

1 **Increased lung cell entry of B.1.617.2 and evasion of antibodies induced by**
2 **infection and BNT162b2 vaccination**

3
4 **Prerna Arora^{1,2}, Amy Kempf^{1,2}, Inga Nehlmeier¹, Anzhalika Sidarovich^{1,2}, Nadine Krüger¹,**
5 **Luise Graichen^{1,2}, Anna-Sophie Moldenhauer¹, Martin S. Winkler³, Sebastian Schulz⁴,**
6 **Hans-Martin Jäck⁴, Metodi V. Stankov⁵, Georg M. N. Behrens⁵, Stefan Pöhlmann^{1,2,*},**
7 **Markus Hoffmann^{1,2,*}**

8
9 ¹Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany

10 ²Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1,
11 37073 Göttingen, Germany

12 ³Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Georg-
13 August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany

14 ⁴ Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander
15 University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany

16 ⁵ Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Str.
17 1, 30625 Hannover, Germany

18
19 *E-mail: mhoffmann@dpz.eu (M.H.), spoehlmann@dpz.eu (S.P.)

20
21

22
23

24

25 **SUMMARY**

26 **The delta variant of SARS-CoV-2, B.1.617.2, emerged in India and has subsequently spread**
27 **to over 80 countries. B.1.617.2 rapidly replaced B.1.1.7 as the dominant virus in the United**
28 **Kingdom, resulting in a steep increase in new infections, and a similar development is**
29 **expected for other countries. Effective countermeasures require information on**
30 **susceptibility of B.1.617.2 to control by antibodies elicited by vaccines and used for COVID-**
31 **19 therapy. We show, using pseudotyping, that B.1.617.2 evades control by antibodies**
32 **induced upon infection and BNT162b2 vaccination, although with lower efficiency as**
33 **compared to B.1.351. Further, we found that B.1.617.2 is resistant against Bamlanivimab, a**
34 **monoclonal antibody with emergency use authorization for COVID-19 therapy. Finally, we**
35 **show increased Calu-3-lung cell entry and enhanced cell-to-cell fusion of B.1.617.2, which**
36 **may contribute to augmented transmissibility and pathogenicity of this variant. These**
37 **results identify B.1.617.2 as an immune evasion variant with increased capacity to enter and**
38 **fuse lung cells.**

39

40

41

42

43

44

45

46

47

48

49 **INTRODUCTION**

50 Vaccines based on inactivated whole virus, adenoviral vectors or mRNAs encoding the severe
51 acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein protect against
52 coronavirus disease 2019 (COVID-19) and allow to effectively combat the COVID-19 pandemic
53 (Polack et al., 2020, Golob et al., 2021, Xia et al., 2021). These vaccines present the S proteins of
54 viruses circulating early during the pandemic as antigens to the immune system. However, at a
55 later stage of the pandemic so called SARS-CoV-2 variants of concern (VOC) emerged that
56 harbor mutations in the S protein that allow for augmented transmissibility (B.1.1.7, alpha
57 variant) and/or immune evasion (B.1.351, beta variant; P.1, gamma variant) (Plante et al., 2021b).
58 Mutations conferring increased transmissibility might augment binding to the cellular receptor
59 ACE2 while mutations conferring immune evasion alter epitopes of neutralizing antibodies
60 (Plante et al., 2021b). Immune evasion can allow for infection of convalescent or vaccinated
61 individuals but vectored and mRNA-based vaccines protect against severe COVID-19 induced by
62 alpha, beta and gamma VOC.

63 A massive surge of COVID-19 cases was detected in India between April and May 2021
64 and was associated with spread of a new variant, B.1.617, that subsequently branched off into
65 B.1.617.1, B.1.617.2 and B.1.617.3. The B.1.617.2 variant subsequently spread into more than 80
66 countries and became dominant in India and the United Kingdom (Singh et al., 2021, Campbell et
67 al., 2021). In the UK, the spread of B.1.617.2 was associated with a marked increase in cases and
68 more than 80% of new infections are now due to B.1.617.2. A rapid increase of B.1.617.2 spread
69 is also expected in Germany, the US and several other countries, and a recent massive increase of
70 cases in Lisbon, Portugal, that required travel restrictions is believed to be due to B.1.617.2. In
71 order to contain spread of B.1.617.2, now considered a VOC, it will be critical to determine
72 whether convalescent or vaccinated patients are protected against infection by this variant. Here,

73 we addressed this question using reporter particles pseudotyped with the SARS-CoV-2 spike (S)
74 protein, which are suitable tools to study SARS-CoV-2 neutralization by antibodies (Riepler et
75 al., 2020, Schmidt et al., 2020).

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97 **RESULTS**

98 The S protein of B.1.617.2 harbors nine mutations in the surface unit, S1, of the S protein
99 and 1 mutation in the transmembrane unit, S2 (Figure 1A-B). Mutations T19R, G142D, E156G,
100 F157 Δ and R158 Δ are located in the N-terminal domain of S1, which contains epitopes for
101 neutralizing antibodies (Liu et al., 2020, McCallum et al., 2021, Suryadevara et al., 2021, Chi et
102 al., 2020). The receptor binding domain (RBD) harbors mutations L452R and T478K. Mutation
103 L452R reduces antibody-mediated neutralization (Deng et al., 2021, Liu et al., 2021b) and it has
104 been speculated that T478K might increase infectivity (Wang et al., 2021). Mutation D614G is
105 located between RBD and S1/S2 cleavage sites and linked to increased ACE2 binding,
106 replication in the upper respiratory tract and transmission (Figure 1A-B) (Plante et al., 2021a,
107 Zhou et al., 2021). Finally, P681R might increase cleavage of S protein at the S1/S2 site while the
108 impact of D950N on S protein driven entry and its inhibition by antibodies is unknown.

109 We first asked whether B.1.617.2 S protein mediates robust entry into cell lines frequently
110 used for SARS-CoV-2 research, Vero (African green monkey, kidney), 293T (human, kidney),
111 Caco-2 (human, colon) and Calu-3 (human, lung). All cell lines express endogenous ACE2 and
112 Vero, Caco-2 and Calu-3 cells are often used for infection studies with authentic SARS-CoV-2.
113 The B.1.617.2 S protein mediated entry into 293T and Vero cells with the same efficiency as WT
114 S protein while entry into Caco-2 (~1.5-fold) and Calu-3 cells (~2.0-fold) was augmented (Figure
115 1C and Supplemental figure 1A). The lung is the central target of SARS-CoV-2 but infection of
116 colon has also been reported, suggesting that B.1617.2 might have increased capacity to enter
117 target cells in these tissues. Finally, we did not detect increased ACE2 binding of B.1.617.2 S
118 protein (Figure 1D), suggesting that increased entry into Caco-2 and Calu-3 cells was not due to
119 augmented ACE2 binding.

120 Besides its ability to drive fusion of viral and cellular membranes, the S protein is further
121 able to drive the fusion of neighboring cells, resulting in the formation of multinucleated giant
122 cells, so called syncytia, which have been observed in vitro following directed S protein
123 expression or SARS-CoV-2 infection and in post mortem tissues from COVID-19 patients
124 (Bussani et al., 2020, Tian et al., 2020, Xu et al., 2020) . Since SARS-CoV-2 S protein-driven
125 syncytium formation is believed to contribute to COVID-19 pathogenesis, we investigated the
126 ability of B.1.617.2 S protein to drive cell-to-cell fusion in the human lung cell line A549, which
127 was engineered to express high levels of ACE2. As expected, directed expression of WT S led to
128 the formation of syncytia, while cells transfected with empty expression plasmid remained
129 normal (Figure 1E). Strikingly, directed expression of B.1.617.2 S protein caused more and larger
130 syncytia and quantification of cell-to-cell fusion revealed that fusion by B.1.617.2 S protein was
131 ~2.5-fold more efficient as compared to WT S (Figure 1E).

132 We next determined whether entry of B.1.617.2 is susceptible to inhibition by
133 recombinant antibodies with emergency use authorization for COVID-19 treatment. Three out
134 four antibodies tested inhibited B.1.617.2 S protein with similar efficiency as WT S protein
135 (Figure 1F and Supplemental figure 1C). However, B.1.617.2 was resistant to Bamlanivimab,
136 most likely because of mutation L452R (Supplemental figure 1B and (Starr et al., 2021)). Thus,
137 Bamlanivimab monotherapy is not suitable for prevention or treatment of B.1.617.2 infection.
138 Finally, we asked whether B.1.617.2 entry is inhibited by antibodies generated by infected or
139 vaccinated individuals. For these experiments, we employed the S protein of B.1.351 as control
140 since this VOC exhibits marked evasion from neutralizing antibodies. A previously described
141 collection of plasma (Hoffmann et al., 2021a) from convalescent COVID-19 patients collected at
142 University Hospital Göttingen, Germany, neutralized entry driven by B.1.617.2 S protein with
143 slightly reduced efficiency as compared to WT S protein (Figure 1G and Supplemental figure

144 1D). In contrast, neutralization of B.1.351 S protein-dependent entry was markedly reduced.
145 Finally, similar observations were made with previously characterized sera (Hoffmann et al.,
146 2021b) from donors who received two doses of BNT162b2, although immune evasion of
147 B.1.617.2. was more prominent as compared to convalescent sera (Figure 1H and Supplemental
148 figure 1E).

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168 **DISCUSSION**

169 Our results demonstrate immune evasion, enhanced colon- and lung cell entry and
170 augmented syncytium formation by B.1.617.2. Evasion of antibody-mediated neutralization by
171 B.1.617.2 is in agreement with two recent studies (Liu et al., 2021a, Wall et al., 2021) and is
172 more prominent than previously observed by us for B.1.1.7 but less prominent as compared to
173 B.1.351 (Hoffmann et al., 2021a). This finding would be compatible with increased vaccine
174 breakthrough of B.1.617.2 but also suggests that BNT162b2 should still protect from B.1.617.2-
175 induced COVID-19. Treatment of infection with Bamlanivimab alone will be ineffective but we
176 expect that Casirivimab, Imdevimab and Etesevimab will be beneficial to B.1.617.2 infected
177 patients when administered early after infection. The observation that B.1.617.2 S protein is able
178 to cause more cell-to-cell fusion than WT S may suggest that B.1.617.2 could cause more tissue
179 damage, and thus be more pathogenic, than previous variants or that viral spread via syncytium
180 formation contributes to efficient inter- and intra-host spread of this variant. Entry experiments
181 with cell lines need to be interpreted with care and confirmation with primary cells is pending.
182 However, the significantly increased entry into the colon and lung cell lines Caco-2 and Calu-3,
183 respectively, suggest that B.1.617.2 might have an augmented capacity to infect these organs and
184 increased infection of the respiratory epithelium might account for the purported increased
185 transmissibility of B.1.617.2.

186

187

188

189

190

191

192 **AUTHOR CONTRIBUTIONS**

193 Conceptualization, M.H., S.P.; Funding acquisition, S.P.; Investigation, P.A., A.K., I.N., A.S.,
194 N.K., L.G., A.-S.M., M.H.; Essential resources, M.S.W., S.S., H.-M.J., M.V.S., G.M.N.B.;
195 Writing, M.H., S.P.; Review and editing, all authors.

196

197 **ACKNOWLEDGMENTS**

198 We like to thank Roberto Cattaneo, Georg Herrler, Stephan Ludwig, Andrea Maisner, Thomas
199 Pietschmann and Gert Zimmer for providing reagents. We gratefully acknowledge the originating
200 laboratories responsible for obtaining the specimens and the submitting laboratories where
201 genetic sequence data were generated and shared via the GISAID Initiative, on which this
202 research is based. S.P. acknowledges funding by BMBF (01KI2006D, 01KI20328A, 01KI20396,
203 DM11-311), the Ministry for Science and Culture of Lower Saxony (DM11-607, DM11-610,
204 DM11-611) and the German Research Foundation (DFG; PO 716/11-1, PO 716/14-1). N.K.
205 acknowledges funding by BMBF (ANI-CoV, 01KI2074A). M.S.W. received unrestricted funding
206 from Sartorius AG, Lung research.

207

208 **COMPETING INTERESTS**

209 The authors declare no competing interests

210

211

212

213

214

215

216 **MATERIALS AND METHODS**

217

218 **Cell culture**

219 All cell lines were incubated at 37 °C in a humidified atmosphere containing 5% CO₂. 293T
220 (human, female, kidney; ACC-635, DSMZ, RRID: CVCL_0063), Vero76 cells (African green
221 monkey kidney, female, kidney; CRL-1586, ATCC; RRID: CVCL_0574, kindly provided by
222 Andrea Maisner) and BHK-21 (Syrian hamster, male, kidney; ATCC Cat# CCL-10; RRID:
223 CVCL_1915, kindly provided by Georg Herrler) and A549-ACE2 cells (Hoffmann et al., 2021a),
224 which were derived from parental A549 cells (human, male, lung; CRM-CCL-185, ATCC,
225 RRID:CVCL_0023; kindly provided by Georg Herrler), were cultured in Dulbecco's modified
226 Eagle medium (PAN-Biotech) supplemented with 10% fetal bovine serum (FBS, Biochrom), 100
227 U/ml penicillin and 0.1 mg/ml streptomycin (pen/strep) (PAN-Biotech). In addition, Calu-3
228 (human, male, lung; HTB-55, ATCC; RRID: CVCL_0609, kindly provided by Stephan Ludwig)
229 and Caco-2 cells (human, male, colon; HTB-37, ATCC, RRID: CVCL_0025) were cultured in
230 minimum essential medium (GIBCO) supplemented with 10% FBS, 1% pen/strep, 1x non-essential
231 amino acid solution (from 100x stock, PAA) and 1 mM sodium pyruvate (Thermo Fisher
232 Scientific). Cell lines were validated by STR-typing, amplification and sequencing of a fragment
233 of the cytochrome c oxidase gene, microscopic examination and/or according to their growth
234 characteristics. Furthermore, all cell lines were routinely tested for contamination by mycoplasma
235 contamination.

236

237 **Expression plasmids**

238 Plasmids encoding pCAGGS-DsRed, pCAGGS-VSV-G (vesicular stomatitis virus glycoprotein),
239 pCG1-WT SARS-CoV-2 S (codon optimized, based on the Wuhan/Hu-1/2019 isolate, equipped

240 with D614G mutation; with C-terminal truncation of the last 18 amino acid), pCG1-SARS-CoV-2
241 S, B.1.351 (codon optimized; with C-terminal truncation of the last 18 amino acid), ACE2
242 (angiotensin converting enzyme 2) and soluble ACE2 have been previously described (Hoffmann
243 et al., 2021a, Hoffmann et al., 2021b, Hoffmann et al., 2020). In order to generate the expression
244 vector for the S protein of SARS-CoV-2 variant B.1.617.2, the respective mutations were inserted
245 into the WT SARS-CoV-2 S sequence by splice-overlap PCR. The resulting open reading frame
246 was further inserted into vector pCG1 plasmid (kindly provided by Roberto Cattaneo, Mayo
247 Clinic College of Medicine, Rochester, MN, USA), using BamHI and XbaI restriction enzymes.
248 The integrity of all sequences was confirmed by sequence analysis using a commercial
249 sequencing service (Microsynth SeqLab). Specific details on the cloning procedure can be
250 obtained upon request. Transfection of 293T cells was carried out by the calcium-phosphate
251 precipitation method, while BHK-21 and A549-ACE2 cells were transfected using Lipofectamine
252 LTX (Thermo Fisher Scientific).

253

254 **Sequence analysis and protein models**

255 The S protein sequence of SARS-CoV-2 S variant B.1.617.2 (GISAID Accession ID:
256 EPI_ISL_1921353) was obtained from the GISAID (global initiative on sharing all influenza data)
257 databank (<https://www.gisaid.org/>). Protein models were generated employing the YASARA
258 software (<http://www.yasara.org/index.html>) and are based on published crystal structure PDB:
259 6XDG (Hansen et al., 2020), PDB: 7L3N (Jones et al., 2020) or PDB: 7C01 (Shi et al., 2020), or a
260 template that was constructed by modelling the SARS-2 S sequence on PDB: 6XR8 (Cai et al.,
261 2020), using the SWISS-MODEL online tool (<https://swissmodel.expasy.org>)

262

263 **Production of pseudotype particles**

264 Rhabdoviral pseudotypes bearing SARS-CoV-2 spike protein were generated according to an
265 established protocol (Berger Rentsch and Zimmer, 2011). Briefly, 293T cells were transfected with
266 expression plasmids encoding S protein, VSV-G or empty plasmid (control). At 24 h
267 posttransfection, cells were inoculated with a replication-deficient vesicular stomatitis virus that
268 lacks the genetic information for VSV-G and instead codes for two reporter proteins, enhanced
269 green fluorescent protein and firefly luciferase (FLuc), VSV*ΔG-FLuc (kindly provided by Gert
270 Zimmer) at a multiplicity of infection of 3. Following 1 h of incubation at 37 °C, the inoculum was
271 removed and cells were washed with phosphate-buffered saline (PBS). Subsequently, cells
272 received culture medium containing anti-VSV-G antibody (culture supernatant from I1-hybridoma
273 cells; ATCC no. CRL-2700; except for cells expressing VSV-G, which received only medium) in
274 order to neutralize residual input virus. After 16-18h, the culture supernatant was harvested,
275 clarified from cellular debris by centrifugation at 4,000 x g, 10 min, aliquoted and stored at -80 °C.

276

277 **Transduction of target cells**

278 For transduction experiments, target cells were seeded in 96-well plates and inoculated with equal
279 volumes of pseudotype particles. The transduction efficiency was evaluated at 16-18 h post
280 transduction. For this, cells were lysed in PBS containing 0.5% triton X-100 (Carl Roth) for 30 min
281 at RT. Afterwards, cell lysates were transferred into white 96-well plates and mixed with luciferase
282 substrate (Beetle- Juice, PJK) before luminescence was recorded using a Hidex Sense Plate
283 luminometer (Hidex).

284

285 **Analysis of ACE2 binding**

286 For the production of soluble ACE2 fused to the Fc portion of human immunoglobulin G (IgG),
287 sol-ACE2, 293T cells were seeded in a T-75 flask and transfected with 20 µg of sol-ACE2
288 expression plasmid. The medium was replaced at 10 h posttransfection and cells were further
289 incubated for 38 h. Further, the culture supernatant was harvested and clarified by centrifugation
290 at 2,000 x g, 10 min, 4 °C. Next, the clarified supernatant was loaded onto Vivaspin protein
291 concentrator columns (molecular weight cut-off of 30 kDa; Sartorius) and centrifuged at 4,000 x g
292 at 4 °C until the supernatant was 100-fold concentrated. Finally, concentrated sol-ACE2 was
293 aliquoted and stored at -80 °C.

294 In order to test the binding efficiency of sol-ACE2 to S protein, BHK-21 cells were seeded in 12-
295 well plates and transfected with expression plasmid for WT or SARS-CoV-2 S variant.
296 Untransfected cells and cells transfected with empty pCG1 plasmid served as controls. At 24 h
297 posttransfection, the culture supernatant was removed and cells were washed and resuspended in
298 PBS and transferred into 1.5 ml reaction before being pelleted by centrifugation (600 x g, 5 min,
299 RT, all centrifugation steps). Thereafter, cells were washed with PBS containing 1% bovine serum
300 albumin (BSA; PBS/BSA) and pelleted again by centrifugation. Next, the supernatant was removed
301 and cell pellets were incubated with 100 µl of solACE2-Fc (1:100 in PBS/BSA) and rotated for 1
302 h at 4 °C using a Rotospin eppi rotator disk (IKA). After incubation, cells were pelleted and
303 incubated with 100 µl of human AlexaFlour-488-conjugated antibody (1:200 in PBS/BSA; Thermo
304 Fisher Scientific) and rotated again as described above. Finally, cells were washed and resuspended
305 in PBS/BSA and subjected to flow cytometry using a LSR II flow cytometer and the FACS diva
306 software (BD Biosciences). Data analysis was performed using the FCS express 4 Flow research
307 software (De Novo Software) in order to obtain the geometric mean values.

308

309 **Syncytium formation assay**

310 In order to analyze S protein-driven cell-to-cell fusion, A549-ACE2 cells were grown in 12-well
311 plates and transfected with expression vector for WT or B.1.617.2 S protein. In addition, cells
312 transfected with empty plasmid served as control. At 24 h posttransfection, cells were washed with
313 PBS and fixed by incubation (20 min, room temperature) with 4% paraformaldehyde solution (Carl
314 Roth). Thereafter, cells were washed with deionized water, air-dried and stained with May-
315 Gruenwald solution (30 min, room temperature; Sigma-Aldrich). Next, cells were washed three
316 times with deionized water, air-dried and 1:10 diluted Giemsa (30 min, room temperature; Sigma-
317 Aldrich) solutions. Finally, cells were washed three times with deionized water, air-dried and
318 analyzed by bright-field microscopy using a Zeiss LSM800 confocal laser scanning microscope
319 and the ZEN imaging software (Zeiss). For each sample, three randomly selected areas were
320 imaged and S protein-driven syncytium formation was quantified by counting the total number of
321 nuclei in syncytia per image. Syncytia were defined as cells containing at least three nuclei. To
322 eliminate potential bias and correct for counting errors, counting was performed blinded by two
323 persons independently and for each sample average counts were used. Further, for each biological
324 replicate, the average (mean) total number of nuclei in syncytia per image was calculated from
325 three images obtained for randomly selected areas of the well.

326

327 **Collection of serum and plasma samples**

328 Before analysis, all serum and plasma samples were heat-inactivated at 56 °C for 30 min. Further,
329 all plasma/serum samples were pre-screened for their ability to neutralize transduction of Vero
330 cells by pseudotype particles bearing WT SARS-CoV-2 S.

331 Convalescent plasma was obtained from COVID-19 patients treated at the intensive care unit of
332 the University Medicine Göttingen (UMG) under approval given by the ethic committee of the
333 UMG (SeptImmun Study 25/4/19 Ü). Cell Preparation Tube (CPT) vacutainers with sodium citrate
334 were used for collection of convalescent plasma. Further, plasma was collected as supernatant over
335 the peripheral blood mononuclear cell layer. In addition to convalescent plasma, serum from
336 individuals vaccinated with BioNTech/Pfizer vaccine BNT162b2/Comirnaty was collected 24-31
337 days after receiving the second dose using S-Monovette® EDTA tubes (Sarstedt). Sampling and
338 sample analysis were approved by the Institutional Review Board of Hannover Medical School
339 (8973_BO_K_2020, amendment Dec 2020).

340

341 **Neutralization assay**

342 For neutralization experiments, S protein bearing pseudotype particles were pre-incubated for 30
343 min at 37 °C with different concentrations of Casirivimab, Imdevimab, Bamlanivimab,
344 Etesevimab, or unrelated control IgG (2, 0.2, 0.02, 0.002, 0.0002, 0.00002 µg/ml). Alternatively,
345 pseudotype particles were pre-incubated with different dilutions (1:25, 1:100, 1:400, 1:1,600,
346 1:6,400) of convalescent plasma or serum from BNT162b2/Comirnaty vaccinated individuals.
347 Following incubation, mixtures were inoculated onto Vero cells with particles incubated only with
348 medium serving as control. Transduction efficiency was determined at 16-18 h postinoculation as
349 described above.

350

351 **Data analysis**

352 The results on S protein-driven cell entry represent average (mean) data acquired from six
353 biological replicates, each conducted with four technical replicates. Data were normalized against
354 WT S protein, for which entry was set as 1. Alternatively, transduction was normalized against the
355 background signal (luminescence measured for cells inoculated with particles bearing no viral
356 glycoprotein; set as 1). SolACE2 binding results are average (mean) data obtained from six
357 biological replicates, each conducted with single samples. Each data point represents the geometric
358 mean channel fluorescence for one biological replicate without normalization. Data on S protein-
359 driven cell-to-cell fusion represent average (mean) data from four biological replicates, each
360 conducted with single samples (three images per sample). Each data point represents the average
361 (mean) number of nuclei in syncytia per image from two counting events by independent persons
362 for each of the four biological replicate without normalization. The neutralization data are based
363 on a single experiment (standard in the field), which were conducted with technical quadruplicates.
364 For data normalized, background signals (Fluc signals obtained from cell inoculated with
365 pseudotype particles bearing no S protein) were subtracted from all values and transduction by
366 particles incubated only with medium was set as 0% inhibition. The neutralizing titer 50 (NT50)
367 value, which indicates the plasma/serum dilution that causes a 50 % reduction of transduction
368 efficiency, was calculated using a non-linear regression model (inhibitor vs. normalized response,
369 variable slope).

370 Error bars are defined as either standard deviation (SD, neutralization data) or standard error of the
371 mean (SEM, all other data). Data were analyzed using Microsoft Excel (as part of the Microsoft
372 Office software package, version 2019, Microsoft Corporation) and GraphPad Prism 8 version

373 8.4.3 (GraphPad Software). Statistical significance was tested by two-tailed Students t-test. Only p
374 values of 0.05 or lower were considered statistically significant ($p > 0.05$, not significant [ns]; $p \leq$
375 0.05, *; $p \leq 0.01$, **; $p \leq 0.001$, ***). Details on the statistical test and the error bars can be found
376 in the figure legends.

377

378 **REFERENCES**

379 BERGER RENTSCH, M. & ZIMMER, G. 2011. A vesicular stomatitis virus replicon-based
380 bioassay for the rapid and sensitive determination of multi-species type I interferon. *PLoS
381 One*, 6, e25858.

382 BUSSANI, R., SCHNEIDER, E., ZENTILIN, L., COLLESI, C., ALI, H., BRAGA, L., VOLPE,
383 M. C., COLLIVA, A., ZANCONATI, F., BERLOT, G., SILVESTRI, F., ZACCHIGNA,
384 S. & GIACCA, M. 2020. Persistence of viral RNA, pneumocyte syncytia and thrombosis
385 are hallmarks of advanced COVID-19 pathology. *EBioMedicine*, 61, 103104.

386 CAI, Y., ZHANG, J., XIAO, T., PENG, H., STERLING, S. M., WALSH, R. M., JR., RAWSON,
387 S., RITS-VOLLOCH, S. & CHEN, B. 2020. Distinct conformational states of SARS-
388 CoV-2 spike protein. *Science*, 369, 1586-1592.

389 CAMPBELL, F., ARCHER, B., LAURENSON-SCHAFFER, H., JINNAI, Y., KONINGS, F.,
390 BATRA, N., PAVLIN, B., VANDEMAELE, K., VAN KERKHOVE, M. D., JOMBART,
391 T., MORGAN, O. & LE POLAIN DE WAROUX, O. 2021. Increased transmissibility and
392 global spread of SARS-CoV-2 variants of concern as at June 2021. *Euro Surveill*, 26.

393 CHI, X., YAN, R., ZHANG, J., ZHANG, G., ZHANG, Y., HAO, M., ZHANG, Z., FAN, P.,
394 DONG, Y., YANG, Y., CHEN, Z., GUO, Y., ZHANG, J., LI, Y., SONG, X., CHEN, Y.,
395 XIA, L., FU, L., HOU, L., XU, J., YU, C., LI, J., ZHOU, Q. & CHEN, W. 2020. A
396 neutralizing human antibody binds to the N-terminal domain of the Spike protein of
397 SARS-CoV-2. *Science*, 369, 650-655.

398 DENG, X., GARCIA-KNIGHT, M. A., KHALID, M. M., SERVELLITA, V., WANG, C.,
399 MORRIS, M. K., SOTOMAYOR-GONZALEZ, A., GLASNER, D. R., REYES, K. R.,
400 GLIWA, A. S., REDDY, N. P., SANCHEZ SAN MARTIN, C., FEDERMAN, S.,
401 CHENG, J., BALCEREK, J., TAYLOR, J., STREITHORST, J. A., MILLER, S.,

402 SREEKUMAR, B., CHEN, P. Y., SCHULZE-GAHMEN, U., TAHAN, T. Y., HAYASHI,
403 J. M., SIMONEAU, C. R., KUMAR, G. R., MCMAHON, S., LIDSKY, P. V., XIAO, Y.,
404 HEMARAJATA, P., GREEN, N. M., ESPINOSA, A., KATH, C., HAW, M., BELL, J.,
405 HACKER, J. K., HANSON, C., WADFORD, D. A., ANAYA, C., FERGUSON, D.,
406 FRANKINO, P. A., SHIVRAM, H., LAREAU, L. F., WYMAN, S. K., OTT, M.,
407 ANDINO, R. & CHIU, C. Y. 2021. Transmission, infectivity, and neutralization of a
408 spike L452R SARS-CoV-2 variant. *Cell*.

409 GOLOB, J. L., LUGOGO, N., LAURING, A. S. & LOK, A. S. 2021. SARS-CoV-2 vaccines: a
410 triumph of science and collaboration. *JCI Insight*, 6.

411 HANSEN, J., BAUM, A., PASCAL, K. E., RUSSO, V., GIORDANO, S., WLOGA, E.,
412 FULTON, B. O., YAN, Y., KOON, K., PATEL, K., CHUNG, K. M., HERMANN, A.,
413 ULLMAN, E., CRUZ, J., RAFIQUE, A., HUANG, T., FAIRHURST, J., LIBERTINY,
414 C., MALBEC, M., LEE, W. Y., WELSH, R., FARR, G., PENNINGTON, S.,
415 DESHPANDE, D., CHENG, J., WATTY, A., BOUFFARD, P., BABB, R.,
416 LEVENKOVA, N., CHEN, C., ZHANG, B., ROMERO HERNANDEZ, A., SAOTOME,
417 K., ZHOU, Y., FRANKLIN, M., SIVAPALASINGAM, S., LYE, D. C., WESTON, S.,
418 LOGUE, J., HAUPT, R., FRIEMAN, M., CHEN, G., OLSON, W., MURPHY, A. J.,
419 STAHL, N., YANCOPOULOS, G. D. & KYRATSOUS, C. A. 2020. Studies in
420 humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail.
421 *Science*, 369, 1010-1014.

422 HOFFMANN, M., ARORA, P., GROSS, R., SEIDEL, A., HORNICH, B. F., HAHN, A. S.,
423 KRUGER, N., GRAICHEN, L., HOFMANN-WINKLER, H., KEMPF, A., WINKLER,
424 M. S., SCHULZ, S., JACK, H. M., JAHRSDORFER, B., SCHREZENMEIER, H.,

425 MULLER, M., KLEGER, A., MUNCH, J. & POHLMANN, S. 2021a. SARS-CoV-2
426 variants B.1.351 and P.1 escape from neutralizing antibodies. *Cell*.
427 HOFFMANN, M., HOFMANN-WINKLER, H., KRÜGER, N., KEMPF, A., NEHLMEIER, I.,
428 GRAICHEN, L., SIDAROVICH, A., MOLDENHAUER, A.-S., WINKLER, M. S.,
429 SCHULZ, S., JÄCK, H.-M., STANKOV, M. V., BEHRENS, G. M. N. & PÖHLMANN,
430 S. 2021b. SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades
431 antibodies induced by infection and vaccination. *bioRxiv*, 2021.05.04.442663.
432 HOFFMANN, M., KLEINE-WEBER, H., SCHROEDER, S., KRUGER, N., HERRLER, T.,
433 ERICHSEN, S., SCHIERGENS, T. S., HERRLER, G., WU, N. H., NITSCHE, A.,
434 MULLER, M. A., DROSTEN, C. & POHLMANN, S. 2020. SARS-CoV-2 Cell Entry
435 Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease
436 Inhibitor. *Cell*, 181, 271-280 e8.
437 JONES, B. E., BROWN-AUGSBURGER, P. L., CORBETT, K. S., WESTENDORF, K.,
438 DAVIES, J., CUJEC, T. P., WIETHOFF, C. M., BLACKBOURNE, J. L., HEINZ, B. A.,
439 FOSTER, D., HIGGS, R. E., BALASUBRAMANIAM, D., WANG, L., BIDSHAHRI, R.,
440 KRAFT, L., HWANG, Y., ZENTELIS, S., JEPSON, K. R., GOYA, R., SMITH, M. A.,
441 COLLINS, D. W., HINSHAW, S. J., TYCHO, S. A., PELLACANI, D., XIANG, P.,
442 MUTHURAMAN, K., SOBHANIFAR, S., PIPER, M. H., TRIANA, F. J., HENDLE, J.,
443 PUSTILNIK, A., ADAMS, A. C., BERENS, S. J., BARIC, R. S., MARTINEZ, D. R.,
444 CROSS, R. W., GEISBERT, T. W., BORISEVICH, V., ABIONA, O., BELL, H. M., DE
445 VRIES, M., MOHAMED, A., DITTMANN, M., SAMANOVIC, M., MULLIGAN, M. J.,
446 GOLDSMITH, J. A., HSIEH, C. L., JOHNSON, N. V., WRAPP, D., MCLELLAN, J. S.,
447 BARNHART, B. C., GRAHAM, B. S., MASCOLA, J. R., HANSEN, C. L. &

448 FALCONER, E. 2020. LY-CoV555, a rapidly isolated potent neutralizing antibody,
449 provides protection in a non-human primate model of SARS-CoV-2 infection. *bioRxiv*.

450 LIU, J., LIU, Y., XIA, H., ZOU, J., WEAVER, S. C., SWANSON, K. A., CAI, H., CUTLER,
451 M., COOPER, D., MUIK, A., JANSEN, K. U., SAHIN, U., XIE, X., DORMITZER, P. R.
452 & SHI, P. Y. 2021a. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2
453 variants. *Nature*.

454 LIU, L., WANG, P., NAIR, M. S., YU, J., RAPP, M., WANG, Q., LUO, Y., CHAN, J. F., SAHI,
455 V., FIGUEROA, A., GUO, X. V., CERUTTI, G., BIMELA, J., GORMAN, J., ZHOU, T.,
456 CHEN, Z., YUEN, K. Y., KWONG, P. D., SODROSKI, J. G., YIN, M. T., SHENG, Z.,
457 HUANG, Y., SHAPIRO, L. & HO, D. D. 2020. Potent neutralizing antibodies against
458 multiple epitopes on SARS-CoV-2 spike. *Nature*, 584, 450-456.

459 LIU, Z., VANBLARGAN, L. A., BLOYET, L. M., ROTHLAUF, P. W., CHEN, R. E.,
460 STUMPF, S., ZHAO, H., ERRICO, J. M., THEEL, E. S., LIEBESKIND, M. J.,
461 ALFORD, B., BUCHSER, W. J., ELLEBEDY, A. H., FREMONT, D. H., DIAMOND,
462 M. S. & WHELAN, S. P. J. 2021b. Identification of SARS-CoV-2 spike mutations that
463 attenuate monoclonal and serum antibody neutralization. *Cell Host Microbe*, 29, 477-488
464 e4.

465 MCCALLUM, M., DE MARCO, A., LEMPP, F. A., TORTORICI, M. A., PINTO, D., WALLS,
466 A. C., BELTRAMELLO, M., CHEN, A., LIU, Z., ZATTA, F., ZEPEDA, S., DI IULIO,
467 J., BOWEN, J. E., MONTIEL-RUIZ, M., ZHOU, J., ROSEN, L. E., BIANCHI, S.,
468 GUARINO, B., FREGNI, C. S., ABDELNABI, R., FOO, S. C., ROTHLAUF, P. W.,
469 BLOYET, L. M., BENIGNI, F., CAMERONI, E., NEYTS, J., RIVA, A., SNELL, G.,
470 TELENTI, A., WHELAN, S. P. J., VIRGIN, H. W., CORTI, D., PIZZUTO, M. S. &

471 VEESLER, D. 2021. N-terminal domain antigenic mapping reveals a site of vulnerability
472 for SARS-CoV-2. *Cell*, 184, 2332-2347 e16.

473 PLANTE, J. A., LIU, Y., LIU, J., XIA, H., JOHNSON, B. A., LOKUGAMAGE, K. G.,
474 ZHANG, X., MURUATO, A. E., ZOU, J., FONTES-GARFIAS, C. R.,
475 MIRCHANDANI, D., SCHARTON, D., BILELLO, J. P., KU, Z., AN, Z., KALVERAM,
476 B., FREIBERG, A. N., MENACHERY, V. D., XIE, X., PLANTE, K. S., WEAVER, S.
477 C. & SHI, P. Y. 2021a. Spike mutation D614G alters SARS-CoV-2 fitness. *Nature*, 592,
478 116-121.

479 PLANTE, J. A., MITCHELL, B. M., PLANTE, K. S., DEBBINK, K., WEAVER, S. C. &
480 MENACHERY, V. D. 2021b. The variant gambit: COVID-19's next move. *Cell Host
481 Microbe*, 29, 508-515.

482 POLACK, F. P., THOMAS, S. J., KITCHIN, N., ABSALON, J., GURTMAN, A., LOCKHART,
483 S., PEREZ, J. L., PEREZ MARC, G., MOREIRA, E. D., ZERBINI, C., BAILEY, R.,
484 SWANSON, K. A., ROYCHOUDHURY, S., KOURY, K., LI, P., KALINA, W. V.,
485 COOPER, D., FRENCK, R. W., JR., HAMMITT, L. L., TURECI, O., NELL, H.,
486 SCHAEFER, A., UNAL, S., TRESNAN, D. B., MATHER, S., DORMITZER, P. R.,
487 SAHIN, U., JANSEN, K. U., GRUBER, W. C. & GROUP, C. C. T. 2020. Safety and
488 Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med*, 383, 2603-2615.

489 RIEPLER, L., ROSSLER, A., FALCH, A., VOLLAND, A., BORENA, W., VON LAER, D. &
490 KIMPEL, J. 2020. Comparison of Four SARS-CoV-2 Neutralization Assays. *Vaccines
491 (Basel)*, 9.

492 SCHMIDT, F., WEISBLUM, Y., MUECKSCH, F., HOFFMANN, H. H., MICHAELIDIS, E.,
493 LORENZI, J. C. C., MENDOZA, P., RUTKOWSKA, M., BEDNARSKI, E., GAEBLER,
494 C., AGUDELO, M., CHO, A., WANG, Z., GAZUMYAN, A., CIPOLLA, M., CASKEY,

495 M., ROBBIANI, D. F., NUSSENZWEIG, M. C., RICE, C. M., HATZIOANNOU, T. &
496 BIENIASZ, P. D. 2020. Measuring SARS-CoV-2 neutralizing antibody activity using
497 pseudotyped and chimeric viruses. *J Exp Med*, 217.

498 SHI, R., SHAN, C., DUAN, X., CHEN, Z., LIU, P., SONG, J., SONG, T., BI, X., HAN, C., WU,
499 L., GAO, G., HU, X., ZHANG, Y., TONG, Z., HUANG, W., LIU, W. J., WU, G.,
500 ZHANG, B., WANG, L., QI, J., FENG, H., WANG, F. S., WANG, Q., GAO, G. F.,
501 YUAN, Z. & YAN, J. 2020. A human neutralizing antibody targets the receptor-binding
502 site of SARS-CoV-2. *Nature*, 584, 120-124.

503 SINGH, J., RAHMAN, S. A., EHTESHAM, N. Z., HIRA, S. & HASNAIN, S. E. 2021. SARS-
504 CoV-2 variants of concern are emerging in India. *Nat Med*.

505 STARR, T. N., GREANEY, A. J., DINGENS, A. S. & BLOOM, J. D. 2021. Complete map of
506 SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its
507 cocktail with LY-CoV016. *Cell Rep Med*, 2, 100255.

508 SURYADEVARA, N., SHRIHARI, S., GILCHUK, P., VANBLARGAN, L. A., BINSSTEIN,
509 E., ZOST, S. J., NARGI, R. S., SUTTON, R. E., WINKLER, E. S., CHEN, E. C.,
510 FOUCHE, M. E., DAVIDSON, E., DORANZ, B. J., CHEN, R. E., SHI, P. Y.,
511 CARNAHAN, R. H., THACKRAY, L. B., DIAMOND, M. S. & CROWE, J. E., JR.
512 2021. Neutralizing and protective human monoclonal antibodies recognizing the N-
513 terminal domain of the SARS-CoV-2 spike protein. *Cell*, 184, 2316-2331 e15.

514 TIAN, S., HU, W., NIU, L., LIU, H., XU, H. & XIAO, S. Y. 2020. Pulmonary Pathology of
515 Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With
516 Lung Cancer. *J Thorac Oncol*, 15, 700-704.

517 WALL, E. C., WU, M., HARVEY, R., KELLY, G., WARCHAL, S., SAWYER, C., DANIELS,
518 R., HOBSON, P., HATIPOGLU, E., NGAI, Y., HUSSAIN, S., NICOD, J.,

519 GOLDSTONE, R., AMBROSE, K., HINDMARSH, S., BEALE, R., RIDDELL, A.,
520 GAMBLIN, S., HOWELL, M., KASSIOTIS, G., LIBRI, V., WILLIAMS, B.,
521 SWANTON, C., GANDHI, S. & BAUER, D. L. 2021. Neutralising antibody activity
522 against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. *Lancet*,
523 397, 2331-2333.

524 WANG, R., CHEN, J., GAO, K. & WEI, G. W. 2021. Vaccine-escape and fast-growing
525 mutations in the United Kingdom, the United States, Singapore, Spain, India, and other
526 COVID-19-devastated countries. *Genomics*, 113, 2158-2170.

527 XIA, S., ZHANG, Y., WANG, Y., WANG, H., YANG, Y., GAO, G. F., TAN, W., WU, G., XU,
528 M., LOU, Z., HUANG, W., XU, W., HUANG, B., WANG, H., WANG, W., ZHANG,
529 W., LI, N., XIE, Z., DING, L., YOU, W., ZHAO, Y., YANG, X., LIU, Y., WANG, Q.,
530 HUANG, L., YANG, Y., XU, G., LUO, B., WANG, W., LIU, P., GUO, W. & YANG, X.
531 2021. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV:
532 a randomised, double-blind, placebo-controlled, phase 1/2 trial. *Lancet Infect Dis*, 21, 39-
533 51.

534 XU, Z., SHI, L., WANG, Y., ZHANG, J., HUANG, L., ZHANG, C., LIU, S., ZHAO, P., LIU,
535 H., ZHU, L., TAI, Y., BAI, C., GAO, T., SONG, J., XIA, P., DONG, J., ZHAO, J. &
536 WANG, F. S. 2020. Pathological findings of COVID-19 associated with acute respiratory
537 distress syndrome. *Lancet Respir Med*, 8, 420-422.

538 ZHOU, B., THAO, T. T. N., HOFFMANN, D., TADDEO, A., EBERT, N., LABROUSSAA, F.,
539 POHLMANN, A., KING, J., STEINER, S., KELLY, J. N., PORTMANN, J., HALWE, N.
540 J., ULRICH, L., TRUEB, B. S., FAN, X., HOFFMANN, B., WANG, L., THOMANN, L.,
541 LIN, X., STALDER, H., POZZI, B., DE BROT, S., JIANG, N., CUI, D., HOSSAIN, J.,
542 WILSON, M. M., KELLER, M. W., STARK, T. J., BARNES, J. R., DIJKMAN, R.,

543 JORES, J., BENARAFA, C., WENTWORTH, D. E., THIEL, V. & BEER, M. 2021.

544 SARS-CoV-2 spike D614G change enhances replication and transmission. *Nature*, 592,

545 122-127.

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567 **Figure legends**

568

569 **Figure 1: The spike protein of SARS-CoV-2 B.1.617.2 promotes efficient entry into human**
570 **lung and colon cells, causes more cell-to-cell fusion and evades from antibody-mediated**
571 **neutralization.**

572 (A) Schematic overview of the S protein from SARS-CoV-2 variant B.1.617.2 (RBD, receptor-
573 binding domain; TD, transmembrane domain).

574 (B) Location of the mutations found in SARS-CoV-2 variant B.1.617.2 in the context of the
575 trimeric spike protein (Color code: light blue, S1 subunit with RBD in dark blue; gray, S2
576 subunit; orange, S1/S2 and S2' cleavage sites; red, mutated amino acid residues).

577 (C) Pseudotyped particles bearing the S protein of wildtype (WT) SARS-CoV-2 or variant
578 B.1.617.2 were inoculated onto the indicated cell lines and transduction efficiency was quantified
579 by measuring virus-encoded luciferase activity in cell lysates at 16-18 h post transduction.

580 Presented are the average (mean) data from six biological replicates (each conducted with
581 technical quadruplicates) for which transduction was normalized against SARS-CoV-2 S WT (=
582 1). Error bars indicate the standard error of the mean. Statistical significance of differences
583 between WT and B.1.617.2 S proteins was analyzed by two-tailed Students t-test ($p > 0.05$, not
584 significant [ns]; $p \leq 0.01$, **). See also Figure S1A.

585 (D) BHK-21 expressing the S protein of WT SARS-CoV-2 or variant B.1.617.2 were
586 subsequently incubated with soluble ACE2 (harboring a C-terminal Fc-tag derived from human
587 IgG) and AlexaFluor-488-conjugated anti-human antibody, before being subjected to flow
588 cytometry. ACE2 binding efficiency was analyzed by measuring the geometric mean channel
589 fluorescence at 488 nm. Untransfected cells and cells transfected with empty expression plasmid
590 served as controls. Presented are the average (mean) data from six biological replicates (each

591 conducted with single samples). Error bars indicate the standard deviation (SD). Statistical
592 significance of differences between WT and variant B.1.617.2 S proteins was analyzed by two-
593 tailed Students t-test ($p > 0.05$, ns).

594 (E) Analysis of S protein induced cell-to-cell fusion. A549-ACE2 cells were transfected with
595 expression plasmid for the indicated S proteins or empty vector (EV). At 24 h posttransfection,
596 cells were fixed and subsequently stained with May-Gruenwald and Giemsa solutions.
597 Presented are representative microscopic images (scale bar = 200 μm). For quantification of
598 fusion efficiency, the total number of nuclei in syncytia per image was counted. Presented are the
599 average (mean) data from four biological replicates (each conducted with single samples; for
600 each sample, three randomly selected areas were imaged and independently analyzed by two
601 persons). Error bars indicate the SEM. Statistical significance of differences between WT and
602 B.1.617.2 S proteins was analyzed by two-tailed Students t-test ($p \leq 0.001$, ***).

603 (F) Neutralization of SARS-CoV-2 WT, B.1.351 and B.1.617.2 S proteins by monoclonal
604 antibodies used for COVID-19 therapy. Pseudotyped particles bearing the S protein of WT
605 SARS-CoV-2 or variant B.1.617.2 were incubated for 30 min at 37 °C in the presence of
606 escalating concentrations (0.00002, 0.0002, 0.002, 0.02, 0.2, 2 $\mu\text{g/ml}$) of the indicated SARS-
607 CoV-2 S protein-specific monoclonal antibody (please see Figure S1B) or an unrelated control
608 antibody (please see Figure S1C), before being inoculated onto Vero cells. Transduction
609 efficiency was quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h
610 post transduction. Presented are the average (mean) data from a single biological replicate
611 (conducted with technical quadruplicates) for which transduction was normalized against samples
612 that did not contain any antibody (= 0% inhibition). Error bars indicate the SD.

613 (G) Neutralization of SARS-CoV-2 WT, B.1.351 and B.1.617.2 S proteins by antibodies in
614 convalescent plasma. Pseudotyped particles bearing the S protein of WT SARS-CoV-2 or variant

615 B.1.617.2 were incubated for 30 min at 37 °C in the presence of different dilutions of
616 convalescent plasma (1:25, 1:100, 1:400, 1:1,600, 1:6,400, 1:25,600). Transduction efficiency
617 was quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h post-
618 transduction and used to calculate the plasma dilution factor that leads to 50 % reduction in S
619 protein-driven cell entry (neutralizing titer 50, NT50). Presented are the data from a total of eight
620 convalescent plasma (black lines indicate the median). Statistical significance of differences
621 between the indicated groups was analyzed by two-tailed Students t-test ($p > 0.05$, ns; $p \leq 0.05$, *;
622 $p \leq 0.01$, **; $p \leq 0.001$, ***). Please see also Figure S1D.

623 (G) The experiment was performed as described for panel F but this time serum from
624 Comirnaty/BNT162b2-vaccinated individuals was investigated. Presented are the data from a
625 total of fifteen vaccinee sera (black lines indicate the median). Please see also Figure S1E.

626

627

628

629

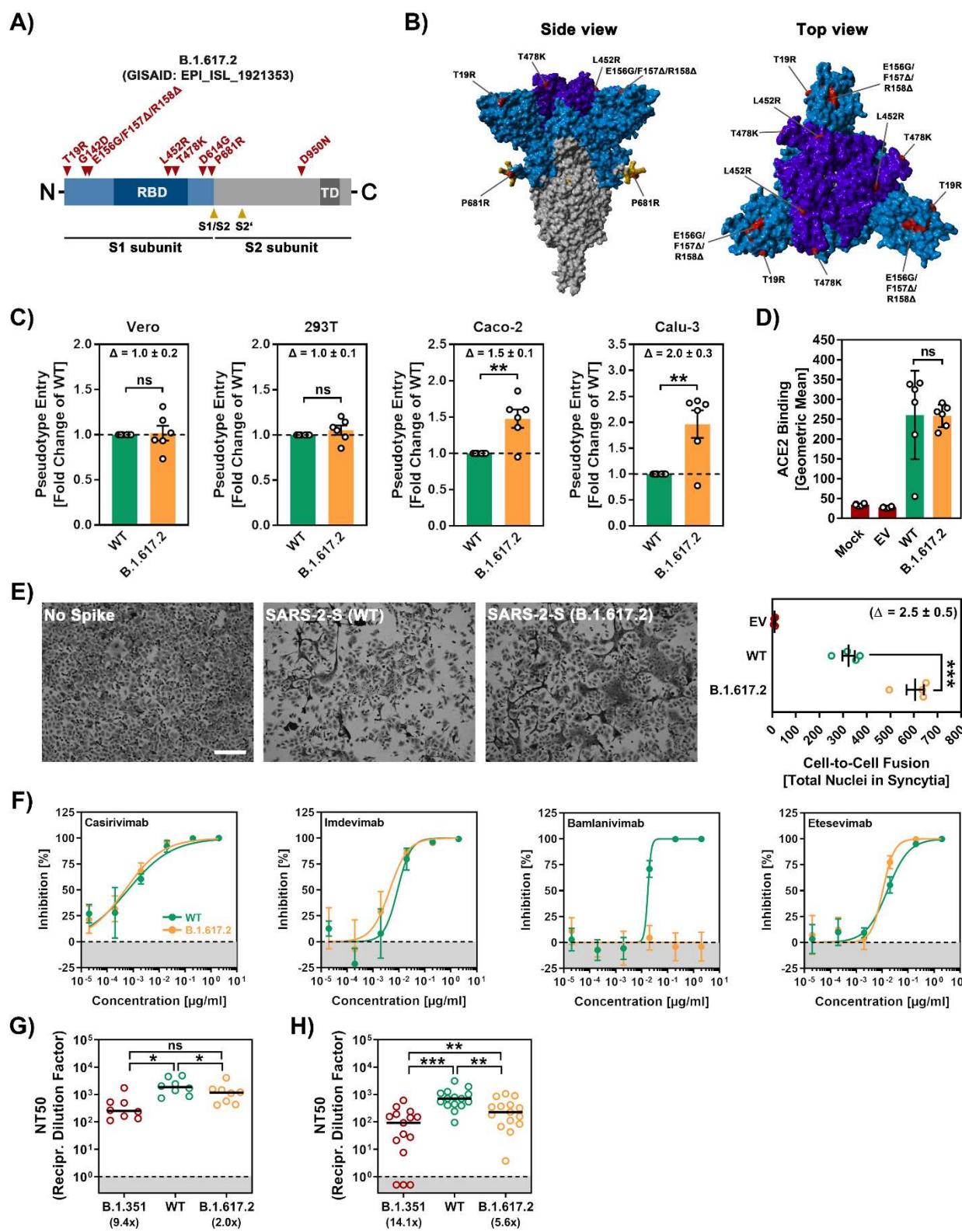
630

631

632

633

634


635

636

637

638

Figure 1

1 **SI Figure Legend**

2

3 **Figure S1: Cell entry and evasion of antibody-mediated neutralization by the spike protein**
4 **of SARS-CoV-2 B.1.617.2 (related to Figure 1).**

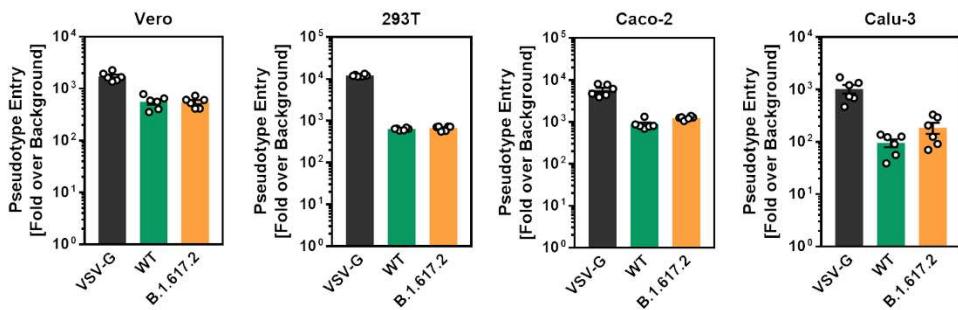
5 (A) Transduction data normalized against the assay background (related to Figure 1C). The
6 experiment was performed as described in the legend of Figure 1C. Presented are the average
7 (mean) data from the same six biological replicates (each conducted with technical
8 quadruplicates) as presented in Figure 1C with the difference that transduction was normalized
9 against signals obtained from cells inoculated with particles bearing no viral glycoprotein
10 (background, set as 1). In addition, transduction data of particles bearing VSV-G are included.
11 Error bars indicate the SEM.

12 (B) Location of the receptor binding domain (gray) mutations L452R and T478K (both red) of
13 SARS-CoV-2 variant B.1.617.2 in the context of the interfaces for ACE2 binding (orange) and
14 binding of monoclonal antibodies used for COVID-19 therapy.

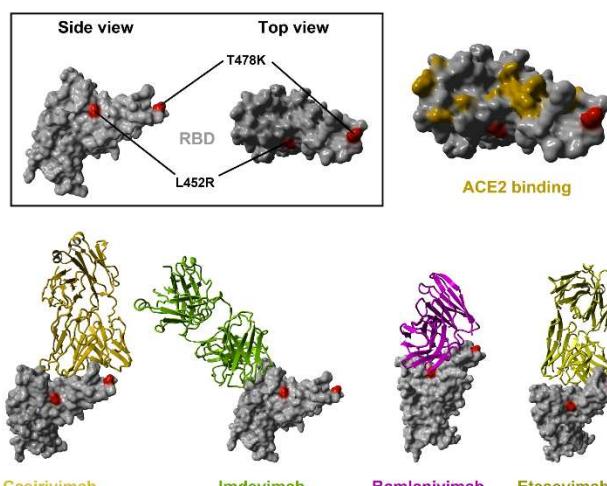
15 (C) An unrelated control antibody does not affect cell entry of pseudotype particles bearing
16 SARS-CoV-2 WT, B.1.351 or B.1.617.2 S (related to Figure 1E). The experiment was performed
17 as described in the legend of Figure 1E.

18 (D) Individual neutralization data for convalescent plasma (related to Figure 1F). Pseudotype
19 particles bearing the indicated S proteins were incubated (30 min, 37 °C) with different dilutions
20 of convalescent plasma before being inoculated onto Vero cells. Transduction efficiency was
21 quantified by measuring virus-encoded luciferase activity in cell lysates at 16-18 h
22 posttransduction. Presented are the data from a single representative experiment conducted with
23 technical quadruplicates. For normalization, inhibition of S protein-driven entry in samples
24 without plasma was set as 0%. Error bars indicate the SD. The data were further used to

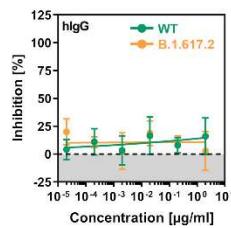
25 calculated the plasma/serum dilution that leads to 50% reduction in S protein-driven cell entry
26 (neutralizing titer 50, NT50; shown in Figure 1F).

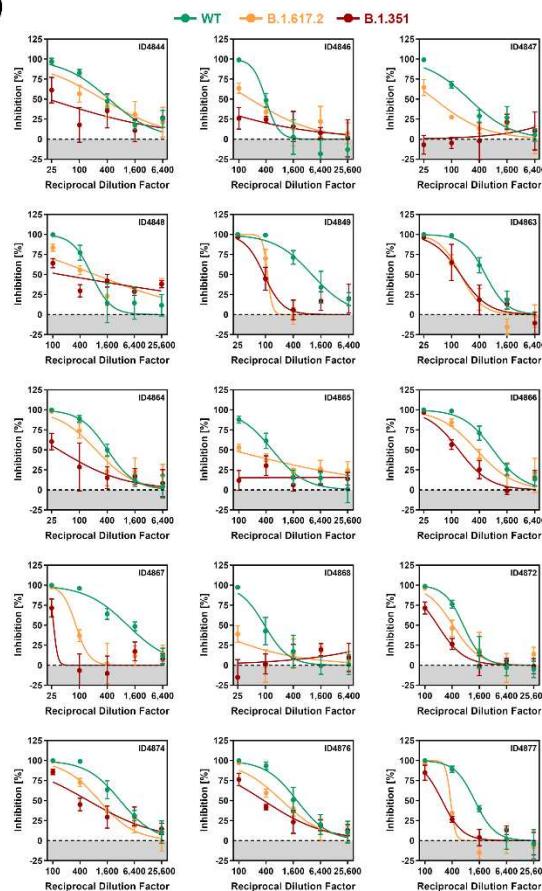

27 (E) Individual neutralization data for vaccinee serum (related to Figure 1G). Pseudotype particles
28 bearing the indicated S proteins were incubated (30 min, 37 °C) with different dilutions of serum
29 from individuals vaccinated with the Pfizer/BioNTech vaccine Comirnaty/BNT162b2 before
30 being inoculated onto Vero cells. Transduction efficiency was quantified by measuring virus-
31 encoded luciferase activity in cell lysates at 16-18 h posttransduction. Presented are the data from
32 a single representative experiment conducted with technical quadruplicates. For normalization,
33 inhibition of S protein-driven entry in samples without plasma was set as 0%. Error bars indicate
34 the SD. The data were further used to calculate the NT50 shown (shown in Figure 1G).

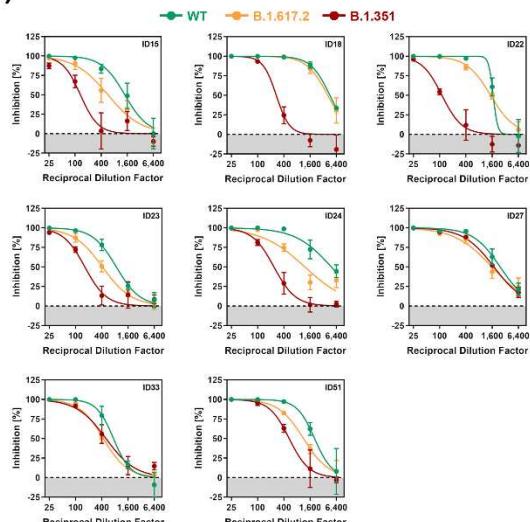
35


36

37 **Figure S1**


A)


B)


C)

E)

D)

