion observed in F₂ individuals on chromosome 6 is also
142 surprising (Fig. 1D). Only 3% of individuals harbor homozygous *X. birchmanni* ancestry in this
143 region (compared to 0.1% on chromosome 13 and 25% on average at other loci across the
144 genome; Fig 1F). The frequency of homozygous *X. birchmanni* ancestry at the center of
145 chromosome 6 is lower than expected in the absence of selection and lower than expected for a
146 nuclear-nuclear hybrid incompatibility (Supplementary Information 1.1.1). ABC approaches
147 indicate that selection on homozygous *X. birchmanni* ancestry on chromosome 6 is also severe
148 (maximum a posteriori estimate $s = 0.91$, 95% credible interval 0.87-0.94; $h = 0.09$, 95%
149 credible interval 0.01-0.21; Fig. 1E, Fig. S3, Supplementary Information 1.2.2). Thus, our F₂
150 data indicate that homozygous *X. birchmanni* ancestry at either chromosome 13 or chromosome
151 6 is nearly lethal in hybrids with *X. malinche* mitochondria (Fig. 1H).

152 To formally test for the presence of a mitonuclear incompatibility involving chromosome
153 13 and chromosome 6, or elsewhere in the genome, we leveraged data from natural hybrid
154 populations. Most naturally occurring *X. birchmanni* × *malinche* hybrid populations are fixed for
155 mitochondrial haplotypes from one parental species (Supplementary Information 1.1.2, 1.1.6).

156 However, a few segregate for the mitochondrial genomes of both parental types, and we focused
157 on one such population (the “Calnali Low” population, hereafter the admixture mapping
158 population). Admixture mapping for associations between nuclear genotype and mitochondrial
159 ancestry (after adjusting for expected covariance due to genome-wide ancestry³⁷) revealed two
160 genome-wide significant peaks and one peak that approached genome-wide significance (Fig.
161 1G, Table S1-S3). The strongest peak of association spanned approximately 77 kb and fell within
162 the region of chromosome 13 identified using F₂ crosses (Fig. 1G). This peak was also replicated
163 in another hybrid population (Fig. S4; Methods, Supplementary Information 1.1.5) and contains
164 only three genes: the NADH dehydrogenase ubiquinone iron-sulfur protein 5 (*ndufs5*), E3
165 ubiquitin-protein ligase, and microtubule-actin cross-linking factor 1. Of these three genes,
166 *ndufs5* forms a protein complex with mitochondrially encoded proteins, which along with other
167 evidence implicates it as one of the nuclear components of the mitonuclear incompatibility (Fig.
168 1C; see Supplementary Information 1.1.8 for analysis of other genes).

169 Analysis of three natural hybrid populations that had fixed the mitochondrial haplotype of
170 one of the parental species (Fig. S5) confirmed that this region on chromosome 13 is under
171 selection in natural hybrid populations, with the strongest signal of selection localizing precisely
172 to the same three genes found under the admixture mapping peak (Fig. S6A; Supplementary
173 Information 1.1.6). Moreover, comparing genotypes and phenotypes in siblings allowed us to
174 exclude maternal effects as a driver of the chromosome 13 signal (Supplementary Information
175 1.1.7), and we ruled out the possibility that other confounding factors could generate the
176 observed patterns (Supplementary Information 1.1.9).

177 We also identified a peak on chromosome 6 that approached genome-wide significance
178 (Fig. 1G; Table S2; Supplementary Information 1.1.10) and fell precisely within the segregation

179 distortion region previously mapped in F₂ hybrids (Fig. 1D; Supplementary Information 1.1.1).
180 This peak contained 20 genes including the mitochondrial Complex I gene *ndufa13* (Fig. S7-S8;
181 Methods, Supplementary Information 1.1.10). Depletion of non-mitochondrial parent ancestry at
182 *ndufa13* was unidirectional (Fig. 1F), consistent with selection acting only against the
183 combination of the *X. malinche* mitochondria with homozygous *X. birchmanni* ancestry at
184 *ndufa13* (see Supplementary Information 1.2.3-1.2.4). Genomic analyses in natural hybrid
185 populations reflect this asymmetry, with ancestry at *ndufa13* fixed in populations with the *X.*
186 *malinche* mitochondrial haplotype and segregating in populations with the *X. birchmanni*
187 mitochondrial haplotype (Fig. S6B).

188 Together, these results indicate that at least two *X. birchmanni* nuclear genes are
189 incompatible with the *X. malinche* mitochondria (Fig. 1H), although we discuss uncertainty
190 about the exact architecture of the interaction in Supplementary Information 1.1.11. These genes,
191 *ndufs5* and *ndufa13*, belong to a group of proteins and assembly factors that form respiratory
192 Complex I⁴⁴ (see Table S1 for locations of the 51 annotated Complex I genes in the *Xiphophorus*
193 genome). Complex I is the first component of the mitochondrial electron transport chain that
194 ultimately allows the cell to generate ATP. Both nuclear proteins interface with several
195 mitochondrially derived proteins at the core of the Complex I structure, pointing to the
196 possibility that physical interactions underlie this multi-gene mitonuclear incompatibility.

197

198 **Interactions with the *X. birchmanni* mitochondria**

199

200 Admixture mapping analysis also identified a strong peak of mitonuclear association on
201 chromosome 15, which we briefly discuss here and in Supplementary Information 1.1.10 and

202 1.2.1. This peak was associated with *X. birchmanni* mitochondrial ancestry (Fig. S9), indicating
203 that it has a distinct genetic architecture from the incompatibility involving the *X. malinche*
204 mitochondria and *X. birchmanni* *ndufs5* and *ndufa13*. Specifically, analysis of genotypes at the
205 admixture mapping peak indicates that the *X. birchmanni* mitochondria is incompatible with
206 homozygous *X. malinche* ancestry on chromosome 15 (Fig. S9). This region did not contain any
207 members of Complex I, but dozens of genes in this interval interact with known mitonuclear
208 genes (see Table S3; Supplementary Information 1.1.10), presenting an exciting direction for
209 future work. The fact that we detect incompatible interactions with both the *X. malinche* and *X.*
210 *birchmanni* mitochondria in our admixture mapping results underscores the importance of
211 mitonuclear interactions as “hotspots” for the evolution of hybrid incompatibilities¹⁵.

212

213 **Lethal Effect of Incompatibility in Early Development**

214

215 The incompatibility involving the *X. malinche* mitochondria appears to be lethal by the
216 time individuals reach adulthood. To investigate the developmental timing of the incompatibility,
217 we genotyped pregnant females from the admixture mapping population and recorded the
218 developmental stages of their embryos⁴⁵ (swordtails are livebearing fish; Methods). We focused
219 on the interaction between *X. malinche* mitochondria and homozygous *X. birchmanni* ancestry at
220 *ndufs5*, given that we did not detect an effect of ancestry at *ndufa13* on developmental stage (Fig.
221 S10-13; Supplementary Information 1.3.1). While developmental asynchrony is typically on the
222 scale of 0-2 days in pure species⁴⁶ (Supplementary Information 1.3.1), we observed much greater
223 variation in broods collected from the admixture mapping population where the mitochondrial
224 incompatibility is segregating (e.g. stages normally separated by 12 days of development found

225 in the same brood; Supplementary Information 1.3.1; Fig. 2A-B). Genotyping results revealed
226 that embryos with homozygous *X. birchmanni* ancestry at *ndufs5* and *X. malinche* mitochondria
227 are present at early developmental stages, but that these embryos failed to reach a phenotype
228 beyond that typical of the first seven days of gestation (the full length of gestation is 21-28 days
229 in *Xiphophorus*; Fig. 2A). Comparing siblings with incompatible and compatible genotypes
230 revealed a nearly universal lag in development between individuals with incompatible genotypes
231 and the most fully developed individual in their brood (Fig. 2B-D).

232 In contrast to other species, in *Xiphophorus* this developmental lag could itself cause
233 mortality, since embryos that do not complete embryonic development within the mother fail to
234 survive more than a few days after birth (Supplementary Information 1.3.1). Moreover,
235 *Xiphophorus* fry appear to be more sensitive to Complex I inhibition than zebrafish.
236 Pharmacological inhibition of Complex I in newborn *Xiphophorus* fry caused nearly 100%
237 lethality over 24 hours at concentrations that are not lethal to zebrafish fry on the same
238 timescale^{47,48} (Supplementary Information 1.3.2). Notably, zebrafish larvae with Complex I
239 inhibition also exhibit delayed or arrested development^{47,48}.

240

241 **Mitochondrial Biology in Viable Hybrids Heterozygous for the Incompatibility**

242

243 Our analysis of developing embryos indicates that individuals with the mitonuclear
244 incompatibility exhibit delayed or arrested embryonic development. While this developmental
245 delay phenotype may itself be sufficient to cause lethality, since premature birth is almost always
246 lethal in both parental *Xiphophorus* species and in hybrids (Table S4; Supplementary
247 Information 1.3.1), we were curious to investigate physiological impacts of the mitonuclear

248 incompatibility further. However, because individuals homozygous for the incompatibility
249 involving the *X. malinche* mitochondria generally do not complete embryonic development, it is
250 difficult to evaluate this question directly.

251 To begin to explore effects of the hybrid incompatibility on Complex I function *in vivo*,
252 albeit in a form that does not impact viability, we turned to F₁ hybrids between *X. birchmanni*
253 and *X. malinche* (Fig. 3A). Since F₁ hybrids that derive their mitochondria from *X. malinche* and
254 are heterozygous for ancestry at *ndufs5* and *ndufa13* are viable, we asked whether there was
255 evidence for compensatory nuclear or mitochondrial regulation that might be protective in F₁
256 hybrids. We found no evidence for significant differences in expression of *ndufs5* or *ndufa13*
257 (Supplementary Information 1.3.3; Fig. 3F, Fig. S14-15) or in mitochondrial copy number
258 (Supplementary Information 1.3.4; Fig. S16) in F₁ hybrids.

259 With no clear indication of a compensatory regulatory response, we reasoned that we
260 might be able to detect reduced mitochondrial Complex I function in hybrids heterozygous for
261 the incompatibility. To examine mitochondrial function in *X. birchmanni*, *X. malinche*, and
262 hybrids harboring the *X. malinche* mitochondria and heterozygous ancestry at *ndufs5* and
263 *ndufa13*, we quantified respiratory phenotypes in isolated mitochondria using a multiple
264 substrate, uncoupler, and inhibitor titration protocol with the Orophorus O2K respirometer (Fig.
265 S17; Methods, Supplementary Information 1.3.5). We found that Complex I efficiency was
266 somewhat lower in hybrids compared to the two parental species (Fig. 3B, Fig. S18, orthogonal
267 contrast $t = -2.53$, $P = 0.023$, $n = 7$ per genotype), although overall levels of mitochondrial
268 respiration were unchanged (Fig. 3C, orthogonal contrast $t = 0.078$, $P = 0.94$, $n = 7$ per genotype;
269 Supplementary Information 1.3.5). While Complex I efficiency can also be affected by the
270 integrity of the mitochondrial membrane, neither measurement of LEAK state respiration (Fig.

271 S18, $t = -1.213$, $P = 0.24$, $n = 7$; Supplementary Information 1.3.5) nor flow cytometry assays
272 (Fig. S19; Supplementary Information 1.3.6) showed differences in mitochondrial membrane
273 integrity between genotypes, pointing to reduced function of Complex I in hybrids. More
274 dramatic than differences in absolute Complex I efficiency was the time required for hybrids to
275 reach maximum Complex I-driven respiration, which was substantially longer than in either of
276 the parental species (orthogonal contrast $t = 4.303$, $P < 0.001$; Fig. 3D; Fig. S20). In contrast,
277 time to peak respiration after activation of Complex II was similar across genotypes (orthogonal
278 contrast $t = -0.705$, $P = 0.49$; Fig. 3E). Together, these data point to reduced function of Complex
279 I in heterozygous individuals, as well as possible physiological compensation by other
280 components in the respiratory pathway.

281 Given physiological evidence for some reduction in Complex I function in hybrids
282 heterozygous at *ndufs5* and *ndufa13*, we predicted that there might be an altered frequency of
283 protein complexes incorporating both *X. malinche* mitochondrial proteins and *X. birchmanni*
284 proteins at *ndufs5* and *ndufa13* in F₁ hybrids. To test this prediction, we took a mass
285 spectrometry based quantitative proteomics approach. We used stable isotope-labeled peptides to
286 distinguish between the *X. birchmanni* and *X. malinche* *ndufs5* and *ndufa13* peptides in
287 mitochondrial proteomes extracted from F₁ hybrids (see Methods, Supplementary Information
288 1.4.1-1.4.4). While native *ndufa13* peptides were too rare to quantify accurately, we found
289 consistent deviations from the expected 50-50 ratio of *X. birchmanni* to *X. malinche* peptides for
290 *ndufs5* in F₁ hybrids, with a significant overrepresentation of *ndufs5* derived from *X. malinche* in
291 the mitochondrial proteome (Fig. 3G; Fig. S21; Supplementary Information 1.4.5). Since we did
292 not observe allele-specific expression of *ndufs5* (Fig 3F; Supplementary Information 1.3.3), this
293 result is consistent with disproportionate degradation of *X. birchmanni*-derived *ndufs5* peptides

294 in the mitochondrial proteome or differences in translation of *ndufs5* transcripts derived from the
295 two species.

296

297 **Substitutions in two mitochondrial proteins contact *ndufs5* and *ndufa13***

298

299 While we can leverage high resolution admixture mapping to pinpoint the nuclear
300 components of the hybrid incompatibility, we cannot take this approach to distinguish among the
301 37 genes in the swordtail mitochondrial genome, which do not undergo meiotic recombination.

302 To investigate the possible mitochondrial partners of *ndufs5* and *ndufa13*, we therefore turned to
303 protein modeling, relying on high quality cryo-EM based structures^{49–51}. Although these
304 structures are only available for distant relatives of swordtails, the presence of the same set of
305 supernumerary Complex I subunits and high sequence similarity suggest that using these
306 structures is appropriate (Table S5-S6; Fig. S22-S24; Supplementary Information 1.4.6).

307 Barring a hybrid incompatibility generated by regulatory divergence (see Supplementary
308 Information 1.3.3), we expect hybrid incompatibilities to be driven by amino acid changes in
309 interacting proteins⁵². We used the program RaptorX⁵³ to generate predicted structures of *X.*
310 *birchmanni* and *X. malinche* *ndufs5*, *ndufa13*, and nearby Complex I mitochondrial and nuclear
311 genes, which we aligned to a mouse cryo-EM Complex I structure⁴⁹ (Fig. 4A; Fig. S22-S24;
312 Methods). Using these structures, we visualized amino acid substitutions between *X. birchmanni*
313 and *X. malinche* at the interfaces of *ndufs5*, *ndufa13* and mitochondrially encoded genes (Fig.
314 S25-S27). While there are dozens of substitutions in the four mitochondrially encoded genes that
315 are in close physical proximity to *ndufs5* or *ndufa13* (Fig. S22; *nd2*, *nd3*, *nd4l*, and *nd6*), there
316 are only five cases where amino acid substitutions in either nuclear gene are predicted to be close

317 enough to contact substitutions in any mitochondrial gene (Fig. 4A; see Fig. S26 for pairwise
318 visualizations of interacting proteins). One *ndufs5* substitution directly contacts a substitution in
319 *nd2* (Fig. 4B, Fig. S26), whereas another *ndufs5* substitution contacts a cluster of four *nd6*
320 substitutions (Fig. 4B, Fig. S26, Supplementary Information 1.4.6, Table S7). The same *nd6*
321 cluster is potentially in contact with one *ndufa13* substitution, and two other pairs of
322 substitutions, in *ndufa13* and *nd6* and *ndufs5* and *nd6* respectively, may also be close enough to
323 physically interact (Fig 4A, Fig. S26-27). While there is some uncertainty in the structure of one
324 region of *nd6* (Supplementary Information 1.4.6, Table S7), we found that the contact points
325 between *nd2*, *nd6*, *ndufs5*, and *ndufa13* were otherwise robust to a number of technical variables
326 (Supplementary Information 1.4.6). Based on these results, we predict that *nd2* and *nd6* are the
327 genes most likely to be involved in the mitochondrial component of the hybrid incompatibility
328 (Fig. 4A, 4B; Fig. S27-S30).

329

330 **Rapid evolution of Complex I proteins**

331

332 Theory predicts that hybrid incompatibilities are more likely to arise in rapidly evolving
333 genes^{4,5,14}. Consistent with this hypothesis, *ndufs5* is among the most rapidly evolving genes
334 genome-wide between *X. birchmanni* and *X. malinche* (Fig. 4C, 4D). Aligning the *ndufs5* coding
335 sequences of *X. birchmanni*, *X. malinche*, and twelve other swordtail species revealed that all
336 four amino acid substitutions that differentiate *X. birchmanni* and *X. malinche* at *ndufs5* were
337 derived on the *X. birchmanni* branch (Fig. 4C). Phylogenetic tests indicate that there has been
338 accelerated evolution of *ndufs5* on this branch (dN/dS > 99, N = 4, S = 0, codeml branch test $P =$
339 0.005, Fig. 4C). Similar patterns of rapid evolution are observed at *ndufa13*, which also showed

340 evidence for accelerated evolution in *X. birchmanni* (Fig. 4E; dN/dS = 1.2, N = 3, S = 1, codeml
341 branch test $P = 0.002$). While explicit tests for adaptive evolution at *ndufs5* and *ndufa13* could
342 not exclude a scenario of relaxed selection (Supplementary Information 1.5.1, 1.5.2), our
343 comparisons across phylogenetic scales highlight strong conservation in some regions of the
344 proteins and rapid turnover in others, complicating our interpretation of this test (Fig. S31).

345 Rapid evolution of *ndufs5* and *ndufa13* could be driven by coevolution with
346 mitochondrial substitutions, a mechanism that has been proposed to explain the outsized role of
347 the mitochondria in hybrid incompatibilities^{15,54}. Indeed, there is an excess of derived
348 substitutions in the *X. birchmanni* mitochondrial protein *nd6*, one of the proteins that physically
349 contacts *ndufs5* and *ndufa13* (Table S8; Fig. S28; codeml branch test $P = 0.005$). Moreover, a
350 number of the substitutions observed in both mitochondrial and nuclear genes are predicted to
351 have functional consequences (based on SIFT analysis, Supplementary Information 1.5.1; Table
352 S9), including ones likely to be in contact between *ndufs5*, *ndufa13*, *nd2*, and *nd6* (Fig. 4A, 4B;
353 Fig. S27). Such colocalization of substitutions predicted to affect protein function is precisely
354 what would be expected under classic models of hybrid incompatibility.

355

356 **Introgression of genes underlying mitonuclear incompatibility**

357

358 The presence of a mitonuclear incompatibility in *Xiphophorus* is especially intriguing,
359 given previous reports that mitochondrial genomes may have introgressed between species⁵⁵.
360 While *X. malinche* and *X. birchmanni* are sister species based on the nuclear genome, they are
361 mitochondrially divergent, with *X. malinche* and *X. cortezi* grouped as sister species based on the
362 mitochondrial phylogeny⁵⁵ (Fig. 5A; 5B). As we show, all *X. cortezi* mitochondria sequenced to

363 date are nested within *X. malinche* mitochondrial diversity (Fig. 5B; Supplementary Information
364 1.5.3-1.5.4), including the likely mitochondrial partners *nd2* and *nd6* (Fig. S32). Simulations
365 indicate that gene flow, rather than incomplete lineage sorting, drove replacement of the *X.*
366 *cortezi* mitochondria with the *X. malinche* sequence ($P < 0.002$ by simulation; Fig. 5C;
367 Supplementary Information 1.5.4).

368 The introgression of the mitochondrial genome from *X. malinche* into *X. cortezi* raises the
369 possibility that other Complex I genes may have co-introgressed⁵⁶. Indeed, the nucleotide
370 sequence for *ndufs5* is identical between *X. malinche* and *X. cortezi*, and the sequence of *ndufa13*
371 differs by a single synonymous mutation (although conservation of both genes is high throughout
372 *Xiphophorus*; Fig. S33-S34). Identical amino acid sequences at the genes underlying the hybrid
373 incompatibility between *X. malinche* and *X. birchmanni* suggest that *X. cortezi* and *X.*
374 *birchmanni* are likely to harbor the same mitonuclear incompatibility, as a result of ancient
375 introgression between *X. malinche* and *X. cortezi* (Fig. 5D; Supplementary Information 1.5.3-
376 1.5.5). This inference is supported by analysis of ancestry in two contemporary *X. birchmanni* \times
377 *X. cortezi* hybrid populations⁴¹, which reveals a significant depletion of non-mitochondrial parent
378 ancestry at *ndufs5* and *ndufa13* (Fig. 5E; Fig. S35; Supplementary Information 1.5.6). These
379 results are consistent with the mitonuclear incompatibility observed in *X. birchmanni* \times *X.*
380 *malinche* being active in *X. birchmanni* \times *X. cortezi* populations (see also ⁴¹). This exciting
381 finding hints that genes underlying hybrid incompatibilities can introgress together, transferring
382 incompatibilities between related species.

383

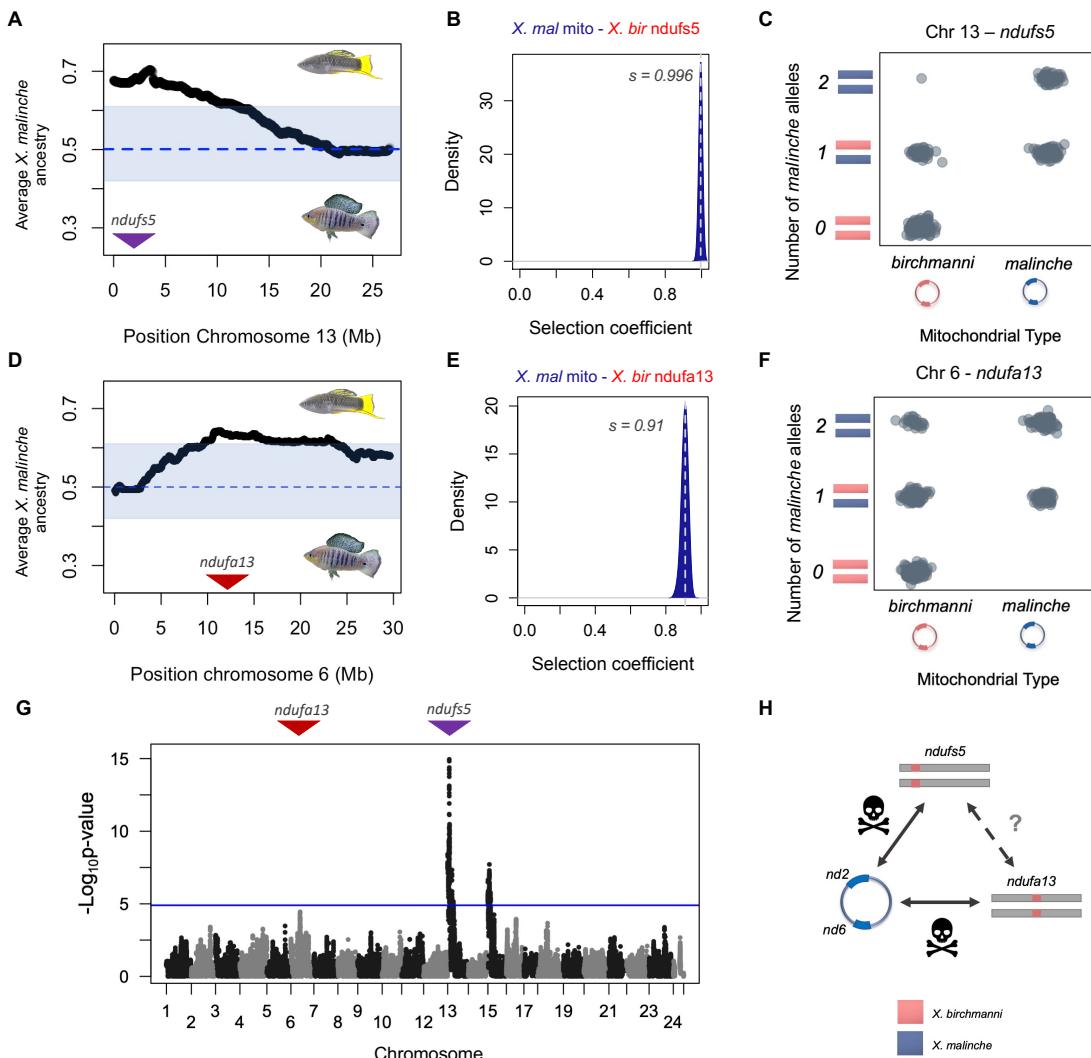
384

385 **Discussion**

386

387 What genetic and evolutionary forces drive the emergence of hybrid incompatibilities,
388 especially between closely related species? Theory predicts that hybrid incompatibilities
389 involving multiple genes should be common^{6,7}, but with few exceptions^{8,11–13}, they remain
390 virtually uncharacterized at the genic level⁶. Here, we identify a mitonuclear incompatibility that
391 involves at least three genes and causes hybrid lethality in lab and wild populations. The
392 mitonuclear incompatibility we map in naturally hybridizing species echoes predictions from
393 theory and studies in lab models^{8,11–13} that protein complexes may be a critical site of hybrid
394 breakdown.

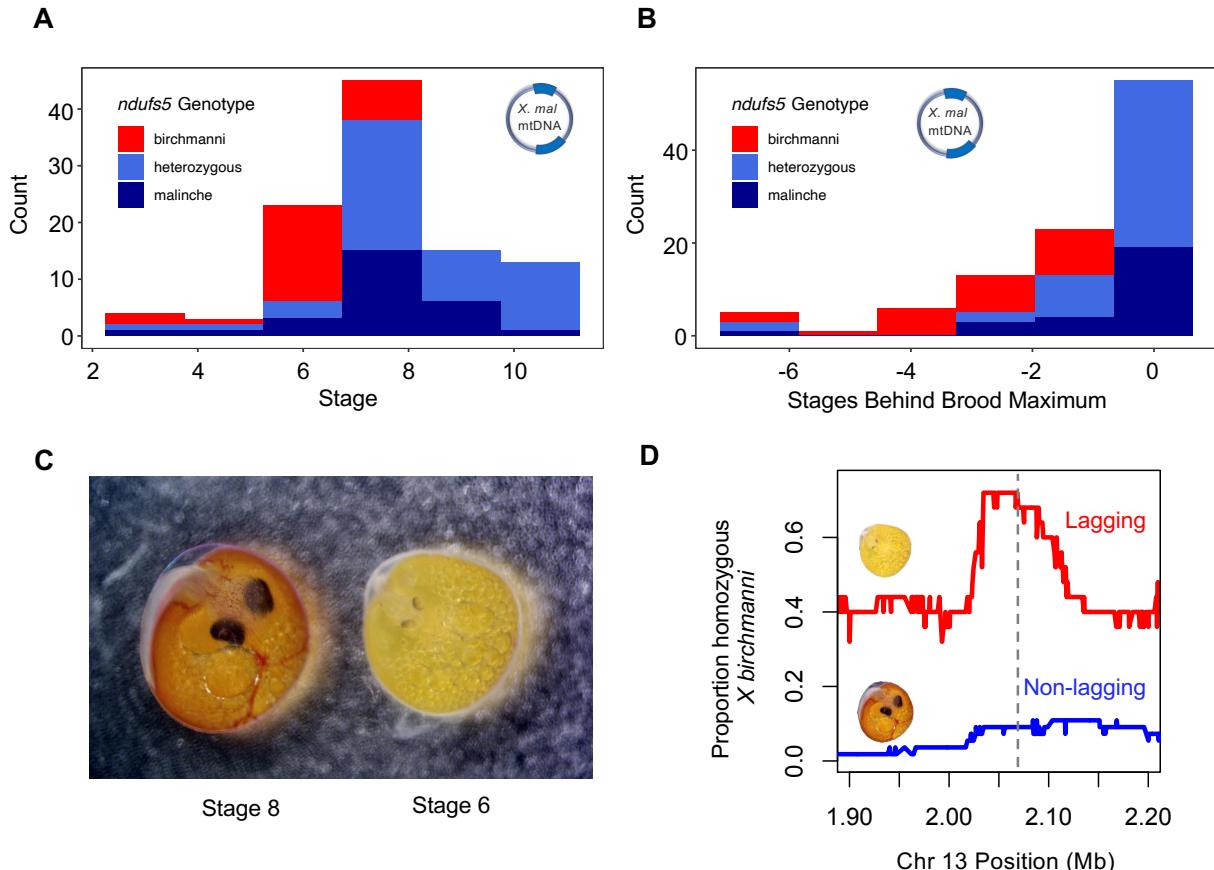
395 Researchers have proposed mitonuclear interactions as “hotspots” for the emergence of
396 hybrid incompatibilities, given that mitochondrial genomes often experience higher substitution
397 rates between species^{21–23}, yet must intimately interact with nuclear proteins to perform essential
398 cellular functions^{24,25}. Our findings support this prediction, identifying incompatible interactions
399 with both the *X. malinche* and *X. birchmanni* mitochondria. We also show that there has been
400 exceptionally rapid evolution in both mitochondrial and interacting nuclear genes in *X.*
401 *birchmanni*, which may have introduced mutations that are incompatible in hybrids (Fig. 4).


402 Whether driven by adaptation or some other mechanism, our findings support the hypothesis that
403 the coevolution of mitochondrial and nuclear genes could drive the overrepresentation of
404 mitonuclear interactions in hybrid incompatibilities^{24,25,54}. More broadly, our results are
405 consistent with predictions that rapidly evolving proteins are more likely to become involved in
406 hybrid incompatibilities than their slowly evolving counterparts^{4,5,14}.

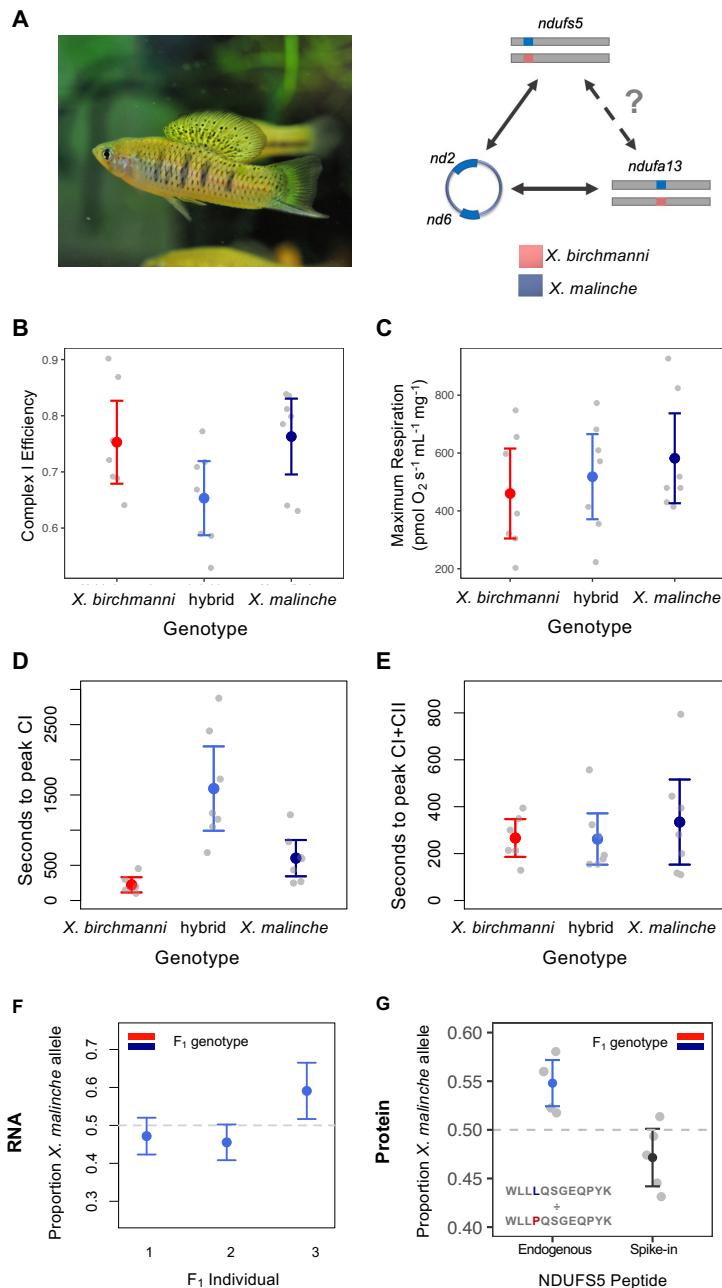
407 Characterizing the incompatibility across multiple scales of organization allowed us to
408 begin to explore the mechanisms through which it acts⁵⁷⁻⁵⁹. Our results suggest that hybrid
409 lethality is mediated in part through developmental delay of individuals with *X. malinche*
410 mitochondria and homozygous *X. birchmanni* ancestry at *ndufs5*. Among heterozygous
411 individuals, we detect physiological impacts on Complex I function, even though these
412 individuals escape the lethal effects of the incompatibility.

413 Finally, this mitonuclear incompatibility provides a new case in which the same genes are
414 involved in incompatibilities across multiple species^{39,60,61}. However, tracing the evolutionary
415 history of the genes that underlie it adds further complexity to this prediction: we found that
416 introgression has resulted in the transfer of genes underlying the incompatibility from *X.*
417 *malinche* to *X. cortezi*, and evidence from *X. birchmanni* × *X. cortezi* hybrid populations
418 indicates that the incompatibility is likely under selection in these populations as well. The
419 possibility that hybridization could transfer incompatibilities between species has not been
420 previously recognized, perhaps due to an underappreciation of the frequency of hybridization.
421 The importance of past hybridization in the structure of present reproductive barriers is a
422 promising area for future inquiry.

423


424

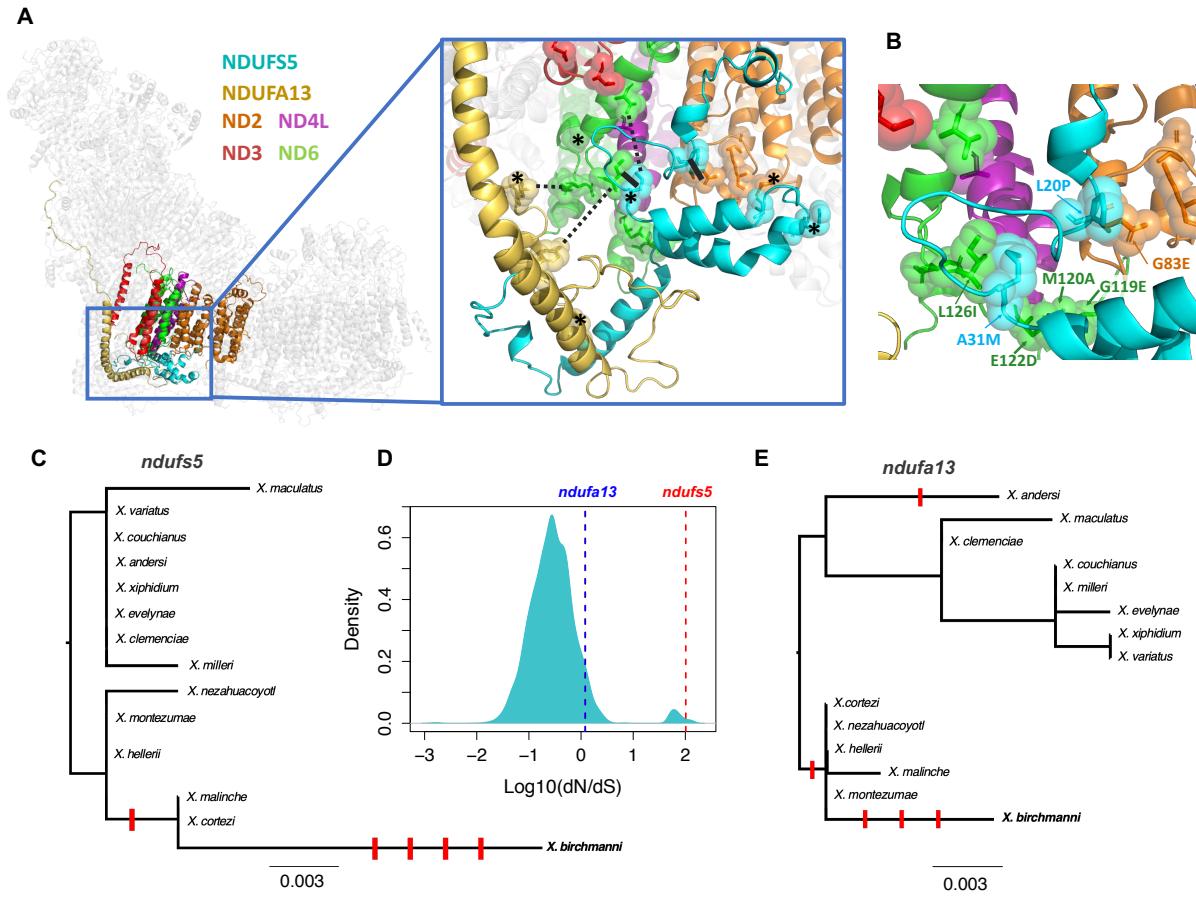
425


426 **Fig. 1 | Admixture mapping pinpoints a mitonuclear incompatibility in *Xiphophorus*.** (A) Average
 427 ancestry of F₂s on chromosome 13 reveals segregation distortion towards *X. malinche* ancestry across a
 428 large region of the chromosome. Blue envelope shows the 99% quantiles of *X. malinche* ancestry at all
 429 ancestry informative sites genome wide. Dashed line represents the expected *X. malinche* ancestry for this
 430 cross. Purple arrow points to the position of *ndufs5*. (B) Results of approximate Bayesian computation
 431 (ABC) simulations estimating the strength of selection on the *X. malinche* mitochondria when combined
 432 with *X. birchmanni* ancestry at *ndufs5*. Shown here is the posterior distribution from accepted
 433 simulations; the vertical line and inset indicates the maximum a posteriori estimate for the selection
 434 coefficient. (C) Observed genotype frequencies of different genotype combinations of *ndufs5*

435 (chromosome 13) and mitochondrial haplotypes in the admixture mapping population. **(D)** Average
436 ancestry of F_2 s on chromosome 6, reveals segregation distortion towards *X. malinche* ancestry across a
437 large region of the chromosome. Blue envelope and dashed line indicate 99% ancestry quantiles and
438 expected ancestry in the cross as in **(A)**, red arrow points to the position of *ndufa13*. **(E)** Results of
439 approximate Bayesian computation (ABC) simulations estimating the strength of selection on the
440 combination of *X. malinche* mitochondria with *X. birchmanni* *ndufa13*, as in **(B)**. **(F)** Observed genotype
441 frequencies of different genotype combinations of *ndufa13* (chromosome 6) and mitochondrial haplotypes
442 in the admixture mapping population. **(G)** Admixture mapping results for associations between nuclear
443 ancestry and mitochondrial haplotype in natural hybrids, controlling for genome-wide ancestry. Blue line
444 indicates the 10% false positive rate genome-wide significance threshold determined by simulations. The
445 peak visible on chromosome 15 is driven by interactions with the *X. birchmanni* mitochondria and an
446 unknown nuclear gene, and is discussed in Supplementary Information 1.1.10 and 1.2.1. **(H)** Schematic of
447 identified interactions with the *X. malinche* mitochondrial genome from our mapping data. We discuss
448 evidence for possible interactions between *ndufs5* and *ndufa13* (indicated by the dashed line) in
449 Supplementary Information 1.1.11.
450

451

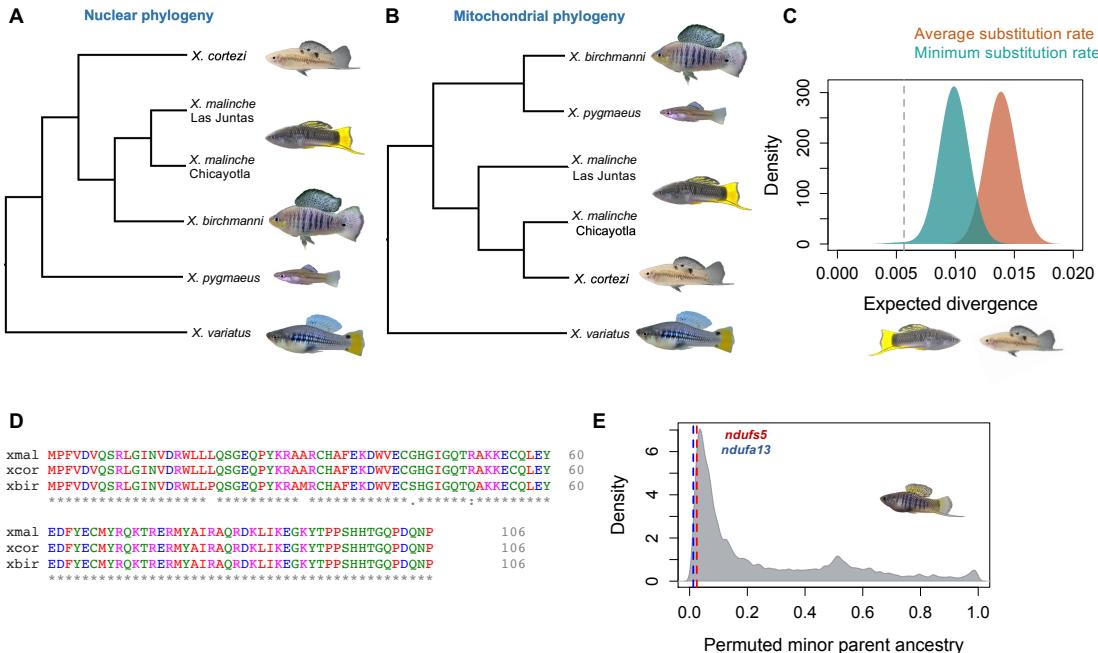
452 **Fig. 2 | Impact of the hybrid incompatibility on *Xiphophorus* hybrid embryos.** (A) Developmental
 453 stage and *ndufs5* genotypes of hybrid embryos with *X. malinche* mitochondria. (B) Lag in development of
 454 hybrid embryos with *X. malinche* mitochondria compared to the most developed embryo in their brood as
 455 a function of *ndufs5* genotype. (C) Siblings from the admixture mapping population at different
 456 developmental stages. (D) Frequency of homozygous *X. birchmanni* ancestry along chromosome 13 in
 457 embryos with *X. malinche* mitochondria that lagged their siblings in developmental stage by ≥ 1
 458 developmental stage (red) versus the frequency of homozygous *X. birchmanni* ancestry in embryos that
 459 did not exhibit developmental lag (blue, see Supplementary Information 1.1.7). Dashed line indicates the
 460 location of *ndufs5*. Note that only 69% of embryos with developmental lag have homozygous *X.*
 461 *birchmanni* in this region, indicating that there are other causes of this phenotype, either environmentally
 462 or elsewhere in the genome. For the same analysis of chromosomes 6 and 15, where we see no clear
 463 difference in average ancestry as a function of lag status, see Fig. S11-13.


464

465 **Fig. 3 | Physiological and proteomic phenotypes of viable heterozygotes harboring the hybrid**

466 **incompatibility.** In all panels, colored points and whiskers show the mean \pm 2 standard errors, and gray
 467 points show individual data. (A) Representative image and schematic of ancestry at loci involved in the
 468 incompatibility in an *X. birchmanni* \times *malinche* F₁ hybrid. Heterozygous hybrids avoid the lethal effects
 469 of the interaction between the *X. malinche* mitochondria and *X. birchmanni* ancestry at *ndufs5* and
 470 *ndufa13* (Supplementary Information 1.2.2). (B) Results of Orophorus O2K respirometer assay for adult *X.*

471 *birchmanni*, *X. malinche*, and hybrid individuals with *X. malinche* mitochondria and heterozygous
472 ancestry at *ndufs5* and *ndufa13* (n=7 per genotype) point to lower Complex I efficiency in hybrids. **(C)**
473 Maximum respiration rates during full O2K protocol as a function of genotype did not differ between
474 groups despite significant differences in Complex I efficiency. **(D)** Time to reach the maximum rate of
475 Complex I-driven respiration after the addition of ADP differed between hybrids and parental species.
476 Complex I-driven respiration begins with the addition of ADP, as the flow of electrons is previously
477 limited by the inability of Complex V to relieve the proton gradient in the absence of its substrate (see
478 Fig. S20 for example time-to-peak curves). **(E)** Time to reach the peak in Complex I- and Complex II-
479 driven respiration after the addition of succinate did not differ across genotypes. Complex II-driven
480 respiration begins with the addition of succinate, which is the electron donating substrate of Complex II.
481 **(F)** Allele-specific expression of *ndufs5* in three adult F₁ hybrids. **(G)** Results of quantitative mass
482 spectrometry analysis of *ndufs5* peptides in mitochondrial proteomes derived from five adult F₁ hybrids.
483 Data points show the proportion of area under the spectral curves contributed by the *X. malinche* allele in
484 a given individual. The left column shows results for endogenous peptides present in F₁s, the right column
485 shows results for the control where heavy-labeled standards of each peptide were spiked in. Inset shows
486 the identities of heavy-labeled peptides for each species.


487

488

489 **Fig. 4 | Predicted structures of *Xiphophorus* respiratory Complex I reveal interacting substitutions**
490 **at protein interfaces.** (A) *Xiphophorus* respiratory Complex I structures generated by RaptorX using
491 alignment to a template mouse cryo-EM structure. Colored protein structures include *ndufs5*, *ndufa13*,
492 and the four mitochondrially encoded *nd* genes in contact with *ndufs5* or *ndufa13*. Inset shows the surface
493 of contact between these genes. Solid black lines highlight two areas of close contact between
494 interspecific substitutions (alpha carbon distance \leq 10 Angstrom for all models), while dashed lines show
495 three additional areas in which there was weaker evidence for contact (side chain distance \leq 12 Angstrom
496 in at least one model). Asterisks denote residues with substitutions in *X. birchmanni* predicted to affect
497 protein function (Table S9). (B) Detailed view of interaction interface between *ndufs5*, *nd2*, and *nd6*.
498 Spheres highlight substitutions between *X. birchmanni* and *X. malinche*. For substitutions in close
499 proximity, the residues are labeled with letters denoting the *X. malinche* allele, the residue number, and

500 the *X. birchmanni* allele, respectively (see Supplementary Information 1.4.6 and Table S9 for details). (C)
501 Gene tree for *ndufs5* generated with RAxML, highlighting an excess of substitutions along the *X.*
502 *birchmanni* branch. Scale bar represents number of nucleotide substitutions per site. Derived non-
503 synonymous substitutions are indicated by red ticks along the phylogeny. Note that spacing between ticks
504 is arbitrary. (D) Distribution of $\text{Log}_{10} \text{dN/dS}$ between *X. birchmanni* and *X. malinche* across all nuclear
505 genes in the genome with values for *ndufs5* and *ndufa13* highlighted. (E) Gene tree for *ndufa13* generated
506 with RAxML, highlighting an excess of substitutions along the *X. birchmanni* branch (as in C).
507
508

509
510 **Fig. 5 | Phylogenetic analysis and ancestry mapping suggest that genes underlying the mitonuclear
511 incompatibility have introgressed from *X. malinche* into *X. cortezi*.** (A) Nuclear phylogeny of
512 *Xiphophorus* species, showing that *X. birchmanni* and *X. malinche* are sister species⁵⁵. (B) Phylogeny
513 constructed from whole mitochondrial genome sequences showing that *X. cortezi* mitochondria are nested
514 within *X. malinche* mitochondrial diversity. (C) Results of simulations modeling expected mitochondrial
515 divergence between *X. malinche* and *X. cortezi* in a scenario with no gene flow. Distributions represent
516 pairwise sequence divergence in two sets of simulations. The first set used the average mitochondrial
517 substitution rate observed between *Xiphophorus* species (red), and the second used the minimum
518 mitochondrial substitution rate observed (blue). The dotted line shows observed divergence between
519 mitochondrial haplotypes in *X. malinche* and *X. cortezi*, indicating that past mitochondrial introgression is
520 more consistent with the observed data than incomplete lineage sorting (Supplementary Information
521 1.5.4). (D) Clustal alignment of *ndufs5* sequences shows that *X. malinche* and *X. cortezi* have identical
522 amino acid sequences at *ndufs5*, hinting at possible introgression of this nuclear gene, while *X.*
523 *birchmanni* is separated from them by four substitutions. Similar patterns are observed for *ndufa13*.
524 Colors indicate properties of the amino acid, asterisks indicate locations where the amino acid sequences

525 are identical. (E) Non-mitochondrial parent ancestry is lower than expected by chance in two natural *X.*
526 *cortezi* × *X. birchmanni* hybrid populations fixed for the *X. cortezi* mitochondrial haplotype (Fig. S35) at
527 *ndufs5* (red line) and *ndufa13* (blue line). Gray distribution shows permutations randomly drawing 0.1
528 centimorgan windows from the two *X. cortezi* × *X. birchmanni* hybrid populations. Inset shows a *X.*
529 *cortezi* × *X. birchmanni* hybrid.
530

531 **Methods**

532 **Biological Materials**

533 Wild parental and hybrid individuals used in this study were collected from natural
534 populations in Hidalgo, Mexico (Permit No. PPF/DGOPA-002/19). Artificial F₁ and F₂ hybrids
535 were generated using large mesocosm tanks at the Centro de Investigaciones Científicas de las
536 Huastecas “Aguazarca”, as described previously⁴⁰. Caudal fin clips were used as the source for
537 all DNA isolation and for flow cytometry, and liver tissue for RNAseq, respirometry, and
538 proteomic assays were collected following Stanford APLAC protocol #33071.

539

540 **Genotyping and local ancestry calling**

541 Genomic DNA was extracted from fin clips collected from natural and artificial hybrids
542 and individually barcoded tagmentation based libraries were generated for each individual
543 (Supplementary Information 1.1.3). Hybrids were genotyped with low-coverage whole genome
544 sequencing followed by local ancestry inference across the 24 *Xiphophorus* chromosomes and
545 the mitochondrial genome using the *ancestryinfer* pipeline^{39,40,43,62} (Supplementary Information
546 1.1.3-1.1.4). We converted posterior probabilities for each ancestry state (homozygous *X.*
547 *birchmanni*, heterozygous, and homozygous *X. malinche*) to hard-calls for downstream analysis,
548 using a posterior probability threshold of 0.9, and analyzed ancestry variation across the genome.

549

550 **QTL and admixture mapping**

551 The region interacting with the mitochondrial genome was first identified based on
552 analysis of segregation distortion in 943 F₂ hybrids generated from F₁ crosses between *X.*
553 *malinche* females and *X. birchmanni* males (Supplementary Information 1.1.1 and Langdon et

554 al⁴¹). Since all hybrids in this artificial cross harbored the *X. malinche* mitochondria, we scanned
555 for regions of exceptionally high *X. malinche* ancestry along the genome (>60% *X. malinche*
556 ancestry), identifying one such region on chromosome 13 and one on chromosome 6 (Fig. 1; see
557 also⁴¹). Evidence for interactions between these regions and the mitochondrial genome were
558 confirmed using admixture mapping. Selection against incompatible genotype combinations
559 generates “missing” two-locus genotypes, and induces unexpectedly high correlations in ancestry
560 between physically unlinked loci. To search for these associations between mitochondrial and
561 nuclear genotypes, we took advantage of two hybrid populations that segregated for the
562 mitochondrial haplotype of both species (Supplementary Information 1.1.2): the Calnali Low
563 hybrid population (N = 359) and the Chahuaco falls hybrid population (N = 244). Briefly, we
564 used a partial correlation analysis to identify regions of the genome strongly associated with
565 mitochondrial ancestry, after regressing out genome-wide ancestry to account for covariance in
566 ancestry due to population structure (see ³⁷ and Supplementary Information 1.1.5, 1.1.9).
567 Significance thresholds for admixture mapping analyses were determined using simulations
568 (Supplementary Information 1.1.5).

569 We also took advantage of data from three natural hybrid populations that had fixed
570 either the *X. birchmanni* (Acuapa: N=117 and Aguazarca: N=126) or *X. malinche* mitochondrial
571 haplotype (Tlatemaco: N=126) to evaluate evidence of selection on regions identified through
572 admixture mapping (Supplementary Information 1.1.6). Natural hybrids from these populations
573 were genotyped using low-coverage whole genome sequencing and by applying the
574 *ancestryinfer* pipeline described above^{39,40,43,62}.

575
576

577 **Estimates of selection on the mitonuclear incompatibility**

578 We used an ABC approach to estimate the strength of selection against the incompatible
579 interaction between the *X. malinche* mitochondrial haplotype and *X. birchmanni* ancestry at the
580 two nuclear genes involved in the hybrid incompatibility: *ndufs5* and *ndufa13* (Supplementary
581 Information 1.2.2). For these simulations, we took advantage of data from F₂ hybrids, where the
582 known cross design simplifies the parameter space we must explore. Specifically, in F₂ hybrids,
583 the expectation is that across individuals 50% of alleles will be derived from *X. malinche* and
584 50% of alleles will be derived from *X. birchmanni* in the nuclear genome. Since we observed
585 substantial deviations from this expectation at *ndufs5* and *ndufa13*, we asked what selection
586 coefficients (0-1) and dominance coefficients (0-1) could generate the observed genotypes in F₂
587 hybrids at *ndufs5* and *ndufa13* after two generations of selection. We performed 500,000
588 simulations for each interaction and accepted or rejected simulations based on comparisons to
589 the real data using a 5% tolerance threshold (Supplementary Information 1.2.2).

590 We also evaluated evidence for incompatible interactions with the *X. birchmanni*
591 mitochondrial haplotype and inferred the strength of selection on this direction of the *ndufs5*
592 interaction (Supplementary Information 1.2.1-1.2.2). We again used an ABC approach but due to
593 differences in the type of data available we implemented these simulations using the population
594 simulator SELAM. See Supplementary Information 1.2.1-1.2.4 for more details.

595

596 **Developmental staging and genotyping of embryos**

597 To pinpoint when in development the incompatibility between the *X. malinche*
598 mitochondria and *X. birchmanni* nuclear genotypes causes lethality, we collected a dataset on the
599 developmental stages of embryos with different genotype combinations. We focused our

600 sampling efforts on pregnant females from the Calnali Low hybrid population, where
601 incompatible genotypes are more common. Poeciliid embryos must complete all stages of
602 embryonic development in the maternal environment to survive after birth (Supplementary
603 Information 1.3.1).

604 Whole ovaries were removed from pregnant females and embryos were individually
605 dissected. Each embryo was assigned a developmental stage ranging from 1-11 based on
606 established protocols for poeciliid embryos⁴⁵. Unfertilized eggs were excluded from analysis.
607 Following staging, individual embryos (N = 296) were genotyped as described above and in
608 Supplementary Information 1.3.1. We tested for significant differences in developmental stage
609 between siblings with compatible and incompatible genotype combinations using a two-sided
610 two-sample t-test (Supplementary Information 1.3.1) and examined differences in ancestry
611 between large groups of siblings that varied in their developmental stages (Supplementary
612 Information 1.1.7). We also collected data on embryonic stage and variability between siblings in
613 embryonic stage from both pure parental species for comparison to the hybrid data
614 (Supplementary Information 1.3.1).

615

616 **Mitochondrial respirometry**

617 Our results indicate that the hybrid incompatibility between the *X. malinche* mitochondria
618 and *X. birchmanni* nuclear genes is at least partially recessive. Gene expression, allele specific
619 expression, and analysis of mitochondrial copy number indicated that F₁ hybrids heterozygous
620 for the mitonuclear incompatibility are not compensating for the incompatibility through altered
621 expression or changes in mitochondrial copy number (Supplementary Information 1.3.3-1.3.4).

622 To further evaluate mitochondrial function in individuals heterozygous for the
623 mitonuclear incompatibility, we conducted respirometry assays on *X. birchmanni*, *X. malinche*,
624 and hybrid individuals that had the *X. malinche* mitochondria and were heterozygous for the
625 nuclear components of the hybrid incompatibility (N=7 of each genotype). Mitochondria were
626 isolated from whole liver tissue from each of these individuals (Supplementary Information
627 1.3.5). Mitochondrial respiration was quantified using the Oroboras O2K respirometry system
628 fitted with small volume modules. Using a standardized concentration of mitochondrial isolate
629 (0.15 mg of protein), we followed a multi-substrate, inhibitor, and uncoupler titration protocol to
630 quantify respiration in eight distinct states (Fig. S17) based on a protocol adapted from killifish⁶³.
631 A step-by-step description of this protocol and methods used to calculate respiratory flux control
632 factors is outlined in Supplementary Information 1.3.5. To test for effects of genotype on
633 Complex I efficiency and maximum respiration rate, we constructed an orthogonal contrast
634 between parental and hybrid values of these parameters, using test date as a covariate in the
635 linear model. Although we focus our comparisons in the main text on measures of Complex I
636 efficiency and maximum respiration, we report analyses for all respiratory flux control factors in
637 Supplementary Information 1.3.5. We complemented the results of these respirometry
638 experiments with measures of mitochondrial membrane potential in hybrids and parental species
639 using a flow cytometry-based approach (Supplementary Information 1.3.6).

640

641 **Parallel reaction monitoring proteomics**

642 For Parallel Reaction Monitoring (PRM) with mass spectrometry, we used a similar
643 approach to that used for respirometry to isolate whole mitochondria from five F₁ hybrids (which
644 harbored *X. malinche* mitochondria). This approach is described in detail in Supplementary

645 Information 1.4.1. Briefly, we designed heavy labeled peptides to distinguish between the *X.*
646 *birchmanni* and *X. malinche* copies of *ndufs5* and *ndufa13* (Supplementary Information 1.4.2).
647 These peptides were designed to mimic the products of trypsin digestion of the native peptides
648 from both *X. birchmanni* and *X. malinche*, but had ¹³C- and ¹⁵N-labeled arginine or lysine at the
649 C terminus, and cysteine residues carbamoylated with iodoacetamide. This approach facilitates
650 quantification of the peptides of interest in the mitochondrial proteome (Supplementary
651 Information 1.4.2).

652 Mitochondrial isolates were prepared for mass spectrometry and combined with heavy
653 labeled peptides in known quantities (see Supplementary Information 1.4.3). Mass spectrometry
654 experiments were performed on a Q Exactive HF-X Hybrid Quadrupole - Orbitrap mass
655 spectrometer with liquid chromatography using a Nanoacquity UPLC, and a parallel reaction
656 monitoring method was used for ion selection. The protocol for mass spectrometry and PRM is
657 described in detail in Supplementary Information 1.4.4.

658 To analyze the results, raw data were imported into the Skyline program. We called the
659 focal peptide's spectral peak so that the window captured the signal from the heavy labeled
660 spike-in peptide and applied the same retention time interval to detect the endogenous peptide.
661 We focused analysis on the *ndufs5* peptide WLL[L/P]QSGEQPYK since other endogenous
662 peptides were below the expected sensitivity limits of our PRM protocol (Supplementary
663 Information 1.4.5). Given known quantities of the heavy-labeled spike-in peptide, we normalized
664 intensities of the endogenous peptides and asked what proportion of endogenous *ndufs5* peptides
665 in the mitochondrial proteome of each F₁ individual were derived from *X. malinche* versus *X.*
666 *birchmanni* (see Supplementary Information 1.4.5 for more details). We asked whether these

667 ratios significantly deviated from the 50-50 expectation for F₁ hybrids using a two-sided one-
668 sample *t*-test.

669

670 Complex I protein modeling

671 Mapping results allowed us to identify *ndufs5* and *ndufa13* as the *X. birchmanni* genes
672 that interact negatively with *X. malinche* mitochondrial genes. We used a protein-modeling based
673 approach with RaptorX (<http://raptorgx.uchicago.edu>) to identify the mitochondrial genes most
674 likely to interact with *ndufs5* and *ndufa13* (see Supplementary Information 1.4.6). Using the
675 mouse Cryo-EM structure (PDB ID 6G2J) of Complex I, we identified proteins in contact with
676 *ndufs5* and *ndufa13*, which included several mitochondrial (*nd2*, *nd3*, *nd4l*, *nd6*) and nuclear
677 (*ndufa1*, *ndufa8*, *ndufb5*, *ndufc2*) genes. We then used RaptorX to predict structures for both the
678 *X. birchmanni* and *X. malinche* versions of the proteins. We were especially interested in cases
679 where species-specific substitutions were predicted to be in physical contact between the
680 mitochondrial and nuclear proteins in Complex I. In addition, we evaluated the robustness of
681 these predictions to choice of Cryo-EM template; see Supplementary Information 1.4.6 for
682 results and discussion.

683

684 Analysis of evolutionary rates

685 Comparison of predicted protein sequences from *ndufs5*, *ndufa13*, and mitochondrial
686 genes of interest (*nd2* and *nd6*) revealed a large number of substitutions between *X. birchmanni*
687 and *X. malinche*. Using the program PAML, we calculated dN/dS between *X. birchmanni* and *X.*
688 *malinche* for all annotated protein coding genes throughout the genome and found that both
689 *ndufs5* and *ndufa13* have unexpectedly high rates of protein evolution (Fig. 4D; Supplementary

690 Information 1.5.1). Examining mutations that distinguished species in a phylogenetic context
691 revealed that a large number of substitutions in *ndu5s5*, *nudfa13*, and *nd6* were derived in *X.*
692 *birchmanni*. We implemented a branch test using the codeml function in PAML to test for
693 significant differences in evolutionary rates of *ndu5s5*, *nudfa13*, and *nd6* on the *X. birchmanni*
694 lineage (species included: *X. birchmanni*, *X. malinche*, *X. cortezi*, *X. pygmaeus*, *X.*
695 *nezahualcotoyl*, *X. montezumae*, *X. hellerii*, *X. couchianus*, *X. variatus*, and *X. maculatus*). We
696 also evaluated the predicted functional impacts of individual substitutions using protein
697 alignments for mitochondrial and nuclear proteins of interest from across bony fish and the
698 program SIFT⁶⁴. See Supplementary Information 1.5.1 for more information on both PAML and
699 SIFT analyses.

700

701 **Tests for ancient introgression**

702 Previous work had indicated that the mitochondrial phylogeny in *Xiphophorus* is
703 discordant with the whole-genome species tree⁵⁵. Specifically, although *X. birchmanni* and *X.*
704 *malinche* are sister species based on the nuclear genome, *X. malinche* and *X. cortezi* are sister
705 species based on the mitochondrial genome. We used a combination of PacBio amplicon
706 sequencing of 10 individuals (2 or more per species, Supplementary Information 1.5.3) and
707 newly available whole-genome resequencing data to confirm this result and polarize the direction
708 of the discordance by constructing maximum likelihood mitochondrial phylogenies with the
709 program RAxML⁶⁵. We performed similar phylogenetic analyses of the nuclear genes that
710 interact with the *X. malinche* mitochondria (*ndu5s5* and *nudfa13*; Supplementary Information
711 1.5.3).

712 Combined with phylogenetic results, simulation results suggest that gene flow from *X.*
713 *malinche* into *X. cortezi* is the most likely cause of the discordance we observe between the
714 mitochondrial and nuclear phylogenies (Supplementary Information 1.5.3-1.5.4). Since *X.*
715 *malinche* and *X. cortezi* are not currently sympatric, this suggests ancient gene flow between
716 them. Using whole genome alignments of *X. birchmanni*, *X. malinche*, and *X. cortezi* individuals
717 and the admixtools package⁶⁶ we tested for genome-wide evidence of admixture between *X.*
718 *malinche* and *X. cortezi* using the qpDstat function with a block-jackknife block size of 5 Mb,
719 (Supplementary Information 1.5.5).

720

721 **Contemporary hybridization between *X. birchmanni* and *X. cortezi***

722 Comparison of *X. cortezi* and *X. malinche* sequences at *ndufs5*, *ndufa13*, and their
723 mitochondrial interactors (*nd2* and *nd6*) indicate that *X. cortezi* and *X. malinche* have identical or
724 nearly identical amino acid sequences at these Complex I genes, and that both species differ
725 substantially from *X. birchmanni* (Supplementary Information 1.5.6). To investigate the
726 possibility that hybrids between *X. birchmanni* and *X. cortezi* share the same mitonuclear
727 incompatibility as observed in hybrids between *X. birchmanni* and *X. malinche*, we took
728 advantage of genomic data from recently discovered hybrid populations between *X. birchmanni*
729 and *X. cortezi*⁶⁷. Using a permutation-based approach, we asked whether ancestry at *ndufs5* and
730 *ndufa13* showed lower mismatch with mitochondrial ancestry than expected given the genome-
731 wide ancestry distribution, across two *X. birchmanni* × *X. cortezi* hybrid populations. These
732 permutations are described in detail in Supplementary Information 1.5.6.

733

734

735 **Animal Care and Use**

736 All methods were performed in compliance with Stanford Administrative Panel on Laboratory

737 Animal Care protocol #33071.

738

739 **Data Availability**

740 Raw sequencing reads used in this project are available under NCBI SRA Bioprojects

741 PRJNA744894, PRJNA746324, PRJNA610049, and PRJNA745218. Mass spectrometry data are

742 available on PRIDE (accession pending), and all other datasets necessary to recreate the results

743 of the publication are available on Dryad (accessions pending).

744

745 **Code Availability**

746 All new customs scripts used to generate results will be made available on Github at

747 https://github.com/Schumerlab/mitonuc_DMI and

748 https://github.com/Schumerlab/Lab_shared_scripts.

749

750 **References**

751 1. Dagilis, A. J., Kirkpatrick, M. & Bolnick, D. I. The evolution of hybrid fitness during speciation.

752 *PLOS Genetics* **15**, e1008125 (2019).

753 2. Dobzhansky, Th. Genetic Nature of Species Differences. *The American Naturalist* **71**, 404–420

754 (1937).

755 3. Müller, H. Isolating mechanisms, evolution, and temperature. *Biological Symposium* **6**, 71–125

756 (1942).

757 4. Maheshwari, S. & Barbash, D. A. The Genetics of Hybrid Incompatibilities. *Annu Rev Genet* **45**,

758 331–355 (2011).

759 5. Presgraves, D. C. The molecular evolutionary basis of species formation. *Nat Rev Genet* **11**, 175–180

760 (2010).

761 6. Swamy, K. B. S., Schuyler, S. C. & Leu, J.-Y. Protein Complexes Form a Basis for Complex Hybrid

762 Incompatibility. *Front. Genet.* **12**, (2021).

763 7. Orr, H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. *Genetics*

764 **139**, 1805–1813 (1995).

765 8. Boocock, J., Sadhu, M. J., Durvasula, A., Bloom, J. S. & Kruglyak, L. Ancient balancing selection

766 maintains incompatible versions of the galactose pathway in yeast. *Science* **371**, 415–419 (2021).

767 9. Wei, W.-H., Heman, G. & Haley, C. S. Detecting epistasis in human complex traits. *Nat Rev Genet*

768 **15**, 722–733 (2014).

769 10. Gauderman, W. J. Sample size requirements for association studies of gene-gene interaction. *Am J*

770 *Epidemiol* **155**, 478–484 (2002).

771 11. Phadnis, N. *et al.* An essential cell cycle regulation gene causes hybrid inviability in *Drosophila*.

772 *Science* **350**, 1552–1555 (2015).

773 12. Tang, S. & Presgraves, D. C. Evolution of the *Drosophila* Nuclear Pore Complex Results in Multiple

774 Hybrid Incompatibilities. *Science* **323**, 779–782 (2009).

775 13. Cooper, J. C., Guo, P., Bladen, J. & Phadnis, N. A triple-hybrid cross reveals a new hybrid
776 incompatibility locus between *D. melanogaster* and *D. sechellia*. *bioRxiv* 590588 (2019)
777 doi:10.1101/590588.

778 14. Johnson, N. A. Hybrid incompatibility genes: remnants of a genomic battlefield? *Trends Genet* **26**,
779 317–325 (2010).

780 15. Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky–Muller
781 incompatibilities? *Mol Ecol* **21**, 4942–4957 (2012).

782 16. Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode
783 gap. *Ecol Evol* **6**, 5831–5842 (2016).

784 17. Lane, N. & Martin, W. The energetics of genome complexity. *Nature* **467**, 929–934 (2010).

785 18. Barr, C. M., Neiman, M. & Taylor, D. R. Inheritance and recombination of mitochondrial genomes in
786 plants, fungi and animals. *New Phytologist* **168**, 39–50 (2005).

787 19. Chase, C. D. Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear
788 interactions. *Trends Genet* **23**, 81–90 (2007).

789 20. Case, A. L., Finseth, F. R., Barr, C. M. & Fishman, L. Selfish evolution of cytonuclear hybrid
790 incompatibility in *Mimulus*. *Proc. R. Soc. Lond. B* **283**, 20161493 (2016).

791 21. Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. *Mol Ecol* **13**,
792 729–744 (2004).

793 22. Haag-Liautard, C. *et al.* Direct Estimation of the Mitochondrial DNA Mutation Rate in *Drosophila*
794 *melanogaster*. *PLOS Biology* **6**, e204 (2008).

795 23. Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large Variation in the Ratio of Mitochondrial to
796 Nuclear Mutation Rate across Animals: Implications for Genetic Diversity and the Use of
797 Mitochondrial DNA as a Molecular Marker. *Mol Biol Evol* **34**, 2762–2772 (2017).

798 24. Osada, N. & Akashi, H. Mitochondrial–Nuclear Interactions and Accelerated Compensatory
799 Evolution: Evidence from the Primate Cytochrome c Oxidase Complex. *Mol Biol Evol* **29**, 337–346
800 (2012).

801 25. Barreto, F. S. & Burton, R. S. Evidence for Compensatory Evolution of Ribosomal Proteins in
802 Response to Rapid Divergence of Mitochondrial rRNA. *Mol Biol Evol* **30**, 310–314 (2013).

803 26. Bolnick, D. I., Turelli, M., López-Fernández, H., Wainwright, P. C. & Near, T. J. Accelerated
804 Mitochondrial Evolution and “Darwin’s Corollary”: Asymmetric Viability of Reciprocal F1 Hybrids
805 in Centrarchid Fishes. *Genetics* **178**, 1037–1048 (2008).

806 27. Turelli, M. & Moyle, L. C. Asymmetric Postmating Isolation: Darwin’s Corollary to Haldane’s Rule.
807 *Genetics* **176**, 1059–1088 (2007).

808 28. Brandvain, Y., Pauly, G. B., May, M. R. & Turelli, M. Explaining Darwin’s Corollary to Haldane’s
809 Rule: The Role of Mitonuclear Interactions in Asymmetric Postzygotic Isolation Among Toads.
810 *Genetics* **197**, 743–747 (2014).

811 29. Tiffin, P., Olson, S. & Moyle, L. C. Asymmetrical crossing barriers in angiosperms. *Proc. R. Soc.
812 Lond. B* **268**, 861–867 (2001).

813 30. Meiklejohn, C. D. *et al.* An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded
814 tRNA Synthetase Compromises Development and Fitness in *Drosophila*. *PLOS Genetics* **9**, e1003238
815 (2013).

816 31. Luo, D. *et al.* A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in
817 rice. *Nat Genet* **45**, 573–577 (2013).

818 32. Lee, H.-Y. *et al.* Incompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility
819 between Two Yeast Species. *Cell* **135**, 1065–1073 (2008).

820 33. Hanson, M. R. & Bentolila, S. Interactions of Mitochondrial and Nuclear Genes That Affect Male
821 Gametophyte Development. *The Plant Cell* **16**, S154–S169 (2004).

822 34. Culumber, Z. W. *et al.* Replicated hybrid zones of *Xiphophorus* swordtails along an elevational
823 gradient. *Mol Ecol* **20**, 342–356 (2011).

824 35. Fisher, H. S., Wong, B. B. M. & Rosenthal, G. G. Alteration of the chemical environment disrupts
825 communication in a freshwater fish. *Proc. R. Soc. B* **273**, 1187–1193 (2006).

826 36. Schumer, M. *et al.* Natural selection interacts with recombination to shape the evolution of hybrid
827 genomes. *Science* **360**, 656–660 (2018).

828 37. Schumer, M. & Brandvain, Y. Determining epistatic selection in admixed populations. *Mol Ecol* **25**,
829 2577–2591 (2016).

830 38. Schumer, M. *et al.* High-resolution mapping reveals hundreds of genetic incompatibilities in
831 hybridizing fish species. *eLife* **3**, e02535 (2014).

832 39. Powell, D. L. *et al.* Natural hybridization reveals incompatible alleles that cause melanoma in
833 swordtail fish. *Science* **368**, 731–736 (2020).

834 40. Powell, D. L. *et al.* The Genetic Architecture of Variation in the Sexually Selected Sword Ornament
835 and Its Evolution in Hybrid Populations. *Current Biology* (2021) doi:10.1016/j.cub.2020.12.049.

836 41. Langdon, Q. K. *et al.* Predictability and parallelism in the contemporary evolution of hybrid
837 genomes. *PLOS Genetics* **18**, e1009914 (2022).

838 42. Schartl, M. *et al.* The genome of the platyfish, *Xiphophorus maculatus*, provides insights into
839 evolutionary adaptation and several complex traits. *Nature Genetics* **45**, 567 (2013).

840 43. Schumer, M., Powell, D. L. & Corbett-Detig, R. Versatile simulations of admixture and accurate
841 local ancestry inference with mixnmatch and ancestryinfer. *Mol Ecol Resour* **20**, 1141–1151 (2020).

842 44. Sharma, L. K., Lu, J. & Bai, Y. Mitochondrial Respiratory Complex I: Structure, Function and
843 Implication in Human Diseases. *Curr Med Chem* **16**, 1266–1277 (2009).

844 45. Haynes, J. L. Standardized Classification of Poeciliid Development for Life-History Studies. *Copeia*
845 **1995**, 147 (1995).

846 46. Tavolga, W. N. Embryonic development of the platyfish (*Platypoecilus*), the swordtail
847 (*Xiphophorus*), and their hybrids. Bulletin of the AMNH ; v. 94, article 4. *Embryonic development in*
848 *fish* (1949).

849 47. Byrnes, J. *et al.* Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in
850 zebrafish. *Neurochem Int* **117**, 23–34 (2018).

851 48. Pinho, B. R. *et al.* How mitochondrial dysfunction affects zebrafish development and cardiovascular
852 function: an in vivo model for testing mitochondria-targeted drugs. *Br J Pharmacol* **169**, 1072–1090
853 (2013).

854 49. Agip, A.-N. A. *et al.* Cryo-EM structures of complex I from mouse heart mitochondria in two
855 biochemically defined states. *Nat Struct Mol Biol* **25**, 548–556 (2018).

856 50. Kampjut, D. & Sazanov, L. A. The coupling mechanism of mammalian respiratory complex I.
857 *Science* (2020) doi:10.1126/science.abc4209.

858 51. Fiedorczuk, K. *et al.* Atomic structure of the entire mammalian mitochondrial complex I. *Nature* **538**,
859 406–410 (2016).

860 52. Mack, K. L. & Nachman, M. W. Gene Regulation and Speciation. *Trends Genet* **33**, 68–80 (2017).

861 53. Källberg, M. *et al.* Template-based protein structure modeling using the RaptorX web server. *Nature
862 Protocols* **7**, 1511–1522 (2012).

863 54. Hill, G. E. Mitonuclear Compensatory Coevolution. *Trends Genet* (2020)
864 doi:10.1016/j.tig.2020.03.002.

865 55. Cui, R. *et al.* Phylogenomics reveals extensive reticulate evolution in *Xiphophorus* fishes. *Evolution*
866 **67**, 2166–2179 (2013).

867 56. Sloan, D. B., Havird, J. C. & Sharbrough, J. The on-again, off-again relationship between
868 mitochondrial genomes and species boundaries. *Mol Ecol* **26**, 2212–2236 (2017).

869 57. Ellison, C. K. & Burton, R. S. Disruption of Mitochondrial Function in Interpopulation Hybrids of
870 *Tigriopus Californicus*. *Evolution* **60**, 1382–1391 (2006).

871 58. Ellison, C. K., Niehuis, O. & Gadau, J. Hybrid breakdown and mitochondrial dysfunction in hybrids
872 of *Nasonia* parasitoid wasps. *J Evol Biol* **21**, 1844–1851 (2008).

873 59. Olson, J. R., Cooper, S. J., Swanson, D. L., Braun, M. J. & Williams, J. B. The Relationship of
874 Metabolic Performance and Distribution in Black-Capped and Carolina Chickadees. *Physiol Biochem
875 Zool* **83**, 263–275 (2010).

876 60. Lu, Y. *et al.* Oncogenic allelic interaction in *Xiphophorus* highlights hybrid incompatibility. *PNAS*
877 **117**, 29786–29794 (2020).

878 61. Nelson, T. C. *et al.* Ancient and recent introgression shape the evolutionary history of pollinator
879 adaptation and speciation in a model monkeyflower radiation (Mimulus section Erythranthe). *PLOS*
880 *Genetics* **17**, e1009095 (2021).

881 62. Corbett-Detig, R. & Nielsen, R. A Hidden Markov Model Approach for Simultaneously Estimating
882 Local Ancestry and Admixture Time Using Next Generation Sequence Data in Samples of Arbitrary
883 Ploidy. *PLOS Genetics* **13**, e1006529 (2017).

884 63. Chung, D. J., Bryant, H. J. & Schulte, P. M. Thermal acclimation and subspecies-specific effects on
885 heart and brain mitochondrial performance in a eurythermal teleost (*Fundulus heteroclitus*). *J Exp*
886 *Biol* **220**, 1459–1471 (2017).

887 64. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. *Nucleic*
888 *Acids Res* **31**, 3812–3814 (2003).

889 65. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands
890 of taxa and mixed models. *Bioinformatics* **22**, 2688–2690 (2006).

891 66. Patterson, N. *et al.* Ancient Admixture in Human History. *Genetics* **192**, 1065–1093 (2012).

892 67. Powell, D. L. *et al.* Two new hybrid populations expand the swordtail hybridization model system.
893 *Evolution* **75**, 2524–2539 (2021).

894

895 **Acknowledgements**

896 We thank Peter Andolfatto, Stepfanie Aguillon, Yaniv Brandvain, Jenn Coughlan, Hunter Fraser,
897 Yuki Haba, Nitin Phadnis, Molly Przeworski, Ken Thompson and members of the Schumer lab
898 for helpful discussion and/or feedback on earlier versions of this manuscript. We thank Alexa
899 Pollock for help performing rotenone trials. We thank the Federal Government of Mexico for
900 permission to collect fish. Stanford University and the Stanford Research Computing Center
901 provided computational support for this project. We thank the Vincent Coates Foundation Mass
902 Spectrometry Laboratory, Stanford University Mass Spectrometry (RRID:SCR_017801) for
903 technical and experimental support. **Funding:** This work was supported by a Knight-Hennessy
904 Scholars fellowship and NSF GRFP 2019273798 to B. Moran, a CEHG fellowship and NSF
905 PRFB (2010950) to Q. Langdon, NIH P30 CA124435 in utilizing the Stanford Cancer Institute
906 Proteomics/Mass Spectrometry Shared Resource, NIH grant 1R35GM142836 to J. Havird, and a
907 Hanna H. Gray fellowship, Sloan Fellowship, and NIH grant 1R35GM133774 to M. Schumer.

908

909 **Author Contributions:** B.M.M., D.L.P, and M. Schu, designed the project; B.M.M., C.Y.P.,
910 E.N.K.I., S.M.B, F.L., R.M., K.S., O.H.-P., J.C.H., A. M. and M. Schu. collected data; B.M.M.,
911 C.Y.P., Q.L.K., F.L., J.C.H., A.M., and M. Schu. performed analyses; D.L.P., T.R.G., R.D.L.,
912 R.C.-D., J.F. and M. Scha. provided expertise and technical support.

913

914 **Competing Interests:** the authors declare no competing interests.

915

916 **Materials & Correspondence:** correspondence and requests for materials should be directed to
917 B.M.M. (benmoran@stanford.edu) or M. Schu (schumer@stanford.edu).