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Abstract
The gut microbiome (GM) is shaped through infancy and plays a major role in determining
susceptibility to chronic inflammatory diseases later in life. Bacteriophages (phages) are
known to modulate bacterial populations in numerous ecosystems, including the gut.
However, virome data is difficult to analyse because it mostly consists of unknown viruses,
i.e. viral dark matter. Here, we manually resolved the viral dark matter in the largest human
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virome study published to date. Fecal viromes from a cohort of 647 infants at 1 year of age
were deeply sequenced and analysed through successive rounds of clustering and curation.
We uncovered more than ten thousand viral species distributed over 248 viral families
falling within 17 viral order-level clades. Most of the defined viral families and orders were
novel and belonged to the Caudoviricetes viral class. Bacterial hosts were predicted for 79%
of the viral species using CRISPR spacers, including those in metagenomes from the same
fecal samples. While Bacteroides-infecting Crassphages were present, novel viral families
were more predominant, including phages infecting Clostridiales and Bifidobacterium. Phage
lifestyles were determined for more than three thousand caudoviral species. Lifestyles were
homogeneous at the family level for 149 Caudoviricetes families, including 32 families that
were found to be virulent, while 117 were temperate. Virulent phage families were more
abundant but temperate ones were more diverse and widespread. Together, the viral families
found in this study represent a major expansion of existing bacteriophage taxonomy.

Introduction
The establishment of the gut microbiome (GM) during the first years of life plays a pivotal
role in the maturation of the infant immune system1,2. Early-life GM dysbiosis has been linked
to a series of chronic diseases occurring later in life, indicative of an immune system thrown
off balance3–6. Most existing research has been on the bacterial component of the GM but in
recent years it has become evident that other microbes as well as viruses are prominent GM
members. The latter colonize the gut during the first months of life following a patterned
trajectory resembling the establishment of gut bacteria7–10.

Bacteriophages (phages) are viruses that infect bacteria in a host specific manner. Virulent
phages multiply by killing their host. Temperate phages can integrate their genome into the
bacterial chromosome, thereby becoming prophages and postponing an attack on the host
until conditions are favourable. Some phages also cause chronic infections leading to
continuous shedding of viral particles11. Bacteria will defend themselves using an impressive
arsenal of defence systems, which include among others, CRISPR-Cas systems, an
adaptive immune mechanism where DNA records (spacers) of past infections are saved on
the bacterial CRISPR array to help combat any future phage attacks12.

Lately, it has become clear that phages possess the ability to alter GM composition and
function8,13. Moreover, the reported interactions between phage proteins and the host
immune response14–16 suggest a tripartite interaction that may modulate host health. The first
report on the viral metagenome (virome) composition in the infant gut dates back more than
a decade17, and it has recently been shown to be influenced by caesarian section18.
Nevertheless large-scale studies establishing the early-life virome composition and structure
are sparse, and human virome studies in general have been challenged by the viral “dark
matter” problem19.

The dark matter problem is a phenomenon where only a small fraction of nucleic acid
sequences can be traced back to any known virus because sequence databases currently
under-represent the diversity of viruses in natural environments. Attempts at de novo virus
discovery directly from the virome data have been limited by the lack of universal viral
marker genes, which makes it difficult to distinguish viral sequences from contaminating
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DNA. In addition, de novo classification of novel viruses has been held back by the lack of
criteria and standardised methods. Although much progress has been made in recent
years20–22, virome studies are still catching up. Thus, the dark matter problem has prevented
researchers from getting the most out of their viromes, perhaps thereby missing biologically
meaningful associations in their data. We posit that comprehensive annotation of viromics
data, including viral taxonomies, trees and gene families will be required for more powerful
statistics against sample metadata. Such an effort would inevitably involve cataloguing novel
viruses, and ideally proposing novel viral taxa so they can be known to science.

Traditionally, the definition of new viral taxa has required the laboratory isolation of the virus
along with its host and its subsequent characterization23. Recently the International
Committee for the Taxonomy of Viruses (ICTV) opened up the possibility for defining viral
taxa based on sequence information alone. This move is due to have major implications for
our understanding of phages, and tailed phages (or caudoviruses) in particular, as their
diversity is the greatest and has been misrepresented so far24. As an example, the ICTV
established the complete taxonomy of the new Herelleviridae caudoviral family,
demonstrating the proper definition of viral subfamilies and genera under the new
paradigm25. Subsequently, three new caudoviral families were found in human gut
metagenome data26, and recently the prominent human gut phage family Crassviridae27, was
elevated into a viral order Crassvirales28, belonging to the viral class Caudoviricetes which
itself is proposed to encompass caudoviruses29 in general.

Here, we present the characterization of the fecal virome from 647 infants at one year of age
enrolled in the COPSAC2010 cohort30. The viral dark matter was exhaustively resolved by
manual curation, which enabled the identification of over ten thousand viral species, more
than half of which appear to be completely sequenced. Hierarchical clustering of these
viruses based on encoded protein similarity enabled the de novo definition of novel viral
genera, subfamilies and families. In total, we identified 248 viral families that fall within
seventeen viral order-level clades. Most of the novel families belonged to Caudoviricetes,
representing a major expansion of known caudoviral diversity. We also predicted the hosts of
the viral species by matching spacer sequences from bacterial CRISPRs and found that
members of the Bacteroides-infecting Crassvirales - otherwise abundant in adult gut viromes
- were outnumbered by novel phage families infecting numerous gut bacteria such as
Clostridiales and Bifidobacterium. Temperate phages were the most widespread and diverse
while virulent phages were more abundant. Our manually confirmed viral set was also used
for benchmarking the performance of several metagenome virus discovery tools. All viral
sequences found in the study have been made available online in an interface for browsing
their genome contents along with their viral taxonomy, host and lifestyle predictions
(http://copsac.com/earlyvir/f1y/fig1.svg).

Results

Study population
COPSAC2010 is a population-based birth cohort of 700 children recruited in pregnancy
where we study the causes for chronic inflammatory diseases. The children are monitored
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by clinicians who diagnose eventual conditions, and multi-omics data is collected routinely to
shed light on disease mechanisms. A total of 647 children had a fecal sample obtained at 1
year of age where the virome was characterised, and deep metagenomes for the samples
were sequenced in parallel31.

Identifying the viruses and resolving their taxonomies
Virome extractions are known to contain large amounts of bacterial contaminating DNA32

and the virome dark matter problem19 makes it difficult to discern novel viruses from
contaminants. We elected to resolve the virome dark matter by assembly, clustering and
successive rounds of manual curation.

Assembly of the 647 virome samples resulted in 1.5M contigs larger than 1kb that fell within
8050 broad decontamination clusters based on protein similarity (Figure S1). After ranking
the clusters by prevalence and CRISPR targeting, they were visualised as in Figure S2 and
inspected manually. A total of 255 clusters (3.2%) were deemed viral. In parallel, we
deduplicated all 1.5M contigs at the species level, (95% average nucleotide identity or ANI),
resulting in 363k operational taxonomic units (OTUs) (Figure 2). Of these, 16,746 belonged
to the 255 viral decontamination clusters and were thus termed viral OTUs (vOTUs).

The vOTUs were pooled with all 7.7k available reference phage species93 before gene
calling. Protein alignments were then used for defining viral ortholog gene clusters (VOGs)
de novo and for constructing an aggregate protein similarity (APS) tree. The tree was rooted
and cut at the levels reproducing the recent taxonomy for the Herelleviridae25 phage family,
thus yielding viral families, subfamilies and genera covering all vOTUs and reference
phages. An additional order-level cutoff was based on the newly proposed caudoviral
Crassvirales order28.

All family-level clades were validated by visualising (Figure S2) and inspecting their gene
contents and any weak clades were removed in the process. The minimum complete
genome size cutoff was determined by examining the vOTU size distribution within each
family. Next, each vOTU within each family was curated individually to remove 6,725 vOTUs
comprising small fragments, putative satellites and MGEs.

The final curated set consisted of 248 viral families, including sixteen known families and
232 novel ones (Figure 1). The novel viral families were named after the infants that
delivered the fecal samples. All the families were additionally grouped into seventeen
order-level clades, twelve of which were novel (Table 2). The 248 curated families harboured
10,021 manually confirmed species-level vOTUs, 5,608 of which were complete or
near-complete. DNA sequences and taxonomies for the vOTUs along with visualisations of
the families (Figure S2) have been made available online via the interactive version of Figure
1 at http://copsac.com/earlyvir/f1y/fig1.svg
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Figure 1: An atlas of infant gut DNA virus diversity. Fecal viromes from 647 infants at
age 1 year were deeply sequenced, assembled and curated, resulting in the identification of
10,021 viruses falling within 248 viral families. Predicted host ranges for each family are
given, and the families have been grouped into 17 order-level clades. Trees show how
families are interrelated within each order-level clade. The 16 previously defined families are
highlighted in red. An interactive version with expandable families can be accessed online:
http://copsac.com/earlyvir/f1y/fig1.svg
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Figure 2: From assembly to curated vOTUs in numbers. After assembly, species-level
deduplication and manual decontamination, most OTUs were found to be non-viral and had
small sizes while viral OTUs were much fewer but longer (A). After mapping, vOTUs
accounted for roughly half of the reads (B). 97% of the reads originally comprised dark
matter but only 7% was left after resolution (C). The 10,021 curated vOTUs fell within five
viral classes (caudoviruses, microviruses, circoviruses, inoviruses and adenoviruses).
Distributions of the viral classes by: mapped reads (D), mean relative abundances (E) and
species richness, i.e. number of vOTUs (F) are shown. G) Same as F but at viral order-level,
with orders colored as in Figure 4.

vOTU host distributions mimic sample bacterial composition
Bacterial hosts for the vOTUs were predicted using 318k CRISPR spacers from our
metagenome assembled genomes (MAGs)31 and the 11M spacers from the CRISPR spacer
database33 as well as by using WIsH34. The three host predictions were merged by selecting
the last common ancestor (LCA). 63% of the vOTUs yielded host predictions at the bacterial
genus-level, while 77% were predicted at the bacterial order-level (Figure 3A) and 79% at
the phylum level. Bacteroides was by far the most common bacterial host genus followed by
Faecalibacterium and Bifidobacterium. At the order level, more than half of all vOTUs had
Clostridiales as hosts, with Bacteroidales covering just 20% (Figure 3A). These differences
mirror the corresponding pattern for the bacteria found in the metagenome, where
Bacteroides are abundant while Clostridiales are diverse (Figure 3B).
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Figure 3: Prediction of bacterial hosts for the 10,021 viruses found in the infant gut virome
shows that Bacteroides, Faecalibacterium and Bifidobacterium are the three most prominent
host genera. A) Distribution of virus host predictions collapsed to bacterial order and genus
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levels, respectively. Numbers in parentheses denote the number of vOTUs with a given host
genus or order. B) The top 100 gut bacterial genera found in gut metagenomes from the
same infant fecal samples, as represented by a taxonomic tree. The mean relative
abundance (MRA) of each bacterial genus is shown in the blue heatmap, while the fraction
of the 647 infants harbouring the host genus (i.e. its prevalence) is shown with the brown
barplot. For each host bacterium, the yellow bars show the proportion of viral species found
in this study relative to those in the reference phage species set91 shown in dark blue.
Numbers behind each genus name denote the total number of vOTU vs. reference phage
species per bacterial host genus. The 16 major host genera from panel A are indicated by a
dot in front of their names in panel B.

Quantification of viruses and bacterial contamination
In order to gauge the quality of the virome extractions we estimated the virus particle
concentration for a subset of the samples using epifluorescence microscopy. The mean
virus-like particle (VLP) concentration obtained was 1.0 × 109 VLPs/g of feces, ranging from
3 × 108 to 3 × 109 VLPs/g for the 18 samples tested.

Before library preparation we used multiple-displacement amplification (MDA) because it
enables the detection of ssDNA viruses. MDA, however, can introduce compositional
biases35,36 that favour ssDNA viruses over dsDNA viruses. To limit any bias we kept the MDA
step at 30 minutes instead of the recommended 2 hours. After sequencing and assembly,
vOTU abundances were estimated by read mapping and normalising for mapping depth and
contig length. ssDNA viral counts made up more than half of the mean relative abundance
(MRA) across all samples. To investigate if the MDA had biased the caudoviral counts, we
compared counts of plaque forming units (PFUs) of different coliphages isolated from the
same samples37 against their corresponding vOTU abundances. Phages that were present
in titers lower than 25000 PFU/g of feces were undetected, limited most likely by sequencing
depth. However, phages with PFU counts above this limit showed reliable quantitative
abundances (Figure S3). This confirmed that the virome abundances were quantitative for
caudoviruses internally, allowing for valid comparisons of dsDNA abundances across
different vOTUs and samples.

The 10,021 confirmed vOTUs recruited roughly half of the reads despite making up a minor
fraction of all OTUs (Figure 2). The remaining half of the read mappings were spread over
the 346k non-vOTUs. Since ViromeQC38 estimated a mean bacterial contamination rate of
44%, we infer that most non-vOTUs must be bacterial (Figure 2). After subtracting viral and
bacterial reads, only 7% of the reads were left over as unaccounted dark matter.

Viral family prevalence, richness and abundance
In order to identify the predominant viral families, we ranked them by both species richness,
prevalence across samples, and MRA (Figure 4). All three rankings gave similar results
because the three estimates were highly correlated (Figure 1). The correlation between
these measures is predicted by neutral theory which has already been shown to explain
bacterial community structures quite accurately39,40. Human-infecting ssDNA circoviruses
(Cirlivirales) and bacterial ssDNA microviruses (Petitvirales) were the most abundant (Figure
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4A). The abundant ssDNA viral families were followed by the top ten most abundant major
caudoviral families (Figure 4B). Of the major caudoviral families, four were already known,
namely Skunaviridae, Flandersviridae, Picoviridae and β-crassviridae, while the remaining
six were novel.

Figure 4: Abundance, prevalence and richness of the novel families in the infant gut.
A) The 17 viral order-level clusters and their prevalence and mean relative abundance
(MRA) across samples. B) The 248 viral families in terms of prevalence and MRA. The major
caudoviral families are colored and labelled. Minor families as well as ssDNA families are in
grey. Predicted lifestyles for the 10 major caudoviral families are indicated by different
shapes. C) Viral orders and families scaled by species richness, ordered by MRA. The viral
families are represented underneath the order they belong to. The major families were
defined as the ten most abundant caudoviral families in the data.

Virulent vs. temperate Caudoviricetes families
While examining the ten most abundant major caudoviral families we noticed that most of
them lacked an encoded integrase, otherwise commonly found throughout the less abundant
families in the data. Since an integrase is an indicator of a temperate lifestyle, we went on to
investigate systematically whether a virulent lifestyle was linked to higher abundances
overall. Using the determined minimum complete size limit per viral family, 3398 complete
and near-complete caudoviral vOTUs from 230 caudoviral families were screened for the
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presence of integrase VOGs. Using this information 117 of the caudoviral families were
deemed temperate, while only 32 were found to be virulent. The remaining 81 caudoviral
families exhibited either a mixed lifestyle pattern or were uncertain due to an insufficient
number of complete genomes.

On its own, abundance was not significantly linked to phage lifestyle (Figure 5A), but
temperate families were significantly more prevalent than virulent families (Figure 5B).
Temperate phages have been shown to be more diverse than their virulent counterparts41, so
we looked into this by comparing their genus richness normalised for overall family size.
Indeed temperate caudoviral families were significantly more genetically diverse than virulent
families (Figure 5C). As for the predicted bacterial hosts, Clostridiales were particularly
enriched in temperate viral families, whereas most virulent families were predicted to infect
Bacteroidales (Figure 1). Using the CRISPR spacer mappings we found, in line with
observations in other studies22,42, that some vOTUs appeared to infect multiple host species,
genera or even families of bacteria. We decided to check whether the CRISPR-Cas system
targeted virulent phages more often than temperate phages, or whether virulence was
associated with a broader host range. This was not the case as both temperate and virulent
families exhibited similar mean host ranges and numbers of targeting spacers (Figure 5DE).

Plotting the abundance and prevalence of the virulent and temperate families against each
other (Figure 5F) resurfaced our initial suspicion that virulent phage families were present in
higher numbers despite being found in fewer children. Thus we decided to test this
hypothesis systematically by using the neutral community model (Figure 5G), which
describes the typical relationship seen in nature between abundance and prevalence, as the
baseline assumption43. After fitting the model on all of our family abundances, temperate
families had significantly higher residuals against it than virulent families (Figure 5H),
confirming that they were more prevalent while also being less abundant than virulent phage
families.
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Figure 5: Characteristics of temperate vs. virulent families in the data in terms of A) Mean
relative abundance; B) Prevalence; C) Genus richness for family size; D) Number of
metagenomic CRISPR spacer matches; E) Host range (number of host species); F) Fit of
the neutral community model on the viral families from Figure 4B, with families coloured by
lifestyle, G) Deriving neutral community model residuals from the log-transformed
prevalences; and H) Comparison of neutral community model residuals, showing that
temperate families tend to have positive residuals, whereas virulent families tend towards
negative residuals.

ssDNA viruses in the infant gut
ssDNA vOTUs collectively recruited around a third of the sequencing reads, but after
normalising for their short genome sizes, they accounted for 60% of the MRA (Figure 2).
Although MDA may have inflated the counts for ssDNA viruses, both their prevalence and
richness was in line with their high abundance. The ssDNA virus families display canonical
positioning along the neutral community model (figures 4B, 5F) indicating that any inflation
should have been limited. ssDNA viruses in our data fell within three separate viral classes,
Malgrandeviricetes, Arfiviricites and Faserviricetes, harboring a single viral order each.

Microviruses of the Petitvirales viral order (class Malgrandeviricetes) were both the most
prevalent and abundant group of viruses found in our viromes, making up 52% of the MRA.
Further, 21 % of the CRISPR spacer matches from the metagenome targeted microviruses.
This was in line with their overall richness which accounted for 16% of all bacterial viruses in
our data, or 1424 vOTUs in total. vOTUs from the two major families, Gokushoviridae and
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Alpaviridae (currently known as Gokushovirinae and Alpavirinae) in our data infect
Clostridiales and Bacteroidales respectively, but other minor and novel microviral families
were also detected.

Circoviridae, also referred to as anelloviruses, is a single family of small 3-kb ssDNA viruses
that infect animal tissue. They are known to cause chronic asymptomatic infections in
humans, displaying elevated titers in individuals with weak or developing immune systems44.
The immature immunity of the infants may explain why Circoviridae were so abundant in our
samples, making up 7% of the MRA and comprising by far the richest single family with 970
species-level vOTUs. On average, each infant harboured 10 different species of
Circoviridae. Unsurprisingly, no CRISPR spacer matches were found targeting any
Circoviridae vOTUs.

Inoviruses from the Tubulavirales order are small ssDNA filamentous phages recently found
to be ubiquitous and diverse45. Some of them can integrate into their host genomes using
encoded integrases while others cause chronic non-lethal infections that are neither lytic, nor
lysogenic, but result in the continuous shedding of new virus particles11. Although they were
diverse in our data, split into 7 distinct families, like the Petitvirales, their species richness
was much lower at 235 vOTUs, and abundances were correspondingly lower at 1% MRA.
Most of the inoviral families found, were predicted to infect Clostridiales, although members
of the Adamviridae, appear to specifically infect Bifidobacterium.

The major Caudoviricetes families
As explained previously, viral families were defined here by cutting the APS tree at the
branch uniting Herelleviridae25, and this cutoff was validated independently because it
reproduced the expected Crassphage families just recently defined28. Ranking the 230
obtained caudoviral families by MRA, the virulent Skunaviridae was the most abundant
caudoviral family in the children, comprising 2.7% MRA overall or 6.3% when counting only
caudoviruses and disregarding ssDNA viruses. Our most abundant Skunaviridae vOTUs
resemble numerous reference phage genomes infecting Lactococcus dairy cultures.
However, most vOTUs from this family were predicted to infect Streptococcus, which was a
highly prevalent bacterial host in our samples. Flandersviridae, a recently described family of
gut phages26 that infects Bacteroides, was the second most abundant caudoviral family in
the children at just under 5.9% caudoviral MRA. Consistent with earlier speculation26, we
predicted this family to be virulent. Next, at 3.9% caudoviral MRA was our first novel viral
family, which we named Sisseviridae. It was also the most prevalent caudoviral family, found
in more than 80% of the samples. This family included the recently discovered
Faecalibacterium phage Oengus46, also known to be highly prevalent. Being a large family
composed of 236 vOTUs infecting mainly Clostridiales hosts, it displayed a mixed lifestyle
with some subfamilies being virulent and others temperate. The fourth most abundant
caudoviral family was the Picoviridae at 3.8% of the caudoviral MRA. This family comprises
a virulent group of podoviruses including reference phages such as Bacillus phage phi29.
The vOTUs belonging to this family were split between those infecting Actinobacteria such
as Bifidobacterium and Eggerthella, or Clostridiales hosts like Erysipelatoclostridium and
Hungatella. At 3.5% caudoviral MRA, was our most abundant Crassphage family,
β-crassviridae. Of note, this family is different from the α-crassviridae most commonly found
in adults47. The latter was only present at 0.2% caudoviral MRA in our infant samples. The
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predicted hosts for β-crassviridae included both Clostridium and Bacteroides. Next,
Amandaviridae and Jeppeviridae at 3.2 and 2.7% caudoviral MRA comprise two related and
large families of temperate phages containing almost three hundred vOTUs each, infecting
Clostridiales host genera such as Ruminococcus, Blautia, Anaerostipes and Hungatella.
Both families share the interesting characteristic of terminase shuffling, where the conserved
caudoviral gene, terL, is subject to frequent horizontal gene transfer (HGT), while the
remainder of the genome is held relatively constant. The related family Alberteviridae
exhibits a similar characteristic. Finally, Evaviridae and Hannahviridae at 2.4 and 2.3%
caudoviral MRA, respectively, comprise two related novel families of Bacteroides-infecting
phages. The former was predicted to be virulent while the latter was mixed containing two
major subfamilies each with its own lifestyle. Hannahviridae includes the recently described
Bacteroides Hankyphage48, and has been extensively described in our parallel provirome
study performed on the same samples94.

Novel orders within Caudoviricetes
Cutting the APS tree at the branch unifying the recently defined Crassvirales viral order
reproduced all other known viral orders in the virome, including Petitvirales (microviruses),
Tubulavirales (inoviruses), Cirilvirales (circoviruses) and Rowavirales (adenoviruses). In
addition to the known orders, the cutoff predicted the existence of at least 12 novel viral
orders all of which were caudoviral (Table 1), unifying our families into broader groups of
related families. Gramvirales, the most diverse, prevalent and abundant clade at 27%
caudoviral MRA, encompassed 67 novel viral families that were overwhelmingly temperate,
infecting Clostridiales host bacteria. Gramvirales includes the major families Jeppeviridae,
Amandaviridae and Alberteviridae described above. Interestingly, terminase shuffling was a
feature that seemed to pervade Gramvirales. Two major TerL clades are prevalent
throughout most of the order, and they are often exchanged even between species of the
same genus. Some caudoviral families were so distantly related to any other family that they
formed their own singleton orders. Flandersvirales is a notable example but we found others
as well, like Kayavirales, composed of a single novel family Kayaviridae that infects mostly
Veillonella. Our Crassvirales clade includes the four original crassphage families49 plus the
recently described ζ-crassviridae, which were all predicted to be virulent. In addition, 24
mostly temperate families, infecting mainly Bacteroides, were also found to be part of the
same order. However, ε-crassviridae belongs to a different order-level clade, Hessevirales,
consisting of multiple families with large genomes. The Crassvirales clade as a whole covers
15% of the caudoviral MRA, with the previously proposed families making up 6%. Other
caudoviral families overshadow Crassphage families in our data, and Crassvirales as an
order is less prevalent than the novel Gramvirales, Picovirales and Ullmannvirales.

Table 1: The 10,021 viral species belonging to the 248 viral families found in the present
study were grouped into viral order-level clades. The clades are sorted by total richness and
novel orders are indicated in bold. Caudoviral MRAs (cMRA) are shown for the caudoviral
orders. For each order-level clade, the number of families, subfamilies and genera are also
given along with their most frequent hosts.

order-level cluster % cMRA families subfams genera species major host
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Gramvirales 27 67 531 1163 2719 Clostridiales

Petitvirales - 7 67 154 1424 Bacteroides

Picovirales 19 45 315 618 1417 Clostridiales

Ullmannvirales 9 30 171 358 1031 Veillonellaceae

Cirlivirales - 1 21 268 970 Human

Crassvirales 15 30 114 214 561 Bacteroidales

Tissiervirales 7 17 64 149 502 Bifidobacteriu
m

Twortvirales 6 8 47 108 334 Bacteroidales

Gratiavirales 5 4 27 75 278 Clostridiales

Tubulavirales - 7 50 78 235 Clostridiales

Hessevirales 2 11 37 61 145 Clostridiales

Friedlandervirales 1 10 38 61 111 Clostridiales

Verrucovirales 1 7 19 31 96 Akkermansia

Flandersvirales 6 1 4 10 93 Bacteroides

Kayavirales 1 1 3 4 92 Veillonellaceae

Corneliavirales 0.05 1 3 6 8 Faecalibacterium

Rowavirales - 1 1 2 5 Human

Benchmarking virome decontamination software
A series of virus discovery and decontamination tools have been published recently21,38,50–56

and they have already seen widespread application by the viromics community. Several
large gut phage databases have been released that were built on predictions from such
tools22,36. Yet, little is known about their efficacy in identifying novel viral clades or their ability
to weed out contaminating DNA. The manually curated nature of our virome data set made it
well suited for independently testing the performance of these tools. A purely random
prediction was generated for comparison. A naive length cutoff of +20kb was also used for
comparison, since non-vOTUs were distinctly short in our data (Figure 2).

CheckV50, VIBRANT21 and viralVerify52 sported the best performances with our data set
(Table 2) although VIRSorter55 also worked well. With a specificity of 97.5%, the length cutoff
did a better job than VIRSorter251. DeepVirFinder56 PPR-Meta54 and Seeker53, all of which
were “alignment free”, yielded performances that were close to random. VIRSorter and
VIBRANT, when run in virome decontamination mode, improved sensitivity at the cost of
greatly reduced specificity. For our data, VIRSorter performed better when used in “db2”
mode.
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ViromeQC estimates the proportion of bacterial contamination in viromes38 and it estimated
that around half of our reads were contaminants. We compared the ViromeQC estimation to
two other independent measures that we generated using the manual curation and our
coupled metagenome samples, namely 1) the proportion of mapped reads to non-vOTUs
and 2) the depletion of bacterial core genes in the virome reads compared to cognate
metagenomes. Although all three estimates were in strong agreement on average, there was
considerable sample to sample variation (Figure S4). Importantly, our
metagenome-normalised core gene depletion did not perform better than ViromeQC when
comparing against the non-vOTU standard. This result illustrates that virome contaminant
estimation is non-trivial and that ViromeQC performs well.

Table 2: Benchmarking statistics from various metagenomic virus discovery methods against
10,021 vOTUs in the manually curated viral set from a total of 362,668 OTUs. The skewed
nature of the data set, with non-vOTUs far outnumbering vOTUs, inflates the specificity
metric, which is 0.965 for a random prediction. The Kappa performance metric was included
because it is robust against skews. Prediction methods that provided a confidence score
were cut conservatively or by matching the number of positive predictions to the manual set.
The performances of VIRSorter and VIBRANT were also checked in alternate modes
(bottom portion).

method predictions cutoff sensitivity specificity kappa

CheckV 9393 >= medium qual 0.71161 0.99359 0.7273

viralVerify 10921 > 15 0.69873 0.98889 0.6589

VIBRANT 5843 >= medium qual 0.44696 0.99613 0.5556

VIRSorter 14366 cat. 1 + 2 0.69335 0.97896 0.5553

Length + 20kb 13452 > 20kb 0.48548 0.97565 0.3954

VIRSorter2 18638 virus maxscore = 1 0.50983 0.96164 0.3325

DeepVirFinder 10192 q < 0.05 0.058078 0.972749 0.0306

PPR Meta 17222 score > 0.95 0.060772 0.952891 0.0101

random 12500 w/o replacement 0.0330306 0.9654924 -0.0013

Seeker 13520 >= 0.9 0.0263447 0.9624100 -0.0096

VIRSorter virome 30736 cat. 1 + 2 0.83155 0.93647 0.3832

VIRSorter db2 13298 cat. 1 + 2 0.70971 0.98246 0.5973

VIBRANT virome 6181 >= medium qual 0.45395 0.99537 0.5521
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Discussion
We have presented here the largest human virome study published to date, covering fecal
samples from 647 1-year-old infants where DNA viromes were sequenced to an average
depth of 3 Gb per sample. This study additionally represents three major advances in
descriptive viromics. To our knowledge, this has been the first exhaustive attempt at
resolving virome dark matter. We were able to match 93% of the reads to either viral or
bacterial DNA, leaving only 7% as unaccounted dark matter. Secondly, we performed the
first reported comprehensive taxonomic resolution of a virome data set. This led to the
identification of 232 novel viral families, representing a major expansion of known phage
taxonomy. Lastly, we generated an overview of phage lifestyles for an entire ecosystem. The
analysis shows that the bulk of phage diversity in the infant gut is composed of temperate
phages, even if less diverse virulent phages can be more abundant.

Bacterial contaminating DNA made up just under half of our sequenced virome reads, which
is within the typical range38. After assembly and species-level deduplication, the number of
non-viral OTUs was 20 times greater than our total number of viral OTUs. vOTUs were
longer and more prevalent than contaminating bacterial non-vOTUs which tended to be
sample-specific. Random fragments of bacterial DNA likely became copurified along with the
viral particles, explaining why they were not generally conserved between samples.
Contaminant DNA species thus made up the majority of the overall sequence diversity but
were shorter and less prevalent than the viruses.

Skunaviridae, the most abundant caudoviral family in our data, comprised only 8 complete
vOTUs, and this is atypical considering the hundreds of vOTUs in most of our other
abundant viral families. All reference phages belonging to the family infect Lactococcus while
our vOTUs were predicted to infect Streptococcus, but this could be an artefact caused by
the lack of lactococcal CRISPR spacers in our host prediction database. Streptococcus,
although very prevalent in the children, may not be abundant enough to support the high
counts of virulent Skunaviridae. We also did not find any strong (anti)correlation between
Streptococcus and Skunaviridae counts in the data. Thus, it remains a possibility that these
phages were ingested as dairy products and survived the digestive tract, as has also been
proposed earlier57. That they end up as the most abundant viral family in our study is still
surprising, but could be explained by the overall phage load in the human gut. Our
epifluorescence VLP counts place gut viruses at a billion per gram of feces, or at least an
order of magnitude lower than the density of gut bacteria. Our estimate is consistent with
other estimates in both adults and infants8,58, and such scarcity of phages in the gut, would
make it all the more likely for fecal virome extractions to occasionally become flooded by
ingested VLPs over proliferating ones.

In our previous study on E. coli phages isolated from the same samples37, we found that
virulent coliphages were found less frequently, but were more abundant and had broader
host ranges, at least at the strain level. Temperate coliphages on the contrary, were
frequently isolated, but had limited host ranges. Here, we found a very similar pattern albeit
on a much larger scale. Virulent phage families were more abundant but less prevalent than
temperate phage families. Although we could not see a difference in host range, we did find
that the temperate phage families were more genetically diverse compared to the virulent
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ones. This observation likely reflects frequent prophage induction from lysogenic gut
bacterial strains, as shown in mouse models59–61, and where the induced virions do not
readily infect new hosts and multiply. In viromcs, this would appear as a background of
temperate phages on top of which the entry of any virulent phage, through food and water,
would generate sporadic phage blooms. For our infant samples this temperate background
was intense enough to overshadow the diversity of virulent phages. Possibly, in adult
viromes where the GM has reached an equilibrium, the bacteria are less stressed in turn
making the temperate virome less dominant. This notion is consistent with how a virulent
phage core is linked to adult gut health62, as well as the paucity of crAssphage in infant
viromes36.

For resolving the taxonomy of our vOTUs into genera, subfamilies, families and order-level
clades we used an amino acid identity (AAI) based phylogenomic approach and applied
global cutoffs after rooting. Although it has been argued that global cutoffs are not suitable
for virus classification23 we found they worked well, and they come with the key advantage of
reproducibility. The existing guideline for defining new phage families25 involves manual
inspection of gene-sharing networks20, and a reproducible alternative would be preferred.
One might argue that clustering phages based on the proportion of shared proteins could
lead to co-clustering of phages sharing accessory rather than core genes. To this day
however, phylogenomics has proven a robust method for phage classification as it resists
the formidable capacity of phages to exchange genetic material.

Although the large terminase subunit (TerL) was the most conserved protein in our
caudoviruses, its gene was frequently exchanged such that even members of the same viral
genus would carry different TerL homologs (Figure S5). Notable examples of this
phenomenon are found in Gramvirales. Thus, the practice26,28 of using TerL phylogeny to
classify caudoviral phages can sometimes produce confusing results. As shown by Yutin et
al.28, Crassvirales is not TerL monophyletic and non-Crass phages often encode TerLs that
wind up in the middle of the crAss TerL tree. The recent introduction of ε-crassviridae into
Crassvirales28 likely illustrates this problem, as our results indicate that the family is not a
crAssphage family.

Finally, we found that the latest generation of metagenome virus discovery tools such as
CheckV, viralVerify and VIBRANT, in conjunction with ViromeQC should account for most
sequences in one’s virome data. This recent development begins to question the continued
relevance of the viral dark matter problem for DNA viromics at least. Although the
sensitivities of the tools against our data never got close to 100%, most of the sequences
missed by the best tools were just too short to pass the imposed quality thresholds. Thus,
their predictions were good and certainly easier to obtain than manual curation. On the other
hand, the performances of the alignment-free methods were very close to random with our
dataset, and it appears that nucleotide-level motifs do not carry enough information to
distinguish viruses from their abundant hosts.
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Conclusion
We deeply sequenced 647 infant gut viromes and tackled the viral dark matter by manual
curation. The approach enabled taxonomic resolution of all viruses found, uncovering 248
viral families in total, 232 of which were novel, and most of which belong to the
Caudoviricetes viral class. We found that temperate phages dominate the infant gut virome,
while Crassphage is a minor player overshadowed by several larger novel viral orders. We
used our manual data set to benchmark a series of recent virus discovery tools, and found
that the dark problem is practically resolved for DNA viromes. Our comprehensive
annotation of the infant gut viromes provides a framework for making biologically meaningful
statistical analyses against cohort clinical phenotypes for future translational viromics
research efforts.
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Methods
The study was embedded in the Danish population-based COPSAC2010 prospective
mother-child cohort of 736 women and their children followed from week 24 of pregnancy,
with the aim of studying the mechanisms underlying chronic inflammatory diseases63. A total
of 660 participants delivered a fecal sample 1-year after birth. Each fecal sample was mixed
with 10% vol/vol glycerol broth and stored at -80°C until DNA extraction for metagenomes31,
and virome extraction. Extraction and sequencing of virions was done using a previously
described protocol64. Briefly, DNA from fecal filtrates enriched in viral particles was extracted
and subjected to brief (30 minutes) MDA amplification and libraries were prepared following
manufacturer’s procedures for the Illumina Nextera XT kit (FC-131-1096). For
epifluorescence VLP estimations 10 µL of a virome sample was diluted 100-fold, fixed and
deposited on a 0.02 µM filter, dried and stained with SYBRTM-Gold (200X), then visualised
with an epifluorescence microscope using a 475 nm laser. VLPs were counted in 8 to 10
fields and multiplied over the remaining filter surface area.

Virome libraries were sequenced on the Illumina HiSeq X platform to an average depth of 3
GB per sample with paired end 2x150 bp reads. Satisfactory sequencing results were
obtained for 647 samples. Virome reads were quality filtered and trimmed using Fastq
Quality Trimmer/Filter (options -Q 33 -t 13 -l 32 -p 90 -q 13), and residual Illumina adapters
were removed using cutadapt. Trimmed reads were dereplicated using vsearch derep_prefix
and then assembled with Spades v3.10.1 using the meta flag while disabling read error
correction. Decontamination clusters were generated by reducing redundancy by
deduplicating the 1.5M contigs above 1 kb in size into 267k 90% ANI representatives65, then
calling genes66 and aligning67 proteins all-against-all for building an APS tree68 (see
Supplementary Methods). The tree was cut close to the root to obtain the decontamination
clusters. Bacterial MAGs from the same samples31 were mined for CRISPR spacers using
CRISPRDetect69, and the virome decontamination clusters were ranked by their extent of
CRISPR targeting multiplied by sample prevalence. The protein alignment results were used
to define orthologous gene clusters de novo70, and gene orthology information was used to
visualise the gene contents of contigs within each decontamination cluster. The top 400
ranked clusters were inspected visually for two viral signatures, namely conservation of
contig sizes and of gene content. There were diminishing returns beyond the top 400 mark
and the remaining decontamination clusters were assumed to represent contaminants.

Species-level (95% ANI) deduplication of contigs into OTUs was done using BLAT71.
Decontaminated vOTUs and reference phage species93 were pooled and the APS tree and
gene orthology (VOGs) were recalculated. VOGs were aligned against Pfam72, CDD73,
COG74 and TIGRFAMs75 using HH-suite376 to gain functional annotations. The APS tree was
cut using phylotreelib (https://github.com/agormp/phylotreelib) to reproduce existing phage
taxonomy28,77.

Family visualisations (Figure S2) were used to 1) further curate each individual vOTU in
order to separate confirmable viruses that had structural VOGs, from vOTUs representing
small fragments or various virus-related MGEs that did not harbour genes coding for any
structural proteins. 2) The OTU length distribution within each family was plotted in a
histogram with 5-kb steps to locate the right-most size peak. The 5-kb step immediately
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preceding this peak was set as the lower size bound for a complete or near-complete
genome. 3) The family visualisations were inspected to manually remove families that were
dominated by reference phages, so as to avoid interference with ongoing classification
efforts. Weak families composed mainly of MGEs or fragments or having less than five
vOTUs or less than two complete vOTUs were also removed. For the final version of the
family visualisations available online, VOG annotations were redone against PHROGs95

because it was more informative.

MAG spacers, along with spacers from CRISPRopenDB33 and WIsH33 were used to
generate separate host predictions for each vOTU. The three predictions were integrated
using the LCA of the two most closely matching predictions, as an error-correction strategy,
since all three methods would occasionally mispredict.

Bacterial contamination was estimated for each virome sample using ViromeQC38 along with
a custom approach where we leveraged the metagenomes cognate to each virome: Reads
were mapped from both fractions against 16S DNA78 and cpn6079 and the degree of
contamination was calculated as the ratio between the two fractions. Abundances of vOTUs
in each sample were determined by mapping sample reads to sample contigs using bwa
mem -a80, then using msamtools profile to determine depth and length-normalised relative
abundances with iterative redistribution of ambiguously mapped reads
(https://github.com/arumugamlab/msamtools). The obtained contig abundances were then
aggregated at the OTU level in order to obtain vOTU abundances per sample. vOTU
abundances were aggregated at the family and order levels using phyloseq81 to obtain the
statistics used for figures 4 and 5.

A list of VOGs matching to integrase and recombinase protein families was first curated,
then used to predict whether complete vOTUs within viral families were temperate or
virulent. Families where more than 95% of complete vOTUs did not harbor an integrase
were deemed virulent, whereas for temperate families at least 50% of complete or
incomplete vOTUs needed to encode an integrase.

The versions of virus discovery tools used for benchmarking were DeepVirFinder v1.0,
VIBRANT v1.2.1, VIRSorter 1.0.6, VIRSorter2 v2.0 commit 22f6a7d, Seeker commit
9ae1488, PPR-Meta v1.1, and CheckV v.0.7.0. The random prediction was created by
randomly sampling the 362k OTUs 12,500 times without replacement. The number 12,500
was chosen because it was reasonably close to our own positive set and the number of
positives generated by most tools.
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Supplementary Figures

Figure S1: Overview of decontamination and curation procedure.
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Figure S2: Clickable gene map of vOTUs belonging to the Ingridviridae family available at
http://copsac.com/earlyvir/f1y/families/Ingridviridae.svg along with similar maps for the
remaining 247 families, available via http://copsac.com/earlyvir/f1y/fig1.svg. Small vertical
gaps between vOTUs denote genus boundaries, while large gaps denote subfamily
boundaries. Ordering of the vOTUs follows the order in the APS tree and thus, related
vOTUs are next to each other. ORFs are aligned vertically based on strandedness and
colored by VOG affiliation. VOG definitions against the PhROGs database95 can be looked
up by clicking on each ORF. ORF gene product (GP) numbers are displayed by mouse-over
hovering. GenBank files for each vOTU can be viewed along with virus and host taxonomy
by clicking on the OTU name. Caudoviral maps were inverted and zeroed according to TerL
gene coordinates, while the GenBank files were not. Reference phages that belong to the
same family were also included in the maps and are indicated by GenBank accession
numbers.
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Figure S3: The MDA amplified viromes were quantitative for dsDNA phages. The
relationship between experimentally determined PFU/g of feces for isolated coliphages37 and
virome abundances for their corresponding vOTUs in the same samples is shown. The
agreement between the two estimates supports that the dsDNA virome sequencing was
quantitative despite its insensitivity to rare phages.

Figure S4: Comparison of three approaches for estimating the proportion of bacterial
contamination. Each graph has 647 dots, one for each sample. Axes denote the proportion
of bacterial contamination as estimated by the indicated method. Each graph is a pairwise
comparison of two different methods. A) non-vOTU mappings vs. ViromeQC B) non-vOTU
mappings vs. metagenome core gene depletion C) metagenome core gene depletion vs.
ViromeQC. Pearson correlation coefficients are given for all three comparisons.
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initn:  42 init1:  42 opt:  42  Z-score: 66.6  bits: 21.5 E(2): 0.13
Smith-Waterman score: 60; 24.8% identity (51.3% similar) in 113 aa overlap (215-323:226-331)
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Figure S5: Alignments of TerL and the portal protein for two viruses belonging to the same
genus within the Jeppeviridae family. The 75% amino acid identity for the portal protein
alignment is within the expected range for phages of the same genus, whereas the
terminase proteins are so disparate that gene exchange is the most likely explanation.
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Supplementary Methods

The COPSAC2010 birth cohort
The study was embedded in the Danish population-based COPSAC2010 prospective
mother-child cohort of 736 women and their children followed from week 24 of pregnancy,
with the primary clinical endpoint persistent wheeze or asthma30.

Fecal sample collection, transport and storage
Of the 700 children part of the COPSAC2010 cohort, 660 delivered a fecal sample 1-year
after birth. Fecal samples were collected either at the research clinic or by parents at home
using detailed instructions. Upon arrival, each fecal sample was mixed with 10% vol/vol
glycerol broth and stored at -80°C until virome extraction.

Virome extraction and library preparation
Preparation of fecal samples, and extraction and sequencing of virions was done using a
previously described protocol64. Briefly, viral-associated DNA was subjected to brief MDA
amplification and libraries prepared following manufacturer’s procedures for the Illumina
Nextera XT kit (FC-131-1096). Libraries were sequenced, paired-end, on the Illumina HiSeq
X platform.

VLP counts by epifluorescence.
A volume of 10 µL per virome sample was diluted 100-fold in SM buffer, fixed with 0.5%
glutaraldehyde, and frozen in liquid nitrogen. The sample was thawed, deposited on a 0.02
µM pore size membrane (Anodisc 25, Anopore, Whatman) using a filtering device. Next, the
filter was dried, incubated on a 70 µL drop of SYBRTM-Gold (200X) in the dark for 15
minutes, dried, and mounted on a microscope slide, together with fluoromount and antifade.
VLP dots were visualized using an epifluorescence microscope equipped with an ORCA
camera, and a 475 nm excitation laser. Eight to ten fields (1344x1024 pixels) were imaged
and fluorescent dots counted. VLP counts on the total filter surface were deduced by
multiplying the average field count by the number of fields over the total membrane surface
(60 493).

Virome assembly and gene calling
Virome libraries were sequenced to an average depth of 3 GB per sample with paired end
2x150 bp reads. Satisfactory sequencing results were obtained for 647 samples. Virome
reads were first quality filtered and trimmed using Fastq Quality Trimmer/Filter (options -Q 33
-t 13 -l 32 -p 90 -q 13), and residual Illumina adapters were subsequently removed using
cutadapt. The resulting trimmed reads were dereplicated using vsearch derep_prefix and
then assembled with Spades v3.10.1 using the meta flag and disabling read error correction.
In order to reduce sequence redundancy for the subsequent decontamination step, all 1.5M
contigs above 1 kb in length were clustered at 90% ANI and coverage using a previously
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described approach65. Longest representatives from each of the 267k clusters were
subjected to gene calling66 and the resulting protein sequences were used to build an APS
tree68 and for de novo VOG definition70 (more details below).

The aggregate protein similarity (APS) tree
Sharing features with DICE82 and VIPtree83, the APS tree methodology was first developed68

for systematic and automated classification of prokaryotic defence systems and mobile
genetic elements that were traditionally classified by manual inspection. The tree was found
to reproduce existing manual classes and sub-classes when cutting it with global cutoffs68,84.
The tree also predicted deeper relationships between classes that were experimentally
validated later85. The method uses as input, an all-against-all protein alignment search,
preferably with sensitive alignment software like FASTA67, although BLASTP or DIAMOND
also work. For all viruses being compared, all constituent viral proteins are searched against
each other. Next, virus to virus similarity scores are tallied by aggregating the alignment
scores for all their constituent proteins. Next, using the Bray-Curtis dissimilarity86, a distance
matrix is constructed between all viruses, which is then used as input for constructing a
neighbour joining tree. We used RapidNJ (https://github.com/somme89/rapidNJ) for the
latter. After manually rooting the tree, it can be cut at fixed distances from the root to
reproduce classes at required levels. To this end we developed “treetool” described further
below. Using more sensitive alignment software (like FASTA) generates more reliable distant
protein alignments, making deeper cuts less noisy. In this study we found that cuts down to
the viral order-level were reproducing existing and proposed taxonomy, making such cuts
useful for defining novel taxa as well.

Protein annotation, clustering and visualisation
Protein coding genes for representative contigs during initial decontamination, and for
vOTUs and reference phages later were predicted using Prodigal66. All protein sequences
were subject to an all-against-all sequence alignment using FASTA67. Protein alignments
between viruses were used to cluster viruses into taxa using the APS tree as described
above and below. But the alignments were also used to define VOGs de novo using a
previously described orthology detection pipeline involving protein alignment coverage
cutoffs70 and Markov Clustering87. Multiple sequence alignments (MSAs) and phylogenetic
trees were constructed88 from the protein sequences corresponding to each VOG. MSAs
were used for profile-profile alignments against the Pfam72, COG74, CDD73, TIGRFAMs75 and
PhROGs95 databases using HHblits76 in order to annotate them and determine their
functions. Gene contents of the contigs were visualised along with other contigs belonging to
the same viral clusters by coloring genes by orthology and hyperlinking profile-profile results
in SVG graphics as in Figure S2. The SVG files were generated using a custom bash script.
The graphics were browsed manually during the manual decontamination, species curation
and family curation steps (Figure S1).

Manual decontamination of assembled contigs
All proteins from the 267k 90% ANI contig cluster representatives were subject to an
all-against-all FASTA67 search that was used for defining VOGs70. The search results were
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also used to construct an APS tree that was cut close to the root in order to yield 8050
decontamination clusters of contig representatives. SVG graphics were generated for each
decontamination cluster by visualising each individual representative within it. This was done
by using the gene orthology information generated earlier to color rectangles corresponding
to encoded genes. The decontamination clusters were then ranked by their sample
prevalence and extent of CRISPR targeting from our MAGs31. SVG graphics for the first 400
ranked decontamination clusters were manually inspected and the 255 clusters resembling
viral families were flagged. Viral clusters were recognised by having conserved genome
sizes with the majority of the genes and synteny being largely conserved between most
members within the cluster. Plasmid clusters, on the other hand, were often heterogeneous
in size and extremely variable with regard to gene content, and would encode mobilisation
proteins, relaxases or Type IV secretion systems. Bacterial contaminant clusters were made
up of short contigs sharing one or two genes, but otherwise variable in size with any
remaining genes being disparate. Clusters ranking lower than the top 400 were not
inspected further due to diminishing returns, as most additionally inspected clusters at this
point resembled bacterial contamination. For the 255 flagged viral clusters, contigs smaller
than 10 kb were discarded unless the apparent complete genome size for that cluster was
shorter, as for the ssDNA viruses.

Species-level OTU delineation
Species-level deduplication was necessary because very similar viruses from different
samples were assembled into separate contigs, as assemblies were carried out separately
per sample. These had to be merged into single OTUs and a representative for each OTU
had to be chosen. This was done by comparing all assembled contigs from all samples to
each other, to find clusters of very similar contigs. In order to account for incomplete
assemblies we selected the longest version as the OTU representative sequence. However,
the longest version of a species was sometimes a chimeric assembly, where two closely
related viruses had been merged into a long contig e.g. containing two copies of each gene.
To avoid selection of chimeras as OTU representatives, all contigs with more than 110%
self-similarity (judging from self-alignment score over length) were flagged as potentially
repetitive and were not selected as a representative. In such cases the next-longest
sequence was selected to represent the OTU. A variety of tools were tested for comparing
the contigs and generating OTUs at the 95% species-level ANI, including cd-hit-est89, BB
dedupe90 and nucmer91. The most consistent results were obtained using BLAT71 and setting
a cutoff on the alignment score. This was done by requiring a score of 90% of what the
shorter sequence obtained against itself, while aligned against a longer sequence, in which
case the two were merged. The 90% score would correspond on average to 95% identity at
95% coverage, but at extremes in either direction could also occasionally include 100%
identity at 90% coverage or 90% identity at 100% coverage. This flexibility was a
compromise offset by the high accuracy of BLAT vs. other tools tested. The clustering step
itself was carried out with a perl one-liner applied on top of an all-against-all BLAT output,
where all assembly contigs had been used as input.
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PhyloTreeLib.py for exploring and cutting the APS tree
phylotreelib (https://github.com/agormp/phylotreelib) is a Python library developed in-house
for manipulating or extracting information from phylogenetic trees. Here, we used
phylotreelib.py via its command line front-end treetool.py
(https://github.com/agormp/treetool). After constructing the APS tree it was visually
inspected in FigTree (https://github.com/rambaut/figtree/) to find a suitable outgroup.
Suitable outgroups comprised branches originating directly from the stem of the tree. The
stem was easily visible due to the high diversity of sequences used to construct the APS
tree. Next, treetool.py was used with the --root option to root the APS tree based on the
selected outgroup. Next, a list of accession numbers was made containing all members of
the Herelleviridae family, along with separate lists for members of different subfamilies and
genera within the Herelleviridae. Another list was made containing all known crAssphages at
the time of the analysis. Then, treetool.py was used along with the --cladeinfo option to
retrieve the distances from the root to the branch encompassing the leaves in the lists. Next,
treetool.py’s --clustcut option was used to cut the tree at the above distances in order to
obtain clades of vOTUs and reference phages corresponding to viral orders, families,
subfamilies and genera. The distances we used to cut the tree were 0.250, 0.125, 0.04 and
0.025 respectively for genus, subfamily, family and order-level clades. Thus the approximate
minimum AAI and coverage required for two viruses to belong to the same clade could be
derived from those cut distances to be on average 70%, 50%, 28% and 22%.

Generation of families and species-level curation
To find viral species corresponding to the flagged viral decontamination clusters, all 1.5M
contigs were clustered at 95% ANI, resulting in 362k OTUs. The 8327 viral sequences from
the decontamination step were aligned against 95% ANI vOTUs requiring a 50% BLAT score
(~75% ANI at ~75% coverage). The 16,746 95% ANI vOTUs recruited in this manner were
pooled with 95% ANI dereplicated reference phages from millardlab.org93. Protein coding
genes were annotated for all sequences and subject to an all-against-all FASTA search. The
de novo VOGs and APS tree were recomputed. The tree was rooted manually using
phylotreelib, and the Herelleviridae family-level root distance was measured using treetool’s
cladeInfo function. The tree was cut at that distance yielding 1259 viral family-level clades. In
order to make sure that the large number of families was not a result of accidental
recruitment of additional contaminant contigs during the 75% ANI matching step from above,
each vOTU and reference phage within each family-level clade was visualised using the
VOG information as seen in Figure S2. Next, each individual vOTU was manually flagged as
belonging to either one of the categories virus, putative satellite, putative MGE or unknown
contaminant using the following guidelines. To be considered viral, a vOTU needed to
encode at least one structural protein along with an additional viral protein. vOTUs that did
not live up to these criteria were considered MGEs if they encoded at least one protein
indicative of a mobile lifestyle (e.g. integrases or replication proteins), or if they were
conserved in size and gene content across multiple samples. The rationale for the latter was
that random segments of contaminating DNA should not be conserved in size and gene
content, while any mobile DNA would be expected to do so. Unknown viruses that encoded
novel structural proteins could thus end up in the MGE category. MGEs that co-clustered
within viral family-level clades, or contained at least two non-structural viral proteins were
classed as putative satellites. vOTUs that did not live up to any criteria were classed as
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unknown contaminants. A class of non-coding sequence was particularly prevalent in the
unknown group and were flagged separately.

Final family curation
All 1259 family-level clades were manually inspected to make sure that they looked like true
families instead of being artefacts of the methods employed. The majority of the family-level
clades consisted of singleton vOTUs or reference phages, and these were discarded.
Additionally, most families consisting mostly of reference phages were discarded to avoid
interference with independent classification efforts. Finally, families that looked unconvincing
because they consisted of mostly MGEs, satellites, or genome fragments were also
removed, leaving 248 curated families in the end. For each curated family, a histogram of
vOTU length was made using a bin width of 5 kb. The minimum genome completion size for
each family was determined by inspecting each histogram and choosing the 5-kb bin
immediately preceding the rightmost peak. This size cutoff was used subsequently to select
all complete and near-complete vOTUs within each family. Families that did not have enough
vOTUs to yield a convincing genome size peak were flagged as having an unknown
completion size.

Host prediction
As part of a separate effort31, metagenomes from the same samples had been assembled
and binned into MAGs that had taxonomies predicted using GTDB-tk. CRISPR arrays were
predicted on each MAG using CRISPRdetect69, and the spacers were pooled and used as a
host prediction database, alongside the CRISPR spacer database33. The host prediction
algorithm from the CRISPR spacer database was used to predict hosts for each vOTU using
either spacer database. An additional host prediction was made using WIsH v1.034, against a
database of complete bacterial genomes with null-models calibrated against all reference
phage sequences available at millardlab.org91. The best maximum-likelihood WIsH
prediction per vOTU having a P-value under 0.05 was used. Host predictions from all three
methods were translated into NCBI taxonomy identifiers and integrated by taking the LCA of
the two closest genus-level predictions. If WIsH predicted Bacteroides, public spacers
Clostridium and metagenome spacers Faecalibacterium, then the host was set to order
clostridiales, being the LCA of the two most closely matching predictions. The rationale for
this approach was to absorb occasional false positives stemming from either of the three
methods, as all three methods had been seen to make false predictions on separate
occasions. However, most predictions were unanimous at the genus-level.

Quantification of bacterial contamination
Two approaches were used for quantifying the amount of bacterial contamination in the
virome samples. In the first approach, ViromeQC was run on the QC’d virome reads, and the
proportion of bacterial contamination per sample was determined by taking the inverse of the
“virus enrichment ratio” as reported by ViromeQC.

In the other approach, we wanted to take advantage of our coupled metagenomes for each
virome sample, hoping to gain a more accurate estimate than ViromeQC, which does not
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utilise such additional information. We did this by first searching reads from the virome with
the Rfam 16S rDNA model (RF00177). Then the same was done for reads from cognate
metagenomes. The ratio between the proportion of reads mapping to RF00177 in the virome
over the same proportion for the metagenome was counted as the estimated bacterial
contamination ratio by 16S content. In parallel, reads from both the viromes and
metagenomes were mapped against a database of the bacterial cpn60 core gene from
cpnDB79, using bowtie292. As we did for the 16S-based contamination estimate, the
proportion of reads mapping to this database in the virome over the metagenome for each
sample was counted as the estimated bacterial contamination ratio by cpn60 content.
Although the two estimates, by 16S and cpn60, were in general agreement, they also
sometimes differed. The mean between the two estimates was used as the “metagenome
core gene depletion” contamination-estimate used in Figure S4.

Estimating sample vOTU abundances
vOTU counts were generated by mapping the reads of each sample against only the
assembled contigs from that particular sample. Mapping was performed using the bwa mem
-a flag80. Contig counts were generated with msamtools profile
(https://github.com/arumugamlab/msamtools), which computes relative abundances of each
contig, normalising by contig length and mapping depth while iteratively redistributing
non-uniquely mapping reads. Abundances of contigs corresponding to vOTUs were
aggregated by leveraging the 95% ANI dereplication cluster membership information
computed previously. Counts for contigs that did not correspond to any vOTU were assumed
to represent contaminant DNA and gathered as an independent contamination estimate. The
vOTU to sample relative abundance matrix, or OTU table, was loaded into a phyloseq object
in R and agglomerated at the viral family and order-levels to compute the statistics used in
Figures 4 and 5.

Prediction tool benchmarking
The versions of virus prediction tools used were DeepVirFinder v1.0, VIBRANT v1.2.1,
VIRSorter 1.0.6, VIRSorter2 commit 22f6a7d, Seeker commit 9ae1488, PPR-Meta v1.1, and
CheckV v.0.7.0. Some of these tools were designed for virus discovery in metagenomes,
while others meant for virome decontamination, but the two are related given the high
amount of bacterial contamination in most viromes published to date38. Despite our own
efforts to obtain high-quality virome samples, the vast majority of our OTUs were bacterial
contamination rather than viral. For this reason no distinction was made between the two
types of tools. For the tools that required cutoffs, we used typical cutoffs used by the
research community, or if such information was not available, we tried to set a cutoff that
would generate a number of positive predictions that reasonably matched our own positive
set. Since our data set is so skewed, with 10,021 positive viral sequences versus over thirty
times more negatives, performance measures can be biased, which is why we included the
“kappa” metric, designed to address this issue, as well as a random prediction for
comparison. The random prediction was created by randomly subsampling the 362k OTUs
12,500 times without replacement. The number 12,500 was chosen because it was
reasonably close to our own positive set and the number of positives generated by most
tools.
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