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Abstract

The complex intrinsic and extrinsic forces from the body and environment push the brain into non-
equilibrium. The arrow of time, central to thermodynamics in physics, is a hallmark of non-equilibrium
and serves to distinguish between reversible and non-reversible dynamicsin any system. Here, we use
a deep learning Temporal Evolution NETwork (TENET) framework to discover the asymmetry in the
flow of events, ‘arrow of time', in human brain signals, which provides a quantification of how the
brain is driven by the interplay of the environment and internal processes. Specifically, we show in
large-scale HCP neuroimaging data from a thousand participants that the levels of non-
reversibility/non-equilibrium change across time and cognitive state with higher levels during tasks
than when resting. The level of non-equilibrium also differentiates brain activity during the seven
different cognitive tasks. Furthermore, using the large-scale UCLA neuroimaging dataset of 265
participants, we show that the TENET framework can distinguish with high specificity and sensitivity
resting state in control and different neuropsychiatric diseases (schizophrenia, bipolar disorders and
ADHD) with higher levels of non-equilibrium found in health. Overall, the present thermodynamics-
based machine learning framework provides vital new insights into the fundamental tenets of brain

dynamics for orchestrating the interactions between behaviour and brain in complex environments.
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Survival is a key characteristic of life and requires the ability to find order in a complex, largely
disordered environment. As proposed by the Austrian physicist and Nobel Laurate Ernst Schrodinger,
survival is predicated on avoiding equilibrium: “How does the living organism avoid decay? ... By
eating, drinking, breathing and ... assimilating. The technical term is metabolism” (Schrodinger, 1944).
The avoidance of decay thus requires non-equilibrium interactions with the complex environment — and
the brain is at the heart of these interactions.

There is along history of understanding how the brain is able to interact with the environment. The
initial extrinsc perspective proposed that the brain is primarily reflexively, driven by momentary
stimulation from the environment in a task-driven manner (Raichle, 2010; Sherrington, 1906; Y uste et
al., 2005). A more recent, complementary perspective was proposed by Marcus Raichle, which holds
that the brain is mainly intrinsic; resting but switching between states whilst “interpreting, responding
to, and even predicting environmental demands’ (Raichle, 2006; Raichle et al., 2001). The evidence is
clear that the brain’s metabolic energy budget for maintaining the intrinsic resting activity is much
larger than that used by extrinsic task-driven demands (Zhang and Raichle, 2010). In fact, by some
estimates 20% of the total energy consumption is taken up by the brain which only represents 2% of
body weight (Attwell and Laughlin, 2001; Clarke and Sokoloff, 1999; Magistretti et al., 1999), which
has led to Raichl€' s poetic proposal of “dark energy” (Raichle, 2006).

The brain’s energy budget governs the flow of energy between the brain and environment, which is
the ultimate cause of the non-equilibrium essential to the proposals of Schrodinger and Raichle. Any
living system requires the breaking of the detailed balance of the transitions between the underlying
states (Gnesotto et al., 2018; Schrodinger, 1944). In a system with detailed balance, the fluxes of
trangitions between different states disappear (Lynn et al., 2020; Sanz Perl et al., 2021). This is
conveniently described in the language of thermodynamics, where a system ceases to produce entropy
and becomes reversible in time (Jarzynski, 2011). In contrast, a non-equilibrium system — where the
balance is broken — shows net fluxes between the underlying states, and thus becomes irreversible,
establishing an arrow of time (Crooks, 1998; Feng and Crooks, 2008; Maragakis et al., 2008; Seif et
al., 2021; Shirts et al., 2003). This is closdly linked to turbulence, a classical example of non-
equilibrium, which has been shown to be highly useful for optimally transferring energy/information
over spacetime due to its mixing properties (Frisch, 1995). Turbulence has recently been demonstrated
in the human brain, where the resulting information cascade is crucial for extracting order from
disorder (Deco and Kringelbach, 2020; Sheremet et al., 2019).
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The key ideain this paper is to quantify how the environment drives the brain by using a measure of
non-equilibrium captured by the arrow of time, i.e. the level of non-reversibility in brain signals. This
will allow us to assess whether the levels of non-equilibrium change in the human brain with extrinsic
engagement with the environment (i.e. when performing tasks) compared to intrinsic resting state. In
addition, we can assess whether the levels of non-equilibrium change with disease and therefore could
be used as a potential sensitive and specific biomarker.

The ideas for the present framework comes from physics and thermodynamics, where non-
equilibrium isintrinsically linked to non-reversibility (Seif et al., 2021) and the production of entropy,
leading to the arrow of time, as originally popularised by Arthur Eddington (Eddington, 1928) and
since studied in great detail (Crooks, 1998; Feng and Crooks, 2008; Jarzynski, 2011; Maragakis et al .,
2008; Sef et al., 2021; Shirts et al., 2003). In fact, a smple, yet powerful way of assessing non-
equilibrium in the brain is to directly estimate the arrow of time of the brain signals rather than the
more difficult way of estimating the production of entropy (Lynn et al., 2020; Sanz Perl et al., 2021).

The non-reversibility of a physical process and the arrow of time is clearly illustrated when
watching a film of a glass being shattered, which is very different from watching the same film in
reverse. In thermodynamics, this can be elegantly described in terms of the entropy production, which
increases when a system becomes disordered. If the total entropy production is larger than zero, it
means that the system is non-reversible and in non-equilibrium. In cases such when a glass is being
shattered, the non-reversibility is very clear for all to see. In contragt, a film of colliding billiards balls
can be watched equally forward and backwards, making it very difficult to distinguish the correct arrow
of timein the film. This process could potentially be fully reversible and not producing entropy.

In most processes, however, like the evolution of brain signals, the level of reversibility is much less
clear. Here, we therefore used the power of deep machine learning to detect the level of reversibility of
empirical brain imaging data. This allowed us to assess the level of non-equilibrium in brain dynamics
in different states. Specifically, for whole-brain data we extracted the normal forward timeseries as well
as constructing the time reversal of the backward timeseries for a given parcellation. This procedure
provides a clear arrow of time for a given timeseries for which a deep learning classifier (here named
Tempora Evolution NETwork, TENET) could be trained to identify the forward and the time reversal
for a given timeseries of any length. The performance of TENET provides a reliable measure of the
degree of non-reversibility and non-equilibrium at different levels of global and local brain
organisation.

We used TENET and the concept of reversibility in thermodynamics to assess the level of non-

equilibrium and arrow of time in brain dynamics in resting and seven different tasks from the large
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HCP neuroimaging fMRI dataset of 1003 healthy human participants. We also used the same approach
to study time's arrow in health and disease in a UCLA dataset of 265 neuropsychiatric patients
(ADHD, schizophrenia and bipolar disorder as well as controls). The TENET framework turns out to
be highly capable of distinguishing different tasks and different diseases and could potentially serve as
abiomarker in future.

Overall, the key idea of estimating the brain’s arrow of time provides the basis for a detailed
analysis of the non-stationary and non-equilibrium nature of brain dynamics in health and disease. As
such, the present framework and findings provide vital new insights into the fundamental tenets of how
the level of non-equilibrium of brain dynamics directly reflects the interactions with the environment,
in other words how the environment drives the brain to survive and thrive.

Results
The concept of the arrow of time is well established in physics (Jarzynski, 2011; Seif et al., 2021) and
extensively used for problems related to thermodynamics of system in non-equilibrium including
biological problems such as protein folding (Collin et al., 2005). In the context of neuroscience, the
environment is constantly driving the brain out of equilibrium and thus the arrow of timeis an excellent
tool for characterising the non-equilibrium of brain signals. As a result, there has been considerable
interest in using production entropy and related concepts to characterise time reversibility of brain
signals (Lynn et al., 2020; Palus, 1996; Sanz Perl et al., 2021; Zanin et al., 2019). In contrast to these
methods, here we applied Jarzynski’s idea of using a deep learning paradigm to measure the arrow of
time in forward and time-reversed time series, compare the two and thus provide a direct measure of
the reversibility of brain signals. We use this framework in different brain states in health and disease.
Figures 1 and 2 provide a schematised version of the general paradigm used here. The key concept
of the arrow of time is demonstrated in Figure 1A, which shows four sequential images from a film of
aglass being shattered by a bullet. Below, the same four images are shown in a sequence in an opposite
direction, i.e. in time reversal of the backward trgectory of the film. When comparing the two films,
the arrow of time is very clear, which is the signature of a non-reversible physical process producing
entropy in non-equilibrium. More general, as shown in Figure 1B, the field of thermodynamics in
physics can be used to describe such processes associated with the production of entropy and
consequently with non-equilibrium. The figure shows the evolution over time of a non-equilibrium
system with two states A and B and their associated trajectories. The forward and backward trgjectories
of the moviesin Figure 1A are described as forward (A — B, black arrow) and backward (B — A, red
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arrow) processes. Thetime reversal of the backward trajectory (red stippled arrow) can be thought of as
the movie of the backward trgjectory that is played forward in time (see bottom of Figure 1A). A non-
reversible process results from when the ability to differentiate between the trajectories in time
described by the forward (black arrow) and time reversal (stippled red arrow). The second law of
thermodynamics (usually attributed to Rudolph Clausius and Sadi Carnot) states that if the entropy
production is larger than zero, this corresponds to non-reversibility of a non-equilibrium system. In
contrast, if there is no entropy production, this describes areversible, equilibrium system.

In thermodynamics, the Clausius inequality establishes that the work W associated with the process
(averaged over many repetitions) is larger than the change in its free energy AF. Figure 1C shows
distributions of the work p(W) for the average of the work associated with the forward and backward
trajectories, denoted <Wg> and <Wg>, respectively. For non-reversible macroscopic processes (like the
movie shown in Figure 1A) fluctuations are negligible and the distinction is clear between the
distribution of work (top of panel) and therefore the arrow of time is easy to establish. In contrast, in
microscopic systems (which includes brain signals) the average work is similar, but the fluctuations are
more pronounced and therefore the differences in distribution less clear. In such casesit is much harder
to establish the arrow of time, and thus establish whether a system is non-equilibrium and non-
reversible.

This uncertainty is a perfect case for which to use advanced machine learning techniques. Here, we
used deep learning in empirical brain imaging data to detect the reversibility of the system. Figure 1D
and Figure 1E illustrate how we used whole-brain activity from large-scale empirical whole-brain
neuroimaging data from over 1000 participants to construct the forward and time-reversed timeseries
needed to establish the arrow of time and hence non-equilibrium by detecting the level of non-
reversibility. Specifically, Figure 1F illustrates how we extracted the forward timeseries as well as
constructing the time reversal of the backward timeseries for the DK80 parcellation (see Methods).
This procedure establishes a clear arrow of time for any given timeseries, which was used to train a
classifier to identify the forward and the time reversal. If the classification performance is high, this
provides evidence for non-reversibility and non-equilibrium, while low performance implies the
opposite.

Figure 2 specifies the full learning pipeline using a deep learning Temporal Evolution NETwork
(TENET) to establish the arrow of time. Figure 2A shows how we used dliding windows of brain
signal timeseries from all brain regionsin all participants. Figure 2B shows how these sliding windows
werethen used in TENET, adeep learning network classifier with 13 layers for classifying the arrow of
time. Figure 2C shows how this strategy allowed us to study non-reversibility and non-equilibrium at
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different levels of granularity, from global (all signals) to network level to individua node level
signals.

Figure 2D shows how TENET should be able to characterise the degree of reversibility, i.e. non-
equilibrium for each diding window (top panel). We trained the TENET on a large dataset of data
resting and seven tasks and, on a validation dataset, computed the means of the levels of certainty of
the classifier output (across time) as a measure of the degree of non-equilibrium (middle panel). The
standard deviation of this measure establishes stability of this non-equilibrium across time. Given that
non-equilibrium states are already non-stationary, this provides the second order of non-stationarity
(see Methods). Figure 2E shows that non-equilibrium is associated with the breaking of detailed
balance of a system. We estimated this by selecting windows of low and high reversibility, and
computing the FC(7), i.e. the time-delayed functional connectivity between all pairs of brain regions.
Specifically, the degree of asymmetry of the FC(t) matrix is a proxy for the breaking of the detailed
balance with more asymmetry corresponding to more unbalance. Finally, Figure 2F shows how
TENET can be used on resting state data from neuropsychiatric patients with diagnoses of
schizophrenia, ADHD, and bipolar disorder, as well as age-matched controls. Computing the different
levels of non-equilibrium provide a potential biomarker of neuropsychiatric disease.

Sgnificant differencesin global levels of non-equilibriumynon-reversibility in HCP rest and seven tasks
For the global level of analysis of how the environment is driving the brain out of equilibrium, we
extracted BOLD time series from the DK80 parcellation covering the whole brain in rest and the seven
tasks. For each of HCP participant, we extracted forward and backward patterns in sliding windows
with a length of 20 TRs (of 0.72sec), which were then shifted 3 TRs forward. Each of the dliding
windows consisted of two input patterns containing 1) forward and 2) time reversed backward dliding
windowed timeseries, which was each labelled with an output class label of forward and backward,
respectively.

For the training of TENET, in order to perfectly balance the data and avoid any potential source of
bias, we used 890 HCP participants with the longest possible duration available in all conditions (176
TRs). For generalisation, we performed the data analysis on a separate 100 HCP participants. The data
analysis consisted of computing the level of non-equilibrium/non-reversibility, R(t), using the output of
TENET on this generalisation set after being trained on the bulk of the data.

As specified in details in the Methods, R(t) is computed as the accuracy of classification of forward

and time reversal of backward trgjectory of the global timeseries (across sliding windows at time t and
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across participants). Perfect classification of maximal non-reversibility is thus assigned avalue of 1 and
where 0 corresponds to full reversibility.

Figure 3A (left pand) contains a boxplot showing that the brain dynamics during REST have
significantly lower levels of reversibility than in tasks (p<0.001, Wilcoxon rank sum). As can be seen,
the highest level of non-equilibrium/non-reversibility is found in the SOCIAL task, reflecting how the
environment is forcing a stronger arrow of time and thus non-reversibility. But, equally, the other tasks,
ordered by levels of non-equilibrium/non-reversibility (RELATIONAL, EMOTION, GAMBLING,
MOTOR, WM (working memory) and LANGUAGE) are significantly more driven by the environment
than during REST. It isinteresting to note the significant differences between the tasks too (p<0.001,
Wilcoxon rank sum; all significant comparisons except for MOTOR vs LANGUAGE and WM and
GAMBLING).

In addition, the right panel shows the level of non-stationarity, which is the standard deviation of the
levels of non-equilibrium across time. The differences between rest and tasks were similar to the results
of the mean of the non-equilibrium in the sense that there were significant differences between all
(p<0.001, Wilcoxon rank sum; except between MOTOR vs LANGUAGE and WM and GAMBLING)
but importantly for this measure, the SOCIAL task had the lowest variability over time, which was
much lower than REST. On the other hand, REST is showing one of the largest levels of non-
stationarity which is consistent with the idea that resting state is more intrinscally driven and less
extrinsically controlled by the environment. This can also be appreciated from Figure 3B, where the
two panels show time evolution of the levels of non-equilibrium/non-reversibility, R(t), for REST (l€eft)
and the SOCIAL task (right).

As mentioned above, the level of equilibrium is associated with the fluxes of transitions between
different states, i.e. how the detailed balance of the transitions between the underlying states disappear
in completely equilibrium. In thermodynamics, a non-equilibrium system contains net fluxes between
the states as a function of broken balance, which is the source of non-reversibility and thus the arrow of
time (Crooks, 1998; Feng and Crooks, 2008; Maragakis et al., 2008; Seaf et al., 2021; Shirts et al.,
2003). In order to establish a direct link between our measure of non-equilibrium/non-reversibility and
broken detailed balance, we measured the asymmetry of the time-shifted functional connectivity (see
Methods).

In brief, in order to measure the causal interactions, we selected patterns from sliding windows of
low and high reversibility, and computed the time-delayed functional connectivity matrix, FC(t),
between al pairs of brain regions, over all participants and all sliding windows for each condition of
HCP REST and the SOCIAL task, which is the task with most non-equilibrium. The global level of
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asymmetry was computed for each dliding window as the mean value over the elements of the
difference between this matrix and its transposed. In contrast, for the node-level of asymmetry, we first
computed the incoming and outgoing regional flow for each diding window and then computed the
average over al diding windows and participants of the absolute difference between the two regional
flows (see Methods for detailed information). We render the change between high and low levels of the
node-level asymmetry.

As can be seen in Figure 3C, we found significantly stronger breaking of the detailed balance in
windows with high compared to low levels of non-equilibrium/non-reversibility (compare low and high
boxplots, p<0.001, Wilcoxon rank sum). On the right of the boxplot, we show an example of the
asymmetry matrices for a single participant at a given timepoint. Below renderings are shown of the
change between low and high levels of the node-level asymmetry.

Consistent with the close link between symmetry-breaking and our measure, we found more
heterogenous patterns of change during the SOCIAL task than in REST. This again demonstrates that
when engaged in atask, the environment is driving the brain in very specific ways to higher levels of

non-equilibrium.

Network-level analysis of HCP data differentiates between HCP and task

We performed a network level analysis of HCP data using the TENET framework. For this analysis we
used the Schaefer 500 parcellation where each parcel belongs to one of the seven Yeo networks. The
TENET framework was then applied in the same manner as in the global analysis but now used on the
parcels belonging to each network. Again, in order to balance the data, we used 890 HCP participants
with the longest possible duration available in al conditions (176 TRs). The results are from the
generalisation that was performed on a separate 100 HCP participants (see Methods). We used the
same dliding window size and shifting of this window as in the global level analysis but now the input
Isthe window size multiplied by the number of parcels for a given level analysis of HCP rest and tasks.
Analysis of the non-equilibrium/non-reversibility of the seven Yeo resting state networks showed
differential responses between rest and tasks for the seven resting state networks.

Figure 4A shows boxplots of the level of non-equilibrium for each of the seven Y eo networks for
rest and the seven tasks, which is also shown as spider plots in Figure 4B. Comparable to the global
level analysis there is lower levels of non-equilibrium for rest compared to the seven tasks. This
suggests that REST is more in equilibrium and therefore more intrinsically driven. Interestingly, the
REST condition shows the highest levels of non-equilibrium in the default mode network (DMN) and
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Visua (VIS) network. Similarly, the sensory networks (VIS and SOM) are showing the highest level of
non-equilibrium across the seven tasks (except for LANGUAGE), and thus most driven by the
environment. The lowest levels of non-equilibrium are found in the Limbic network (LIM), signalling
that the LIM network is more intrinsically driven. Of the seven tasks the lowest levels of non-
equilibrium are found in the EMOTION and RELATIONAL tasks, which are ailmost aslow as REST.

The differences across conditions and across networks are quantified within conditions in Figure
4C, showing significant differences (p<0.05, Wilcoxon rank sum) and between conditions in Figure
4D. As can be seen most of the comparisons are significant, suggesting that the specificity of level of
non-equilibrium/non-reversibility within and between conditions. Figure 4E further visualises these
differences between conditions by showing a combined spider plot of the levels of non-equilibrium for
each Yeo network in al conditions (rest and seven tasks).

We checked the possibility of classifying the conditions based on the network level TENET output.
Using a support vector machine (SVM) with Gaussian kernels on the 100 HCP participants used for
generalisation. For the SVM, we subdivided the 100 participants into 90% training and 10% validation,
repeated and shuffled 100 times. The SVM had seven inputs (the Yeo resting state networks)
corresponding to the output produced by the network level TENET. The output was eight classes
corresponding to the conditions (rest and seven tasks). Figur e 4F shows the resulting confusion matrix,
which provides excellent classification results much above chance level with an average classification
accuracy of 59% (on the diagonal) compared with the chance level of 12.5%. Interestingly, the results
of classifying rest vs all tasks, produced a very high accuracy of 93.1% on the generalisation dataset,
using exactly the same procedure as for classifying the individual tasks.

Node-level analysis of HCP data reveals distinct patterns of local non-equilibriunynon-reversibility
Beyond the global and network level analyses, we were interested in studying how the node-level non-
equilibrium/non-reversibility can distinguish the local level of influence on brain regions by the
environment.

We applied the TENET framework at the node-level using exactly the same amount of data across
al rest and seven tasks, smilar as above (see Methods). For the training of TENET, in order to
perfectly balance the data and avoid any potential source of bias, we used 890 HCP participants with
the longest possible duration available in all conditions (176 TRs). For generalisation, we performed
the data analysis on a separate 100 HCP partici pants.
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The node-leve rendering for non-equilibrium/non-reversibility for REST and the SOCIAL task is
shown in Figure 5A. Similar to the global results, these are the two conditions with the lowest and
highest levels of non-equilibrium (compare lighter shades of brown for REST to the darker for
SOCIAL). However, here we were also able to draw out the inter-regional heterogeneity. To further
draw out the differences between tasks, in Figure 5B, we render the thresholded node-level of non-
equilibrium for all the seven tasks (thresholded to include the top 15%).

In Figure 5C we further investigated these finding demonstrating that our new measure
characterises the engagement across the whole brain rather than just in sensory regions. We compared
them directly to the myelinisation ratio (T1w/T2w ratio, obtained from HCP data), which contains high
values in the sensory regions of visual, somatomotor and auditory (Burt et al., 2018). The non-
significant correlations between the node levels of non-equilibrium for both REST and SOCIAL task
(left row) with this map clearly demonstrates that the new measure is not just linked to sensory but
primarily to higher associative brain regions across the whole brain.

Further investigating links to other source of heterogeneity led us to investigate the various forms of
gene expressions in the brain as obtained from the Allen Human Brain Atlas (Arnatkeviciute et al.,
2019; Deco et al., 2021a; Fornito et al., 2019; Hawrylycz et al., 2012). The middle row of Figure 5C
shows the correlations between and the first PCA component of all genes and the node level of non-
equilibrium of REST (top) and SOCIAL task (bottom). Interestingly, there was a significant correlation
between the PCA genes values and node levelsin the SOCIAL task (r=0.47, p<0.001, non-parametric)
but not with the node levelsin REST.

We also investigated another major source of heterogeneity, namely the excitation-inhibition (E-I)
ratio given by the gene-expression for genes coding for the excitatory AMPA and NMDA receptors
and inhibitory GABA-A receptor isoforms and subunits. In contrast to the PCA maps, the rightmost
row of Figure 5C shows a significant between the node level of non-equilibrium in REST and the E-I
values (r=0.23, p<0.04, non-parametric) but not for the node levelsin the SOCIAL task.

Using the arrow of time in neuropsychiatric disease

Given that the TENET framework by design measures how the environment is driving the brain, and its
high level of sensitivity demonstrated above, it would appear a promising avenue for better
characterising between neuropsychiatric diseases. We therefore applied the TENET framework on the
large public UCLA dataset of neuropsychiatric patients with schizophrenia, bipolar and ADHD and

matched control group of participants.
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Figure 6 shows the results of using the TENET framework to establish the reversibility on the
global and local node levels for the four groups. The left panel of Figure 6A shows boxplots of the
average reversibility across time, where the control group was significantly higher than each of the
neuropsychiatric groups (all p<0.001, Wilcoxon rank sum). This suggests that neuropsychiatric disease
reduces the levels of non-equilibrium, suggesting that the brain is less driven by the extrinsic
environment. Furthermore, each neuropsychiatric disease group were significantly different from each
other (all p<0.001, Wilcoxon rank sum).

The middle panel of Figure 6A shows boxplots of the standard deviation of the reversibility across
time for each of the four group, reflecting the levels of non-stationarity. This is significantly reduced
for the control participants compared to neuropsychiatric groups and between them (all p<0.001,
Wilcoxon rank sum, except controls vs schizophrenia), i.e. the brains of patients with ADHD and
bipolar disorder are more non-stationary than controls. To further appreciate the differences between
groups, right panel of Figure 6A plots examples of the temporal evolution of the global reversibility
computed by TENET for all the four groups.

These promising results prompted us to use the TENET framework to compute the mean node level
reversibility for each group. Figure 6B shows the corresponding renderings on the human brain. We
also computed the differences between the mean in the control group with the three neuropsychiatric
groups, shown rendered in Figure 6C. As can be seen and interpreted in details in the discussion, there
are clear differences between groups which suggest that the node level of non-equilibrium might be

useful as a biomarker for disease.

Discussion

We used a thermodynamics-based deep learning Temporal Evolution NETwork (TENET) framework
to reveal varying levels of non-reversibility and non-equilibrium in different brain states. At the core of
this framework is the ability to quantify how the environment drives the brain by providing a measure
of non-equilibrium captured by the arrow of time, i.e. the level of non-reversibility in brain signals. The
results of using the TENET framework show that the empirically extracted level of non-

reversibility/non-equilibrium can distinguish between different brain states in health and disease.

Global results
Specifically, we found higher global levels of non-reversibility/non-equilibrium in different tasks
than during resting state in the large-scale HCP neuroimaging dataset. Similarly, we showed higher and
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more variable global levels of non-reversibility/non-equilibrium across time for healthy participants
compared to neuropsychiatric patientsin the large-scale UCLA neuroimaging dataset.

Network level results

Complementary to investigating non-equilibrium/non-reversibility at the global level, we aimed to
discover if there is more information to be extracted from the network level, specifically regarding
differences between rest and task. We used the TENET framework on the seven Yeo resting state
networks in the Schaefer 500 parcellation. The results again showed lower levels of non-equilibrium
for rest compared to the seven tasks, suggesting that REST is more in equilibrium and therefore more
intrinsically driven, while the tasks are clearly driven by the environment as demonstrated by the high
levels of non-equilibrium of the sensory networks (VIS and SOM).

Interestingly, the REST condition shows the highest levels of non-equilibrium in the default mode
network (DMN) and Visua (VIS) network. Similarly, the sensory networks (VIS and SOM) are
showing the highest level of non-equilibrium across the seven tasks (except for LANGUAGE), and
thus most driven by the environment. The lowest levels of non-equilibrium are found in the Limbic
network (LIM), signalling that the LIM network is more intrinsically driven. Of the seven tasks the
lowest levels of non-equilibrium are found in the EMOTION and RELATIONAL tasks, which are
amost as low as REST.

The differences across conditions and across networks are quantified within conditions in Figure
4C, showing significant differences (p<0.05, Wilcoxon rank sum) and between conditions in Figure
4D. As can be seen most of the comparisons are significant, suggesting that the specificity of level of
non-equilibrium/non-reversibility within and between conditions. Figure 4E further visualises these
differences between conditions by showing a combined spider plot of the levels of non-equilibrium for
each Yeo network in al conditions (rest and seven tasks).

Furthermore, using a support vector machine (SVM) with Gaussian kernels to classify the
conditions (rest and seven tasks) showed a very high accuracy of 59% compared to the 12.5% chance
level. Equally, just classifying rest compared to al tasks the level of accuracy to 93.1%, showing that
network-level TENET is an excellent method for distinguishing different cognitive brain states.

Node-level results
Equally, the TENET framework can be applied at different scales. We investigated this measure at
the level of resting state networks and at the node level. Similar to the findings at the global scale, the
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findings at the local scale reveal clear inter-regional heterogeneities between rest and tasks (see Figure
5). The findings show that in many cases higher associative brain regions are more driven by the
environment during task performance in the HCP dataset. Specifically, Figure 5A shows the node-
level rendering for non-equilibrium/non-reversibility for REST and the SOCIAL task. Similar to the
results for the global level, these are the two conditions with the lowest and highest levels of non-
equilibrium.

The power of the TENET framework is perhaps illustrated in the results for the MOTOR task, where
the thresholded results show selective engagement of the somatomotor regions as expected (Barch et
al., 2013) but equally the results show engagement in visual cortices and midline medial prefrontal
regions.

Another good example is the LANGUAGE task, where the results show broad engagement of
ventral lateral prefrontal cortex, superior and inferior temporal cortex (including the anterior temporal
poles bilaterally (Barch et al., 2013; Binder et al., 2011). Also, as expected from this primarily auditory
task, the visual regions are not in the top 15% of driven regions.

Similarly, the WM task shows high levels of driving in regions including the medial prefrontal
cortex, posterior cingulate, and the occipital-parietal junction, fully consistent with the literature (Barch
et al., 2013; Drobyshevsky et al., 2006).

Many previous studies of the HCP dataset have used conventional neuroimaging categorical
analyses to bring out the differences between conditions and baseline (Barch et al., 2013). Here, we are
using the orthogonal approach of the TENET which measures the degree to which the environment
drives the brain into non-equilibrium. As a first approximation, our method would be expected to
mainly bring out the sensory regions of the brain, given that these regions directly receive external
stimulation. Yet, interestingly, the results show that higher associative brain regions are equally and
often more driven by the environment during task performance. As such, this could suggest that beyond
the level of activation, it is the level to which the environment can drive brain activity as reflected in
our measure of non-equilibrium. Even more important, the present framework is not dependent on
comparison to a baseline, which has been a main bone of contention in the neuroimaging field since the
discovery of intrinsic resting activity (Biswal et al., 1995; Biswal et al., 2010; Raichle et al., 2001).

Heterogeneity

We further investigated the heterogeneity found at the node-level by comparing the results to
various known forms of heterogeneity such as the gene expressions maps obtained from the Allen
Human Brain Atlas (Arnatkeviciute et al., 2019; Deco et al., 2021a; Fornito et al., 2019; Hawrylycz et
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al., 2012). We found a significant correlation between the PCA genes values and node levels in the
SOCIAL task - but not with the node levels found in REST (see Figure 5C). The reverse was true for
excitation-inhibition ratio given by the gene-expression, which was correlated with the node levelsin
REST but not in SOCIAL. These significant differences between rest and task show how the
environment is directly changing the functional hierarchy. It is of considerable interest that the E-I ratio
is significantly correlated with node levels in REST and not the node levels in task, since this suggest
that REST is more intrinsically shaped. On the other hand, the significant correlation between the node
levelsin the SOCIAL task (but not with REST), suggests that the level of driving by the environment is
not fully free but still constrained to a certain degree by genetics (here captured by the first PCA of the
genes).

Further investigating the heterogeneity we compared REST and SOCIAL directly to the
myelinisation ratio (T1w/T2w ratio), which contains high values in the sensory regions of visual,
somatomotor and auditory (Burt et al., 2018). Surprisingly, we did not find a correlation to the node
levels of non-equilibrium for both REST and SOCIAL task. This result clearly demonstrates that the
environment is not driving the brain to non-equilibrium by solely affecting the sensory regions but
equally through driving higher associative brain regions across the whole brain. This fits well with the
evidence that the three sources of heterogeneity investigated here are correlated among themselves
(Burt et al., 2018; Deco et al., 2021a), yet influencing the functional hierarchy at the node-level of non-
equilibrium differently under different conditions. Overall, these results provide evidence for the severe

constraints in terms of degrees of freedom that the brain has to operate within.

UCLA node level

In addition to the lower global levels of non-equilibrium/non-reversibility found in patients with
neuropsychiatric disease compared to healthy participants, we also found significant local heterogenous
node-level changes differentiating between the different disorders. Interestingly, in schizophrenia
compared to controls, we found local decreases across the brain but primarily located in the temporal,
parietal, and prefrontal cortices. These regions are clearly less driven by the environment, which is
compatible with the literature showing that the disorder is associated with more isolation, as a function
of the loss of balance between intrinsic and extringic activity (van den Heuvel and Fornito, 2014).

In contrast, in bipolar disorder compared to controls most brain regions except for the somatomotor
regions are showing more non-reversibility compared to controls, suggesting that the brain is more

driven by the environment, which is consistent with the literature suggesting the large sudden swingsin
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mood (Furman et al., 2011; Menon and Uddin, 2010). Comparing ADHD with controls shows larger
local levels of non-reversibility in somatosensory, temporal, parietal and insular cortices. In particular
the somatomotor regions are more driven by the environment, suggesting a route for hyperactivity,
while the lower non-reversibility in parietal regions could be linked to the known attentional deficitsin
the disorder (Konrad and Eickhoff, 2010).

TENET components

The TENET framework relies on two essential elements; namely the concept of reversibility (as
captured by the arrow of time) and how deep learning is able to quantify the reversibility of brain
signals. In terms of the arrow of time, this popularisation of thisideais usually credited to the physicist
Arthur Eddington (Eddington, 1928). Here we showed that this key idea from physics and
thermodynamics can equally well be applied in neuroscience. The second law of thermodynamics, as
immortalised by Rudolph Clausius (Clausius, 1865) and Sadi Carnot (Carnot, 1824) states a non-
equilibrium is characterised by the arrow of time which indicates the non-reversibility of a system. In
fact, the second law of thermodynamics can be expressed by the Clausius inequality which establishes
that the work associated with the process (averaged over many repetitions) is larger than the change in
its free energy, which is the same as stating that the system is non-reversible and in non-equilibrium.

In terms of deep learning, this method has received a lot of attention over the last couple of years.
This powerful machine learning technique has proven highly useful for providing solutions to a number
of difficult computational problems ranging from vision to playing Go (Sgjnowski, 2018, 2020; Silver
et al., 2018; Yang and Wang, 2020). However, some criticisms have been raised over the largely black-
box nature of these advances, which have had considerable practical utility for solving complex
problems, but have produced little in way of new insight into how this is achieved mechanigtically
(Marcus, 2018). Recent research has, however, started to harness the power of deep learning for
discovering useful underlying mechanisms (Seif et al., 2021).

Here, we were not aming to use deep learning as a technique for revealing underlying brain
mechanisms but rather simply as a tool for providing the level of the reversibility of the arrow of time
in brain signals. In other words, in our framework the important question is to determine the level of
distinction between forward and time-reversed back time series, but not how thisis achieved. As such,
here the black box nature of deep learning was not relevant for solving the non-trivial problem of

determining non-reversibility/non-equilibrium.
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As mentioned above, the TENET framework can be studied at all spatial scales. Here, however, we
focused on three levels. global, network and node levels, where the global level considers all the
whole-brain signals, while the node level considers the signals in each brain region separately and the
network level considers the typical large-scale resting state networks (Biswal et al., 1995; Biswal et al .,
2010; Smith et al., 2013a). This alowed us to focus on different aspects of non-equilibrium, i.e. the
interactions between the environment and different brain scales, ranging from whole-brain to large-
scale networks and to regions. Indeed, the node level turned out to be a highly sensitive measure of
quantifying and interpreting different cognitive brain states and differences between health and
multiple diseases.

Per spectives

This thermodynamics-based deep learning framework opens up for an examination of differences of
non-reversibility/non-equilibrium for different levels of consciousness; from seep and anaesthesia to
altered states of consciousness induced by psychedelics and meditation. The framework can easily be
extended to other neuroimaging modalities such as MEG/EEG. It can even be used with LFP and other
types of cell recordingsin animals.

One particularly challenging question relates to the role of brain processing of reversible external
stimuli such as for example watching the forward and backward versions of the movie of a glass being
shattered. How will the non-reversibility/non-equilibrium in brain dynamics change with identical
stimuli but where the order has been changed such that the arrow of time has been violated? Will this
dicit different non-reversibility/non-equilibrium in brain dynamics when showing the forward and
backward versions of a movie of billiards balls moving, which is not in any clear way violating the
arrow of time? These stimuli are experienced radically different, which must be linked to the
interactions between the extrinsic stimulation with the dynamics of intrinsic predictability formed by
prior experiences. However, intrinsic predictability is known to be affected in neuropsychiatric disease
and it would be of considerable interest to study how the reversibility of external stimulation influences
the non-reversibility/non-equilibrium in brain dynamics. In fact, this could potentially reveal new
information about the interactions between intrinsic and extrinsic dynamics which are known to be
compromised. The reversal of external stimuli could also take place at higher cognitive levels, such as
when inverting the nodes of Bach’s fugue or that of a complex narrative.

From its conception, the arrow of time is coupled to the deep notion of causality. Thermodynamics
offers important tools for establishing the causal directionality of information flow through the concept

reversibility and entropy. There is of course a large literature on causality, best summarised in the
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seminal work by Judea Pearl (Pearl, 2009), where he shows that any framework of causal inferenceis
based on inferring causal structures that are equivalent in terms of the probability distributions they
generate; that is, they are indistinguishable from observational data, and could only be distinguished by
mani pulating the whole system.

In neuroscience, there has been numerous attempts to capture causality in brain dynamics. One
influential concept is ignition, the idea that a stimulus can ignite a causal chain of events propagating
across the brain (1998). This ignition can happen as a result of extrinsc stimulation (Joglekar et al.,
2018; Mashour et al., 2020; van Vugt et al., 2018) or as part of intrinsic events (Deco et al., 2021a;
Deco et al., 2017). More sophisticated approaches uses probabilistic principles of mutual information
(Brovelli et al., 2015; Pereda et al., 2005; Quiroga et al., 2000; Quiroga et al., 2002) to determine the
directional causality underlying the functional hierarchical organisation of brain function (Deco et al.,
2021b).

The concept of the arrow of time has also been investigated from the perspective of chaos theory,
originating with the work of Henri Poincaré who published the first description of chaotic motion in
1890 (Poincaré, 1890). Later work has confirmed that one key characteristic of chaos is the infinite
sensitivity to initial conditions (Strogatz, 2018). Given this extreme sengitivity, even if a classc
mechanic deterministic chaotic system is in principle reversible, in practice this is in fact non-
reversible. In other words, chaos makes it very difficult to establish the computational reversibility and
thus causality. Turbulence is a classic example of a spatiotemporal chaotic system which is associated
with non-equilibrium and thus non-reversibility. Interestingly, turbulence is a highly useful dynamical
regime for optimally transferring energy/information over spacetime and it has recently been shown
that brain dynamics are indeed turbulent (Deco and Kringelbach, 2020). The turbulent regime supports
the information cascade which is crucial for extracting order from disorder.

Overall, the novel thermodynamics-based deep learning TENET framework can provide detailed
information of the varying levels of non-stationary and non-equilibrium nature of brain dynamics in
health and disease driven by the environment. The TENET framework offers a quantitative account of
differences in non-reversibility/non-equilibrium. Future work could integrate this with causal
mechanistic whole-brain modelling in a turbulent regime to deepen our understanding of how brain
dynamics organise human behaviour in the face of the second law of thermodynamics in health and
disease.
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Methods

Neuroimaging Ethics

For the HCP dataset, the Washington University—University of Minnesota (WU-Minn HCP)
Consortium obtained full informed consent from all participants, and research procedures and ethical
guidelines were followed in accordance with Washington University institutional review board
approval.

For the UCLA dataset, as detailed in (Poldrack et al., 2016), the Consortium for Neuropsychiatric
Phenomics recruited neuropsychiatric participants and healthy controls who gave written informed
consent following procedures approved by the Institutional Review Boards at UCLA and the Los
Angeles County Department of Mental Health.

Neuroimaging Participants HCP rest and task
The data set used for this investigation was selected from the March 2017 public data release from the
Human Connectome Project (HCP) where we chose a sample of 990 participants from the total of 1003

participants, since not all participants performed all tasks.

The HCP task battery of seven tasks

The HCP task battery consists of seven tasks. working memory, motor, gambling, language, social,
emotional, relational, which are described in details on the HCP website (Barch et al., 2013). HCP
states that the tasks were designed to cover a broad range of human cognitive abilities in seven maor
domains that sample the diversity of neural systems 1) visual, motion, somatosensory, and motor
systems, 2) working memory, decision-making and cognitive control systems; 3) category-specific
representations; 4) language processing; 5) relational processing; 6) socia cognition; and 7) emotion
processing. In addition to resting state scans, al 1003 HCP participants performed all tasks in two
separate sessions (first session: working memory, gambling and motor; second session: language,
social cognition, relational processing and emotion processing). As a test-retest control condition, a

small subsample of 45 HCP participants performed the paradigm twice.

Neuroimaging Participants UCLA rest
Consortium for Neuropsychiatric Phenomics published a dataset with neuroimaging as well as
phenotypic information for 272 participants. We used the preprocessed data with a total of 261

participants, since seven of the participants were missing T1 weighted scans (Gorgolewski et al., 2017)
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and three healthy controls and one ADHD patient were missing resting state scans. The total population
analysed consists of 122 healthy controls, as well as participants with diagnoses of adult ADHD (40
patients), bipolar disorder (49 patients) and schizophrenia (50 patients).

Neuroimaging structural connectivity and extraction of functional timeseries

HCP preprocessing and extraction of functional timeseriesin fMRI resting state and task data

The preprocessing of the HCP resting state and task datasets is described in details on the HCP website.
Briefly, the data is preprocessed using the HCP pipeline which is using standardized methods using
FSL (FMRIB Software Library), FreeSurfer, and the Connectome Workbench software (Glasser et al.,
2013; Smith et al., 2013b). This standard preprocessing included correction for spatial and gradient
distortions and head motion, intensity normalization and bias field removal, registration to the T1
weighted structural image, transformation to the 2mm Montreal Neurological Institute (MNI) space,
and using the FIX artefact removal procedure (Navarro Schroder et al., 2015; Smith et al., 2013b). The
head motion parameters were regressed out and structured artefacts were removed by ICA+FIX
processing (Independent Component Analysis followed by FMRIB’s ICA-based X-noiseifier (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014)). Preprocessed timeseries of all grayordinates are in HCP
CIFTI grayordinates standard space and available in the surface-based CIFTI file for each participants
for resting state and each of the seven tasks.

We used a custom-made Matlab script using the ft read cifti function (Fieldtrip toolbox
(Oostenveld et al., 2011)) to extract the average timeseries of all the grayordinates in each region of the
DK80 parcellation, which are defined in the HCP CIFTI grayordinates standard space. The BOLD
timeseries were filtered using a second-order Butterworth filter in the range of 0.008-0.08Hz.

UCLA preprocessing and extraction of functional timeseriesin fMRI resting state data

The preprocessing of UCLA resting state datasets is described in details on the website and in the paper
by Gorgolewski and colleagues (Gorgolewski et al., 2017). Briefly, the preprocessing was performed
using FMRIPREP version 0.4.4 (http://fmriprep.readthedocs.io). This robust preprocessing pipeine is
based on the Nipype workflow engine7 and aims to combine different implementations of various MR
signal processing algorithms (from established software packages) to deliver a robust spatia
normalization and nuisance estimation workflow.
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Parcellations

For the analysis at the global and node-level, all neuroimaging data was processed using the DK80
standard parcellations (Deco et al., 2021b). Briefly, this was constructed using the Mindboggle-
modified Desikan-Killiany parcellation (Desikan et al., 2006) with a total of 62 cortical regions (31
regions per hemisphere) (Klein and Tourville, 2012). We added the 18 subcortical regions, ie nine
regions per hemisphere: hippocampus, amygdala, subthalamic nucleus (STN), globus pallidus internal
segment (GPi), globus pallidus external segment (GPe), putamen, caudate, nucleus accumbens and
thalamus. This provided a total of 80 regions in the DK80 parcellation; also precisaly defined in the
common HCP CIFTI grayordinates standard space. For the analysis at the network level we also used
the Schaefer500 where each parcd is marked with the seven resting state network in the Yeo7
parcellation (Schaefer et al., 2018; Yeo et al., 2011).

TENET deep learning framework and associated methods

The TENET deep learning framework is a general method which can use many types of data. However,
it isimportant that the data for training and generalisation are balanced between different conditionsto
We used TENET to carry out two independent analyses using two different datasets from HCP and
UCLA and below we show how we avoided any potential problems with bias.

HCP dataset

For the large-scale HCP dataset, we performed the reversibility and non-equilibrium analyses at three
different spatial scales. Global, network and local node-level. For each scale, we trained and analysed
three different TENETS, one for each spatial scale. We used roughly 90% of the data for the training set
(890 participants) and the remaining 10% for the test and validation sets (100 participants).

For the global level, the input patterns consisted of the windowed timeseries across the whole brain
in the DK 80 parcellation, i.e. each pattern consisted of 80 windowed timeseries.

For the network level, the input patterns consisted of the windowed timeseries in the Schaefer500
parcellation, i.e. which each parcel belong to one of the seven Yeo resting state networks. We
performed the analysis for the Schaefer500 parcels belonging to each of the seven Yeo networks and
thus obtained a measure of non-equilibrium for each Y eo network.

Finally, for the finest spatial scale at the node level, the input patterns consisted of the windowed
timeseries, for one parcel in the DK80 parcellation, i.e. each of the patterns consisted of one windowed
timeseries for that parcel. We performed this for each of the 80 parcels in the DK80 separately such
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that we obtained a measure of non-equilibrium for each brain region. For the analysis of the HCP data,
we carried out these three spatial scale analyses for HCP rest and seven tasks, i.e. atotal of 24 different
analyses.

The input to TENET consisted of siding windows from the BOLD neuroimaging data from all the
participants, shortened to the shortest duration of atask (EMOTION task with 176 TRs). We generated
these dliding windows with dlightly different parameters for the three types of analysis. For global and
network level analysis, we used a windows size of 20 TRs (each lasting 0.72 seconds) and for node-
level analysis, we used a window size of 150 TRs. These were then shifted forward until the end of the
datasets (with a length of 3 TRs for global and network level analysis and 2 TRs for node-level
analysis).

For each of the diding windows, we generated two input patterns containing 1) forward and 2) time
reversed backward sliding windowed timeseries and for the supervised learning, we associated each
pattern with the output class label of forward and backward, respectively.

UCLA dataset

For the analysis of the smaller scale UCLA dataset with coarser TR (2 seconds) and shorter duration
(152 TRs), we carried out different spatial scale analyses at the level of globa and node-level for the
resting state data of control and three neuropsychiatric disorders (schizophrenia, bipolar disorder and
ADHD). For this much smaller dataset of 261 participants, we used roughly 90% of the data for the
training set (40 participants in each of the four conditions) and the remaining data for the test and
validation sets (i.e. 36 participants for the global and 35 participants for node-level analysis). For the
global analysis, we shuffled the data 500 times in order to perform non-parametric significance testing
(for the boxplot in Figure 6A). For the node analysis we shuffled the data 10 times and computed the
average node-level of non-equilibrium/non-reversibility.

The input to TENET consisted of siding windows from the BOLD neuroimaging data from all the
participants. We generated these sliding windows with dslightly different parameters for the two types of
analysis. For global level analysis, we used a windows size of 10 TRs of 2 seconds and for node-level
analysis, we used awindow size of 20 TRs. These were then shifted forward until the end of the dataset
with alength of 1 TR.

Training and generalisation in deep learning network TENET
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This data was then used with TENET for training and generalisation in the following way. After
training, we measure the reversibility of each pattern in the validation set. This is computed by
comparing the trained output for the forward and backward versions of each pattern. More specifically,
for al three spatial scales, we compute the level of reversibility, R(t), for a given diding window at
time t by using the following equation

(Oforward (2) — Oforward(1)> + (Obackward (D — %aciward (2))

2
Here oforwara (1) is the output i of the final output classification layer, when the forward pattern is

R(t) =

presented in the input layer. Similarly, o4ckwarqa () 1S the output for node i of the final output
classification layer but now when a backward pattern is presented in the input layer. Given that the
forward and backward categories are associated with the outputs ofoywarqa = [0,1] and Opaciwara =

[1,0], respectively, R(t) thus represents the degree of reversibility for a particular diding window at
time t. If either the degrees of right classification of forward (Oforward(z) _Oforward(]-)) or

backward (opackwara (1) — Opaciwara (2)) ae smaller than 0, this means that the classification is

incorrect and in this case we set R(t) = 0. The degree of reversibility R(t) is measuring the degree of
non-equilibrium at time t. We also report the mean and the standard deviation over time, which
corresponds to what is called the mean non-equilibrium and the standard deviation of non-equilibrium
(over time) in the results and figures.

For the architecture of TENET, we use the standard MATLAB architecture with an input layer of
size N = w, where N corresponds to the spatial scale (i.e. global N = 80, network N = 7, node level
N = 1) and w isthe size of the dliding window. Thisisfollowed by 10 fully connected layersincluding
1) batch normalisation, which normalises a mini-batch of data across all observations for each channel
independently and 2) a non-linearity operation implemented using reluLayer, which performs a
threshold operation to each element of the input, where any value less than zero is set to zero. The
dimensions of the 10 layers are [2048;1024;512;256;128;64;32;16;8;4]. The final layer of TENET isa
softmax classification layer of dimension [2], corresponding the two possible output class labels
(forward and backward).

For training TENET, we used the deep learning algorithm ADAM, which is an algorithm for first-
order gradient-based optimization of stochastic objective functions, based on adaptive estimates of
lower-order moments to attenuate the effects of noise as it is implemented in MATLAB with the

recommended default parameters (Kingma and Ba, 2014).
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Measuring the breaking of detailed balance of the system

We wanted to test if non-equilibrium is associated with the breaking of detailed balance of a system. In
order to show the increase in non-balance in non-equilibrium, we decided to characterise the level of
asymmetry in the causal interaction as expressed by the shifted correlation matrix. Specifically, we
selected patterns from sliding windows of low and high reversibility, and computed the time-delayed
functional connectivity matrix between all pairs of brain regions, FC (1)

FCij (1) =< x;(£),x;(t + 1) >

Where <> indicates correlation over time and we used t = 3 (in TRs). We computed the FC;;(t) over
al participants and all sliding windows for each condition (for HCP REST and the SOCIAL task, the
most non-equilibrium task). For the global level of asymmetry, we computed for each dliding window
the degree of asymmetry as the mean value of the elements of the matrix: FC;;(t) — FC;;(1)", where
the superscript T indicates the transposition. For the node-level of asymmetry, we first computed for
each diding window, the incoming flow F;, (i) = }; FC;;(1), and the outcoming flow F,,.(j) =
% FC;;(1). The node-level of asymmetry for node i is then given by < |Fy,. (i) — Fi,, ()| >, where
<>, indicates the average over all diding windows and participants. We render the change between

high and low levels of the node-level asymmetry.

Support vector machine for network level classification

We used a support vector machine (SVM) with Gaussian kernels as implemented in the Matlab
function fitcecoc. The function returns afull, trained, multiclass, error-correcting output codes (ECOC)
model. Thisisachieved using the predictors in the input with class labels. The function uses K(K — 1)/2
binary SYM models using the one-versus-one coding design, where we used K=8 as the number of
unique class labels. In other words, the SYM had seven inputs (the Yeo resting state networks)
corresponding to the output produced by the network level TENET. The output was eight classes
corresponding to the conditions (rest and seven tasks). We used the output from the 100 HCP
participants used for generalisation, subdivided into 90% training and 10% validation, repeated and
shuffled 100 times.

Data availability
The multimodal neuroimaging data are freely available from HCP. The UCLA data are freely available
from the Consortium for Neuropsychiatric Phenomics.
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Code availabhility
The code used to run the analysis is available on GitHub (https://github.com/ decol ab/tenet).
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Figure 1. The arrow of time in physics and brain dynamics. A) The sequence of the four top images
shows a glass being shattered by a bullet and we clearly perceive the causal passage of time, also
called the arrow of time. In contrast, this cause and effect is shattered by showing these images
backward - by time reversing the backward evolution. This means that this process is non-reversible.
B) In thermodynamics, non-reversibility can be associated with the production of entropy. The figure
shows a non-equilibrium system with two states A and B and the associated trajectories evolving
during forward (A — B, black arrow) and backward (B — A, red arrow) processes. Both the forward
and backward trajectories can be depicted as the movie shown in the top of panel A — but with a
different arrow of time. In contrast, the time reversal of the backward trajectory (red stippled arrow)
can be imagined as the movie of the backward trajectory that is played forward in time (see bottom of
panel A). If the forward and time reversal of the backward trajectories are different, this corresponds

to non-reversibility of the process. The second law of thermodynamics uses the entropy production to
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describe this. If the entropy production is larger than zero, this corresponds to non-reversibility of a
non-equilibrium system. In contrast, if there is no entropy production, thisis a reversible, equilibrium
system. C) More specifically, when small systems undergo thermodynamic processes, the fluctuations
are non-negligible and the second law of thermodynamics expresses this in terms of averages. The so-
called Clausius inequality establishes that the work W (averaged over many repetitions) is larger than
the change in its free energy AF. The figure shows the work distribution p(W) for the average of the
work associated with the forward and backward trajectories, denoted <WE> and <Wp>, respectively.
For non-reversible macroscopic processes (like the movie shown in panel A) fluctuations are negligible
and the distinction is clear between the distribution of work (top of panel) and therefore arrow of time
is easy to establish. In contrast, in microscopic systems (such as brain signals) the average work is
similar but the fluctuations are more pronounced and therefore the differences in distribution less
clear. In this case it is much harder to establish the arrow of time, and consequently establish whether
the system is non-equilibrium and non-reversible. Therefore, to solve this problem, we used deep
learning in empirical brain imaging data to detect the reversibility of the system (see Figure 2). D)
First, we used large-scale empirical whole-brain neuroimaging data from over 1000 participants when
resting and performing seven different tasks. E) From this data, we were able to extract the forward
timeseries as well as constructing the time reversal of the backward timeseries for a given parcellation.
F) This procedure provides a clear arrow of time for a given timeseries and allow us to train a
classifier to identify the forward and the time reversal for a given timeseries of any length. The

classification performance provides a measure of the degree of non-reversibility and non-equilibrium.
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Deep learning of time’s arrow in brain
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Figure 2. Deep learning the arrow of time in health and disease. In order to discover the arrow of
time in brain dynamics in health and disease, we designed a deep learning pipeline named Temporal
Evolution NETwork (TENET). A) Specifically, we used sliding windows of brain signal timeseries from
all brain regions in all participants. B) These diding windows were then used in the TENET, a deep
learning network classifier with 13 layersfor classifying the arrow of time. C) This strategy allowed us
to study non-reversibility and non-equilibrium at different levels of granularity, from global (all
signals) to network level to individual node level signals. D) After training, TENET was able to
characterise the degree of reversghility, i.e. non-equilibrium for each dliding window (top panel). We
performed this procedure on data resting and seven tasks and computed the means of the levels of
certainty of the classifier output (across time) as a measure of the degree of non-equilibrium (middle
panel). The standard deviation of this measure establishes stability of this non-equilibrium across time.
Given that non-equilibrium states are already non-stationary, this provides the second order of non-

stationarity (see Methods). E) Non-equilibrium is associated with the breaking of detailed balance of a
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system. We estimated this by selecting windows of low and high reversibility, and computing the FC(7),
I.e. the time-delayed functional connectivity between all pairs of brain regions. Specifically, the degree
of asymmetry of the FC(7) matrix is a proxy for the breaking of the detailed balance with more
asymmetry corresponding to more unbalance. The level of asymmetry can also be rendered on the
brain (see Methods). F) Finally, we used TENET on resting state data from neuropsychiatric patients
with diagnoses of schizophrenia, ADHD, and bipolar disorder, as well as age-matched controls.

Different levels of non-equilibrium provide a potential biomarker of neuropsychiatric disease.
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Figure 3. Global non-equilibrium in HCP rest and seven tasks. A) Left panel shows the mean non-
equilibrium for rest and the seven tasks ordered by the increase in their mean level of non-equilibrium.
The level of non-equilibriunynon-reversibility, R(t), is computed using the output of TENET on a 10%
validation set after being trained on 90% of the data. In brief, R(t) is computed as the accuracy of
classification of forward and time reversal of backward trajectory of global timeseries (across sliding

windows at time t), where a value of 1 corresponds to perfect classification, i.e. maximal non-
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reversibility (see Methods). As can be seen from the boxplot, brain dynamics during rest exhibits
significantly lower levels of reversibility than that found in tasks (p<0.001). The highest level of non-
equilibrium/non-reversibility is found in the Social task, reflecting a stronger arrow of time associated
with an increase in the interaction with the environment. In other words, the brain dynamics in tasks
are showing more non-equilibrium than rest and are thus more driven by the environment. The right
panel shows the stability of this non-equilibrium across time, i.e. providing a measure of second order
of non-stationarity. Brain activity during rest is showing significantly more variability in the second
order of non-stationarity than tasks (p<0.001). B) The panel shows the level of non-equilibriunynon-
reversibility, R(t), over time for rest (left panel) and the social task (right panel). Note how the
evolution of R(t) is more variable in rest. C) Causal interactions vary across time and consistently
show a significantly stronger breaking of the detailed balance in windows with high compared to low
levels of non-equilibrium/non-reversibility (compare low and high boxplots, p<0.001) for both rest (left
panel) and the social task (right panel). This is measured as the asymmetry of the time-shifted
functional connectivity (see Methods). The renderings of brains reflect which brain regions are
showing more symmetry-breaking between low and high levels of non-equilibriumy/non-reversibility.
The brain shows more heterogenous patterns of change during the social task than in rest (compare
right with left panel). This strongly suggests that when performing a complex task, the environment is

driving the brain in very specific ways to a more non-equilibrium state.
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Figure 4. TENET network level analysis of HCP rest and tasks. Analysis of the non-equilibriunynon-
reversibility of the seven Yeo resting state networks showed differential responses between rest and
tasks for the seven resting state networks. A) Boxplots of the level of non-equilibrium for each of the
seven Yeo networks for rest and the seven tasks. Smilar to the global level analysis there is lower
levels of non-equilibrium for rest compared to the seven tasks, suggesting, as expected, that REST is
more intrinsically driven and thus more in equilibrium. It is of interest to note that REST is
characterised by having the highest levels of non-equilibrium in the default mode network (DMN) and
Visual (VIS) network. Equally, across the tasks, except for LANGUAGE, the sensory networks (VISand
SOM) show the highest level of non-equilibrium and thus most driven by the environment. Interestingly,
again except for LANGUAGE, the Limbic network (LIM) exhibit the lowest levels of non-equilibrium,
signalling that it is more intrinscally driven. Overall, of the seven tasks, the Yeo networks in
EMOTION and RELATIONAL show almost as low levels of non-equilibrium levels as REST. B)
Corresponding spider plots of the level of non-equilibrium for each Yeo network in rest and seven
tasks, which are colour coded asin panel A. C) Within condition (rest and the seven tasks) significance
testing between the level of non-equilibrium of the seven Yeo networks is shown in the upper
guadrangle of the matrices (with brown squares signifying p<0.05) Almost all comparisons within
conditions are significant but less so for REST. D) Smilar, the matrices show between conditions
significance testing between the level of non-equilibrium of the seven Yeo networks is shown in the

upper quadrangle of the matrices (with brown squares signifying p<0.05). Almost all comparisons
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across conditions are significant. E) To facilitate comparisons, we show a combined spider plot of the
level of non-equilibrium for each Yeo network in rest and seven tasks (with the Yeo networks rendered
on the brain with a separate colour coding). F) Classification of conditions (rest and seven tasks) using
the network level TENET output. As can be seen from the confusion matrix, the SVYM provides excellent
classification results much above chance level. Average classification for the diagonal is 59% with a
chance level of 12.5%.
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Figure 5. Node-level analysis of HCP data reveals distinct patterns of local non-equilibrium/non-
reversibility. Applying TENET at the node-level serves to distinguish the local level of influence on
brain regions by the environment. A) Rendering of the node-level non-equilibrium for resting and the
social task, which show the lowest and highest levels of global non-equilibrium, respectively. Thisis
equally true at the node-level but with significant inter-regional heterogeneity (compare the different
shades in a common colormap from yellow to brownish red). B) Rendering of the levels of non-
equilibrium for all the seven tasks. Notice the clear differences between tasks and how for instance the
working memory (WM) task shows high levels of non-equilibrium in prefrontal regions, while the
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LANGUAGE task shows high levels of non-equilibrium in known language areas consistent with the
existing extensive literature.

C) We studied the hierarchy of the levels of non-equilibrium in rest and tasks by comparing this to
other known sources of heterogeneity such as the myelinisation ratio (T1w/T2w ratio, obtained from
HCP data) and various forms of gene expressions in the brain, obtained from the Allen Human Brain
Atlas (Arnatkeviciute et al., 2019; Deco et al., 2021a; Fornito et al., 2019; Hawrylycz et al., 2012). In
particular, we used the first PCA component of all genes and the excitation/inhibition ratio given by
the gene-expression for genes coding for the excitatory AMPA and NMDA receptors and inhibitory
GABA-A receptor isoforms and subunits. During resting, we found a significantly correlation
(p<0.001, non-parametric) with the excitation-inhibition ratio but not with the two others. In contrast,
the social task showed a clear significant correlation with the first PCA (p<0.001, non-parametric) but
not with the others. These differences between rest and task show how the environment is directly

changing the functional hierarchy.
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Figure 6. The arrow of time in neuropsychiatric disease. We used the non-equilibrium on the global
and local node levels on the large public UCLA dataset of neuropsychiatric patients with
schizophrenia, bipolar and ADHD and matched control group of participants. A) First, we used the
TENET framework to compute the level of non-equilibriunvnon-reversibility at the global level for
each group. The left panel of boxplots shows that the average reversibility across time for the control
group is significantly higher than each of the neuropsychiatric groups (all p<0.001, Wilcoxon rank
sum). This suggests that neuropsychiatric disease reduces the levels of non-equilibrium, suggesting
that the brain is less driven by the extrinsc environment. In addition, each neuropsychiatric disease
group are significantly different from each other (all p<0.001, Wilcoxon rank sum). The middle panel
of boxplots shows that the standard deviation of the reversibility across time is significantly reduced
for the control participants compared to neuropsychiatric groups and that between them, there are also

significant differences (all p<0.001, Wilcoxon rank sum, except for controls vs schizophrenia). The
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right panel shows examples of the temporal evolution of the reversibility computed by TENET for a
participant from each of the four groups. B) Complementing these findings at the global level, we used
the TENET framework to compute the node level reversibility for each group and show the
corresponding thresholded renderings. C) In order to stress the differences between the control group
and the three neuropsychiatric disorders, we show renderings of these differences. Interestingly, in
schizophrenia we found local decreases compared to controls across the brain, primarily located in the
temporal, parietal, and prefrontal cortices. In contrast, in bipolar disorder compared to controls, most
brain regions except for the somatomotor regions are showing more non-reversibility compared to
controls, suggesting that the brain is more driven by the environment. Comparing ADHD with controls
shows larger local levels of non-reversibility in somatosensory, temporal, parietal and insular cortices.
In particular the somatomotor regions are more driven by the environment, suggesting a route for

hyperactivity.
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