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Abstract

Evaluating metagenomic software is key for optimizing metagenome interpretation
and focus of the community-driven initiative for the Critical Assessment of
Metagenome Interpretation (CAMI). In its second challenge, CAMI engaged the
community to assess their methods on realistic and complex metagenomic
datasets with long and short reads, created from ~1,700 novel and known microbial
genomes, as well as ~600 novel plasmids and viruses. Altogether 5,002 results by

76 program versions were analyzed, representing a 22x increase in results.

Substantial improvements were seen in metagenome assembly, some due to using
long-read data. The presence of related strains still was challenging for assembly
and genome binning, as was assembly quality for the latter. Taxon profilers
demonstrated a marked maturation, with taxon profilers and binners excelling at
higher bacterial taxonomic ranks, but underperforming for viruses and archaea.
Assessment of clinical pathogen detection techniques revealed a need to improve
reproducibility. Analysis of program runtimes and memory usage identified highly
efficient programs, including some top performers with other metrics. The CAMI Il
results identify current challenges, but also guide researchers in selecting

methods for specific analyses.


https://doi.org/10.1101/2021.07.12.451567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.451567; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Introduction

Over the last two decades, advances in metagenomic techniques have vastly increased
our knowledge of the microbial world and intensified development of data analysis
techniques’®. This created a need for unbiased and comprehensive performance
assessment of these methods, to identify best practices as well as open challenges in the
field®-'3. CAMI, the Initiative for the Critical Assessment of Metagenome Interpretation, is
a community-driven effort that addresses this need, by offering comprehensive
benchmarking challenges and datasets representing common experimental settings, data
generation techniques, and environments in microbiome research. In addition to its open

and collaborative nature, data FAIRness and reproducibility are key defining principles’.

The first CAMI challenge delivered insights into the performances of metagenome
assembly, genome and taxonomic binning and profiling programs across multiple
complex benchmark datasets, including unpublished genomes across a range of
evolutionary divergences and of poorly categorized taxonomic groups, such as viruses.
The robustness and high accuracy observed for genome binning programs in the absence
of strain diversity supported their application to large-scale data from various
environments, recovering thousands of metagenome-assembled genomes’>-'7 (MAGs),
and intensified efforts in advancing strain-resolved assembly and binning techniques. We
here describe the results of the second round of CAMI challenges'®, in which we
assessed program performances and progress on even larger and more complex
datasets, additionally including long-read data and assessment of key performance

metrics such as runtime and memory use.

Results

We created three comprehensive metagenome benchmark datasets representing a
marine environment, a plant-associated environment that included fungal genomes and
host plant material, as well as a very high strain diversity environment (“strain madness”).
Datasets included both long and short-read data and were sampled from 1,680 microbial
genomes and 599 circular elements of viruses and plasmids (Methods, Supplementary
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Table 1). Of these, 772 genomes and all circular elements were newly sequenced and
distinct from taxa represented in public genome sequence collections (novel genomes),
and the remainder were high-quality public genomes. Genomes were classified as
“‘unique”, if they had an Average Nucleotide Identity (ANI) of less than 95% to any other
genome, or “common’, if there were genomes with an ANI =2 95% in the benchmark data,
as in the first CAMI challenge®. Overall, 901 genomes were unique: 474 for marine, 414
for plant-associated, and 13 for the strain madness data; and 779 were common: 303 for
marine, 81 for plant-associated, and 395 for strain madness. In addition, a pathogen
detection challenge was offered, based on a clinical metagenome sample from a critically
ill patient with an unknown infection. Challenge participants were encouraged to submit
reproducible results by providing executable software with exact parameter settings and
reference databases used. Over all challenges, 5,002 results for 76 programs were

received from 30 teams (Supplementary Table 2).
Assembly challenge

Sequence assembly is a key component of metagenome analysis, with assemblies being
subsequently used to recover genome and taxon bins. Assembly quality degrades for
genomes with low evolutionary divergences, resulting in consensus or highly fragmented
assemblies’®2. Due to the relevance of strain-resolved assemblies for understanding
microbial communities?'-23, we assessed methods’ abilities to assemble strain-resolved

genomes, together with the value of long and short-read data for assembly (Methods).
Overall trends

We evaluated 155 submissions (Supplementary Table 2) for 20 assembler versions: A-
STAR workflow (hybrid, contigs, and scaffolds), ABySS?* (short read, v.2.1.5),
(meta)Flye?® (long read, v.2.4.1, v.2.8, v.2.8.1), (Meta)HipMer?-22 (short read, v.1.0,
v.1.2.2, v.2.0, Metagenome, cgraph, cgraph-ono), GATB?%30 workflow (hybrid, v.1.0),
MEGAHIT?" (short read, v.1.1.2, v.1.1.4-2, v.1.2.7), Metahit_LINKS, Atlas3? (short
read/hybrid single samples, v.2.1.0), (meta)SPAdes®334 (short read/hybrid, v.3.13.0,
v.3.13.1, v.3.14-dev), OPERA-MS?® (hybrid, v.0.8.3, v.0.9), and Ray Meta3® (short read,

v.2.3.1), including some with multiple settings and different data preprocessing options.
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In addition, we created gold standard co- and single sample assemblies as in'®, which
included all regions covered by at least one read in the community-specific genome
collections (i.e., marine, strain madness, plant-associated). The three gold standards of
short, long, and hybrid marine data comprise 2.59 Gb, 2.60 Gb, and 2.79 Gb of assembled
sequences, respectively, while the strain madness short, long, and hybrid gold standards
consist of 1.45 Gb each.

Assemblies were evaluated with MetaQUAST v.5.1.0rc®’, which was adapted for the
evaluation of strain-resolved assembly (Supplementary text). To test the ability of the
assemblers to generate near-complete strain-resolved genomes, we determined strain
recall and precision, similar to3® (Supplementary Table 3). Strain recall measures how
many genomes are recovered with high genome fraction and few mismatches (mm).
Complementary to recall, strain precision assesses how accurately reference genomes
are recovered, based on the fraction of correctly assembled high-quality, near-complete
genomes (>90% genome fraction, <0.1% mm) divided by the overall number of
assembled, near-complete genomes (>90% genome fraction). To facilitate comparisons,
we ranked assemblies produced with different versions and parameter settings for a
particular method based on key metrics (Methods) and chose the highest-ranking

assembly as the representative (Fig. 1).

Of these, short-read assemblers achieved genome fractions of up to 10.4% on the
complete strain madness and 41.1% on marine data, both by MEGAHIT. The gold
standard reported 90.8% and 76.9%, respectively (Fig. 1a, Supplementary Table 3). A-
STAR excelled in terms of genome fraction on both data sets, but created more
misassemblies and mm than others. HipMer had the fewest mm per 100 kb on the marine
data set with 96 and GATB on the strain madness with 98 (Fig. 1b). The best hybrid
assembler, A-STAR, improved the genome fraction to 44.1% on the marine dataset, at a
cost of 773 mm/100 kb. The fewest mismatches (173) for hybrid assemblers were
introduced by GATB. ABySS created the fewest misassemblies for the marine and GATB
for the strain madness data (Fig. 1c). The most contiguous assemblies were provided by
the hybrid assembler OPERA-MS for the marine data (Fig. 1d), with an average NGA50
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Fig. 1: Radar plots of genome fraction (a), mismatches per 100 kb (b), misassemblies
(c), NGAS5O0 (d), strain recall (e), and precision (f) for assemblers on marine and strain
madness data. For methods with multiple evaluated versions, the best ranked version on
the marine data is shown. Absolute values for metrics are log scaled. Lines indicate
different subsets of genomes analyzed, and the value of the gold standard assemblies
(GSA) indicates the upper bound for a metric. The metrics are shown for both unique and
common strain genomes. g, Genome recovery fraction versus genome sequencing
depth (coverage) on the marine dataset. Blue indicates unique genomes (<95% ANI),
green common genomes (ANI =295%), and orange high-copy circular elements. Grey

lines indicate the coverage at which the first genome is recovered with 290% genome
fraction.


https://doi.org/10.1101/2021.07.12.451567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.451567; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of 28,244 across genomes, in comparison to 682,777 for the gold standard. The SPAdes
hybrid submission had a higher NGA50 of 43,014, but it was not the best scoring SPAdes
submission. A-STAR had the highest contiguity for the strain madness data (13,008 vs.
155,979 for gold standard). For short-read assembly, MEGAHIT had the highest
contiguity on the marine (NGAS0 of 26,599) and on the strain madness data (NGA50 of
4,793). Notably, differently from what we observed for the plant-associated long-read data
(Supplementary Fig. 1), Flye performed less well than other assemblers across most
metrics on the marine data, likely due to use of different versions or parameter settings

(Supplementary Table 2).

HipMer ranked first across metrics on the marine data, as it produced few mm combined
with a comparably high genome fraction and NGA50. On the strain madness data, GATB
ranked best, with HipMer in second place. On the plant-associated dataset, HipMer again
performed best across metrics, followed by Flye, whereby both outperformed the other

short-read assemblers on this dataset in most metrics (Supplementary Fig. 1).

For several assemblers, preprocessing the data had a substantial impact on assembly
quality (Supplementary Tables 2 and 3). In particular, using read quality trimming or error
correction software, such as trimmomatic®®, DUK?%°, Fastp*', or Bayeshammer*?,
improved assembly quality. Genome coverage was also a key factor for assembly quality
(Fig. 1g). While both gold standards for short and hybrid assemblies contained genomes
with more than 90% genome fraction starting at a coverage of 3.3x, the best assembler
for low coverage genomes on the marine data set was SPAdes, recovering unique
genomes starting at 9.2x. MEGAHIT, A-STAR, and HipMer required 10x, 13.2x, and 13.9x
coverage, while Ray Meta recovered almost complete genomes from a coverage of 19.5x.
Several assemblers reconstructed high copy circular elements well, with HipMer,
MEGAHIT, SPAdes, and A-STAR reconstructing all of them (Fig. 1g). In comparison to
well-performing software assessed in the first CAMI challenge, A-STAR substantially
improved in genome fraction for the strain madness data by 20% (almost 3 times the
genome fraction in relative terms) relative to MEGAHIT. HipMer introduced the fewest
mismatches on the marine (67mm/100 kb) data. This was 30% less than Ray Meta, the
best performing method also participating in CAMI 1. OPERA-MS improved on MEGAHIT
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in terms of NGAS50 by 1,645 (6%), though using twice as much (long and short-read) data.
SPAdes, which was not assessed in the first challenge, consistently was among the top

submissions for most metrics.
Closely related genomes

The first CAMI challenge revealed substantial differences in assembly quality between
unique and common strain genomes®. We further focused on this by providing a dataset
consisting almost entirely of common strain genomes. The upper bound for strain recall
was 54.9%, as provided by the marine gold standard assembly, and 67.4% for the strain
madness one (Fig. 1e). Strain recall varied little across several evaluated threshold
settings for genome fraction (>90%, >75%) and mismatches (<0.1% mm/kb; <0.5%

mm/kb). Therefore, we set >90% genome fraction and <0.1% mm/kb as thresholds.

Overall, GATB ranked best across metrics on strain madness data and the common strain
madness genomes, while HipMer ranked best on marine data and common marine
genomes (Supplementary Table 3). HipMer had the highest strain recall (14.4% on
marine, 3.2% on strain madness), similar or even better than the best hybrid assembler,
GATB (10.8% on marine, 2.9% on strain madness). Multiple assemblers - ABySS,
HipMer, and Ray Meta on marine and GATB on strain madness - achieved 100%
precision (Fig. 1f). For strain madness common genomes, A-STAR recovered the most,
with 1.5% recall (<0.5% mm, >75% genome fraction) and 23.1% strain precision. HipMer
recovered a lower genome fraction (4.1% versus 30.4% for A-STAR), but also created
fewer misassemblies per genome (0.5) and mismatches (0.1%), resolving fewer, but
higher quality strain genomes with high precision (0.8% strain recall, 100% strain
precision). A major difference between common genomes in the two datasets is that, in
the strain madness data, virtually all genomes form a single cluster with >95% ANI, while
the marine data includes multiple clusters with a few closely related genomes each.
Accordingly, strain recall was higher for common marine than common strain madness
genomes (Supplementary Table 4). On marine common genomes, SPAdes had the
highest strain recall (8.7%) and 96.7% strain precision, followed by A-STAR (7.5% recall,
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69.4% precision). A-STAR (26.7%) and MEGAHIT (24.6%) achieved the highest genome

fractions.

Across metrics, unique genome assemblies were superior to common genome ones (Fig.
1, Supplementary Table 4), for marine genomes by 15.7% in strain recall, 22.7% genome
fraction, 3-fold NGA50, except in strain precision (-1.2%), on average (Supplementary
Table 5), resulting in substantially more complete, higher quality, and less fragmented
assemblies. A-STAR provided the most complete assemblies (55.3% genome fraction),
the HipMer assembly had the highest strain recall (20.4%), HipMer, ABySS, Flye, and
Ray Meta the highest strain precision (100%) and OPERA-MS an exceptional average
NGA50 (187,083, 75% of the gold standard NGA50). HipMer ranked best across all
metrics, with 100% strain recall and precision, 98.5% genome fraction, and the fewest
mismatches (0.001%). Unique strain madness genomes were recovered best, with on
average 81.4% strain recall, 89.4% strain precision, 86.4% genome fraction, and an
NGAS50 of 120,771 (Supplementary Table 6).

Difficult to assemble regions

As the marine data also include high quality public genomes, assembly performance can
be assessed for particularly difficult to assemble genomic regions, such as repeats or
highly conserved elements (e.g., 16S). To assess recovery of complex regions, we
selected 50 unique, public genomes present as a single contig in the gold standard and
with annotated 16S sequences. We mapped assembly submissions to these 16S
sequences and measured their completeness and gap-compressed divergence
(Supplementary Fig. 2). A-STAR partially recovered 102 (78%) of 131 16S gold standard
sequences. The hybrid assemblers GATB (mean recovered gene fraction 60.1%) and
OPERA-MS (mean 47.1%) recovered the most complete 16S sequences. The mean
fraction of genes recovered by short-read assemblers spanned between 29.6% (HipMer)
and 36.9% (MEGAHIT) and were very accurate for ABySS and HipMer (<1% divergence).
Average assembly quality was better for public than for novel genomes in key metrics,
such as genome fraction and NGAS50 (Supplementary Fig. 3).
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Single versus co-assembly

For multi-sample metagenome datasets, there are two assembly strategies: pooling
samples (coassembly) and single-sample assembly'6:2843 \We evaluated the assembly
quality of both strategies for genomes that were spiked into the plant-associated data with
specific coverages (Supplementary Table 8) across submitted results for five assemblers
(Supplementary Fig. 4). Two genomes were unique with 8x coverage across the pooled
samples, distributed into 16 samples or one sample, respectively. For the genome split
across 16 samples, only HipMer recovered it from the pooled samples, while the genome
present in only one sample was reconstructed well by all assemblers from single and
pooled samples. For genomes unique to a single sample, but common in pooled samples
(LjRoot109, LjRoot170), HipMer showed a better performance on the single samples,
while OPERA-MS generally performed better on the pooled samples (Supplementary Fig.
4), and other assemblers traded a higher genome fraction against more mismatches.
Thus, co-assembly could improve assembly for OPERA-MS in general and for short-read
assemblers on low coverage genomes without expected strain diversity across samples.
For HipMer, single-sample assembly might be preferable, if coverage is sufficient and

closely related strains are expected.

Genome binning challenge

Genome binners group contigs or reads together to recover genome bins from
metagenome data. We evaluated 95 results for 18 binning software versions on short
read-assemblies: 22 for the strain madness gold standard assemblies (GSA), 17 for the
strain madness MEGAHIT assembly (MA), 19 for marine MA, 15 for the marine GSA, 12
for the plant-associated GSA, and 10 for the plant-associated MA (Supplementary Tables
9-15, Supplementary Table 2 for software availability, versions, and parameters). In
addition, 7 results on the plant-associated hybrid assemblies were evaluated. Methods
included well performing ones from the first CAMI challenge and popular software, such
as MetaBAT*445 (v.2.15-5, v.2.13-33, v.0.25.4), MaxBin*® (v.2.2.7, v.2.0.2) and
CONCOCT#" (v.1.1.0, v.0.4.1), as well as Autometa*® (v.cami2), LSHVec*® (v.cami2),
MetaBinner (v.1.3, v.1.2, v.1.1, v.1.0), UltraBinner (v.1.0), MetaWRAP*® (v.1.2.3),
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SolidBin®' (v.1.3), and Vamb®? (v.3.0.1, v.fa045c0). While for GSA contigs, the ground
truth genome assignment is known, for the MA, we considered the ground truth for a
contig to be the best matching genomes identified using MetaQUAST v5.0.2 with default
settings. We assessed the average purity of bins and completeness of genomes (and
their summary using the F1-score), the number of high-quality genomes recovered, as
well as the Adjusted Rand Index (ARI) for the binned data, using AMBER v.2.0.3%
(Methods). The ARI, in combination with the fraction of binned data, quantifies binning

performance for the overall dataset.

The performance of genome binners varied widely across metrics, software versions,
datasets, and assembly type (Fig. 2), while parameters affected performance mostly by
less than 3%. For the marine GSA, average bin purity was 81.3+2.3% and genome
completeness was 36.9+4.0% (Fig. 2a,b, Supplementary Table 9). For the marine MA,
average bin purity (78.3+2.6%) was similar, while average completeness was only
21.2+1.6% (Fig. 2a,c, Supplementary Table 10), due to many short contigs with 1.5-2 kb,
which most binners did not attempt to bin (Supplementary Fig. 5). For the strain madness
GSA, average purity and completeness decreased, by 20.1% to 61.2+2.3%, and by
18.7% to 18.2+2.2%, respectively, relative to the marine GSA (Fig. 2a,d, Supplementary
Table 11). While the average purity on the strain madness MA (65.314.0%) and GSA
were similar, the average completeness dropped further to 5.2+0.6%, again due to a
larger fraction of short contigs not binned (Fig. 2a,e, Supplementary Table 12). For the
plant-associated GSA, purity was almost as high as for marine (78.2%%4.5; Fig. 2a.f,
Supplementary Table 13), but bin completeness decreased relative to other GSAs
(13.9+1.4%), due to poor recovery of the mostly low abundant, large, fungal genomes.
Notably, the A. thaliana host genome (5.6x coverage) as well as fungi with more than 8x
coverage were binned with much higher completeness and purity than genomes with
lower coverage (Supplementary Fig. 6). Binning of the hybrid assembly further increased
average purity to 85.1+6.3%, while completeness remained similar (11.9+2.1%,
Supplementary Table 14). For the plant-associated MA, average purity (83+3.3%) and
completeness (12.4+1.5%; Fig. 2a,g, Supplementary Table 15) were similar to the GSA.
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Fig. 2: Performance of genome binners on short-read assemblies (GSA: gold
standard, MA: MEGAHIT) of the marine, strain madness, and plant-associated data.
a, Boxplots of average completeness, purity, Adjusted Rand Index (ARI), percentage of
binned bp, and fraction of genomes recovered with moderate or higher quality (>50%
completeness, <10% contamination) across methods from each dataset (Methods).
Arrows indicate the average. b-g, Boxplots of completeness per genome and purity per
bin, and bar charts of ARI, binned bp, and moderate or higher quality genomes
recovered, by method, for each dataset. The submission with the highest F1-score per
method on a dataset is shown (Supplementary Tables 9-15).
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To quantitatively assess binners across gold standard and real assemblies for the three
datasets, we ranked the best submissions (Supplementary Tables 16-19) across metrics
(Methods). For marine and strain madness, the best trade-off performances were given
by CONCOCT and MetaBinner for MAs, UltraBinner for GSAs, and MetaBinner overall.
CONCOCT also performed best on plant-associated assemblies. UltraBinner had the
best completeness on the marine GSA, CONCOCT on the strain madness GSA and
plant-associated MA, MetaWRAP on marine and strain madness MAs, and MaxBin on
the plant-associated GSA. Vamb had the best purity in all settings, while UltraBinner had
the best ARI for the marine GSA, MetaWRAP for the strain madness GSA, and MetaBAT
for MAs and all plant-associated assemblies. MetaWRAP and MetaBinner assigned the
most for the marine and plant-associated assemblies, respectively, and many methods
assigned all strain madness contigs, though with low ARI (Fig. 2b-g). UltraBinner
recovered the most high-quality genomes from the marine GSA, MetaWRAP from the
marine MA, CONCOCT from strain madness assemblies and plant-associated GSA, and
MetaBinner from the plant-associated GSA and hybrid assemblies (Fig. 2, Supplementary
Table 20). For plasmids and other high copy circular elements, Vamb performed best,
with an F1-score of 70.8%, 54.8% completeness, and 100% purity, while the next best
method, MetaWRAP, had an F1-score of 12.7% (Supplementary Table 21).

Effect of strain diversity

For both marine and strain madness GSAs, binning of unique strains was substantially
better than for common strains (Supplementary Fig. 7, Supplementary Tables 9 and 11).
Differences were more pronounced on strain madness, for which unique strain bin purity
was particularly high (97.9+0.4%). The best ranking across metrics and these four data
partitions was obtained by UltraBinner for unique genomes and overall, as well as
CONCOCT for common strains (Supplementary Table 22). UltraBinner had the highest
completeness on unique strains, while CONCOCT ranked best for common strains and
across all partitions together. Vamb ranked first by purity in all settings, UltraBinner by
ARI, and MetaBinner by most assigned. Due to the dominance of unique strains in the

marine and common strains in the strain madness dataset, the best binners in the
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respective data were the same as for the entire datasets (Supplementary Tables 9 and

11) and performances similar for most metrics.
Taxonomic binning challenge

Taxonomic binners group sequences into bins labelled with a taxonomic identifier. For
taxonomic binning, we evaluated 547 results for nine methods and versions: LSHVec
v.cami2*®, PhyloPythiaS+ v.1.4%, Kraken v.2.0.8-beta®® and v.0.10.5-beta (cami?),
DIAMOND v.0.9.28%, MEGAN v.6.15.257, Ganon v.0.1.4 and v.0.3.1%8 and NBC++5%%, Of
these, 75 were for the marine, 405 for strain madness, and 67 for plant-associated data,
on either reads or gold standard assemblies (Supplementary Tables 2). We assessed the
average purity and completeness of bins and the accuracy per sample at different

taxonomic ranks (Methods).

On the marine data, average taxon bin completeness across ranks was 63%, average
purity 40.3%, and accuracy per sample bp 74.9% (Fig. 3a, Supplementary Table 23). On
the strain madness data, accuracy was similar (76.9%; Fig. 3b, Supplementary Table 24),
while completeness was ~10% higher and purity lower by that much. On the plant-
associated data, purity was between those of the first two datasets (35.%), but
completeness and accuracy were lower (44.2% and 50.8%, respectively; Fig. 3c,
Supplementary Table 25). For all datasets, performances declined at lower taxonomic
ranks, most notably from genus to species rank by 22.2% in completeness, 9.7% in purity,

and 18.5% in accuracy, on average.

Across all datasets, MEGAN on contigs ranked first across metrics and all ranks
(Supplementary Table 26), closely followed by Kraken v.2.0.8-beta on contigs and then
by Ganon on short reads. Kraken v.2.0.8-beta on contigs was the best for genus and
species, and on marine data in completeness and accuracy (89.4%, 96.9%;
Supplementary Table 23 and 27). Due to the presence of public genomes, Kraken’s
completeness on marine data was much higher than in the first challenge, particularly at
species and genus rank (average of 84.6% and 91.5%, respectively, compared to 50%
and 5%), while purity remained similar. MEGAN on contigs ranked highest for taxon bin

purity on the marine and plant-associated data (90.7%, 87.1%; Supplementary Tables
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Fig. 3: Taxonomic binning performance across ranks for the marine (a), strain
madness (b), and plant-associated datasets (c). Metrics were computed over
unfiltered (solid lines) and 1%-filtered (i.e., without the 1% smallest bins in bp, dashed
lines) predicted bins of short reads (SR), long reads (LR), and contigs of the gold standard
assembly (GSA). Shaded bands show the standard error across bins.

17


https://doi.org/10.1101/2021.07.12.451567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.451567; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

23, 25, 27, and 28). PhyloPythiaS+ ranked best for the strain madness data across
metrics, as well as in completeness (90.5%) and purity (75.8%) across ranks
(Supplementary Tables 24 and 29). DIAMOND on contigs ranked best for completeness

(67.6%) and Ganon on short reads for accuracy (77.1%) on the plant-associated data.

Filtering of the 1% smallest predicted bins per taxonomic level is a popular post-
processing approach. On all datasets, filtering increased average purity to above 71%
and reduced completeness, to ~24% on marine and strain madness and 13.4% on plant-
associated data (Supplementary Table 23-25). Accuracy was not much affected, as large
bins contribute more to this metric. Kraken on contigs still ranked first in filtered accuracy
and MEGAN across all filtered metrics (Supplementary Table 26). MEGAN on contigs
and Ganon on short reads profited the most from filtering, ranking first in filtered

completeness and purity, respectively, across all datasets and taxonomic levels.
Taxonomic binning of divergent genomes

To investigate the effect of increasing divergence between query and reference
sequences for reference-based taxonomic binners, we categorized genomes by their
distances to public genomes (Supplementary Fig. 8, Supplementary Tables 30 and 31).
Sequences of known marine strains were assigned particularly well at the species rank
by Kraken (accuracy, completeness, and filtered purity above 93%) and MEGAN (91%
purity, 33% completeness and accuracy). Kraken also best classified new strain
sequences at species level, though with less completeness and accuracy for the marine
data (68% and 80%, respectively). It also had the best accuracy and completeness across
ranks, but low unfiltered purity. For the strain madness data, PhyloPythiaS+ performed
similarly well up to genus level, and best assigned new species at genus level (93%
accuracy and completeness, and 75% filtered purity). Only DIAMOND classified viral
contigs, though with low purity (50%) and completeness and accuracy (both 3%), and no

method classified sequences as plasmids.
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Taxonomic profiling challenge

Taxonomic profilers quantify the presence and relative abundances of microbial
community taxa from metagenome samples. This is in contrast to taxonomic sequence
classification, which assigns taxon labels to individual sequences and results in taxon-
specific sequence bins (and sequence abundance profiles), instead of taxonomic
abundance profiles for entire samples or datasets®®. We evaluated 4,195 profiling results
(292 marine, 2,603 strain madness, and 1,300 plant-associated datasets), from 22
method versions (Supplementary Table 2) with the majority of the results originating from
short-read samples, and a few from long-read samples, assemblies, or averages across
samples. Performance was evaluated with OPAL v.1.0.10%" (Methods). The quality of
predicted taxon profiles was determined based on completeness and purity of identified
taxa, relative to the underlying ground truth, for individual ranks, while taxon abundance
estimates were assessed using the L1 norm error for individual ranks, and the weighted
Unifrac error across ranks. To assess alpha diversity of profiling results, the absolute
difference between predicted and actual Shannon equitability index was determined
(Methods).

Taxon identification

On the marine data, methods performed well until genus rank (average purity 70.4% and
completeness 63.3%), with a substantial drop at species level, to 44.4% purity and 47.1%
completeness (Supplementary Fig. 9, Supplementary Tables 32 and 33). mOTUs
v.2.5.1%2 had completeness and purity above 80% at genus and species ranks, and
Centrifuge®® and MetaPhlAn 2.9.2254%5 just at the genus rank (Fig. 4). Other methods with
completeness above 80% at either rank were Bracken®, Centrifuge v.1.0.4 beta,
MetaPhlAn v.2.9.22, and NBC++5°, while CCMetagen®’, DUDes 0.08%, LSHVec gsa*’,
Metalign®®, MetaPalette’®, and MetaPhlAn cami1 had more than 80% purity. Filtering out
the rarest (1%) predicted taxa per rank decreased completeness by ~22%, while

increasing precision by ~11%.

A similar trend was evident for the strain madness data, with methods performing well

until the genus rank (average purity 52.1% and completeness 80.5%), and a substantial
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Fig. 4: Taxonomic profiling results for the marine (a, b) and strain madness (c, d)
datasets at genus level. Results are shown for the overall best ranked submission per
software version (Supplementary Tables 33 and 35). a, ¢, purity vs. completeness. b, d,
upper bound of L1 norm minus actual L1 norm vs. upper bound of weighted UniFrac error
minus actual weighted UniFrac error. Error bars show the standard deviation across
samples. Metrics were determined using OPAL with default settings.

drop at species rank (average purity 22.3%, completeness 43.9%, Supplementary Tables

34 and 35). In comparison to the marine data, the average purity per method across ranks
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fell from 75.3% to 57.1%, while completeness rose from 72% to 79%. At the genus rank,
particularly MetaPhlAn v.2.9.2 (89.2% completeness, 92.8% purity), MetaPhyler v.1.25""
(92.3% completeness, 79.2% purity) and mOTUs of the first CAMI challenge (92.9%
completeness, 69.1% purity) performed well, but no method excelled at the species rank.
DUDes v.0.08 and LSHVec gsa also had high purity, while Centrifuge v.1.0.4 beta,
DUDes v.cami1, and TIPP v.4.3.10 and v.cami1 had high completeness.

Also for the plant-associated data, average purity and completeness decreased
considerably from genus to species, from 62.9% to 31.7% and from 42.1% to 31.9%,
respectively (Supplementary Tables 36 and 37). The average purity across ranks was the
highest among the datasets (77.8%), while average completeness was the lowest
(49.7%), due to the many newly sequenced bacterial and fungal genomes (Methods),
which most methods failed to detect. Bracken v.2.6 performed best for completeness
across ranks (average 63.7%) and “sourmash gather 3.3.2 k21”72 on short-reads for
species (53.8%). “Sourmash gather 3.3.2 k21" on Pacific Biosciences reads and
MetaPhlAn v.3.0.7 on short reads had the highest purity across ranks (94.7%, 94.67%),

and the latter also for species (68.8%).

Relative abundances

Abundances across ranks and submissions were on average predicted better for strain
madness than marine data, which has less complexity above the strain level, with the L1
norm error improving from 0.44 to 0.3, and average weighted UniFrac error from 4.65 to
3.79 (Supplementary Table 32, 34, 36). Abundance predictions were not as good on the
plant-associated data and averaged 0.57 in L1 norm error and 5.16 in weighted UniFrac.
On the marine data, mOTUs v.2.5.1 had the lowest L1 norm error at almost all levels and
0.12 on average, including the lowest at genus and species with 0.13 and 0.34,
respectively. It was followed by MetaPhlAn v.2.9.22, with 0.22 on average, and 0.32 and
0.39 at genus and species. Both methods also had the lowest weighted UniFrac error,
followed by DUDEs v.0.08. On the strain madness data, mOTUs cami1 performed best
in L1 norm error across ranks with 0.05, and also at genus and species with 0.1 and 0.15,
followed by MetaPhlAn v.2.9.22 with 0.09 on average, and 0.12 and 0.23 at genus and

species. The latter also had the lowest weighted UniFrac error, followed by TIPP v.cami1
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and mOTUs v.2.0.1. On the plant-associated data, Bracken v.2.6 had the lowest L1 norm
error across ranks, with 0.36 on average, and at genus, with 0.34. “sourmash gather 3.3.2
k31” on short-reads had the lowest at species, with 0.55. Both methods also had the
lowest UniFrac error on this dataset. Several methods also accurately reconstructed the
alpha diversity of samples using the Shannon equitability; best (0.03 or less absolute
difference to gold standards) across ranks were mOTUs v.2.5.1, DUDes v.0.08,
MetaPhlAn v.2.9.22, as well as the versions of the first CAMI challenge of DUDes v.0.08
and MetaPhlAn on marine data, together with DUDes v.cami1 and MetaPhlAn v.2.9.22
on strain madness data. On the plant-associated data, mOTUs v.cami1 and Bracken v.2.6
performed best with this metric (0.08 and 0.09).

Difficult and easy taxa

For all methods, viruses, plasmids, and Archaea were particularly difficult to detect
(Supplementary Fig. 10, Supplementary Table 38) in the marine data. While many
Archaeal taxa were detected by several methods, some taxa, such as Candidatus
Nanohaloarchaeota, were not detected by any method in any sample. Similarly, no
method detected any plasmids or viruses. In contrast, bacterial taxa in the Terrabacteria
group and the phyla of Bacteroidetes and Proteobacteria were correctly detected by each

method in all samples.
Method similarity

To assess software performances in relation to their methodological similarity, we
clustered submissions based on the Bray Curtis dissimilarity on the vectors of precision
and recall per taxa, averaged over ranks. Methods using similar information types, e.g.,
k-mer based (NBC++, Bracken), alignment (CCMetagen, Metalign), and marker gene
approaches (mOTUs, MetaPhlAn) tended to cluster (Supplementary Fig. 11); for
example, the two alignment-based approaches are more similar to each other than to
other methods. Interestingly, the marker gene approaches are most similar to the gold
standard, suggesting this class of methods is particularly well suited to infer taxonomic
profiles.
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Clinical pathogen prediction challenge

A short-read metagenomic sequencing dataset of a blood sample from a patient with
hemorrhagic fever of unknown cause was provided for participants to identify a causal
pathogen together with further pathogens. Ten manually curated, hence not fully
reproducible results were received (Supplementary Table 39). The total number of
identified taxa per result varied considerably (Supplementary Fig. 12). Three submissions
correctly identified the causal pathogen, Crimean-Congo hemorrhagic fever
orthonairovirus (NCBI taxid 1980519), using the taxonomic profilers MetaPhlAn v.2.2,
Bracken v.2.5, and CCMetagen v.1.1.3%7. Another submission using Bracken v.2.2

correctly identified orthonairovirus, but without indicating it as the causal pathogen.
Computational requirements

We measured the runtimes and maximum main memory usage for submitted methods
across the marine and strain madness data (Fig. 5, Supplementary Table 40, Methods).
Compute and memory efficient methods capable of processing the entire datasets within
minutes to a few hours were available in every method category, even including some of
the identified top ranked techniques. Substantial differences were seen within categories
and even between versions, ranging from methods executable on standard desktop
machines to those requiring extensive hardware and heavy parallelization. Of the
assemblers, MEGAHIT was the fastest and most memory efficient, requiring 7 h and 42
GB of main memory to process marine short reads. This was 30% and ~25% less time
and memory than required by the second fastest and most memory efficient methods,
OPERA-MS and GATB, respectively. On the marine assemblies, genome binners on
average required ~3x less time than for the smaller strain madness assemblies (29.2 h
vs. 86.1 h), but used almost 4x more memory (69.9 GB vs. 18.5 GB). MetaBAT 2.13.33
was the fastest (1.07 and 0.05 h) and most memory efficient genome binner (max.
memory usage 2.66 GB, 1.5 GB) on both datasets. It was ~5x and ~635x faster than the
second fastest method, Vamb fa045c0, ~6x faster than LSHVec 1dfe822 on marine, and
765x faster than SolidBin 1.3 on strain madness data; ~2x and ~5x more memory efficient
than next ranking MaxBin 2.0.2 and CONCOCT 1.1.0 on marine data,
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Fig. 5: Runtime (a) and maximum memory usage (b) of software from all categories for
the marine and strain madness data (Supplementary Table 40) with log-scaled x-axis.

respectively. Both MetaBAT and CONCOCT were substantially (~11x and ~4x) faster
than the versions assessed in CAMI 1. Like genome binners, taxonomic binners ran

longer on the marine than the strain madness assemblies, e.g., PhyloPythiaS+ with 287.3

vs. 36 h, respectively, but had a similar or slightly higher memory usage. On the marine

raw read data, taxon profilers, on the other hand, were almost 4x faster on average (16.1

h vs. 60.8 h) than on the 10x larger strain madness read dataset, but used more memory

(38.1 GB vs. 25 GB). The fastest and most memory efficient taxonomic binner was
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Kraken, requiring only 0.05 and 0.02 h, respectively, and ~37 GB memory on both
datasets, for reads or contigs. It was followed by DIAMOND, which ran ~500x and ~910x
as long on the marine and strain madness gold standard assemblies, respectively.
FOCUS 1.5 and Bracken 2.2 were the fastest profilers on the marine (0.51 and 0.66 h,
respectively) and strain madness (1.89, 3.45 h) data. FOCUS 1.5 also required the least
memory (0.16 GB for marine, 0.17 GB for strain madness), followed by mOTUs 1.1.1 and
MetaPhlAn 2.2.0.

Discussion and conclusions

Assessing metagenomic analysis software thoroughly, comprehensively, and with little
bias is key for optimizing data processing strategies as well as tackling open challenges
in the field. In its second round, CAMI offered a diverse set of benchmarking challenges
across a comprehensive data collection reflecting recent technical developments of the
field. Here, we analyzed 5,002 results of 76 program versions with different parameter
settings across 131 long and short read metagenome samples from four environments
(marine, plant-associated, strain madness, clinical pathogen challenge). This effort
increased the number of results 22x and the number of benchmarked software versions
3x in comparison to the first CAMI challenge, delivering extensive new insights into
software performances and their interpretation across a wide range of conditions. By
systematically assessing runtime and memory requirements, we added two more key
performance dimensions to the benchmark, which are very important to consider, given

the ever-increasing dataset sizes.

In comparison to software assessed in the first CAMI challenges, assembler
performances rose for best performing methods by up to 20%. Still, in the presence of
closely related strains, assembly contiguity, the fractions of genomes recovered, and
strain recall decreased, suggesting that most assemblers, sometimes intentionally3'34,
did not accurately resolve strain variation, resulting in more fragmented, less strain-
specific assemblies. In addition, genome coverage, parameter settings, and data
preprocessing notably impacted assembly quality, while performances did not differ much

across software versions. Most submitted metagenome assemblies used only short
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reads, and long and hybrid assemblies had no higher overall quality. Hybrid assemblies,
however, were better for difficult to assemble regions, such as the 16S rRNA gene,
recovering substantially more complete genes than most short-read submissions. Hybrid
assemblers were also less affected by the presence of closely related strains in pooled

samples, suggesting that the addition of long reads helps to distinguish individual strains.

In comparison to the first CAMI challenges, ensemble binners presented a development
accompanied by substantial improvements across metrics in comparison to most
individual methods. Overall, genome binners demonstrated variable performances across
different metrics and dataset types, with both high strain diversity and assembly quality
presenting challenges that substantially reduced performances relative to unique genome
binning, even in the case of large sample numbers, such as for the strain madness
dataset. Interestingly, for the plant-associated data, which also included plant host and
55 fungal genomes, given sufficient coverage, high-quality bins were obtained also for

these taxa.

For taxonomic binners and profilers, highly performant and computationally efficient
software was available, performing well across a range of conditions and metrics.
Particularly the profiling field has matured in comparison to the first challenges, with less
variance in top performing methods across taxon identification, abundance, and diversity
estimates. Performance for both categories was found to be high for genus rank and
above, with a substantial drop for bacterial species. As the second challenge data include
high quality public genomes, the data is less divergent from publicly available data than
for the first challenges, on which method performances declined already going from family
to genus rank. It was also low for Archaea, viruses and plasmids, suggesting a need for
developers to extend their focus in terms of reference sequence collections and model
development. Another encouraging result is that the causal pathogen was successfully
identified by several submissions in a clinical pathogen challenge. However, due to
manual curation, none was reproducible, which indicates another area requiring

improvement.

In its second challenge, CAMI identified key advances across common metagenomics

software categories as well as current challenges for the field. As the state-of-the-art in
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methods and data generating techniques progresses, it will be important to continuously
reevaluate these questions. In addition, computational methods for other microbiome data
modalities'? and multi-omics data integration could be jointly assessed. Most importantly,
CAMI is a community-driven effort, and we encourage everyone with an interest in

benchmarking from the field of microbiome research to join us.
Methods

Community involvement

We gathered community input on the nature and principles of implementing
benchmarking challenges and datasets in public workshops and hackathons

(https://www.microbiome-cosi.org/cami/participate/schedule). The most relevant metrics

for performance evaluation and data interpretation were discussed in a public evaluation
workshop with challenge participants and developers of evaluation software, where first
challenge results were presented in an anonymized manner. Computational support for

challenge participants was provided by the de.NBI cloud.

Standardization and reproducibility

To ensure reproducibility and assess computational behavior (runtimes and memory
consumption) of the software used to create challenge submissions, we reproduced and
reassessed the results according to submission specifications (Supplementary Table 2,

https://data.cami-challenge.org/). For metagenome assemblers, computational

requirements were assessed on a machine with Intel Xeon Processor (2.6GHz)
virtualized to 56 cores (50 cores were used) and 2755 GB of main memory and for binners
and profilers on a machine with an Intel Xeon E5-4650 v4 CPU (virtualized to 16 CPU
cores, 1 thread per core) and 512 GB of main memory. We also updated Docker
BioContainers implementing a range of commonly used performance metrics to include

all metrics used in this evaluation (Supplementary Table 2).
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Genome sequencing and assembly

lllumina paired-end read data of 796 newly sequenced genomes, of which 224 stem from
a Arabidopsis thaliana root environment, 176 from a marine environment’3, 384 clinical
Streptococcus pneumoniae strains, and twelve strains from a murine gut environment
were assembled using a pipeline with the SPAdes3® metagenome assembler (version
3.12). We removed contigs smaller than 1 kb, as well as genome assemblies with a
contamination of 5% or more and completeness of 90% or less, as determined with
CheckM™ version 1.011. Newly assembled and database genomes were taxonomically
classified with CAMITAX"® and used as input for microbial community and metagenome
data simulation with CAMISIM’®, based on the from profile mode for the marine and
plant-associated dataset and the de novo mode for the strain madness datasets. All
scripts and parameters for these steps are provided in the Supplementary Material and
on GitHub (https://qgithub.com/CAMI-

challenge/second challenge evaluation/tree/master/scripts/data_generation).

For the plasmid dataset, inlet wastewater from a wastewater treatment plant on Zealand,
Denmark was used to generate a plasmid sample similar to the procedure in’”’.
Sequencing was performed on a NextSeq 500 on Nextera sequencing libraries (lllumina,
San Diego, California, USA). A bioinformatic workflow described in”® was used to identify

complete circular plasmids above 1 kb in size in the dataset.
Challenge datasets

For the challenges, participants were provided with long and short-read sequences for
two metagenome datasets representing a marine and a plant associated environment,
respectively, in complexity and taxonomic distribution, and for a “strain madness” dataset
with very high strain diversity. Furthermore, a short-read clinical metagenomic dataset
from a critically ill patient was provided.

The 10-sample 100 Gb marine dataset was created with CAMISIM from BIOM profiles of
a deep-sea environment, using 155 newly sequenced marine isolate genomes from this

environment and 622 genomes with matching taxonomic provenance from MarRef®, a

28


https://paperpile.com/c/i845bB/jqAT
https://paperpile.com/c/i845bB/hqXp
https://paperpile.com/c/i845bB/2ExI
https://paperpile.com/c/i845bB/9KN3
https://paperpile.com/c/i845bB/Wlnx
https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/scripts/data_generation
https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/scripts/data_generation
https://paperpile.com/c/i845bB/ikOk
https://paperpile.com/c/i845bB/nMn4
https://paperpile.com/c/i845bB/JER6
https://doi.org/10.1101/2021.07.12.451567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.12.451567; this version posted July 12, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

manually curated database with completely sequenced marine genomes. Of these
genomes, 303 (39.0%, 204 of database genomes (31.9%) and 99 new genomes (72.3%))
had a closely related strain present, with an ANI of 95% or more. Additionally, 200 newly
sequenced circular elements including plasmids and viruses were added. For each
sample, 5 Gb of paired-end short lllumina and long Nanopore reads were created

(Supplementary Text).

The 100-sample 400 Gb strain madness dataset includes 408 newly sequenced
genomes, of which 97% (395) had a closely related strain. For each sample, 2 Gb of
paired-end short and long-read sequences were generated with CAMISIM, respectively,

using the same parameters and error profiles as in CAMI 18 (Supplementary Text).

The 21-sample 315 Gb plant-associated dataset includes 894 genomes. Of these, 224
are from the proGenomes?® terrestrial representative genomes, 216 are newly sequenced
genomes from an Arabidopsis thaliana root rhizosphere, 55 are fungal genomes
associated with the rhizosphere®!, 398 are plasmids or circular elements and one
Arabidopsis thaliana genome. 15.3% (137) of these genomes have at least one closely
related genome present. For each sample, 5 Gb of paired-end short-read sequences, as
well as 2x5 Gb long-read sequences mimicking Pacific Biosciences and Oxford Nanopore
sequencing data, respectively, were generated. 90% of metagenome sequence data
originate from bacterial genomes, 9% are fungal genome sequences, and 1% is from A.
thaliana. To evaluate the assembly quality of single-sample versus cross-assembly
strategies, 23 new genomes from eight clusters of closely related genomes were selected
and added to the dataset in certain samples with predetermined abundances. For all three
datasets, we generated gold standards for every metagenome sample individually and
for the pooled samples, which included assemblies for short, long, and hybrid reads,

genome bin and taxon bin assignments, and taxonomic profiles.

Finally, a 688 Mb paired-end Miseq metagenomic sequencing dataset of a blood sample
from a patient with hemorrhagic fever was provided. Previous analysis of the sample had
revealed sequences matching the genome of Crimean—Congo hemorrhagic fever

orthonairovirus (CCHFV), and the presence of the viral genome was subsequently
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confirmed via PCR (with a Ct value of 27.4). To create a realistic dataset and case for the
challenge while protecting the identity of the patient, a clinical case description derived
from the true anamnesis and modified in ways consistent with the causative agent was
created. Additionally, all reads mapping to the human genome were replaced by
sequences from the same genomic regions randomly drawn from the 1000 genomes
dataset®2. Challenge participants were asked to identify the causal pathogen as well as

all other pathogens present in the sample.

Challenge organization

The second round of CAMI challenges assessed software for metagenome assembly,
genome binning, taxonomic binning, and taxonomic profiling. In addition, a diagnostic
pathogen prediction challenge was provided. As before, two metagenome “practice”
benchmark datasets were created from public genomes and provided together with the
standard of truth before the challenges, to enable contest participants to familiarize
themselves with data types and formats. These included a 49-sample dataset modelled
from Human Microbiome data*® and a 64-sample dataset modelled in taxonomic
composition from mouse gut samples®-84, with 5 Gb long (Pacific Biosciences, variable
length with a mean of 3000 bp) and 5 Gb short (lllumina HiSeq2000, 150 bp) paired-end
read sequences, respectively. Read profiles (read length and error rates) were created
from sequencing runs on the MBARC-26 dataset®. Reference data collections with NCBI
RefSeq, nr/nt and taxonomy from January 8th of 2019 were provided to participants, for
use with reference-based methods in the challenges. For future benchmarking, use of
these resources will facilitate method performance comparisons, as all genomes
incorporated into the CAMI challenge datasets will be submitted to public sequence

repositories.

The second CAMI challenge started on January 16th of 2019 (https://www.microbiome-
cosi.org/cami/cami/cami2). Participants registered for download of the challenge
datasets, with 332 teams registering from that time until January 2021. For reproducibility,
participants could submit either a Docker container containing the complete workflow, a

bioconda script or a software repository with detailed installation instructions, specifying
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all parameter settings and reference databases used. Assembly results could be
submitted for short-read data, long-read data, or both data types combined. For methods
incapable of submitting a cross-sample assembly for the entire dataset, a cross-sample
assembly for the first ten samples of a dataset could be submitted. Participants could also
submit single-sample assemblies for each of the first five samples of a dataset.
Specification of the performance criteria for strain-aware assembly can be found in the
Supplementary Material. The assembly challenge closed on May 17, 2019. Immediately
afterwards, gold standard and MEGAHIT?' assemblies were provided for both datasets.
The gold standard assemblies include all sequences of the reference genomes and
circular elements covered by one short read in the combined metagenome datasets.
Analysis of gold standard assembly binnings allowed us to assess binning performances
independently of assembly quality. We assessed the contributions of assembly quality by
comparing with the binning results on MEGAHIT assemblies. Profiling results were
submitted for all individual samples and for the entire datasets, respectively. Binning
results included genome or taxon bin assignments for analyzed reads or contigs of the
provided assemblies for every sample of a dataset. Results for the pathogen detection
challenge included predictions of all pathogens and a causal pathogen responsible for
the symptoms outlined in a clinical case description provided together with the clinical
metagenome dataset. The CAMI Il challenges ended on October 25, 2019. Subsequently,
another round of challenges (“CAMI Il b”) on plant-associated data was offered starting
on February 14, 2020. This closed on September 29, 2020 for assembly submissions and

on January 31, 2021 for genome and taxonomic binning, as well as profiling.

Altogether 5,002 submissions of 76 programs were received for the four challenge
datasets, from 30 external teams and CAMI developers (Supplementary Table 2). All
genome data used for generation of the benchmark datasets as well as their metadata
was kept confidential during the challenge and released afterwards (10.4126/FRLO1-
006421672). To support an unbiased assessment, program submissions were
represented with anonymous names in the portal (known only to submitters), and a
second set of anonymous names for evaluation and discussion in the evaluation

workshop, such that identities were unknown to all except for data analysis team (F.M.,
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Z-L.D., AF., AS.), and program identities revealed only after a first consensus was

reached.
Evaluation metrics

In the following, we briefly outline the metrics used to evaluate the four software

categories. For details, the reader is also referred t020:53.61,

Assemblies: Assemblies were evaluated with metaQUAST 5.1.0rc using the --unique-
mapping flag. This flag allows every contig to be mapped at only a single reference
genome position. In evaluation, we focused on commonly used assembly metrics such
genome fraction, mismatches per 100 kb, duplication ratio, NGA50 and the number of
misassemblies. The genome fraction specifies the percentage of reference bases
covered by assembled contigs obtained by similarity-based mapping. Mismatches per
100 kb specify the number of mismatched bases in the contig-reference alignment. The
duplication ratio is defined as the total number of aligned bases divided by genome
fraction multiplied with reference length. NGA50 is a metric for measuring the contiguity
of an assembly. For each reference genome, all contigs aligned to it are sorted by size
and the NGA50 for that genome is defined as the length of the contig cumulatively
surpassing 50% genome fraction. If a genome is not covered to 50%, NGA50 is
undefined. Since we report the average NGA50 over all genomes, it was set to 0 for
genomes with less than 50% genome fraction. Finally, the number of misassemblies
describes the number of contigs which either contain a gap of more than 1kb, contain
inserts of more than 1kb or align to different genomes. In addition to these metrics, we
determined the strain recall and strain precision, similar to38, to quantify the presence of
high-quality, strain-resolved assemblies. Strain recall is defined as the fraction of high-
quality (more than 90% genome fraction and less than 100 mismatches per 100 kb)
genome assemblies recovered for all ground truth genomes. Strain precision specifies
the fraction of high-quality assemblies among all high genome fraction (more than 90%)

assemblies.

Genome binning: for every predicted genome bin b, the true positives TP, are the number

of base pairs of the most abundant genome g in b, the false positives FP, are the number
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of base pairs in b belonging to genomes other than g, and the false negatives FN, are

the number of base pairs belonging to g that are not in b.

Purity is defined for each predicted genome bin b as:

TPp
TPp+FPp’

purity, =

The average purity is a simple average of the purity of bins b in the set of all predicted
genome bins B, that is:

Zpe g purityp

average purity = 5]

Completeness is defined for each genome g based on its mapping to a genome bin b that
it is most abundant in, as:

TPgb

completenessg), = TPoptFN gy’

The average completeness is defined over all genomes in the sample, including those
that are the most abundant in none of the predicted genome bins. Let X be the set of such

genomes. The average completeness is then defined as:

Zp e p completenessgp
|B| + |X]|

average completeness =

As another metric, we consider the number of predicted genome bins that fulfill specific
quality criteria. Bins with >50% completeness and <10% contamination are denoted as
‘moderate or higher” quality bins and bins with completeness >90% and contamination

<5% as high-quality genome bins, similarly as in CheckM74.

The Adjusted Rand index (ARI) is defined as in %3. The Rand index compares two
clusterings of the same set of items. Assuming the items are base pairs of different
sequences, base pairs belonging to the same genome that were binned together in the
same genome bin are considered true positives, and base pairs belonging to different
genomes that were put into different genome bins are considered true negatives. The

Rand index is the sum of true positives and negatives, divided by the total number of base
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pairs. The ARI is a normalized variant of the Rand index, such that the result ranges
between 1 (best) and 0 (worst; see 53 for a complete definition). As binning methods may
leave a portion of the data unbinned, but the ARI is not suitable for datasets that are only
partially assigned, it is computed for the binned portion only and interpreted together with

the percentage of binned base pairs of a dataset.

Taxonomic binning: metrics are calculated for each of the major taxonomic ranks, from
superkingdom or domain to species. Purity and completeness for each taxonomic bin b
(i.e., group of sequences and base pairs therein assigned to the same taxon) are
computed by setting TP, to the number of base pairs of the true taxon t assigned to b,
FP, the number of base pairs assigned to b belonging to other taxa, and FN, the number
of base pairs of t not assigned to b. The average purity at a certain taxonomic rank is a

simple average of the purity of all predicted taxon bins at that taxonomic rank.

The average completeness at a certain taxonomic rank is the sum of the completeness
over all predicted taxon bins divided by the number of taxa GS in the gold standard at that

taxonomic rank. That is:

Xpe p completenessy
1GS|

average completeness =

The accuracy at a certain taxonomic rank is defined as:

SpepTP
accuracy = %,

where B is the set of predicted taxon bins at that taxonomic rank and n is the total number

of base pairs in GS for that taxonomic rank.

Average purity, completeness, and accuracy are also computed for a filtered subset B
of B of each taxonomic rank, without the 1% smallest bins, and are denoted below
average purityy, average completenessy, and accuracys. By is obtained by sorting all
bins in B by increasing size in base pairs and filtering out the first bins whose cumulative
size sum is smaller or equal to 1% of summed size of all bins in B. These metrics are then

computed as:
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ZbeBy purityp

average purityy = Bl
f

Zpe Bf completenessy

average completeness; = s :

Z'ber TPp

accuracyr = ”

Taxonomic profiling: we determined purity and completeness in taxon identification, L1
norm and weighted UniFrac 8 as abundance metrics, and alpha diversity estimates using
the Shannon equitability index, as outlined below. We also calculated the following
summary statistic: for each metric, we ranked the profilers by their average performance
over samples. Each was assigned a score for its ranking (0 for first place among all tools
at a particular taxonomic rank, 1 for second place, etc.). These scores were then added
over the taxonomic ranks, from domain to species, to give an overall summary ranking

score.

The purity and completeness for a taxonomic profile measure a method's ability to
determine the presence and absence of taxa in a sample, at a certain taxonomic rank,
without considering their relative abundances. Let the true positives TP and false positives
FP be the number of correctly and incorrectly detected taxa, that is, taxa present or absent
in the gold standard profile, respectively, for a certain sample and rank. Further, let the
false negatives FN be the number of taxa that are in the gold standard profile but a method

failed to detect. Purity, completeness, and F1-score are then defined as above.

The L1 norm error, Bray-Curtis distance, and weighted UniFrac error measure a method's
ability to determine the relative abundances of taxa in a sample. Except for the UniFrac
metric (which is rank independent), these are defined at each taxonomic rank. Let x; and
x; be the true and predicted relative abundances of taxon t in a sample, respectively. The
L1 norm gives the total error between x; and x; in a sample, for all true and predicted t

at a certain rank and ranges between 0 and 2. It is determined as:

L1 normerror = X¢|x; — x¢|
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The Bray-Curtis distance is the L1 norm error divided by the sum of all abundances x;

and x; at the respective rank, that is:

Zelxe — x¢ |

Bray-Curtis distance = :
2xe + x;

The Bray-Curtis distance ranges between 0 and 1. As the gold standards usually contain
abundances for 100% of the data, it is equal to half of the L1 norm error if the profiler

made predictions also for 100% of the data, and higher otherwise.

The weighted UniFrac metric uses differences between predicted and actual abundances
weighted by distance in the taxonomic tree. It ranges between 0 (best) and 16 (worst).

We use the EMDUnifrac implementation of the UniFrac distance 8.

The Shannon equitability index is defined for each rank as:

ZexpxIn(xg)

Shannon equitability index = In(m)

where m is the total number of taxa t. The index ranges from 0 to 1, with 1 indicating
complete evenness. As the diversity estimate is computed from a predicted profile alone,

we assess its absolute difference to the index of the gold standard for comparison.

Data availability and accession code availability statements

A Life Science Reporting Summary for this paper will be made available. The
benchmarking challenge and exemplary datasets (for developers to familiarize upfront
with data types and formats) are available in PUBLISSO with the DOIs 10.4126/FRLO1-
006425521 (marine, strain madness, plant-associated), 10.4126/FRL01-006421672
(mouse gut), and 10.4126/FRL01-006425518 (human) and on the CAMI data portal for
download (https://data.cami-challenge.org/participate). Datasets include gold standards,

assembled genomes underlying benchmark data creation, NCBI taxonomy versions, and
reference sequence collections for NCBI RefSeq, nt and nr (status 019/01/08).
Benchmarked software outputs are available on Zenodo

(https://zenodo.org/communities/cami/). Further software and scripts used for data

analyses, and results are available at https://github.com/CAMI-
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challenge/second challenge evaluation. Supplementary Table 2 specifies the evaluated

programs, parameters used, and installations options, including software repositories,
Bioconda package recipes, Docker images, Bioboxes, and Biocontainers. Source data

and scripts for Figures 1-5 are available online (https:/github.com/CAMI-

challenge/second challenge evaluation/).
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