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Abstract

The sharing of research data is essential to ensure reproducibility and maximize the impact of
public investments in scientific research. Here we describe OpenNeuro, a BRAIN Initiative data
archive that provides the ability to openly share data from a broad range of brain imaging data
types following the FAIR principles for data sharing. We highlight the importance of the Brain
Imaging Data Structure (BIDS) standard for enabling effective curation, sharing, and reuse of
data. The archive presently shares more than 600 datasets including data from more than
20,000 participants, comprising multiple species and measurement modalities and a broad
range of phenotypes. The impact of the shared data is evident in a growing number of published
reuses, currently totalling more than 150 publications. We conclude by describing plans for
future development and integration with other ongoing open science efforts.

Introduction

There is growing recognition of the importance of data sharing for scientific progress (National
Academies of Sciences, Engineering, and Medicine et al., 2018). However, not all shared data
are equally useful. The FAIR principles (Wilkinson et al., 2016) have formalized the notion that
in order for shared data to be maximally useful, they need to be Findable, Accessible,
Interoperable, and Reusable. An essential necessity for achieving these goals is that the data
and associated metadata follow a common standard for organization, so that data users can
easily understand and reuse the shared data. Here we describe the OpenNeuro data archive
[RRID:SCR_005031], accessible at https://openneuro.org, which enables FAIR-compliant data
sharing for a growing range of neuroscience data types (currently including magnetic resonance
imaging [MRI], electroencephalography [EEG], magnetoencephalography [MEG], and positron
emission tomography [PET]) through the use of a common community standard, the Brain
Imaging Data Structure (BIDS) [RRID:SCR_016124] (Gorgolewski et al., 2016).
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Starting with early pioneering efforts by Gazzaniga and Van Horn to establish an fMRI Data
Center in 1999 (Van Horn and Gazzaniga, 2013), data sharing has become well established in
the domain of neuroimaging (Milham et al., 2018; Poldrack and Gorgolewski, 2014; Poline et al.,
2012). A major impetus for the growth of data sharing was the International Neuroimaging Data
Sharing Initiative (INDI) (Mennes et al., 2013), which published a landmark paper in 2010
(Biswal et al., 2010) demonstrating the scientific utility of a large shared resting fMRI dataset.
The most prominent recent examples have been large-scale prospective data sharing projects,
including the Human Connectome Project [HCP] (Van Essen et al., 2013), the NKI-Rockland
sample (Nooner et al., 2012), Adolescent Brain Cognitive Development (ABCD) study (Casey et
al., 2018), and the UK Biobank (Littlejohns et al., 2020). These datasets have provided
immense value to the field, and have strongly demonstrated the utility of shared data. However,
their scientific scope is necessarily limited, given that each dataset includes only a limited
number of imaging tasks and measurement types. Beyond these large focused data sharing
projects, there is a “long tail” of smaller neuroimaging datasets that have been collected in
service of specific research questions. Making these available is essential to ensure
reproducibility as well as to allow aggregation across many different types of measurements in
service of novel scientific questions. The OpenNeuro archive addresses this challenge by
providing researchers with the ability to easily share a broad range of neuroimaging data types
in a way that adheres to the FAIR principles.

Goals and principles

The OpenNeuro archive evolved from the OpenfMRI archive (Poldrack et al., 2013), which was
focused solely on the sharing of task-based human fMRI data. Some of the principles behind
OpenNeuro were inherited from OpenfMRI, whereas others grew out of our experiences in that
project as well as from new developments in the domain of open science.

Minimal restrictions on sharing

There is a range of restrictiveness across data archives with regard to their data use
agreements (Jwa and Poldrack, 2021). At one end of the spectrum are highly restricted
databases such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which requires
researchers to submit their scientific question for review and requires the consortium to be
included as a corporate author on any publications. OpenNeuro represents the other pole of
restrictiveness, by releasing data (by default) under a Creative Commons Zero (CCO0) Public
Domain Dedication which places no restrictions on who can use the data or what can be done
with them. While not legally required, researchers using the data are expected to abide by
community norms and cite the data following the guidelines included within each dataset. The
primary motivation for this policy is that it makes the data maximally accessible to the largest
possible number of researchers and citizen-scientists.


https://paperpile.com/c/B4C7nA/OZRPM
https://paperpile.com/c/B4C7nA/QFPRf+4vxj0+dPBho
https://paperpile.com/c/B4C7nA/QFPRf+4vxj0+dPBho
https://paperpile.com/c/B4C7nA/kVJVD
https://paperpile.com/c/B4C7nA/kbVcG
https://paperpile.com/c/B4C7nA/xMHA2
https://paperpile.com/c/B4C7nA/goHva
https://paperpile.com/c/B4C7nA/q2VQO
https://paperpile.com/c/B4C7nA/q2VQO
https://paperpile.com/c/B4C7nA/ljENd
https://paperpile.com/c/B4C7nA/mfdmn
https://paperpile.com/c/B4C7nA/pCKZ
https://doi.org/10.1101/2021.06.28.450168
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450168; this version posted October 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Standards-focused data sharing

To ensure the utility of shared data for the purposes of efficient discovery, reuse, and
reproducibility, standards are required for data and metadata organization. These standards
make the structure of the data clear to users and thus reduce the need for support by data
owners and curation by repository owners, as well as enabling automated QA, preprocessing,
and analytics. Unfortunately, most prior data sharing projects have relied upon custom
organizational schemes, which can lead to misunderstanding and can also require substantial
reorganization to adapt to common analysis workflows. The need for a clearly defined standard
for neuroimaging data emerged from our experiences in the OpenfMRI project; while the
repository had developed a custom scheme for data organization and file naming, this scheme
was ad hoc and limited in its coverage, and datasets often required substantial manual curation
(involving laborious interaction with data owners). In addition, there was no way to directly
validate whether a particular dataset met the standard.

For these reasons, we focused at the outset of the OpenNeuro project on developing a more
robust data organization standard that could be implemented in an automated validator. We
engaged a large group of researchers from the neuroimaging community to establish a standard
that ultimately became the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016),
which is now a highly successful community standard for a broad and growing range of
neuroimaging data types. BIDS defines a set of schemas for file and folder organization and
naming, along with a schema for metadata organization. The framework was inspired by the
existing data organization frameworks used in many research laboratories, so that transitioning
to the standard is relatively easy for most researchers. One of the important features of BIDS is
its extensibility; using a scheme inspired by open source software projects, community members
can propose extensions to BIDS that encompass new data types. To date, modality extensions
include magnetoencephalography (Niso et al., 2018), scalp electroencephalography (Pernet et
al., 2019), intracranial EEG (Holdgraf et al., 2019), positron emission tomography (Norgaard et
al., 2021), and arterial spin labeling MRI. In addition to standards for raw data, the BIDS
community has also developed a standard for the organization of the outputs of processing
operations (known as “BIDS Derivatives”), providing a framework for sharing processed as well
as raw data.

While BIDS and OpenNeuro are now independent projects, there is a strongly synergistic
relationship. All data uploaded to OpenNeuro must first pass a BIDS validation step, such that
all data in OpenNeuro are compliant with the BIDS specifications at upload time. Conversely,
the OpenNeuro team has made substantial contributions to the BIDS standard and validator.
The BIDS standard has been remarkably successful, with tens of thousands of datasets now
available in the format, including but not limited to those contained in the OpenNeuro database.
As a consequence, this model maximizes compatibility with processing and analysis tools
(Gorgolewski et al., 2017), but more importantly, it effectively minimizes the potential for data
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misinterpretation (e.g., when owner and re-user have slightly different definitions of a critical
acquisition parameter). Through the adoption of BIDS, OpenNeuro has moved away from
project- or database-specific data structures designed by the owner or the distributor (as used in
earlier projects such as OpenfMRI and HCP) and toward a uniform and unambiguous
representation model agreed upon by the research community prior to sharing and reuse.

FAIR sharing

The FAIR principles (Wilkinson et al., 2016) have provided an important framework to guide the
development and assessment of open data resources. OpenNeuro implements each of these
principles.

Findable. Each dataset within OpenNeuro is associated with metadata, both directly from the
BIDS dataset along with additional dataset-level metadata provided by the submitter at time of
submission. Both data and metadata are assigned a persistent unique identifier (Digital Object
Identifier [DOI]). Within the repository, a machine-readable summary of BIDS metadata is
collected by the BIDS validator and indexed with an ElasticSearch mapping. In addition,
dataset-level metadata are exposed according to the schema.org standard, which allows
indexing by external resources such as Google Dataset Search.

Accessible. Data and metadata can be retrieved using a number of access methods (directly
from Amazon S3, using the openneuro command-line tool, or using DataLad) via standard
protocols (http/https). Metadata are also accessible programmatically via a web API. Metadata
remain available even in the case that data must be removed (e.g., in cases of human subjects
concerns). No authentication is necessary to access the data.

Interoperable. The data and metadata use the BIDS standard to ensure accessible
representation and interoperation with analysis workflows, such as BIDS Apps (Gorgolewski et
al., 2017). Ongoing work is extending the metadata representation to use richer formats and to
link to relevant FAIR ontologies or vocabularies.

Reusable. The data are released with a clear data use agreement (currently defaulting to a CCO
public domain dedication). Through use of the BIDS standard, the data and metadata are
consistent with community standards in the field.

Data versioning and preservation

OpenNeuro keeps track of all changes in stored datasets, and allows researchers to
unambiguously report the exact version of the data used for any analysis. OpenNeuro preserves
all versions of the data through the creation of “snapshots” that unequivocally point to one
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specific point in the lifetime of a dataset. Data management and snapshots are supported by
DatalLad (RRID:SCR_003931) (Halchenko et al., 2021), a free and open-source distributed data
management system (Hanke et al., 2021).

Protecting privacy and confidentiality of data

There is a direct relationship in data sharing between the openness of the data and their reuse
potential; all else being equal, data that are more easily or openly available will be more easily
and readily reused. However, all else is not equal, as openness raises concern regarding risks
to subject privacy and confidentiality of data in human subjects research. Researchers are
ethically bound to both minimize the risks to their research participants (including risks to
confidentiality), and to maximize the benefits of their participation (United States. National
Commission for the Protection of Human Subjects of Biomedical and Behavioral Research,
1978) . Because sharing of data will necessarily increase the potential utility of the data,
researchers are ethically bound to share human subject data unless the benefits of sharing are
outweighed by risks to the participant (Brakewood and Poldrack, 2013).

In general, risks to data privacy and confidentiality are addressed through deidentification of the
data to be shared. For example, under the Health Insurance Portability and Accountability Act of
1996 (HIPAA) in the US, deidentification can be achieved through the removal of any of 18
personal identifiers, unless the researcher has knowledge that the remaining data could be
re-identified (known as the “safe harbor” method). With regard to neuroimaging data, a
particularly challenging feature is the facial structure that is present in some forms of imaging
data, such as structural MRI images. It is often possible to reconstruct facial structures from
these images, and there are proofs of concept that such data could be used to re-identify
individuals from photographic databases (Schwarz et al., 2019). It is thus essential to remove
any image features that could be used to reconstruct facial structure (Bischoff-Grethe et al.,
2007). For this reason, all MRI data shared through OpenNeuro must have facial features
removed prior to upload, in addition to the 18 personal identifiers outlined by HIPAA. An
exception is provided in cases where an investigator has explicit permission to openly share the
data without defacing, usually when the data are collected by the investigator themself. At
present, data are examined by a human curator to ensure that this requirement has been met.
In the future, we plan to deploy an automated face detection tool (Bansal et al., n.d.) to detect
any uploads that inadvertently contain facial features.

Truly informed consent requires that subjects be made aware that their data may be shared
publicly, and that confidentiality cannot be absolutely guaranteed in the future. For this reason,
we recommend that researchers planning to share their data via OpenNeuro use a consent form
based on the Open Brain Consent (Bannier et al., 2021), which includes language that ensures
subject awareness of the intent to share and its potential impact on the risk of participating. Of
note, the Open Brain Consent has recently been adapted to include a data usage agreement
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that accommodates the European Union’s General Data Protection Regulation (GDPR
2016/679); however, data collected in countries covered by GDPR cannot be shared through
OpenNeuro at present due to the requirement for restrictive data use agreements that are not
currently supported by OpenNeuro.

Open source

The entirety of the code for OpenNeuro is available under a permissive open source software
license (MIT License) at https://github.com/OpenNeuroOrg/openneuro. This enables any
researcher who wishes to reuse part or all of the code or to run their own instance of the
platform.

Data submission and access

Figure 1 outlines the steps required for sharing a dataset using OpenNeuro. Once shared, data
can be accessed by several available mechanisms:

Web download. Each snapshot is associated with a link that provides immediate downloading
of the dataset.

Datalad. DataLad (Halchenko et al., 2016) is a decentralized data management system built on
top of git and git-annex. Through DatalLad, researchers may install a complete copy of a
dataset, while deferring the retrieval of file contents until needed, permitting lightweight views of
large datasets. OpenNeuro’s versioned snapshots are implemented as git tags, which allows
specific versions to be easily retrieved or compared. The decentralized protocol also allows
mirrors of the datasets to be hosted on GitHub and htips://datasets.datalad.org, ensuring
access during service interruptions of the OpenNeuro website.

OpenNeuro command line tool. The OpenNeuro command line tool provides access to the
latest snapshot of all datasets, and is generally more stable than browser downloads for large
datasets.

Amazon S3. The latest snapshot as well as all previous versions of a dataset may be fetched
using the Amazon Web Services (AWS) clients or directly via https.
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Authentication
User signs in via Google, ORCID, or APl Key

Validation
Browser-based validation of dataset’s BIDS Standard compliance

Metadata Submission
Submitter provides metadata for datasets (e.g., publications)

Terms Acceptance

Submitter agrees to sharing terms: rights/permissions to share, data are
deidentified/defaced, CCO licensing, not subject to GDPR

Upload
Data may be uploaded via website or command line

Snapshot Creation
A version of the data is frozen and a DOI assigned

Publication
Public release of the data after embargo period

Figure 1. A schematic overview of the data upload process.
User support

Support for individual datasets. Data users sometimes have questions regarding particular
datasets. In order to facilitate discussion of these issues and to make those discussions
available to the entire community, a discussion forum is provided on each dataset page. The
dataset owner is automatically notified by email of any questions that are posted. In addition,
users can “follow” a dataset of interest and receive notifications of any comments posted to the
dataset.

Site support. Two mechanisms are provided for users of the OpenNeuro site to obtain help with
site issues. First, a helpdesk is available directly from the site, through which users can submit
specific help questions. Second, users are recommended to post general questions to the
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Neurostars.org question and answer forum, so that the answers will be available to the entire
community.

Data processing

Data processing was initially envisioned as an incentive for researchers to share their data, and
the OpenNeuro site was launched in 2017 with the ability to perform cloud-based data
processing using a limited set of analysis workflows. This feature was disabled in 2018, after an
overhaul of the site’s initial storage infrastructure. At that time, we determined that it would be
preferable to collaborate with an existing platform dedicated to cloud processing rather than
rebuilding our own execution platform. At present, OpenNeuro has partnered with the
Brainlife.io platform (RRID:SCR_020940), which provides a large set of cloud-based
neuroimaging workflows for data analysis and visualization. Data hosted on OpenNeuro can be
easily imported into Brainlife for analysis, and more than 400 OpenNeuro datasets are cached
for quick access; in the first 6 months of 2021, more than 700 analyses were performed on
these datasets. In the future we plan to partner with additional platforms, including the NEMAR
platform for EEG/MEG analysis; the availability of the data via DataLad and Amazon S3 also
enables any platform to make the data available to their users without requiring any agreement
or effort from OpenNeuro.

Results

Usage and impact

The OpenNeuro site was launched in June 2017, and was originally seeded with all of the
datasets previously shared through OpenfMRI, after converting them to the BIDS standard. All
data presented below are current as of October 9, 2021. The database contains 604 datasets
comprising data from 20,989 individual participants. Figure 2 shows cumulative figures for
numbers of datasets and subjects since 2018, demonstrating sustained and continual growth in
the archive since its inception.
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Figure 2: The volume of data available on OpenNeuro has shown a steady growth since its
opening started operations in 2017. Shown are figures from July 2018, when all data were
migrated to a new DatalLad storage backend, through the present date. The green line
illustrates the cumulative growth in total number of datasets, and the red line shows the
aggregate of subjects (in thousands).

The overwhelming majority of datasets are from humans (574 datasets, 95%), with a small but
growing number of nonhuman species including mouse (17 datasets), rat (6 datasets),
nonhuman primates (2 datasets), dogs (1 dataset), and juvenile pigs (1 dataset). Table 1
presents data for the prevalence of different modalities; while the majority of datasets include
some form of MRI data, other supported modalities are present including electrophysiological
measures and positron emission tomography.

Modality Number of datasets
Anatomical MRI 501

Functional MRI 445
Electroencephalography 81
Diffusion-weighted MRI 53
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Magnetoencephalography 23
Positron emission tomography 10
Intracranial EEG 8
Arterial spin labeling MRI 3

Table 1. Number of datasets by imaging modality; additional modalities present in fewer than 3
datasets are not included here.

OpenNeuro is a recommended data repository for a number of publishers and journals,
including: Nature Scientific Data, PLOS, eLife, F1000 Research, Gigascience, BioMed Central,
American Heart Association, and Wellcome Open Research. The database contains 407 DOls
for publications associated with datasets (including both primary scientific publications and data
descriptors).

Multiple dimensions of “big data”

Discussions of “big data” in neuroimaging (Poldrack and Gorgolewski, 2014; Smith and Nichols,
2018) have largely focused on datasets including large numbers of individuals. While these
analyses are essential for robust population inference, it is also important to recognize that large
numbers of subjects are only one dimension over which a neuroimaging dataset can be “big”.
Here we will define the number of subjects as the “width” of the dataset, the number of different
phenotypes measured for each individual as the “breadth” of the dataset, and the number of
measurements per individual as the “depth” of the dataset.

The OpenNeuro database is distinguished by sharing datasets that are extensive along each of
these dimensions (see Figure 3). With regard to width, the median dataset size is 23 subjects,
with 31 studies having sample sizes larger than 100, and a maximum sample size of 928. With
regard to breadth, notable datasets include: the BOLD5000 dataset (Chang et al., 2019), which
includes data from subjects viewing a total of 5000 natural images; the Individual Brain Charting
dataset (Pinho et al., 2020, 2018), which includes data from individuals each completing 24
different tasks, and the Multidomain Task Battery dataset (King et al., 2019), which includes data
from individuals each completing 26 tasks. With regard to depth, the database currently
includes: the MyConnectome dataset (Poldrack et al., 2015), which includes extensive task,
resting, and diffusion MRI data from more than 100 sessions for a single individual; the Midnight
Scan Club dataset (Gordon et al., 2017) which includes extensive task and resting fMRI data
from ten individuals; and a number of other dense scanning datasets (Gonzalez-Castillo et al.,
2015; Newbold et al., 2020; Salehi et al., 2020).
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Another unique feature of OpenNeuro is the breadth of phenotypes across datasets. To further
characterize this, we searched the text associated with OpenNeuro datasets to identify terms
related to psychological concepts and tasks as defined in the Cognitive Atlas ontology (Poldrack
et al., 2011). Word clouds showing the top terms identified in this analysis are shown in
Supplementary Figure 1. This analysis shows a broad range of tasks and concepts associated
with these datasets, highlighting the substantial conceptual and methodological breadth of the
archive.

Data reuse

OpenNeuro has distributed a substantial amount of data; from May 2020 through April 2021, a
total of 406 terabytes of data were distributed. Because data reuse is not directly measurable,
we utilize published reuse of the shared data as a proxy. To identify published reuses of
OpenNeuro data, we used Google Scholar and CrossRef to identify potential reuses, and then
manually examined them to confirm that they were a legitimate reuse (as opposed to a primary
publication of the data or data descriptor); note that this is an underestimate since many papers
during this period reported analyses of data downloaded from OpenFMRI, which would not have
been identified in our searches. We identified 165 publications that reused OpenNeuro
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datasets; this showed a sharp increase over time (see Figure 5). Of these publications, 112
were journal or conference papers, 42 were preprints, and 11 were other types of publications
(such as theses or project reports). A total of 111 OpenNeuro datasets were reused at least
once, with the most popular dataset (Poldrack et al., 2016) appearing in 28 published reuses. A
significant number of publications reused multiple datasets; 31 of the 165 papers reused at least
two datasets, with a maximum of 40 datasets reused (Esteban et al., 2019). Collecting these
data from scratch would have required more than 21,000 individual subject visits; at an
estimated scanning cost of $1000/session (based on the conservative cost estimate from
(Milham et al., 2018)), this represents a total data reuse value of nearly twenty-one million US
dollars. These reuses have a total of 1329 citations (according to Google Scholar as of June
15, 2021); the most highly cited reuse (Esteban et al., 2019) has more than 500 citations.

80
70 Reuse type
mm journal
60 preprint
- mm Other
= Figure 5. Published reuses of OpenNeuro
3% datasets, split by the type of reuse. Note that
© 30 the final bar includes only reuses identified
- through June 2021.
I
0 |
2018 2019 2020 2021

Year

The published reuses of OpenNeuro data span from basic neuroscience to methodological
studies and software development. In particular, several studies demonstrate how OpenNeuro
data have enabled new insights into brain function. For example, Martins et al. (2021) used
structural MRI data from several OpenNeuro datasets along with other shared data to examine
different patient groups suffering from physical pain or depression. Their analyses demonstrated
a specific pattern of anatomical change common to patients with pain syndromes but distinct
from depression. This kind of analysis highlights the way in which OpenNeuro enables
researchers to combine smaller datasets in order to test hypotheses using convergent data,
which can help overcome the confounds and biases present in any particular study as well as
increasing statistical power. Other basic neuroscience studies have used OpenNeuro data to
model the role of temporal context in forgetting (Chien and Honey, 2020), characterize the role
of edge communities in brain networks (Faskowitz et al., 2020), understand the relationship
between functional connectivity and sustained attention (Rosenberg et al., 2020), and to
demonstrate that functional parcellation changes as a function of task (Salehi et al., 2020).
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Data from OpenNeuro have been particularly useful for the development of new software tools.
Esteban et al. (2019) used the breadth and variety of datasets in the archive to assess the
robustness of the fMRIPrep preprocessing workflow to many different fMRI datasets,
incorporating a total of 40 datasets from OpenNeuro. Importantly, these datasets were used in
an iterative manner to improve the robustness of the tool; thus, the breadth of the data were
essential both for assessment as well as for improvement of the tool. Without OpenNeuro (and
BIDS), amassing such a large and diverse group of datasets would have required immense
efforts to reach out to many different research groups, request their data, and then format the
data for common usage, whereas with OpenNeuro the entirety of these datasets can be
downloaded automatically within a number of hours, immediately ready for analysis. Other
software development projects have taken advantage of some of the particular unique datasets
in OpenNeuro; for example, Takeda et al. (2019) took advantage of a unique dataset that
combines EEG, MEG, and MRI data on the same individuals (Wakeman and Henson, 2015) to
demonstrate the broad range of functions of their VBMEG toolbox. Other software publications
using OpenNeuro data include FastSurfer (Henschel et al., 2020) for structural MRI analysis,
and Brainstorm (Tadel et al., 2019) for MEG/EEG analysis.

The data in OpenNeuro have been particularly useful for methodological researchers. One
prominent example was published by Bowring et al. (2019), who examined how the use of
different analysis software impacted statistical results from fMRI activation analyses. Their
study included an in-depth analysis of the publications associated with each of 55 datasets, in
order to identify studies with analysis pipelines and activation results that could be easily
compared with their multi-platform results. Based on this process, they selected three datasets
and processed each using several different analysis pipelines; their results highlighted
substantial similarity in unthresholded maps but substantial discordance in thresholded maps,
highlighting the need for better understanding of the impact of software packages on statistical
results. Another example that would have been challenging to perform without OpenNeuro was
published by Dadi et al. (2020), who developed a set of functional atlases using 27 datasets.
This breadth allowed them to ensure that the specific features of the atlas were not driven by
any particular dataset or task. Other examples include studies that used OpenNeuro data to
assess the impact of confound regression on fMRI signals and develop new methods for
confound modeling (Aquino et al., 2020), and to develop and benchmark new methods for
multiple comparison correction (Spisak et al., 2019).

Discussion

The OpenNeuro data archive plays an important role in advancing neuroscience research and
ensuring its reproducibility by enabling the sharing of a broad range of neuroscience data types
according to the FAIR principles. lIts tight integration with the community-driven BIDS standard
enhances the ease of sharing, the reusability of the shared data, and the extensibility of the
archive in the future. The shared data have enabled a growing number of publications that
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provide novel neuroscientific insights, as well as supporting novel methodological advances and
software development.

Lessons learned

The experiences of our group in developing the OpenNeuro project have provided a number of
lessons that may be useful more generally for researchers interested in establishing a culture of
data sharing within their scientific subdomain.

Foremost, we have found that the use of a common community-driven format for data
organization is essential to effective sharing. In our case, the BIDS standard has enabled data
owners to easily share a growing range of data types (through the use of client-side validator),
and has enabled researchers to easily reuse the data. Because any dataset that passes the
validator can be shared, the community’s efforts on extending the standard (which are
implemented in the validator) has provided a steady stream of additions to the types of data that
OpenNeuro can share. Another important point is that data sharing does not only include
sharing with other researchers, but also with one’s own research group in the future; thus, the
use of a well-structured data standard can help researchers ensure that data collected by
current lab members can be effectively utilized by other lab members in future, as well as
making it easy to share the data beyond one’s own lab. On the flipside, we continue to see that
conversion of data into the BIDS standard remains a stumbling block for many researchers; the
continued development of conversion tools is necessary to support these researchers.

Second, we have found that “it takes an ecosystem” to make data sharing successful.
OpenNeuro is only one of the data sharing projects within the field of neuroimaging, and each of
the projects has its own particular features and advantages, but together these projects have
increasingly led the field to view data sharing as a net positive for our field. In addition, the
availability of these data resources has allowed others to build projects that support new
mechanisms for data representation and distribution (such as the DatalLad project) and new
platforms for analysis (such as Brainlife.io). Together, these tools have provided researchers
with additional incentives to share their data via OpenNeuro through its deep integration with
those projects. While we believe that sharing is most effective when it is most open, we also
realize that some researchers will be unable to share their data on OpenNeuro for ethical or
regulatory reasons; for this reason, we believe that a variety of data sharing resources that vary
in their sharing policies (Jwa and Poldrack, 2021)will remain essential to support the broadest
possible degree of data sharing.

Finally, we would highlight the importance of domain-specific data repositories that support a
particular research community. All of the sharing activities accomplished using OpenNeuro
could in principle have been accomplished using more general data sharing repositories (such
as Figshare or Dryad). A unique benefit of OpenNeuro has been in making a large number of
datasets easily findable by researchers, rather than requiring a trawl through a much larger
body of datasets to find ones that are relevant. By developing upload and download systems
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that are tailored for imaging data, OpenNeuro has also greatly lowered the barrier to sharing
and reusing data. These benefits argue for the continued need for domain-specific data sharing
projects designed in close consultation with researchers in the area. Domain-specificity has also
allowed OpenNeuro to nurture a community around the resource. Through our social media
presence we have engaged the community with regular blog posts that highlight the most open
and sharing labs over the previous six months to promote more social incentives to sharing.

Long-term sustainability

A continual challenge for any investigator-initiated data repository is the long-term sustainability
of the archive, in order to ensure researchers’ trust in the platform (Lin et al., 2020). The
ongoing costs of running a repository are substantial, primarily due to the continuing cost of
technological upkeep of a web platform with regard to security and stability, as well as the
ongoing costs of storage and bandwidth on cloud platforms or hardware maintenance when
using on-premise computing systems. Performant web applications require the use of
cutting-edge software tools, which can often become deprecated or unstable over time, leading
to substantial technical debt that must be continually addressed to maintain stable and secure
operation.

One major challenge for repositories that are reliant upon federal grants is the usual three year
funding period, in addition to the preference of standard grant mechanisms for funding novel
projects rather than ongoing maintenance and operations. One welcome development has
been the instigation of longer-term funding for data archives through the US BRAIN Initiative
(Koroshetz et al., 2018), which has explicitly dedicated funding to the development and
long-term sustainability of data archives for neuroscience data. These renewable five-year
grants (of which OpenNeuro is one of the recipients) provide a much-needed longer term
funding source for data repositories.

Another resource for longer term sustainability is institutional data repositories, which are
increasingly available at many universities. OpenNeuro is working with the Stanford Digital
Repository to develop a plan to deposit all raw datasets within the university’s archive, which
would provide a digital backstop to the archive’s cloud storage.

OpenNeuro has also been fortunate to be part of the Amazon Public Datasets project

(https://registry.opendata.aws/openneuro/), which has provided free data storage and bandwidth
for the openly available datasets in the OpenNeuro archive.

Current limitations and future directions

There are a number of additional features planned for future development. These include:
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Enhanced metadata. At present, a limited amount of dataset-level metadata is collected beyond
that present within the BIDS metadata. Working with the CEDAR Metadata Center (Musen et
al., 2015), we plan to add the ability for researchers to enter additional metadata that is linked to
standard ontologies, including those being developed for BIDS data in the context of the
Neuroimaging Data Model (Maumet et al., 2016). These annotations will provide the basis for
more powerful queries of the archive.

Sharing of derivatives. At present, OpenNeuro only shares raw data. However, the availability of
a BIDS standard for the outputs of data processing (i.e. “derivative” data) now provides the
ability to include derivative data within a BIDS dataset. We plan to enable researchers to share
derivatives, e.g. allowing the sharing of preprocessed MRI data in addition to raw data. This will
greatly enhance the reuse of data by researchers who do not have the resources or expertise to
preprocess these complex datasets as well as provide a standard baseline for downstream
analyses, reducing the potential effects of analytic flexibility (Botvinik-Nezer et al., 2020;
Bowring et al., 2019).

Bringing computing to data. The availability of the OpenNeuro data on the Amazon Web
Services allows researchers direct access to computing on the data, but doing so requires a
substantial degree of cloud computing expertise. To ease the application of computing to the
data, we plan to adapt the DANDI Hub infrastructure developed by the Distributed Archives for
Neurophysiology Data Integration (DANDI: https://www.dandiarchive.ora/), which will allow direct
access to the data via a Jupyter notebook.

Beyond MRI data. Driven by the initial seeding of data from OpenfMRI, and reflecting the fact
that BIDS was originally MRI-centric, the data currently available from OpenNeuro are heavily
skewed towards MRI, and fMRI in particular (Table 1). However, BIDS is quickly expanding to
other modalities that can readily be uploaded to OpenNeuro, and there has been a rapid
increase in sharing of other modalities; for example, more than 60 EEG datasets have been
deposited since the publication of the BIDS-EEG standard in 2019 (Pernet et al., n.d.). . This
organic expansion beyond MRI will be supported with the necessary adaptations (e.g., online
visualization of new modalities) of OpenNeuro’s user interface.

Conclusion

Data sharing ensures the transparency and reproducibility of scientific research, and allows
aggregation across datasets that improves statistical power and enables new research
questions. The OpenNeuro repository plays a central role in the data sharing ecosystem by
promoting maximally open sharing of data, and by enhancing open availability of data from a
wide range of datasets spanning The growth and impact of the repository demonstrate the
viability of minimally restrictive sharing, and the importance of common standards such as BIDS
for the effective sharing and reuse of data.
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Materials and Methods

OpenNeuro Infrastructure

Code for the OpenNeuro platform is available at https://github.com/OpenNeuroOrg/openneuro.
The application utilizes a cloud-based containerized architecture and is built in JavaScript and
Python with a MongoDB database for application data storage. OpenNeuro is hosted on
Amazon Web Services (AWS) using the Kubernetes container orchestration platform. Services
are deployed as containers and integrated via a JavaScript GraphQL API gateway and the AWS
Application Load Balancer. Several clients access this API, the React website, OpenNeuro
command line interface, and an ElasticSearch indexer. Datasets are stored as DatalLad
repositories and managed by a Python backend service container. Each Datalad repository is
assigned to a ZFS pool backed by AWS Elastic Block Store. This allows DatalLad versioning
and filesystem level access to datasets with existing processing and validation tools. Persistent
metadata such as user accounts and permissions are maintained in a MongoDB database.
Ephemeral caching is provided by Redis. Search indexes, performance monitoring, and logging
are implemented with ElasticSearch. CloudFront is used as a global cache and network to
provide global presence.

Content analysis

Data regarding OpenNeuro contents and usage were current as of October 9, 2021. Code and
data needed to execute all analyses and generate all figures are available from
https://doi.org/10.5281/zenodo.5559041.

Reuse analyses. Potential reuses were identified by first searching Google Scholar for the term
“‘openneuro.”; note that this will exclude any paper that mention “OpenfMRI” instead of
OpenNeuro, thus the reported results are underestimates of the true impact of the data, given
that many of the datasets in OpenNeuro came from OpenFMRI. Papers matching this search
were examined manually to confirm that they had reused data; data descriptor papers were
excluded from further analysis. Citation counts were obtained from Google Scholar using the
Python package 'scholarly'.

Dataset size analyses. Dataset size analyses were performed using DatalLad to obtain the full

BIDS metadata for the 502 datasets available as of 10/9/2021, and then using pybids (Yarkoni
et al., 2019) to load the metadata for each dataset.
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