
Standardizing workflows in imaging transcriptomics with the abagen toolbox
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Gene expression fundamentally shapes the structural and functional architecture of the human brain.
Open-access transcriptomic datasets like the Allen Human Brain Atlas provide an unprecedented ability
to examine these mechanisms in vivo; however, a lack of standardization across research groups has
given rise to myriad processing pipelines for using these data. Here, we develop the abagen toolbox,
an open-access software package for working with transcriptomic data, and use it to examine how
methodological variability influences the outcomes of research using the Allen Human Brain Atlas.
Applying three prototypical analyses to the outputs of 750,000 unique processing pipelines, we find
that choice of pipeline has a large impact on research findings, with parameters commonly varied in
the literature influencing correlations between derived gene expression and other imaging phenotypes
by as much as ρ ≥ 1.0. Our results further reveal an ordering of parameter importance, with pro-
cessing steps that influence gene normalization yielding the greatest impact on downstream statistical
inferences and conclusions. The presented work and the development of the abagen toolbox lay the
foundation for more standardized and systematic research in imaging transcriptomics, and will help to
advance future understanding of the influence of gene expression in the human brain.
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INTRODUCTION

Technologies like magnetic resonance imaging (MRI)
provide unique insights into macroscopic brain structure
and function in vivo. Modern research increasingly em-
phasizes how microscale attributes, such as gene expres-
sion, influence these imaging-derived phenotypes (Ar-
natkeviciute et al. 2021, Arnatkevic̆iūtė et al. 2019, For-
nito et al. 2019). Gene expression is particularly use-
ful as it is a fundamental molecular phenotype that can
be plausibly linked to the function of biological path-
ways (Seidlitz et al. 2018, Whitaker et al. 2016), pro-
tein synthesis (Zheng et al. 2019), receptor distributions
(Beliveau et al. 2017, Deco et al. 2020, Nørgaard et al.
2021, Preller et al. 2018, Shine et al. 2019), and cell
types (Anderson et al. 2020b, 2018, Gao et al. 2020,
Hansen et al. 2021, Seidlitz et al. 2020). However,
researchers looking to bridge these macro- and micro-
scopic phenotypes must overcome multiple challenges.
Although there are numerous technical and analytic con-
siderations, one foundational issue is that acquiring high-
quality transcriptomic data from the human brain is both
costly and highly invasive, requiring budgets far greater
than most typical neuroimaging studies and restrictive
access to tissue from post-mortem donors or cranial sur-
gical patients. As such, researchers must often rely on
freely-available repositories of gene expression data.

There exist multiple open-access repositories for gene
expression in the human brain, including BrainSpan
(Kang et al. 2011, Miller et al. 2014) and PsychENCODE
(Gandal et al. 2018, Li et al. 2018, Wang et al. 2018;
among others: Darmanis et al. 2015, Lake et al. 2016,
Sousa et al. 2017); however, these datasets generally
provide relatively sparse anatomical coverage, limiting

the types of analyses that can be performed. Thus, re-
searchers who aim to compare transcriptomic expression
with whole-brain imaging-derived phenotypes have pri-
marily relied on the Allen Human Brain Atlas (AHBA;
Hawrylycz et al. 2015, 2012). Initially released in
2010, the AHBA remains the most spatially comprehen-
sive dataset of its kind. Derived from bulk microarray
analysis of tissue samples obtained from six donors, the
AHBA provides expression data for more than 20,000
genes across 3,702 brain areas in MRI-derived stereo-
tactic space. With its superior resolution, the AHBA has
significantly contributed to the emergence of the field of
imaging transcriptomics (Fornito et al. 2019), enabling
dozens of studies over the past decade examining re-
lationships between gene expression and an array of
macroscale imaging attributes, including cortical thick-
ness (Shin et al. 2018), myelination (Burt et al. 2018),
developmental brain maturation (Kirsch and Chechik
2016, Whitaker et al. 2016), structural brain networks
(Arnatkevičiūtė et al. 2020, Romero-Garcia et al. 2018,
Seidlitz et al. 2018), functional brain networks (Krienen
et al. 2016, Richiardi et al. 2015, Vértes et al. 2016),
and human cognition (Fox et al. 2014, Hansen et al.
2021). The AHBA has also highlighted the importance
of whole-brain gene expression in neurological and psy-
chiatric diseases, where it has become increasingly clear
that transcriptional pathways play a critical role in shap-
ing the broader dynamics of disease progression and
emergent symptomatology (Anderson et al. 2020a, Hen-
derson et al. 2019, McColgan et al. 2018, Morgan et al.
2019, Rittman et al. 2016, Romme et al. 2017, Shafiei
et al. 2021, Vogel et al. 2020, Zheng et al. 2019).

Since its release, several software toolboxes have been
developed to help researchers use transcriptional data
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from the AHBA (French and Paus 2015, Gorgolewski
et al. 2015, Rittman et al. 2017, Rizzo et al. 2016); how-
ever, these tools often focus primarily on facilitating in-
tegration of the AHBA with neuroimaging data, offering
limited if any functionality for modifying how the data
are processed prior to analysis. Instead, a recent com-
prehensive review revealed that many research groups
have opted to develop their own processing pipelines for
the AHBA (Arnatkevic̆iūtė et al. 2019). Unfortunately,
as there are no field-accepted standards for process-
ing imaging transcriptomic data, the generated pipelines
vary substantially across groups.

The extent to which such processing variability affects
analytic outcomes from the AHBA remains unknown. In-
deed, over the past decade neuroimaging research has
shown that methodological variability can have broad in-
fluences on analyses using structural MRI (Bhagwat et al.
2021, Kharabian Masouleh et al. 2020), diffusion MRI
(Maier-Hein et al. 2017, Oldham et al. 2020, Schilling
et al. 2019), task fMRI (Botvinik-Nezer et al. 2020, Carp
2012), and resting-state fMRI (Ciric et al. 2017, Parkes
et al. 2018). Although researchers are beginning to grap-
ple with the consequences of this variability, the lack of
baseline gene expression datasets against which to com-
pare new results impedes the development of standard-
ized practices. In these situations, some researchers have
proposed performing “multiverse” analyses (Dragicevic
et al. 2019, Steegen et al. 2016), wherein all possible
permutations of data processing are analyzed and the
full range of analytic results reported. Although such
analyses can be computationally intensive, they offer a
path to understand how processing choices impact sta-
tistical inferences and conclusions, and provide a mech-
anism by which to help researchers converge on an opti-
mal pipeline.

Here, we comprehensively investigate how different
processing choices influence the results of analyses using
the AHBA. First, we develop an open-source Python tool-
box, abagen, that collates all possible processing param-
eters into a set of turn-key workflows, optimized for flex-
ibility and ease-of-use. We then use the toolbox to pro-
cess the AHBA through approximately 750,000 unique
pipelines. Across three prototypical imaging transcrip-
tomic analyses, we examine whether and how these dif-
ferent processing options modify derived statistical esti-
mates and quantify the relative importance of each op-
tion. Next, we replicate a curated set of processing
pipelines from the literature to assess how previously-
reported findings compare to the full range of potential
outcomes observed across all examined pipelines. Fi-
nally, we end with a set of recommendations, integrated
directly into the developed abagen toolbox, to promote
standardized use of the AHBA in future work.

RESULTS

We introduce the abagen toolbox, an open-access soft-
ware package designed to streamline processing and

preparation of the AHBA for integration with neuroimag-
ing data (Markello et al. 2021, available at https:
//github.com/rmarkello/abagen). Supporting several
workflows, abagen offers functionality for an array of
analyses and has already been used in several peer-
reviewed publications and preprints (Benkarim et al.
2020, Brown et al. 2021, Ding et al. 2021, Hansen et al.
2021, Lariviere et al. 2020, Martins et al. 2021, Park et al.
2021, 2020, Shafiei et al. 2021, 2020, Valk et al. 2021,
Zhao et al. 2020). The primary workflow, used to gen-
erate regional gene expression matrices, integrates 17
distinct processing steps that have previously been em-
ployed by research groups throughout the published lit-
erature (Table 1). The following results use abagen to
investigate how variable application of these processing
steps can impact analyses of AHBA data.

Processing choices influence transcriptomic analyses

To understand how choices made during the process-
ing of AHBA data impact downstream analyses, we enu-
merated 17 decision points (i.e., processing steps or op-
tions) that have been modified and used in the literature
(Table 1). From these 17 steps we implemented 746,496
distinct processing pipelines, where each pipeline par-
cellated microarray expression from the AHBA with the
Desikan-Killiany atlas (Desikan et al. 2006) to generate
a unique brain region-by-gene expression matrix.

Analyses of expression data from the AHBA can be
grouped into one of three broad classes (Fornito et al.
2019): correlated gene expression analyses, gene co-
expression analyses, and regional gene expression anal-
yses. Correlated gene expression analyses examine the
correlation between brain regions across genes, yielding
a symmetric region × region matrix (similar to a func-
tional connectivity matrix). Gene co-expression analy-
ses, on the other hand, examine the correlation between
genes across brain regions, yielding a symmetric gene ×

gene matrix. Finally, regional gene expression analyses
examine the expression patterns of specific genes or gene
sets in relation to other imaging-derived phenotypes.

To examine how differences in processing choices may
impact both the expression matrices generated from the
different pipelines and derived statistical estimates we
ran one analysis from each of these classes on the ma-
trices generated by each processing pipeline. Notably,
these analyses are either direct reproductions or vari-
ations of analyses that have been previously published
(Arnatkevic̆iūtė et al. 2019, Burt et al. 2018, Hawrylycz
et al. 2012, Oldham et al. 2008). Although there is no
ground truth for any of these analyses, findings from pre-
vious work offer some context for interpreting the ob-
served results (i.e., data from other species and other
modalities; Lau et al. 2021). Nonetheless, we primarily
focus on highlighting the potential variability resulting
from different processing pipelines.

Correlated gene expression (CGE). First, we separately
correlated the rows of each expression matrix to gen-
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Table 1. abagen pipeline options | Overview of 17 options to be considered when processing the AHBA data. The Choices column
indicates the number of parameters explored in the current report (numerator) and the total number of parameters possible for the
given option (denominator). A denominator of n indicates a hypothetically near-infinite parameter space. The Description column
gives a brief overview of the processing choice; for more detail refer to the relevant section in Methods: Gene expression pipelines.

Option Choices Description

Volumetric or surface atlas 2/2 Whether to use a volumetric or surface representation of the atlas

Individualized or group atlas 1/2 Whether to use individualized donor-specific atlases or a group-level atlas

Use non-linear MNI coordinates 2/2 Whether to use updated MNI coordinates provided by alleninf package

Mirror samples across L/R hemisphere 3/4 Whether to mirror (i.e., duplicate) samples across hemisphere boundary

Update probe-to-gene annotations 2/2 Whether to update probe annotations

Intensity-based filtering threshold 3/n Threshold for intensity-based filtering of probes

Inter-areal similarity threshold 1/n Threshold for removing samples with low inter-areal correspondence

Probe selection method 6/8 Method by which to select which probe(s) should represent a given gene

Donor-specific probe selection 3/3 How specified probe selection should integrate data from different donors

Missing data method 2/3 How to handle when brain regions are not assigned expression data

Sample-to-region matching tolerance 3/n Distance tolerance for matching tissue samples to atlas brain regions

Sample normalization method 3/10 Method for normalizing tissue samples (across genes)

Gene normalization method 3/10 Method for normalizing genes (across tissue samples)

Normalize only matched samples 2/2 Whether to perform gene normalization for all versus matched samples

Normalizing discrete structures 2/2 Whether to perform gene normalization within structural classes

Sample-to-region combination method 2/2 Whether to aggregate tissue samples in regions within or across donors

Sample-to-region combination metric 2/2 Metric for aggregating tissue samples into atlas brain regions

erate symmetric region × region “correlated gene ex-
pression” matrices, indicating the similarity of gene ex-
pression profiles between different brain regions (Fig-
ure 1a). Previous work in other species has reliably ob-
served that transcriptional similarity in the brain decays
with increasing separation distance (Fulcher et al. 2019,
Lau et al. 2021). This distance-dependent relationship is
an expected feature due to the functional specialization
of brain regions, and is consistent with other imaging-
derived phenotypes in humans (Betzel and Bassett 2018,
Goulas et al. 2019, Horvát et al. 2016, Mišić et al. 2014,
Roberts et al. 2016, Shafiei et al. 2020). We assessed this
relationship by extracting the upper triangle of the corre-
lated gene expression matrices and correlating them with
the upper triangle of a regional distance matrix, derived
by computing the average Euclidean distance between
brain regions in the Desikan-Killiany atlas (Fig. 1a, left
panel). Although previous work has highlighted that this
relationship is exponential (Arnatkevic̆iūtė et al. 2019),
we computed the Spearman correlation as both statistics
should exhibit similar variability across pipelines and the
latter is less computationally expensive.

Gene co-expression (GCE). For the second type of
analysis we separately correlated the columns of each ex-
pression matrix to generate gene × gene “co-expression”
(GCE) matrices, indicating the similarity in spatial ex-
pression patterns between all pairs of genes (Figure 1a).
A significant body of research has shown that genes
tend to form functional communities, exhibiting synchro-
nized expression patterns across space and time (Old-

ham et al. 2008), such that gene co-expression patterns
tend to be more similar within than between such com-
munities. Here, we obtained a set of gene commu-
nity assignments derived for the brain from a previously
studied human transcriptomic dataset (Oldham et al.
2008). We used these community assignments to cal-
culate a silhouette score (Rousseeuw 1987) for the gene
co-expression matrices generated by each pipeline, mea-
suring how well these communities represented the de-
rived co-expression patterns (Fig. 1a, middle panel).

Regional gene expression (RGE). For the third type of
transcriptomic analysis, we focused on regional correla-
tions between gene expression measures and an MRI-
derived phenotype. Our regional expression measure
was defined by computing the first principal component
of the region-by- gene expression matrix, representing
the axis of maximum spatial variation of gene expression
in the brain observed under a given AHBA processing
pipeline. As gene expression fundamentally shapes the
structure and function of the human brain, it is likely that
this principal component may exhibit similar spatial vari-
ability to other imaging-derived measures. Recent work
has highlighted that the T1w/T2w ratio is a robust phe-
notype that exhibits patterns of regional variation con-
sistent with other microstructural and functional proper-
ties (Burt et al. 2018, Demirtaş et al. 2019, Fulcher et al.
2019, Gao et al. 2020). We therefore correlated the first
principal component of gene expression with the whole-
brain T1w/T2w ratio (Fig. 1a, right panel), measuring
the extent to which these values covary across the cor-
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Figure 1. Processing choices influence transcriptomic analyses | (a) Examples of the three analyses used to assess differences
in gene expression matrices generated by transcriptomic pipelines. First row: a depiction of the region-by-gene expression matrix
generated from one of the 746,946 tested processing pipelines. Second row, left: we compute the correlation between rows of
each matrix to generate a symmetric region × region CGE matrix. We then compute the correlation between the upper triangle of
this CGE matrix and the upper triangle of a regional distance matrix to examine the degree to which CGE decays with increasing
distance between regions (Arnatkevic̆iūtė et al. 2019). Second row, middle: we compute the Euclidean distance between columns
of each matrix to generate a gene × gene GCE matrix. We use previously defined functional gene communities (Oldham et al.
2008) to compute a silhouette score for this GCE matrix to investigate whether genes within a module have more similar patterns
of spatial expression than genes between modules. Second row, right: the first principal component is extracted from the RGE
matrix. We compute the correlation between this principal component and the whole-brain T1w/T2w ratio (Burt et al. 2018) to
understand how closely these maps covary across the brain. (b) The full statistical distributions from each of the three analyses for
all 746,496 pipelines. Left panel: Spearman correlation values, ρ, from the CGE analyses. Middle panel: silhouette scores from the
GCE analyses. Right panel: Spearman correlation coefficients, ρ, from the RGE analyses. CGE: correlated gene expression; GCE:
gene co-expression; RGE: regional gene expression.

tex.

Pipeline distributions Results from these three anal-
yses reveal that choice of processing pipeline dramat-
ically influences derived statistical estimates (i.e., the
CGE-distance correlation, the gene co-expression silhou-
ette score, and the spatial correlations between gene
PC1 and whole-brain T1w/T2w ratio; Fig. 1b). We

observe that all three of the generated distributions of
statistical estimates across the 746,496 pipelines have
wide ranges (correlated gene expression: [-0.51, -0.13];
gene co-expression: [-0.78, -0.18]; regional gene ex-
pression: [0.00, 0.90]) and are either bimodal (Fig. 1b,
left/middle panels) or heavily skewed (Fig. 1b, right
panel).
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Figure 2. Parameter choice differentially impacts statistical estimates | (a) Rank of the relative importance for each parameter
(y-axis) across all three analyses (x-axis). Warmer colors indicate parameters that have a greater influence on statistical estimates.
(b) Statistical distributions from the three analyses, shown as kernel density plots, separated by choice of gene normalization
method (the most impactful parameter as shown in panel a). (c) Density plots of the statistical estimates for all 746,496 pipelines
shown along the first two principal components, derived from the 746,496 (pipeline) x 3 (statistical estimates) matrix, representing
how different the statistical estimates from each of the three analyses are relative to other pipelines. Left panel: pipelines are
colored based on choice of gene normalization method, where each color represents 1/3 of the pipelines. Here, the pipelines in
which no normalization was applied (purple) are distinguished from those in which some form of normalization was applied (blue
and brown). Right panel: pipelines are colored based on whether gene normalization was performed within (True, red) or across
(False, purple) structural classes (i.e., cortex, subcortex/brainstem, cerebellum; see Methods: Gene expression pipelines for more
information).

Since there is no ground truth for these analyses we
cannot quantitatively assess whether some pipelines are
more or less accurate than others. However, there is
strong qualitative evidence to suggest that correlated
gene expression should be lower between brain regions
that are farther apart (Arnatkevic̆iūtė et al. 2019, Fulcher
et al. 2019, Krienen et al. 2016, Lau et al. 2021, Richiardi
et al. 2015). It is notable, then, that the distribution
of distance-dependent estimates is so strongly bimodal
(splitting at r ≈ −0.4), suggesting two very different per-
spectives on the size of this effect (Fig. 1a,b, left panels).
As increasingly-detailed single-cell transcriptional data
become available (e.g., Yao et al. 2021) we may be able
to use these estimates to determine accuracy; for now,
we simply note that even for this estimate with strong
biological priors we see considerable variability.

Similar variability can be observed for the other two

analyses. While all of the pipelines demonstrate rel-
atively poor fit of gene communities to the derived
gene co-expression matrices (refer to Methods: Analytic
approaches for information on why this is not unex-
pected), we observe that a portion of the pipelines yield
far worse correspondence (Fig. 1a,b, middle panels).
Moreover, while the correlations between gene PC1 and
whole-brain T1w/T2w ratio are largely consistent across
pipelines, there are a small group of pipelines that yield
correlations that deviate by ρ ≈ 1.0. Notably, the param-
eter choices for these pipelines are not pathological—
that is, their use could be justified—and, as we discuss
later (see Results: Variability in parameter importance),
modifying just one parameter setting can yield changes
in effect sizes within this range.

Collectively, we find that for all three of these analy-
ses there is substantial variability in the statistical esti-
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mates generated by different processing pipelines, and
this variability is large enough that, across pipelines, it
has a meaningful difference in the potential inferences
and conclusions that can be drawn.

Variability in parameter importance

Next, we quantified the relative importance of differ-
ent processing steps and parameters on our three derived
statistical estimates. While researchers must ultimately
make choices for each of the steps individually when pro-
cessing AHBA data, we wanted to investigate whether
unique choices have distinct influences. Moreover, which
parameters are most important may differ based on the
type of analysis performed.

We investigated parameter importance by calculating a
distribution of difference scores for each parameter, mea-
suring the extent to which changing each parameter—
holding all other parameters constant—influences the
derived statistical metrics from each of the three analy-
ses. For example, given a processing parameter with two
choices this procedure yielded a distribution of N/2 dif-
ference scores per analysis, where N is the total number
of pipelines (i.e., 746, 496/2 = 373, 248). We averaged
these distributions separately for each analysis to gener-
ate a single, summary “impact score” for each processing
step, which we then rank-ordered independently for each
analysis.

We find considerable agreement in which parameters
are the most impactful across analyses (Fig. 2a): the
most influential processing steps often involve proce-
dures that influence the gene normalization process in
some way (e.g., gene normalization method, normaliz-
ing only matched samples; Fig. 2b). On the other hand,
among the least impactful parameters are choices con-
cerning donor-specific probe selection and handling of
missing data. It is worth noting that of the probe se-
lection methods tested in the current manuscript (i.e.,
max intensity, correlation intensity, correlation variance,
differential stability, RNAseq correlation, and averag-
ing), three of the six all render the choice of donor-
specific probe selection redundant. In other words, these
three methods are mutually exclusive with choice of
donor-specific probe selection, potentially confounding
our ability to measure the real influence of this param-
eter. We also highlight that choice of atlas may influ-
ence the impact of missing data handling: since the
Desikan-Killiany atlas is a relatively low-resolution at-
las (68 nodes), expression matrices generated from the
tested pipelines are missing, at most, data for two brain
regions. It is possible that handling of missing data may
be more important when higher-resolution parcellations
are employed. That is, while some parameters do not
appear to affect our results in aggregate, there are poten-
tially specific research questions where these parameters
could play an important and impactful role.

To investigate those parameters that did play an in-
fluential role in the current analyses, we visualized

their impact by examining the statistical distributions
from each analysis separated by the different parame-
ter choices (shown in Fig. 2b for gene normalization
method). Dividing the distributions in this way high-
lights how strongly parameter choice can influence the
outcomes of the analyses: for example, when no gene
normalization is employed the resulting estimates are
dramatically shifted from those generated by pipelines
that employed some form of normalization (Fig. 2b; no
normalization: blue distribution). Indeed, the bimodal-
ity and skew observed in the full statistical distributions
for the analyses (Fig. 1b) is almost entirely explained by
this single parameter choice.

To investigate more qualitative differences in how pa-
rameter choice influences the processing pipelines we
performed a principal component analysis (PCA) on the
matrix of statistical estimates from the three analyses
(i.e., the 746, 496 × 3 pipeline-by-analysis matrix). We
extracted the first two principal components from the
statistical estimate matrix (variance explained: PC1 =
70%, PC2 = 26%) and examined how pipeline scores
were distributed along these axes (Fig. 2c). Delineating
the distribution of pipelines based on parameter choice
underscores how these options impact the separability
of resulting statistical estimates. Reinforcing results pre-
sented above, we find that the choice of gene normal-
ization method distinguishes the one-third of pipelines
with no normalization (purple) from the remaining two-
thirds that applied some form of normalization (blue and
brown; Fig. 2c, left). It is clear from the distribution of
pipelines, however, that other processing choices interact
with this parameter. For example, plotting the pipelines
by whether the gene normalization was performed sepa-
rately on samples within each structural class (i.e., cere-
bral cortex, subcortex, cerebellum) rather than across
all tissue samples further delineates the pipelines that
applied gene normalization into two distinct clusters
(Fig. 2c, right).

These results reveal how different processing steps are
grouped in terms of their importance to analyses of the
AHBA, with some groups demonstrating greater poten-
tial impact. Broadly, parameters modifying normaliza-
tion are the most important, followed by parameters in-
fluencing how tissue samples are matched to brain re-
gions, and finally parameters impacting probe selection.
Moreover, we find that choices within each processing
step do not all have an equivalent impact on derived
estimates (i.e., performing no gene normalization has a
much greater influence than choosing between the two
other forms of normalization tested).

Reproducing published analyses

The previous subsections demonstrate variability
across the complete range of reasonable processing
pipelines; however, many of these pipelines have not
yet been used in practice. To investigate whether the
subset of pipelines that have already been implemented
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Figure 3. Reproducing published pipelines| (a) Parameter choices used in the reproduction of published pipelines. Processing
steps with categorical choices (e.g., gene normalization) were converted to numerical choices for display purposes only. These
choices reflect the range of choices enumerated in Table 1. (b) Relative expression values of cortical somatostatin (SST) generated
by each of the reproduced pipelines. Value ranges vary based on pipeline processing options. (c) The Pearson correlation between
cortical somatostatin (SST) maps across the nine pipelines. (d) Statistical estimates from the three analyses described in Methods:
Analytic approaches applied to expression data from each of the published pipelines.

in the published literature display similar variability, we
used abagen to reproduce the processing procedures
from nine peer-reviewed articles that (1) are highly-
cited within the field, (2) highlight a wide range of pro-
cessing options, and (3) sufficiently describe their pro-
cessing pipelines such that they could be reproduced.
We explored how different the gene expression values
and statistical outcomes generated by these published
pipelines were (Anderson et al. 2020b, 2018, Burt et al.
2018, French and Paus 2015, Hawrylycz et al. 2015,
Krienen et al. 2016, Liu et al. 2020, Romero-Garcia
et al. 2018, Whitaker et al. 2016). To ensure compa-
rability, we standardized the choice of brain parcellation
across pipelines, using the Desikan-Killiany atlas in all in-
stances. The pipelines were used to generate nine region-

by-gene expression matrices, which were then subjected
to the same three analyses described previously.

In reproducing the pipelines we note important differ-
ences in processing parameter selection (Fig. 3a), and
find that this variability results in slight discrepancies be-
tween gene expression values generated by the pipelines.
For example, looking at the distribution of cortical so-
matostatin (SST), a gene discussed heavily in Anderson
et al. (2020b) where it used as a proxy for somatostatin
interneuron density (cf. Fulcher 2019), we observe some
variation between pipelines (Fig. 3b,c). Although we find
moderate consistency in the statistical estimates gener-
ated by the pipelines, there are important differences
(ranges: correlated gene expression [-0.49, -0.28], gene
co-expression [-0.70, -0.24], regional gene expression
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Figure 4. Workflows and features in the abagen toolbox | (a) The primary workflow of abagen, used in the reported analyses,
accepts a brain atlas and returns a parcellated brain-region-by-gene expression matrix. (b) An alternative abagen workflow accepts
a regional mask and returns a processed tissue-sample-by-gene expression matrix, for all tissue samples from the six AHBA donors
that fall within boundaries of the mask. (c) Examples of selected features from the abagen workflows and additional toolbox
functionality. Top left: examples of some commonly-used atlases that can be employed with the parcellation workflow shown
in panel (a). Bottom left: abagen can accept either standard atlases (i.e., in MNI space) or atlases defined in the space of the
six individual donors from the AHBA. Top right: an additional workflow available in abagen can be used to generate densely-
interpolated expression maps from AHBA data using a k-nearest neighbors interpolation algorithm. Bottom right: using high-
resolution atlases in the parcellation workflow (panel a) may result in some parcels being assigned no expression data; abagen
supports two methods for assigning values to such regions.

[0.34, 0.88]; Fig. 3c). One outlier is the single pipeline
that did not appear to implement any form of gene nor-
malization (French and Paus 2015), supporting earlier
results demonstrating the importance of this processing
step on downstream expression estimates. This is po-
tentially notable as the processed expression data from
this pipeline were made openly available and have been
used in analyses by other researchers (e.g., Beliveau et al.
2017, Sepulcre et al. 2018).

Given that imaging transcriptomics is still relatively

new and there has been limited work addressing best
practices in the field (cf. Arnatkevic̆iūtė et al. 2019),
these results stress the importance of standardization in
use of the AHBA among research groups. Although vari-
ation in processing can ostensibly lead to similar infer-
ences in specific analyses, even minor differences in pro-
cessing choices consistently yield measurable discrepan-
cies in derived expression data. Without proper stan-
dardization, these differences will compound and be-
come more problematic as the field continues to grow.
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Figure 5. Annotated example abagen report | Example of an automatically-generated methods section report from the abagen

toolbox. Processing steps are shown on the left and the relevant methods text—which is updated when these steps are modified—is
shown in the same font color on the right. Reports also include a formatted reference section and relevant equations; these are
not shown here for conciseness. Note that some processing steps (e.g., normalizing within structures, missing data handling) are
omitted here because they are not run by default (see Table S1).

Standardized processing and reporting with the abagen

toolbox

Across all of our analyses we find that choice of pro-
cessing steps and parameters can have a strong influence
on the statistical outcomes of research with the AHBA.
Here, we briefly highlight features that we have inte-
grated into the abagen toolbox to facilitate standardiza-
tion in future research.

The abagen toolbox supports two use-case driven
workflows: (1) a workflow that accepts an atlas and re-
turns a parcellated, preprocessed regional gene expres-
sion matrix (Fig. 4a); and, (2) a workflow that accepts a
mask and returns preprocessed expression data for all tis-
sue samples within the mask (Fig. 4b). Workflows can be
called via a single line of code from either the command

line or Python terminal, and take approximately one
minute to run with default settings using the Desikan-
Killiany atlas. Although these workflows support the en-
tire range of processing options that we assessed in the
current manuscript (Fig. 4c), we have set the default
options for all steps based on best practice recommen-
dations developed in Arnatkevic̆iūtė et al. (2019) and
further informed by the results presented above (see Ta-
ble S1 for a full list).

We believe the default settings in abagen will pro-
vide a reasonable starting point for researchers begin-
ning to work with the AHBA; however, as we have con-
tinually noted, the appropriate choices for some pa-
rameters will vary based on research question. As
such, to make it easier for researchers to report ex-
actly what parameters they use, we have integrated
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an automated reporting mechanism into the abagen

workflows (Fig. 5). The generated reports provide
manuscript-ready step-by-step documentation describing
all the processing done to the AHBA data in the work-
flow, and are licensed CC0 (https://creativecommons.
org/share-your-work/public-domain/cc0/) so that they
can be freely used without restriction.

Beyond its primary workflows, abagen has additional
functionality for post-processing the AHBA data (e.g.,
removing distance-dependent effects from expression
data, calculating differential stability estimates; Hawry-
lycz et al. 2015), and for accessing data from the com-
panion Allen Mouse Brain Atlas (e.g., providing inter-
faces for querying the Allen Mouse API; https://mouse.
brain-map.org/; Lein et al. 2007). Creation of the tool-
box has followed best-practices in software development,
including version control, continuous integration test-
ing, and modular code design. abagen has already been
successfully used in many peer-reviewed publications
(Benkarim et al. 2020, Brown et al. 2021, Ding et al.
2021, Hansen et al. 2021, Lariviere et al. 2020, Mar-
tins et al. 2021, Park et al. 2021, 2020, Shafiei et al.
2021, 2020, Valk et al. 2021, Zhao et al. 2020), and
we continue to integrate new features as community
needs emerge. To encourage further use by new re-
search groups we provide comprehensive documentation
on installing and working with the abagen toolbox online
(https://abagen.readthedocs.io/).

DISCUSSION

In the present report we introduced the abagen tool-
box, an open-source Python library for processing tran-
scriptomic data. Using abagen, we conducted a compre-
hensive analysis examining whether and how different
processing options modify statistical estimates derived
from analyses using the AHBA. We investigated how pro-
cessing pipelines used in the literature compare to those
we tested, and provide recommendations for improv-
ing standardization and reporting of analyses using the
AHBA, highlighting how the abagen toolbox can facili-
tate future developments in this space.

Testing nearly 750,000 unique processing pipelines,
we find that choice of processing parameters can strongly
influence statistical estimates derived from analyses of
the AHBA, and that these choices interact with the type
of analysis performed (Fig. 1). We observe significant
variability with regard to which parameters are most in-
fluential, finding that procedures modifying gene expres-
sion normalization have a far greater impact on down-
stream analyses than other processing steps (Fig. 2).
Looking to the literature, we reproduce nine pipelines
from published articles and find that, despite notable in-
consistencies in their processing choices, there is mod-
erate consistency in their produced statistical estimates
(Fig. 3). We demonstrate, however, that these summary
estimates may obscure meaningful differences in gene
expression values derived by the pipelines, cautioning

researchers to be aware of how analytic choices may im-
pact their findings.

Altogether, the present report provides a comprehen-
sive assessment of how processing variability can impact
analyses in the field of imaging transcriptomics. Our re-
sults demonstrate how researcher choices (or “researcher
degrees of freedom”; Simmons et al. 2011) can play a
meaningful role in analyses of the AHBA. However, these
findings are not necessarily limited to the AHBA. Indeed,
increasing reliance on open-access datasets has begun
to reveal unique challenges associated with data reuse
(Thompson et al. 2020). Improved standardization and
reporting among research groups using (and re-using)
openly-available datasets may help to mitigate some of
these challenges. We believe that functionality in the
abagen toolbox can support future researchers in over-
coming these pitfalls and improve reproducibility in pro-
cessing and analyzing AHBA data.

Our results also show that not all processing choices
are equal: that is, we find a hierarchy of processing pa-
rameters, wherein procedures modifying gene normal-
ization have the greatest impact on analyses, followed
by steps more broadly influencing the matching of tissue
samples to brain regions and finally by parameters that
determine probe selection. Furthermore, we find that
within processing steps certain parameter choices may
lead to more reasonable statistical estimates. In particu-
lar, applying some form of gene normalization tends to
improve the behavior of processed expression data when
compared to instances in which no normalization is ap-
plied (Fig. 1), but there appear to be limited differences
in the type of normalization used. Critically, these find-
ings largely agree with previous recommendations devel-
oped by Arnatkevic̆iūtė et al. (2019), and we have cho-
sen default parameter choices for abagen workflows ac-
cordingly.

More broadly, this work builds on increasing efforts to
examine the importance of methodological choices and
analytical flexibility in human neuroimaging research
(Bhagwat et al. 2021, Botvinik-Nezer et al. 2020, Carp
2012, Ciric et al. 2017, Kharabian Masouleh et al. 2020,
Maier-Hein et al. 2017, Oldham et al. 2020, Parkes et al.
2018, Schilling et al. 2019). Thankfully, emerging tech-
nical solutions have begun to tackle these issues via the
development of tools that aim to abstract away sources of
variation (e.g., fMRIPrep, Esteban et al. 2019; QSIPrep,
Cieslak et al. 2020). While results from the present study
reinforce the importance of methodological choices in re-
search, abagen draws significant inspiration from these
software packages in providing a set of tools designed to
overcome such concerns when working with the AHBA.

While the AHBA dataset remains the only one of its
kind, the abagen toolbox is designed to be used more
broadly as similar datasets become available. That is,
the preprocessing functions in abagen can be applied
to other microarray expression datasets assuming, e.g.,
availability of stereotactic coordinates. As new imaging
transcriptomic datasets are developed and become more
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widely-used, abagen functionality for creating standard-
ized processing pipelines will only become more im-
portant. By developing the toolbox openly on GitHub
(https://github.com/rmarkello/abagen), it is our hope
that abagen can serve as a foundational, community tool
for use in imaging transcriptomics research.

One consideration for future work on this topic is that
the pipelines tested cover only a portion of the poten-
tial variability possible when processing AHBA data (Ta-
ble 1). For example, a growing body of research has be-
gun to examine how choice of brain parcellation may
impact imaging analyses (e.g., Craddock et al. 2012,
Markello and Misic 2021, Messé 2020, Thirion et al.
2014). While we only assessed processing pipelines us-
ing the Desikan-Killiany atlas, many other atlases have
been used with the AHBA and it remains unclear how
this variation may impact research findings. We also
did not investigate whether donor-specific parcellations
may impact analyses, a processing choice used in sev-
eral published research findings (Anderson et al. 2020b,
Burt et al. 2018, Romero-Garcia et al. 2018). Although
there is significant evidence suggesting inter-individual
variability in brain region definition (e.g., Dickie et al.
2018, Gordon et al. 2017, Kong et al. 2019), the pro-
cess of generating individualized brain parcellations is
fraught with methodological choices and requires care-
ful data processing. Given the quality of the MRI
data provided alongside the transcriptomic data in the
AHBA—including important differences in scanning pro-
tocol and procedures between donors—creating donor-
specific parcellations may be a large source of variability
between pipelines.

Another limitation of the presented results is that we
are unable to make categorical statements about which
processing options are “best” for the AHBA. Unfortu-
nately, there is no ground truth against which we can
assess what the optimal set of processing parameters are,
and encourage future work in this area to tackle this im-
portant problem. Moreover, the optimal set of processing
parameters will very likely vary based on research ques-
tion. Nonetheless, we offer two alternative solutions for
researchers who want to continue using the AHBA data.
First, similar to the current report, researchers can con-
duct a comprehensive analysis with the AHBA, running
multiple processing pipelines and showing the entire dis-
tribution of generated statistical estimates; however, this
process can be computationally prohibitive and may im-
pair researchers’ abilities to interpret their findings (Stee-
gen et al. 2016). A less costly alternative, then, is for the
imaging transcriptomic research community to converge
on a set of data-driven processing pipeline for the AHBA
that can be used across research groups. We believe
the abagen toolbox—with its comprehensive workflows,
well-informed default parameter choices, and detailed
documentation—can facilitate this process. While we ac-
knowledge that some research groups may have strong
reasons for wanting to use specific (i.e., non-default) pro-
cessing choices, in these instances we urge clear and de-

tailed reporting of the methods used—such as via the
automated reporting functionality from the abagen tool-
box.

Altogether, the current report highlights the problem
of processing variability in analyses using the AHBA, im-
pacting many research studies in the burgeoning field of
imaging transcriptomics. We demonstrate how different
processing options can influence statistical estimates of
analyses relating data from the AHBA to imaging-derived
phenotypes, and present the abagen toolbox as a promis-
ing potential solution to this issue.

MATERIALS AND METHODS

Code and data availability

All code used for data processing, analysis, and fig-
ure generation is available on GitHub (https://github.
com/netneurolab/markello_transcriptome) and directly
relies on the following open-source Python packages:
IPython (Pérez and Granger 2007), Jupyter (Kluyver
et al. 2016), Matplotlib (Hunter 2007), NiBabel (Brett
et al. 2019), NumPy (Harris et al. 2020, Oliphant 2006,
Van Der Walt et al. 2011), Pandas (McKinney et al.
2010), PySurfer (Waskom et al. 2020), Scikit-learn (Pe-
dregosa et al. 2011), SciPy (Virtanen et al. 2020), and
Seaborn (Waskom et al. 2018).

Data

Allen Human Brain Atlas

The Allen Human Brain Atlas (AHBA) is an open-
access online resource containing whole-brain microar-
ray gene expression data obtained from post-mortem tis-
sue samples of six adult human donors (https://human.
brain-map.org; Allen Institute for Brain Science 2013,
Hawrylycz et al. 2012). Expression data for over 20,000
genes were sampled from 3,702 distinct tissue samples
across the six donors (1 female, ages 24–57), providing
the most spatially-comprehensive assay of gene expres-
sion in the human brain. Normalized microarray expres-
sion data were downloaded for all six donors; RNAseq
data were downloaded for the two donors with relevant
data.

Human Connectome Project

Group-averaged T1w/T2w (a proxy for intracortical
myelin) data were downloaded from the S1200 release
of the Human Connectome Project (HCP; Van Essen et al.
2013) and used without further processing.

Brain parcellations

All analyses were performed with the Desikan-Killiany
atlas (DK; 68 cortical nodes), an anatomical parcellation
generated by delineating regions based on gyral bound-
aries (Desikan et al. 2006). To explore the impact of
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volumetric- versus surface-based parcellations we used a
version of the DK atlas in (1) volumetric MNI152, and
(2) surface fsaverage5 space; both versions are provided
directly with the abagen toolbox.

The abagen toolbox

Source code for abagen is available on GitHub (https:
//github.com/rmarkello/abagen) and is provided under
the three-clause BSD license (https://opensource.org/
licenses/BSD-3-Clause). We have integrated abagen

with Zenodo, which generates unique digital object
identifiers (DOIs) for each new release of the toolbox
(e.g., https://doi.org/10.5281/zenodo.3451463). Re-
searchers can install abagen as a Python package via
the PyPi repository (https://pypi.org/project/abagen/),
and can access comprehensive online documentation via
ReadTheDocs (https://abagen.readthedocs.io/).

Gene expression pipelines

Most neuroimaging analyses using the AHBA must
first convert the “raw” data into a pre-processed brain
region-by-gene expression matrix. To investigate the ex-
tent to which different processing procedures might im-
pact downstream analyses, we used abagen to modify
17 distinct processing steps in the generation of region-
by-gene matrices from the original AHBA data, yielding
746,496 distinct pipelines. Here we describe in detail
the 17 processing steps and respective methods for each
option that we examined in our analyses (refer to Ta-
ble 1 for a summary overview of these choices or refer to
the abagen documentation for implementation details;
https://abagen.readthedocs.io).

Volumetric or surface atlas

Aggregation of tissue samples from the AHBA into dis-
crete brain regions requires researchers to supply an atlas
(or parcellation). There are many brain atlases available
for use, however they typically exist in one of two forms:
defined (1) in 3D “volumetric” space, or (2) in “surface”
space on a 2D representation of the cortical sheet. Many
atlases can exist in both of these formats and so beyond
the choice of parcellation, researchers must select which
representation to use when processing AHBA samples.
Choice of atlas may impact how many and which samples
are matched to brain regions. In the current manuscript
we examined a volume- and surface-based representa-
tion of the Desikan-Killiany atlas (see Methods: Data;
Desikan et al. 2006). Note that both versions of the at-
las used in the reported analyses are included with the
“abagen“ software distribution.

Individualized or group-level atlas

There is growing recognition that brain parcellations
derived at the group level tend to obscure individual

differences in anatomy or function (e.g., Dickie et al.
2018, Gordon et al. 2017, Kong et al. 2019). Researchers
working with the AHBA have thus begun to generate
donor-specific parcellations, using individualized atlases
to match tissue samples to brain regions. The individ-
ualization process can vary dramatically depending on
whether researchers are using volumetric or surface at-
lases and whether they are operating in “native” or stan-
dard (i.e., group) space. Because of the immense vari-
ability inherent to the individualization process itself,
we opted not to explore this parameter in the current
manuscript.

Use non-linear MNI coordinates

With its initial release the AHBA provided stereotactic
coordinates for each tissue sample in MNI space (Collins
et al. 1999, Fonov et al. 2011, 2009); however, two
of the six donor brains were scanned in cranio and co-
ordinates were derived using affine registrations to the
MNI template, while the remaining four were scanned
ex vivo and a non-linear registration was used to gen-
erate coordinates. More recently, Gorgolewski et al.
(2014) used ANTS (Avants et al. 2011) to perform a
standardized, manually-corrected non-linear diffeomor-
phic registration of all the donor brains to MNI space.
Analyses collating tissue samples into distinct brain re-
gions often rely on MNI coordinates to match samples
to regions, and researchers must choose whether to use
the original coordinates provided with the AHBA or the
newer, non-linearly generated coordinates. In the cur-
rent manuscript we assessed the impact of using (1) the
original MNI coordinates and (2) the updated coordi-
nates from Gorgolewski et al. (2014).

Mirror samples across left-right hemisphere

Only the first two donors included in the AHBA had
tissue samples taken from the right hemisphere. Pre-
liminary analyses of these data revealed minimal later-
alization of microarray expression, and so samples were
collected exclusively from the left hemisphere for the fol-
lowing four donors (Hawrylycz et al. 2015, 2012). This
irregular sampling resulted in limited spatial coverage of
expression in the right hemisphere; to resolve this, some
researchers have opted to mirror existing tissue sam-
ples across the left-right hemisphere boundary (Romero-
Garcia et al. 2018). Researchers must decide whether
to perform sample mirroring, and, if so, whether they
should mirror unilaterally (i.e., only right-to-left or left-
to-right) or bilaterally (i.e., both right-to-left and left-to-
right). In the current manuscript we assessed (1) no mir-
roring, (2) left-to-right mirroring, and (3) bilateral mir-
roring. The option for mirroring right-to-left was omitted
as this is only useful when analyses selectively consider
the left hemisphere, not the whole brain.
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Update probe-to-gene annotations

The 60-base-pair probes used to assess microarray ex-
pression in the AHBA were annotated with their corre-
sponding gene (or lack thereof) when the data were pub-
licly released. However, as the human reference genome
is updated these annotations become increasingly out-
of-date. Thus, when researchers choose to use the AHBA
data they must decide whether to use the original gene
annotations or more recently-generated annotations. In
the current manuscript we assessed using both the orig-
inal annotations and those generated by Arnatkevic̆iūtė
et al. (2019).

Intensity-based filtering threshold

Data from the AHBA are provided with information
indicating whether the expression of each microarray
probe exceeds the expression levels of background sig-
nal. Using this information, researchers can choose to
perform an intensity-based filtering procedure wherein
probes are only considered if their expression levels are
greater than background across a specified percentage of
tissue samples. In the current manuscript we considered
three degrees of intensity-based filtering: (1) no filtering
(all probes used), (2) 25% filtering (probes used if they
exceeded background for more than 25% of all samples),
and (3) median filtering (probes used if they exceeded
background for more than 50% of all samples).

Inter-areal similarity threshold

The expression value of some tissue samples in the
AHBA differ markedly from all other samples in the
dataset. While this could be driven by real spatial
variability in expression values throughout the brain, it
is also possible that this variability is artifactual. Re-
searchers can opt to asses the inter-areal similarity of tis-
sue samples, quantifying those that differ from the rest
by a given threshold, and remove them from consider-
ation. To our knowledge this processing step has only
been implemented in a single research study (Burt et al.
2018), and as such we do not consider it in the current
manuscript.

Probe selection method

The probes used to measure microarray expression lev-
els in the AHBA are often redundant; that is, there are
frequently several probes indexing the same gene. Thus,
at some point researchers must transition from measur-
ing probe expression levels to measuring gene expression
levels. Effectively, this means selecting from or condens-
ing the redundant probes for each gene. There have been
at least eight methods proposed in the literature for this
process, including selecting a single probe with the (1)
max intensity across samples, (2) max variance across
samples, (3) highest loading on the first principal com-

ponents across samples, (4) highest correlation to other
probes (or max intensity across samples when only two
probes exist), (5) highest correlation to other probes (or
max variance across samples when only two probes ex-
ist), (6) highest differential stability across donors, (7)
highest fidelity to simultaneously-acquired RNAseq data,
or (8) simply averaging all probes indexing the same
gene. In the current manuscript we only consider six of
the most commonly-applied methods (i.e., 1, 4, 5, 6, 7,
and 8); the other methods (i.e., 2 and 3) have only been
reported in a single research study (Negi and Guda 2017
and Parkes et al. 2017, respectively) and as such we do
not consider them.

Donor-specific probe selection

Probe selection (described above) often requires ap-
plying some selection criterion to gene expression levels
across tissue samples. For these methods, the specified
criterion can be measured across donors (i.e., aggregat-
ing tissues samples from donors) or independently for
each donor. The latter case—performing probe selection
independently for each donor—allows for two additional
options: (1) using whichever probe is chosen for each
donor, even if it differs from the other donors, or (2) us-
ing the most-commonly selected probe for all donors. In
the current manuscript we considered all three of these
options: (1) aggregating samples across donors, (2) per-
forming probe selection independently for each donor,
and (3) using the most commonly-selected probe across
donors.

Missing data method

Due to the irregular spatial sampling of data in the
AHBA some brain regions may not be assigned any cor-
responding microarray expression data. Researchers can
opt to simply omit these regions from subsequent anal-
yses; however, in some cases this is not desirable as
the spatial distribution of the missing samples may not
be random and discarding them may bias resulting es-
timates. Two options for handling missing data have
been proposed in the literature, including filling missing
regions with expression data from nearby regions (i.e.,
nearest-neighbors interpolation; Whitaker et al. 2016),
or interpolating data in missing regions based on nearby
samples (i.e., linear interpolation; Burt et al. 2018). In
the current manuscript we tested two options: (1) omit
brain regions with missing data entirely from subsequent
analyses, and (2) fill missing data with expression values
using nearest-neighbors interpolation. Linear interpola-
tion has been sparingly used in the published literature
(e.g., Burt et al. 2018, Romero-Garcia et al. 2018) and
carries an increase in computational cost (approximately
an order of magnitude higher than nearest neighbors in-
terpolation); as such, we do not consider it in the current
manuscript.
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Sample-to-region matching tolerance

Volumetric atlases While most tissue samples from
the AHBA will fall directly within the brain regions de-
lineated by most parcellations, some samples may fall
outside the boundaries of these regions. Researchers
can nonetheless choose to permit assigning these nearby
samples to a given region, but will often set a distance
threshold beyond which samples cannot be assigned. In
the current manuscript we considered three distance tol-
erances: 0mm (i.e., samples must fall exactly within a
region), 1mm, and 2mm.

Surface atlases Because tissue samples from the
AHBA are defined in volumetric space, matching them
to parcels defined on a surface-based atlas requires dif-
ferent considerations than with volumetric atlases No-
tably, all samples will have non-zero distances from sur-
face vertices; therefore, when matching to surface atlases
distance thresholds are generally considered in terms of
standard deviations (Burt et al. 2018; c.f., Anderson et al.
2020b). In this way all samples are matched to the sur-
face and then those that are more than the specified stan-
dard deviation(s) above the mean away from the surface
are excluded. In the current manuscript we tested three
standard deviation distance tolerances: 0 s.d. (i.e., all
samples farther than the average distance are excluded),
1 s.d., and 2 s.d..

Sample normalization method

Prior to aggregating microarray expression data across
donors, researchers can optionally normalize the mi-
croarray expression data for each tissue sample across
all represented genes (i.e., perform row-wise normaliza-
tion). This procedure can account for between-sample
differences in gene expression potentially driven by mea-
surement errors. There is a number of techniques that
have been proposed to normalize expression values;
however, in the current manuscript we considered three
normalization methods: (1) no normalization, (2) a z-
score transform, and (3) a scaled robust sigmoid trans-
form (Fulcher et al. 2013).

Gene normalization method

Prior to aggregating microarray expression data across
donors, researchers can optionally normalize the mi-
croarray expression data for each represented gene
across tissue samples (i.e., perform column-wise nor-
malization). This procedure can account for inter-
individual (donor-specific) differences in gene expres-
sion data, which remain present in the AHBA despite
batch corrections performed by the Allen Institute prior
to releasing the data. In the current manuscript we con-
sidered three normalization methods: (1) no normaliza-
tion, (2) a z-score transform, and (3) a scaled robust sig-
moid transform (Fulcher et al. 2013).

Normalizing only matched samples

Due to choices in other processing steps (e.g., Volume-
or surface-based atlas, Sample-to-region matching toler-
ance some tissue samples from the AHBA may not be as-
signed to any region in a given brain atlas. During gene
normalization, where expression from each gene is nor-
malized across tissue samples, researchers must decide
whether to use (1) only those tissue samples matched to
brain regions, or (2) the entire corpus of tissue samples,
irrespective of whether they will be included in the fi-
nal, processed regional expression matrix. In the current
manuscript we consider both of these options.

Normalizing discrete structures

There is known variation in gene expression values
between tissue samples taken from distinct structural
classes (i.e., samples taken from neocortex may have
different expression values than those from the brain-
stem). When performing gene normalization researchers
can opt to normalize (1) across all samples irrespective
of the structure from which they derive, or (2) indepen-
dently for samples taken from different brain structures.
Although the brain atlas used in the current manuscript
represents only cortical parcels, this processing choice
can interact with Normalizing only matched samples to
impact resulting expression values and we therefore test
both options.

Note that in the abagen toolbox structural classes are
operationalized as: (1) cortex, (2) subcortex and brain-
stem, (3) cerebellum, and (4) white matter. Subcor-
tex and brainstem are considered as one class because
neuroanatomical delineation between these regions are
widely contested and expression values in these regions
tend to be more similar to one another than to other re-
gions (i.e., data-driven clustering of samples tends to as-
sign subcortical and brainstem samples together).

Sample-to-region combination method

Once tissue samples have been assigned to brain re-
gions they need to be combined to generate a single ex-
pression profile; however, due to sampling differences
between donors, some donors may have more tissue
samples assigned to a given brain region than others.
Thus, researchers must decide whether to aggregate
samples (1) within each brain region independently for
each donor and then across donors, or (2) simultane-
ously across all donors. In the latter case, donors with a
higher number of samples matched to a region will con-
tribute more to the expression profile of a given region
(Arnatkevic̆iūtė et al. 2019). In the current manuscript
we test both of these options.
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Sample-to-region combination metric

When aggregating tissue samples into brain regions
researchers must decide what aggregation metric they
want to use. Although any statistical estimate could be
considered, in practice an estimate of central tendency
such as the mean expression values across tissue samples
is most applicable. In the current manuscript we test ag-
gregation with both the (1) mean and (2) median.

Analytic approaches

Prototypical analyses relying on parcellated microar-
ray expression data from the AHBA fall into three broad
categories (Fornito et al. 2019):

1. Correlated gene expression: Examining the correla-
tion between distinct brain regions across genes
(i.e., using the region-by-region correlation ma-
trix);

2. Gene co-expression: Examining the correlation be-
tween gene expression profiles across brain regions
(i.e., using the gene-by-gene correlation matrix);
or,

3. Regional gene expression: Examining the expression
profile of one (or more) genes across brain regions
(i.e., using selected columns of the region-by-gene
expression matrix).

In order to examine the interaction between process-
ing options and analytic method we performed one anal-
ysis from each of these three categories, described below,
for every output of the 746,496 processing pipelines.

Correlated gene expression

Researchers have reliably found a relationship be-
tween correlated gene expression in the brain and the
distance between brain regions: that is, brain regions
that are farther away from one another tend to have
less similar gene expression profiles (Arnatkevic̆iūtė et al.
2019, Krienen et al. 2016, Richiardi et al. 2017, 2015,
Vértes et al. 2016). In order to examine the impact of
processing choices on this relationship we computed the
Spearman correlation between the upper triangle of the
regional distance matrix (Euclidean distance between
brain regions) and the upper triangle of each correlated
gene expression matrix (Fig. 1a, left). Brain regions for
which no gene expression data were available (depen-
dent on pipeline options) were not included in the cor-
relation. Note that this relationship is likely exponen-
tial (Arnatkevic̆iūtė et al. 2019); however, we calculated
the Spearman coefficient as it is more computationally
tractable and it should exhibit similar variability across
pipelines.

Gene co-expression

Researchers have previously shown that gene expres-
sion in the brain tends to organize into functionally-
defined communities or modules (Hawrylycz et al. 2012,
Oldham et al. 2008). We examined the extent to which
functional gene modules derived from a separate tran-
scriptomic dataset (Oldham et al. 2008) mapped onto
the gene co-expression matrices generated from the dif-
ferent processing pipelines. For each gene-by-gene ma-
trix we calculated the silhouette score (Rousseeuw 1987)
of the gene modules on a modified version of gene co-
expression matrix (calculating Euclidean distance be-
tween genes instead of gene correlations; Fig. 1a, mid-
dle) via:

s =
1

N

N∑

i=1

b(i)− a(i)

max{a(i), b(i)}

where a(i) is the average distance of a data point i to
all other data points in the same cluster, b(i) is the mean
distance of data point i to the nearest neighboring clus-
ter, and N is the total number of data points. The final
silhouette score s ranges from -1 to +1, where positive
values indicate assortative and negative values indicate
disassortative clusters.

Note that the original gene modules were defined
using a weighted gene co-expression network analysis
(WGCNA), which generally requires performing addi-
tional processing steps on the gene co-expression matrix.
Since we used the raw gene co-expression matrix in the
current analysis we expect lower silhouette scores than
those reported in the initial manuscript where the gene
communities were initially defined; however, the vari-
ance in scores between pipelines should not be signifi-
cantly impacted by this choice.

Regional gene expression

Researchers recently highlighted how the principal
component of gene expression in the brain closely
mirrors the spatial variation observed in MRI-derived
T1w/T2w measurements (typically used as a proxy for
myelination; Burt et al. 2018). We examined whether
this relationship was present across the outputs of the
different pipelines, measuring the Spearman correlation
between the T1w/T2w ratio and the first principal com-
ponent of the regional gene expression matrix (Fig. 1a,
right). Regional gene expression matrices were mean-
centered prior to extraction of the principal component.

Assessing pipeline impact

In order to examine the impact of each processing
option on the resulting analyses we calculated a differ-
ence score, measuring the extent to which changing each
option—holding all other options constant—influenced
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the derived metrics (i.e., correlation, silhouette score).
When there were only two choices for a given option the
impact was calculated as the absolute value of the differ-
ence between the two choices. When there were more
than two choices and choices were ordinal (e.g., sample-
to-region matching tolerance) the impact was calculated
as the average of the absolute value of the difference be-
tween adjacent choices. When there were more than two
choices and the choices were categorical (e.g., probe se-
lection method) the impact was calculated as the average
of the absolute value of the difference between all com-
binations of choices. These calculations yielded a dis-
tribution of “impact” estimates (i.e., change scores) for
each processing option; we represented the final impact
score for each processing option as the average of these
distributions, taken independently for each of the three
analyses. Impact estimates were rank-ordered (where
the most impactful parameter was given a rank of one,
the second most impactful a rank of two, and so on) to
enable direct comparison across the different statistical
estimates derived from the three analyses.

Pipeline dimensionality reduction

To investigate qualitative differences between the pro-
cessing pipelines we performed a principal components
analysis (PCA) on the matrix of estimates from the
three statistical analyses (i.e., the 746,496 x 3 ma-
trix). We mean-centered the columns of the matrix and
extracted the first two principal components, examin-
ing how pipeline scores were distributed along these
two components in relation to different processing op-
tions. These principal component highlight the close-
ness of the estimate generated by each pipeline along
the dimensions of maximum statistical variation; that is,
two pipelines that are closer together in the reduced-
dimension space yielded more similar statistical esti-
mates than two pipelines that are farther apart.

Reproducing pipelines from the literature

Although all of the processing options explored in the
current manuscript are reasonable or viable choices that
researchers could make when preparing the AHBA for
analysis, in reality these have not all been used in the
published literature. In order to examine how pipelines
used in the literature compared to those that we as-
sessed, we selected nine articles that relied on data from
the AHBA to support a primary research finding and re-
produced their processing pipelines in abagen (Ander-
son et al. 2020b, 2018, Burt et al. 2018, French and
Paus 2015, Hawrylycz et al. 2015, Krienen et al. 2016,
Liu et al. 2020, Romero-Garcia et al. 2018, Whitaker
et al. 2016). Note that these articles used a variety
of parcellations and so to ensure comparability across

pipelines we standardized this parameter, using the
Desikan-Killiany atlas in all instances. One parame-
ter that we did not assess in the pipelines explored in
the current manuscript—whether to use individualized,
donor-specific parcellations or a group-level atlas—was
frequently varied in the published pipelines. Thus, when
reproducing pipelines that called for individualized vol-
umetric atlases we relied on the donor-specific Desikan-
Killiany parcellations provided by Arnatkevic̆iūtė et al.
(2019); when reproducing pipelines with individualized
surface atlases we relied on the donor-specific Desikan-
Killiany parcellations provided by Romero-Garcia et al.
(2018).

As not all of the original manuscripts detailed the pro-
cessing choices for each of the 17 steps in the abagen

workflow, when specific parameter choices were omitted
we either: (1) used the default setting if the parame-
ter was required (e.g., using the mean for the “sample-
to-region combination metric,” since all pipelines must
combine samples to regions), or (2) omitted the process-
ing step entirely if it is an optional step (e.g., not per-
forming any gene normalization).

ACKNOWLEDGEMENTS

We thank Vincent Bazinet, Elizabeth DuPre, Jus-
tine Hansen, Golia Shafiei, Laura Suárez, and Bertha
Vázquez-Rodríguez for their comments and suggestions.
This research was undertaken thanks in part to fund-
ing from the Canada First Research Excellence Fund,
awarded to McGill University for the Healthy Brains
for Healthy Lives initiative. This work was supported
in part by funding provided by Brain Canada, in part-
nership with Health Canada, for the Canadian Open
Neuroscience Platform initiative. RDM acknowledges
support from the Fonds du Recherche Québec - Na-
ture et Technologies and the Canadian Open Neuro-
science Platform. BM acknowledges support from the
Natural Sciences and Engineering Research Council of
Canada (NSERC Discovery Grant RGPIN #017-04265)
and from the Canada Research Chairs Program. AF
was supported by the Sylvia and Charles Viertel Founda-
tion and National Health and Medical Research Council
(ID: 3274306). J-BP was partially funded by National
Institutes of Health (NIH) NIH-NIBIB P41 EB019936
(ReproNim) NIH-NIMH R01 MH083320 (CANDIShare)
and NIH RF1 MH120021 (NIDM), the National Insti-
tute Of Mental Health of the NIH under Award Number
R01MH096906 (Neurosynth), and by Natural Sciences
and Engineering Research Council of Canada (NSERC).

COMPETING INTERESTS

The authors declare no competing interests.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451635
http://creativecommons.org/licenses/by/4.0/


17

Allen Institute for Brain Science (2013). Allen Human
Brain Atlas online documentation. https://help.brain-map.
org/display/humanbrain/Documentation.

Anderson, K. M., Collins, M. A., Chin, R., Ge, T., Rosenberg,
M. D., and Holmes, A. J. (2020a). Transcriptional and imaging-
genetic association of cortical interneurons, brain function, and
schizophrenia risk. Nature Communications, 11(1):1–15.

Anderson, K. M., Collins, M. A., Kong, R., Fang, K., Li, J., He, T.,
Chekroud, A. M., Yeo, B. T., and Holmes, A. J. (2020b). Con-
vergent molecular, cellular, and cortical neuroimaging signa-
tures of major depressive disorder. Proceedings of the National
Academy of Sciences, 117(40):25138–25149.

Anderson, K. M., Krienen, F. M., Choi, E. Y., Reinen, J. M.,
Yeo, B. T., and Holmes, A. J. (2018). Gene expression links
functional networks across cortex and striatum. Nature Com-
munications, 9(1):1–14.

Arnatkeviciute, A., Fulcher, B., Bellgrove, M., and Fornito, A.
(2021). Where the genome meets the connectome: under-
standing how genes shape human brain connectivity. PsyArXiv.

Arnatkevičiūtė, A., Fulcher, B., Oldham, S., Tiego, J., Paquola,
C., Gerring, Z., Aquino, K., Hawi, Z., Johnson, B., Ball, G.,
Klein, M., Deco, G., Franke, B., Bellgrove, M., and Fornito, A.
(2020). Genetic influences on hub connectivity of the human
connectome. bioRxiv.
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Fornito, A., Arnatkevic̆iūtė, A., and Fulcher, B. D. (2019). Bridg-
ing the gap between connectome and transcriptome. Trends in
Cognitive Sciences, 23(1):34–50.

Fox, A. S., Chang, L. J., Gorgolewski, K. J., and Yarkoni, T.
(2014). Bridging psychology and genetics using large-scale spa-
tial analysis of neuroimaging and neurogenetic data. bioRxiv,
page 012310.

French, L. and Paus, T. (2015). A Freesurfer view of the corti-
cal transcriptome generated from the Allen Human Brain Atlas.
Frontiers in Neuroscience, 9:323.

Fulcher, B. D. (2019). Discovering conserved properties of
brain organization through multimodal integration and in-
terspecies comparison. Journal of Experimental Neuroscience,
13:1179069519862047.

Fulcher, B. D., Little, M. A., and Jones, N. S. (2013). Highly
comparative time-series analysis: the empirical structure of
time series and their methods. Journal of the Royal Society In-
terface, 10(83):20130048.

Fulcher, B. D., Murray, J. D., Zerbi, V., and Wang, X.-J. (2019).
Multimodal gradients across mouse cortex. Proceedings of the
National Academy of Sciences, 116(10):4689–4695.

Gandal, M. J., Zhang, P., Hadjimichael, E., Walker, R. L., Chen,
C., Liu, S., Won, H., Van Bakel, H., Varghese, M., Wang, Y.,
et al. (2018). Transcriptome-wide isoform-level dysregulation
in asd, schizophrenia, and bipolar disorder. Science, 362(6420).

Gao, R., van den Brink, R. L., Pfeffer, T., and Voytek, B. (2020).
Neuronal timescales are functionally dynamic and shaped by
cortical microarchitecture. Elife, 9:e61277.

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J.,
Greene, D. J., Berg, J. J., Ortega, M., Hoyt-Drazen, C., Grat-
ton, C., Sun, H., et al. (2017). Precision functional mapping of
individual human brains. Neuron, 95(4):791–807.

Gorgolewski, K. J., Fox, A. S., Chang, L., Schäfer, A., Arélin,
K., Burmann, I., Sacher, J., and Margulies, D. S. (2014). Tight
fitting genes: finding relations between statistical maps and
gene expression patterns. F1000Research, 5.

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y.,
Ghosh, S. S., Maumet, C., Sochat, V. V., Nichols, T. E., Poldrack,
R. A., Poline, J.-B., et al. (2015). NeuroVault.org: a web-based
repository for collecting and sharing unthresholded statistical
maps of the human brain. Frontiers in Neuroinformatics, 9:8.

Goulas, A., Betzel, R. F., and Hilgetag, C. C. (2019). Spa-
tiotemporal ontogeny of brain wiring. Science Advances,
5(6):eaav9694.

Hansen, J. Y., Markello, R. D., Vogel, J. W., Seidlitz, J., Bzdok,
D., and Misic, B. (2021). Mapping gene transcription and neu-
rocognition across human neocortex. Nature Human Behaviour,
pages 1–11.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S.,
Smith, N. J., et al. (2020). Array programming with NumPy.
Nature, 585(7825):357–362.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451635
http://creativecommons.org/licenses/by/4.0/


19

Hawrylycz, M., Miller, J. A., Menon, V., Feng, D., Dolbeare, T.,
Guillozet-Bongaarts, A. L., Jegga, A. G., Aronow, B. J., Lee, C.-
K., Bernard, A., et al. (2015). Canonical genetic signatures of
the adult human brain. Nature Neuroscience, 18(12):1832.

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen,
E. H., Ng, L., Miller, J. A., Van De Lagemaat, L. N., Smith, K. A.,
Ebbert, A., Riley, Z. L., et al. (2012). An anatomically compre-
hensive atlas of the adult human brain transcriptome. Nature,
489(7416):391.

Henderson, M. X., Cornblath, E. J., Darwich, A., Zhang, B.,
Brown, H., Gathagan, R. J., Sandler, R. M., Bassett, D. S., Tro-
janowski, J. Q., and Lee, V. M. (2019). Spread of α-synuclein
pathology through the brain connectome is modulated by se-
lective vulnerability and predicted by network analysis. Nature
Neuroscience, 22(8):1248–1257.
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Table S1. Default abagen pipeline options | The default settings for the 17 processing steps considered when processing the
AHBA data with abagen. An entry of "—" indicates that this is a required, user-supplied parameter. A blank entry indicates that the
processing step is not implemented by default. Refer to Table 1 and Methods: Gene expression pipelines for further details.

Option Default

Volumetric or surface atlas —

Individualized or group atlas —

Use non-linear MNI coordinates True

Mirror samples across L/R hemisphere

Update probe-to-gene annotations True

Intensity-based filtering threshold 50%

Inter-areal similarity threshold

Probe selection method differential stability

Donor-specific probe selection aggregate

Missing data method

Sample-to-region matching tolerance 2mm

Sample normalization method scaled robust sigmoid

Gene normalization method scaled robust sigmoid

Normalize only matched samples True

Normalizing discrete structures False

Sample-to-region combination method donors

Sample-to-region combination metric mean
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