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Abstract
Classification and characterization of neuronal types are critical for understanding their function and
dysfunction. Neuronal classification schemes typically rely on measurements of electrophysiological,
morphological, and molecular features, but aligning such datasets has been challenging. Here, we present a
unified classification of mouse retinal ganglion cells (RGCs), the sole retinal output neurons. We used
visually-evoked responses to classify 1859 mouse RGCs into 42 types. We also obtained morphological or
transcriptomic data from subsets and used these measurements to align the functional classification to publicly
available morphological and transcriptomic data sets. We created an online database that allows users to
browse or download the data and to classify RGCs from their light responses using a machine learning
algorithm. This work provides a resource for studies of RGCs, their upstream circuits in the retina, and their
projections in the brain, and establishes a framework for future efforts in neuronal classification and open data
distribution.

Introduction
A major goal in biology is the establishment of a comprehensive atlas of cell types. Many large-scale efforts are
underway to classify cells in different tissues (BRAIN Initiative Cell Census Network (BICCN), 2021; Hodge et
al., 2019; Regev et al., 2017; Wilbrey-Clark et al., 2020; Yuste et al., 2020). In the central nervous system
(CNS), classification efforts have relied mainly on three types of information: functional, morphological, and
molecular. Functional classification involves the physiological properties of neurons, typically measured by
electrophysiological recordings. Morphological classification uses the dendritic and axonal structures of
neurons, measured by light or electron microscopic (EM) methods. Molecular classification was initially based
on immunohistochemical or in situ hybridization, but has more recently relied on gene expression patterns
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(transcriptomics) assessed by high-throughput single-cell RNAseq and spatial transcriptomics (Close et al.,
2021; Yuste et al., 2020). It has become increasingly clear that different classification methods offer
complementary information and that a comprehensive classification of cell types needs to unify all three
modalities (BRAIN Initiative Cell Census Network (BICCN), 2021; Scala et al., 2020; Zeng and Sanes, 2017).

The mammalian retina is especially well suited to provide a template for integrating functional, morphological,
and molecular classification for three reasons. First, many retinal cell types exhibit regular spacing, called a
mosaic, which ensures smooth and complete sampling of visual space (Bleckert et al., 2014; Kay et al., 2012;
Reese and Keeley, 2015; Rockhill et al., 2000; Rousso et al., 2016; Wässle et al., 1981). This property means
that experimentalists can sample from a sub-region of the retina and be assured that they will find cells of each
type. Moreover, mosaics establish an independent metric to assess whether a set of cells comprises an
authentic type. Second, because the retina responds to light ex vivo, functional measurements of retinal
neurons include both intrinsic biophysical properties and response properties to visual stimuli. Light responses
depend on the entire upstream synaptic network, creating a rich dataset. Finally, our knowledge of the
morphology of retinal neurons, particularly in the mouse, is unparalleled among tissues of the mammalian CNS
(Bae et al., 2018; Hoon et al., 2014; Sanes and Masland, 2015).

Here, we present a unified functional, morphological, and genetic classification of mouse retinal ganglion cells
(RGCs), the output cells of the retina. We collected detailed functional data from 1859 RGCs and also obtained
morphological or transcriptomic data from subsets of these cells. We then used these doubly-characterized
cells to align the functional classification with publicly available large-scale datasets of RGC morphology (381
RGCs reconstructed from EM sections; Bae et al., 2018) and gene expression (35,699 single-RGC
transcriptomes; (Bae et al., 2018; Tran et al., 2019), thereby generating a unified atlas. Comparison of the
three datasets reveals that close relationships between cell types identified by one criterion sometimes predicts
close relationships by other criteria.

Finally, we provide two tools that make the data useful to the community and suggest formats for cross-modal
analyses of other populations.  First, we devised a machine learning classifier that allows researchers to infer
an RGC’s functional type from a small and standardized set of spike measurements. Second, we curated the
data in the form of a continuously updated, open-access library (rgctypes.org) where researchers can browse
single-cell- or cell type-level data and download functional, morphological, and transcriptomic datasets.

Results
RGCs have traditionally been classified by physiological, morphological, and molecular criteria. Recent studies
have used high-throughput methods to categorize mouse RGCs at large scale using all three criteria: optical
imaging of visually evoked responses (Baden et al., 2016); reconstruction from serial electron microscopic
sections; (Bae et al., 2018); and transcriptomic analysis of single RGCs (Tran et al., 2019). Our goal was to
unify these dimensions into a single schema that was as complete as possible in representing all known RGC
types in the mouse. We made our measurements in one cell at a time, allowing us to perform online functional
classification followed by recovery of the same cells for morphological or transcriptomic measurements
(Figure 1).
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Figure 1. Schematic of approach.
Light responses to a standard stimulus set were measured in 1859 RGCs with subsets measured for morphology or gene expression.
Functional data on light responses was visualized using UMAP (see Methods) and classified with machine learning. Morphological and
transcriptomic measurements were aligned to published datasets.

Functional classification of RGCs
We began with physiological characterization, using a rapid and standardized light stimulus protocol for
functional measurements. Experiments were performed in dark-adapted ex vivo preparations of the mouse
retina where capacitive spikes from RGCs were recorded with cell-attached electrodes. Standard light stimuli
presented to every RGC were rod-saturating (~200 isomerizations/rod/s) spots (λ = 450 nm) from darkness
with diameters ranging from 30 to 1200 μm, centered on the receptive field (RF) of each individual cell. We
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presented additional stimuli to subsets of RGCs to test for specific forms of feature selectivity. Moving bars
were used to test for direction selectivity (DS), flashed bars and drifting gratings for orientation selectivity (OS),
and contrast series for contrast suppression (Figure S1). Background luminance values of 1000 R*/rod/s were
used for drifting gratings and contrast series experiments were presented for less than 6 minutes per cell;
response changes for subsequent measurements from darkness were negligible (data not shown).

Our standard stimulus paradigm differed from the full-field “checkerboard” white noise and “chirp” stimuli used
in previous studies (Baden et al., 2016; Farrow and Masland, 2011; Jouty et al., 2018). Three considerations
drove our stimulus choice. First, maintenance of a consistent light-adaptation state was essential because
many aspects of RGC light responses change with luminance and with light adaptation (Tikidji-Hamburyan et
al., 2015; Wienbar and Schwartz, 2018). High background light is unavoidable in functional two-photon imaging
experiments due to excitation from the laser, limiting the period of stable light responses, especially in
preparations lacking the retinal pigment epithelium (Euler et al., 2019). The use of patch electrodes allowed us
to make measurements in darkness. Second, precise localization of stimuli with respect to the RF center
cannot be achieved with full-field stimuli but turned out to be critical as shown below. Indeed, many RGCs that
respond well to small stimuli in their RF center fail to respond to any full-field stimulus (Jacoby and Schwartz,
2017; Zhang et al., 2012). Finally, to facilitate standardization in the field, we wanted our stimulus to be simple
and rapid and to correspond to those commonly used by others. For example, many previous studies have
used RF-centered spots of different sizes, enabling retrospective comparisons (Jacoby and Schwartz, 2017;
Johnson et al., 2018; Krieger et al., 2017; Marco et al., 2013; Rousso et al., 2016).

We assigned RGCs to 42 functional types by hand based on our iteratively updated understanding of their
response patterns. 34 of these types were assigned based only on the responses to flashed spots, while the
additional 8 types were subdivided by direction or orientation preference. Thus, while our classification is not
free from human bias, two pieces of evidence, detailed below, strengthen our confidence that it represents an
accurate typology: (1) cells that we placed in the same functional group typically had strong morphological and
molecular similarities; and (2) a cross-validated algorithm successfully classified functional RGC types,
including those with “external” classification data on which the algorithm was never trained.  We organized the
RGC types into 8 functional groups: ON sustained, OFF sustained, ON transient, OFF transient, ON OS, DS,
ON-OFF small RF, and Suppressed-by-Contrast (SbC)/Other. These groups were chosen as a starting point
based on previous work; a quantitative measure of functional relatedness is presented below.

In most recordings (1246/1859 cells), retinal orientation and cell locations were noted to determine whether
classification varied based on retinal position. Response patterns within some RGC types have been shown to
vary as a function of retinal position in photopic conditions (Joesch and Meister, 2016; Warwick et al., 2018),
likely because of a pronounced cone opsin gradient along the dorsoventral axis (Nadal-Nicolás et al., 2020). In
our dark-adapted preparation, however, where much of the light response was initiated in rods (Grimes et al.,
2014), response variation across retinal position was minimal. We found no significant relationship between
retinal position and any of the six response metrics we tested (see Methods). The responses of OFF transient
alpha RGCs, which had previously been shown to depend on dorsoventral position in high luminance (Warwick
et al., 2018) showed no position dependence under our conditions (data not shown).

Most functional RGC types were relatively uniformly distributed across retinal locations (Figure S2). A shuffle
test revealed two RGC types with significant positional biases (Table S1). F-mini-ON RGCs were found in
greater proportion in the ventral retina; however, we specifically targeted them in that region based on a
previous report of their prevalence there in a transgenic line (Rousso et al., 2016). PixON RGCs were found in
greater proportion in the dorsal retina which, to the best of our knowledge, does not represent sampling bias
and has not been previously reported. Several other RGC position distributions showed trending biases that
failed to meet the Bonferroni correction for multiple comparisons. These include the known prevalence of ON
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alpha RGCs in the temporal retina (Bleckert et al., 2014), and the previously unreported prevalence of UHD
RGCs in the nasal retina.

Data from 37 RGC types are presented in three ways in Figure 2 (only 37 of the 42 types are illustrated
because DS RGCs with different directional preferences did not differ from each other in their responses to
light spots). We first measured the response polarity and kinetics of light responses with a 200 μm light spot
centered on the RF (marked “a” in the ON alpha RGC panel). This allowed us to assign cells according to
response polarity (ON, OFF, ON-OFF or Suppressed-by-Contrast) and as having sustained or transient
responses to luminance changes. Second, to assess how each RGC type’s response varied with stimulus size,
we measured the total ON and OFF spike responses for spots of 12 sizes from well below the RF center
diameter of the smallest RGC (30 μm) to a size that reached the far RF surround (1200 μm) (marked “b” in the
ON alpha RGC panel). This information was critical in separating many types. For example, despite similar
responses to the 200 μm spots, ON-OFF DS, HD1, HD2, and UHD all had different response profiles of their
ON and OFF responses across spot size. For some RGC types, even the overall polarity of the light response
depended on spot size. For example, HD2 RGCs are ON-OFF for small spots and ON for large spots (Jacoby
and Schwartz, 2017) and the ON small OFF large RGC switches polarity entirely with spot size as its name
suggests. Finally, we combined information about response amplitude and kinetics as a function of spot size
into a single plot using a heatmap of firing rate over time for each spot size (marked “c” in the ON alpha RGC
panel). Functional heatmaps of the variability in these responses within each functional group are presented in
Figure S3 and distributions of 6 common response metrics for each RGC type are shown in Figure S4.

Functional relatedness of RGC types
To visualize the relationships between functional RGC types, we used uniform manifold approximation and
projection (UMAP) (Becht et al., 2018; McInnes et al., 2018) (Figure 3). The UMAP algorithm assigned each
cell to a point in 2D space based only on its response to spots of varying size (the data in Figure 2) with
closely-related cells projecting to nearby locations in this space. We did not include the moving bar or drifting
gratings responses as input to the UMAP algorithm since they were not measured for every RGC. Therefore,
DS RGCs with different direction preferences and OS RGCs with different orientation preferences were
grouped together in this representation. Most RGC types formed clear clusters in UMAP space with a few
exceptions, typically for types that were sampled sparsely in our dataset (Figure 3A).

To assess the clustering of each of our defined functional types in this UMAP space, we subsequently
clustered points in this 2D space with DBSCAN (Ester et al., 1996). F-scores, which measure the overlap
between our 34 type labels and the 33 clusters identified by DBSCAN are shown in Figure 3B. These scores
represent the degree of functional similarity (for this stimulus paradigm) within our assigned types relative to
the differences between types. The types with lowest F-scores (10 types < 0.75) likely contain the majority of
our labeling errors. There are also RGC types in this group (e.g. M1 and ON bursty RGCs) for which additional
lines of evidence suggest that our labels are correct (see morphological and molecular data below), but for
which the average spike rates for flashed spots alone are not sufficient for highly reliable functional
classification. The average F-score, weighted by the number of cells of each type in the dataset, was 0.89.
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Figure 2. Functional diversity of mouse RGCs.
Each panel (separated by purple lines) contains 3 graphs showing the light response of an RGC type to flashed spots of light (200
R*/rod/s) from darkness. The top left graph (marked ‘c’ in ON alpha panel) is a heatmap of average firing rate over time (x-axis) for
spots from 30 – 1200 μm (y-axis). Dashed lines show the time of spot onset and offset. The top right graph (marked ‘b’ in ON alpha
panel) shows the total spike count during flash onset (cyan) and offset (black) for each spot size. The solid lines indicate mean across
cells and the shaded regions indicate standard deviation (s.d.). The bottom graph (marked ‘a’ in ON alpha panel) shows peristimulus
time histogram (PSTH) plots averaging the response of each cell type to 200 μm spots, indicated in upper plots by red dotted lines.
Scale bars in the upper left region are shared across all graphs. Separate scale bars for the y-axis of the PSTH plots are provided
within each boxed group of cells and apply within that box. Abbreviations for cell types: sus = sustained; tr = transient; med = medium;
EW = Eyewire (named based on the Eyewire museum); OS = orientation-selective; h = horizontal; v = vertical; DS = direction-selective;
SmRF = small receptive field; MeRF = medium receptive field; LgRF = large receptive field; HD = high definition; UHD = ultra high
definition; LED = local edge detector; (b,s)SbC = (bursty, sustained) suppressed-by-contrast.
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Figure 3. Visualization of functional
relationships among RGCs.
(A) UMAP projection of 1859 RGCs
labeled by assigned functional type. Insets
show magnified views of boxed regions.
(B) F-score for each RGC type, the
harmonic mean of the precision (fraction of
a given cluster representing a single labeld
type) and recall (fraction of our labeled
cells of a given type in a single cluster) of
its identification within a single DBSCAN
cluster.

Automated functional classification
We implemented a machine
learning classifier to assign RGCs
to types based on a feature set
comprising spike responses to
spots of varying size. Since the
responses to moving bars and
drifting gratings were not included
in the feature set, we collapsed DS
and OS cells across direction and
orientation, respectively. Our
dataset of 1859 RGCs across 34
types, was split into a training set
(n = 883), a calibration set (n =
500), and a test set for model
evaluation (n = 476). Details of
data split and classifier architecture
are provided in Methods.

Following training, the performance
of the classifier was evaluated on
the test set (Figure 3). For each
cell, the classifier outputs the
probability of membership in each
RGC type. Thus, the algorithm
provides both a “best guess” and a
confidence rating for each

prediction. An advantage of probabilistic scoring is that the classifier predictions can easily be updated to
include complementary sources of information (e.g. prior probabilities based on stratification depth in the inner
plexiform layer, IPL, or labeling in a transgenic line) via Bayes’ rule (MacKay and Mac, 2003). Without
thresholding the probability scores, classification accuracy was 59% overall (Figures 4B,D). The correct RGC
type was among the top three choices of the classifier 75% of the time (Figure 4A, inset), suggesting that
additional information (functional, structural or molecular), could be used to refine its predictions.
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Figure 4. Functional classification from spot responses.
(A) Overall model accuracy (y-axis) as a function of the fraction of unclassified cells in the test cells (x-axis), which increases with the
classification margin. The dashed line represents the expected accuracy of a random classifier. Inset, fraction of instances when the
correct choice was present among the top 1-10 probability scores in the classifier output.
(B) Fraction of test cells of each type classified correctly versus the number of cells of that type in the training set. Histogram at the right
shows the distribution of classifier accuracy across RGC types.
(C) Accuracy of classification for each RGC type versus its F-score from Fig. 3B.
(D) Confusion matrix (row normalized) for the classifier with no explicit classification margin set. Dotted lines separate RGC groups as
in Figure 2.
(E) Confusion matrix (row normalized) for the classifier with a classification margin of 0.205. The fraction of unclassified cells of each
type is shown in the first column. Remaining entries in the matrix only consider classified cells.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


To gain some measure of the degree to which RGC types classified by flashed spots correspond to those
identified by other criteria, we used 5 types of “external” validation data that were not available to the classifier:
(1) an image of the cell’s morphology, (2) fluorescent labeling in one of several transgenic lines in which small
subsets of RGCs are labeled (see Methods), (3) synaptic currents in voltage-clamp whose profile match those
in our published work on particular RGC types (Cooler and Schwartz, 2020; Jacoby and Schwartz, 2017;
Jacoby et al., 2015; Mani and Schwartz, 2017; Nath and Schwartz, 2016, 2017), (4) large soma size noted at
the time of recording (for the 3 alpha RGC types), (5) DS or OS as measured by moving bars and/or drifting
gratings (see Figure S1). 634 of the RGCs in our dataset (34%) were validated by one or more of these
external data types (Table S2). Classifier performance was slightly better for the validated cells in our test set
(65% correct, n = 221 cells) than for the unvalidated cells (59% correct, n = 255 cells).

Classification accuracy varied widely across RGC types with 9 types having 0% sensitivity and the other 24
having a median accuracy of 71% (Figure 4B). Overall accuracy scaled linearly with unclassified fraction as
we increased the classification margin, i.e. minimum probability score at which cells are assigned a type label
(Figure 4A). Cells with maximal class probabilities below the classification margin are considered
“unclassified”. Increasing the classification margin to 0.205 achieved an accuracy of 80% across the whole
data set with 49% of cells unclassified (Figure 4E). The most significant limitation of our classifier was the size
of the training set (Figure 4C). Thus, we expect classifier performance to improve steadily as we continue to
collect more data, particularly from rare RGC types. Updated results, newly trained versions, and tutorials for
formatting data and running it through the classifier will continue to be made available at rgctypes.org.

To our knowledge, this represents the first automated functional classifier designed to work on the full
population of RGCs. While the overall performance might seem modest, the scale of the problem is beyond
most attempts at supervised neuronal classification in the CNS. RGCs have many functional similarities,
particularly when only probed with a single stimulus type, and we were attempting to classify them into 34
types, some with very little training data (in fact, 3 with none at all, guaranteeing failure: M1, Motion sensor,
OFF sus EW3o). As shown next, morphological and molecular data offer large amounts of complementary
information for RGC classification, so we expect a future multi-modal classifier to achieve much higher
performance.

Alignment of functional and morphological classification
After we recorded visually evoked responses from RGCs, we filled some of them with either AlexaFluor 488 for
live imaging or with Neurobiotin for post-hoc imaging. 136 of these images could be effectively computationally
flattened and registered to the choline acetyltransferase (ChAT) bands; ChAT is an established marker for the
dendrites of starburst amacrine cells, which stratify in stereotypical, narrow strata (Sümbül et al., 2014). This
alignment allowed quantitative measurements of en face morphology and stratification patterns within the IPL
(Figure 5).

Stratification profiles for each functionally-defined RGC type are shown in Figure 5A along with those of our
suggested match in the Eyewire museum (Bae et al., 2018). Stratification similarity between each of our types
and each type in the Eyewire museum is shown as cosine overlap in Figure 5C. While stratification profile was
an important factor in matching our types to those in the Eyewire museum, it was not the only factor. Along with
stratification location and thickness, Figure 5B also depicts the dendritic field diameter and density of each
stratum as well as the soma size for each RGC type, as measured en face. Example traced images of each
type are shown in Figure 5D, and Supplementary Data contains all of the traced cells in en face and side
views along with those of our suggested Eyewire match.

We combined all of our morphological measurements and used UMAP to project the data for all 136 cells into
2D. While this dataset was not large enough for clustering into ~40 types to be feasible, we measured
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Figure 5. Morphological diversity of mouse RGCs.
(A) Stratification profile of each RGC type along the depth of the IPL from its outer (left) to inner (right) limits. Dashed lines indicate
ChAT bands. Profiles include individual cells (thin gray lines), the mean (thick black line), and s.d. (gray shading) as well ab ns the
presumed matching type(s) in the Eyewire museum (shades of red).
(B) Summary plot of the morphology of each RGC type. Colored rectangles depict the mean and full-width-at-half-maximum of each
dendritic stratum within the IPL (vertical scale) and the equivalent diameter (according to its diameter) of the stratum in the plane of the
IPL (horizontal scale). Stata are colored by arbor density. Somas are drawn as circles relative to their diameter on a separate horizontal
scale, as indicated.
(C) Mean overlap between the stratification profile of each measured cell and each template from the Eyewire museum as cosine
similarity.
(D) Gallery of en face skeleton example images of each RGC type colored by IPL depth. Full galleries of all skeleton images and those
in the Eyewire museum can be found in the Supplemental Data.
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distances in this space to capture the morphological similarity among cells that we independently grouped
together by their light responses (Figure S5). For 30 of the 32 types represented in this dataset (those with 2
or more members), the mean pairwise morphological distance for cells of the same functional type was less
than the mean pairwise morphological distance in the entire dataset. The compactness of this morphological
representation for RGCs of the same functional type varied by RGC type; 10 types were more than 10-fold
more compact in this space than the mean.

Alignment of functional and transcriptomic classification
Recent large-scale investigations of single-cell transcriptomes in the retina have identified ~45 molecularly
distinct types of postnatal mouse RGCs, comparable to the number of RGC types identified through
physiological and morphological analyses (Rheaume et al., 2018; Tran et al., 2019). While some clusters could
be matched 1:1 with previously known types based on well-established molecular markers (Sanes and
Masland, 2015), approximately 40% of clusters remained unmatched. Moreover, these methods used
dissociated tissue, precluding direct harmonization of gene expression with function.

To relate functional to molecular criteria, we used a variant of the Patch-seq technique (Cadwell et al., 2016) in
which RGCs were first classified based on their cell-attached light responses and then the cytoplasm was
collected for RNA-seq by aspirating the soma with a clean pipette (see Methods). We obtained 103
high-quality single RGC transcriptomes (>2000 genes/cell). We used gradient boosted decision trees (Chen
and Guestrin, 2016) to match each of our transcriptomes to a cluster in the published adult RGC dataset (Tran
et al., 2019)(see Methods). Many of our functionally-identified cells matched the transcriptomic clusters with
high concordance (Figure 6A) providing putative matches to previously unknown clusters. For example, the
three types of ON DS sus cells all aligned to C10 (a previously uncharacterized cluster), OFF tr SmRF aligned
with C21, corresponding to T-RGC S2 (Liu et al., 2018) and ON delayed (Mani and Schwartz, 2017),
previously observed in CCK-ires-Cre mice (Jacoby and Schwartz, 2018; Tien et al., 2015) aligned with a
cluster (C14), which was distinguished by the expression of the neuropeptide Cck.

T5-RGCs share a functional and morphological profile
Alignment of our physiologically characterized types to transcriptomically defined RGC groups (Tran et al.,
2019) enables a deeper analysis of the relationships between gene expression of RGCs and their function and
morphology. One example is provided by the gene Tusc5 (also known as Trarg1), which we identified as a key
marker of a group of 9 mostly unidentified transcriptomic clusters termed T5 RGCs (Tran et al., 2019). Most of
these RGCs are labeled by the transgene TYW3, which exhibits insertion-site dependent expression
(Laboulaye et al., 2018).

Transcriptomic clusters corresponding to the T5 RGCs are labeled by green arrowheads in Figure 6A. Six of
these clusters are matched to RGC types in our dataset, so we examined whether these types share functional
or morphological characteristics. All 6 T5 RGC types lie at the intersection of two functional characteristics,
transience and strong surround suppression, and one morphological characteristic, stratification between the
ChAT bands (Figure 6B). Other subclasses of RGCs can be queried in this way, with increasing power as
additional data is added to rgctypes.org.

The question of completeness
One way to estimate the completeness of our classification is to record nearly all the RGCs in a small region of
the retina and count how many can be assigned to one of our types. We performed such an experiment and
then stained the tissue with the pan-RGC marker gamma-synuclein (Surgucheva et al., 2008) to confirm RGC
identity post-hoc (Figure S6). We recorded 55 spiking cells and 25 cells for which we could not elicit spikes

with our test stimuli. Of the 55 spiking cells, 48 were successfully identified in the fixed tissue. In the live tissue
we had labeled 42 of these cells as RGCs matching one of our types and 6 as spiking amacrine cells. All 48 of
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Figure 6. Matches between functional types and transcriptomic clusters.
(A) Heatmap showing correspondence between functional types (rows) and transcriptomic clusters reported in Tran et al., 2019
(columns). Matches used in subsequent analyses are indicated by an ‘X’. Color scale indicates the number of patch-seq cells matched
to each cluster. See Methods for matching procedure. Green arrowheads indicate T5 RGCs as described in (Tran et al., 2019).
(B) Venn diagram of RGC types including one morphological characteristic (stratification between the ChAT bands) and two functional
characteristics (transience and surround suppression). Green text denotes cell types matched to transcriptomic clusters identified as T5
RGCs, characterized by the specific expression of gene Tusc5/Trarg1, in (Tran et al., 2019).

22 were identified in the fixed tissue: 10 were gamma-synuclein negative, presumably non-spiking amacrine
cells, and 12 were gamma-synuclein positive, presumably RGCs that we failed to identify. Thus, we identified
78% (42 / 54) of the putative RGCs in this sample. While somewhat less than our estimate of 89% coverage of
the types in the Eyewire museum, it is a conservative estimate because some of the non-responding RGCs
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these identifications were verified by the gamma-synuclein staining (42/42 gamma-synuclein positive RGCs
and 6/6 gamma-synuclein negative spiking amacrine cells). Of the 25 cells for which we could not elicit spikes,
were likely damaged during removal of the inner limiting membrane or by the recording procedure and did not
spike (e.g. because the axon initial segment was destroyed) but survived enough structurally for
gamma-synuclein staining.

Relatedness of functional, morphological, and transcriptomic space
The main goal of our study was to directly relate physiological, structural and molecular definitions of cell type.
Our suggested alignments between these three modalities are shown in Figure 7A. Functional types are
colored by their F-scores from Figure 4, and the data used to infer the alignment is shown in Figures 5, 6, and
Supplemental Data. With this alignment data in hand, we were able to address an additional question: to what
extent do relationships among types established in one modality (e.g. function) predict those in another
modality (e.g. morphology). Importantly, this is not a test of the quality of our alignment between modalities.
Functionally similar RGC types might differ substantially in morphology and/or gene expression, and the
degree to which local neighborhoods are similar across modalities might vary for each RGC type.

To investigate the questions of cross-modality neighborhood similarity, we constructed a UMAP embedding of
the stratification profiles of each cell in the Eyewire museum (Bae et al., 2018)(Figure 7B) and another UMAP
embedding of gene expression from the mouse RGC transcriptomic atlas (Figure 7C; replotted from (Tran et
al., 2019)). To measure neighborhood similarity across the 3 UMAP spaces (the functional space from Figure
3A and the stratification and gene expression spaces in Figure 7B,C), we tested whether the nearest
neighbors in a reference modality were also grouped nearby in another modality.

For each RGC type, we computed the fractional overlap among the identities of its nearest neighbors in the
reference embedding to that in the other two embeddings. We repeated this analysis for neighborhood sizes
from 2 to 12 nearest neighbors and grouped the results into the “local” and “global” neighborhoods. To
establish statistical significance on this fractional overlap measure, we used the bootstrap approach. We
randomly shuffled type identities in each of the maps and recomputed the fractional overlap. Repeating this
process 1000 times yielded an empirical null distribution. Fractional overlap values obtained from the real data
are reported as z-scores relative to this null distribution with positive values indicating greater overlap in the
real data than in the null distribution (Figure 7D–F).

Overall, similarity between modalities was modest; cross-modality overlap for many RGC types was within 1
s.d. of the null distribution (shaded regions in Figure 7D–F). Several RGC types did show strong local
neighborhood similarity between functional and morphological (IPL stratification) embeddings (Figure 7D), and
one type (OFF OS; 2aw; C5 and C9) showed a strong correspondence between its local neighborhoods in
stratification and gene expression space. Global neighborhood alignments had similar overall trends but a
somewhat different set of RGCs tended to be more cross-modally aligned globally than locally.

Integrated web-based RGC compendium
Finally, we created a resource so that labs around the world can come to a consensus on the classification of
mouse RGCs. To that end, we have developed a website, rgctypes.org (Figure 8), with a direct pipeline to our
database of functional and morphological measurements. Following a curation step and type assignment,
every RGC recorded in the Schwartz lab will automatically update to rgctypes.org. Other researchers are
invited to submit data for integration as well. Cells can also be reassigned to different types if evidence
supports a different assignment. Full datasets are available for download immediately, regardless of publication
status. We have also provided a downloadable version of our automated classifier and instructions on how to
prepare a data file to obtain a type prediction and confidence score.
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Figure 7. Correspondence between RGC relatedness in functional, morphological, and transcriptomic space.
(A) UMAP embedding of RGC morphology constructed from the stratification profiles in the Eyewire museum (Bae et al., 2018). Inset
shows boxed region at higher magnification.
(B) UMAP embedding of RGC gene expression from Tran et al. (2019). Cluster labels removed for clarity.
(C) Alignments between the three classification schemes that we used for subsequent analysis. Lines connect putative corresponding
RGC types in each classification schema.
(D) List of RGC types ranked by the z-normalized fractional overlap between functional and stratification embeddings. Shaded region
indicates 1 s.d. around the expectation from the null distribution. Top, local neighborhood (2-4) neighbors; bottom, global neighborhood
(5-12 neighbors).
(E, F) Same as (D) but showing alignment between functional and morphological space (E) or morphological and gene expression
space (F). Local neighborhood for (E, F) is 2-3 neighbors and global neighborhood is 4-8 neighbors.
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Figure 8. Screenshots from rgctypes.org.
(A) Landing page for the HD1 RGC.
(B) Table of RGC types
(C) Data download area.
(D) Expanded, interactive graph of HD1 RGC light responses.

Discussion
We present a resource of physiological, morphological, and transcriptomic data aimed at establishing a
comprehensive typology of mouse RGCs. A summary of our classification and its alignment with previous RGC
classifications is provided in Table S3. As multi-modal neuronal classification efforts continue to be a major
focus across many labs (BRAIN Initiative Cell Census Network (BICCN), 2021), we first consider what lessons
we have learned from this approach in our dataset that might apply to other regions of the CNS before
discussing what our findings have revealed about the retina.

RGCs have a distinct advantage for studies of typology since they form mosaics to tile visual space. Several
lines of evidence have now converged on a number of types near 45 in the mouse (Baden et al., 2016; Bae et
al., 2018; Tran et al., 2019), and we find 42 types with an estimated coverage of 89%. Each type has functional
characteristics that we used to distinguish it from others (Figure 2), and with few exceptions, these differences
were captured by supervised dimensionality reduction of the spike responses to a simple stimulus (Figure 3).
Success in clustering responses, however, does not automatically translate into success for an automated
classification algorithm (Figure 4). In clustering, there is typically no external ground truth data to assess the
validity of the clusters as cell types. We also lacked an absolute ground truth, but we used external validation
data not available to our classifier to label ⅓ of our cells (Table S2) and found performance to be similar (or
slightly better) than on our unvalidated type labels. When external validation data is available, future studies of
cell typology should report the performance of a cross-validated classifier in addition to measures of cluster
separability.
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As more studies employ multiple modalities, like function, morphology, and gene expression, to classify
neurons, comparisons of the same cells between modalities will become more frequent. Gene expression
impacts both morphology and function, and stratification within the IPL is an important factor in determining the
synaptic inputs of RGCs. Thus, one might have expected an even stronger correspondence between the
positions of RGC types across modalities (Figure 7D-F). It is worth noting that such an analysis inevitably
simplifies across the large possible space of each modality by dimensionality reduction both at the level of
feature selection (a single stimulus type, IPL stratification alone for morphology, gene selection for
transcriptomics) and at the level of the UMAP algorithm (down to 2 dimensions for each modality). For
example, specific single genes might be very important for IPL lamination (Krishnaswamy et al., 2015; Liu et
al., 2018) yet might fail to group types in transcriptomic space. The high dimensionality required to fully specify
a cell type in any single modality might mean that new distance metrics will be needed to study cross-modal
relationships between cell types if such relationships turn out to be important principles of brain architecture or
development.

Method for functional classification
We recorded from RGCs one at a time, which allowed us to center stimuli on the receptive field of each cell.
This undeniably limits throughput.  On the other hand when activities of many RGCs are recorded
simultaneously – for example by calcium imaging or with multielectrode arrays – it is not feasible to center
stimuli on individual RGCs, so these studies have used a combination of full-field modulation, large moving
objects or gratings, and spatiotemporal white noise. These stimulus choices come with a significant cost. Many
RGC types, including some of the most numerous types, respond poorly or not at all to full-field stimuli or
spatiotemporal white noise (Jacoby and Schwartz, 2017; Zhang et al., 2012). Other types respond both to
small (RF-centered) and large stimuli, but basic response properties depend on spot size. For example, the
ON small OFF large RGC would be classified as an OFF cell for full-field stimulation but responds as an ON
cell for small spots in its RF center. Surround suppression differentially affects both the total spike count and
response kinetics in most RGC types (Figure 2)(Wienbar and Schwartz, 2018), providing information that we
found necessary to separate otherwise functionally similar types.

Comparisons to previously defined RGC types
Our 42 RGC types appear to include all 28 types previously identified functionally (referenced in Table S3 and
at rgctypes.org) as well as 14 “novel” types that have not, to our knowledge, been defined previously.
Remarkably, most of these types can be distinguished based on their response patterns to spots of varying
size. The total is close to previous estimates (Baden et al., 2016; Bae et al., 2018; Rheaume et al., 2018; Tran
et al., 2019), supporting the view that mouse RGC classification is approaching completion. Many of the
“novel” types had certainly been encountered in previous studies, but we list them as such here based on our
belief that they had not been identified separately as distinct functional types (e.g. multiple types had been
grouped into “ON transient” and “OFF transient” categories). The novel types include several sets of
functionally similar RGCs (ON tr MeRF / ON tr SmRF / ON tr EW6t, OFF tr MeRF / OFF tr SmRF, OFF med
sus / OFF sus EW1no / OFF sus EW3o), all of which match 1:1 to morphological types and many to
transcriptomic types.

Why did the retina evolve entire populations of RGCs that vary only subtly in function? Of many possible
answers, we believe the most likely is that functionally similar types would reveal profound differences under
stimulus conditions beyond those in our simple battery. A striking example is Eyewire type 25. This type is
abundant (5.8% of the population), and forms a convincing and statistically validated dendritic mosaic (Bae et
al., 2018), yet we were unable to find its match in thousands of recordings. A natural hypothesis is that this
RGC type does not respond to our standard test stimuli, so it was consistently passed over. Supporting this
idea, the calcium responses for type ‘25’ in the Eyewire museum are weak (~1% ΔF/F with low signal-to-noise
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ratio as opposed to some RGC types which reached 20% ΔF/F). Similarly, we failed to find a clear “trigger
feature” for several RGC types (e.g. ON bursty, Motion sensor, sSbC EW27). Responses of these cells to
flashed spots were inconsistent. For simplicity and reproducibility, our study omitted the vast space of light
stimuli that may have differentiated these cell types, including high luminance, variations in color, and complex
forms of motion.

Direction selective (DS) and orientation selective (OS) RGCs represent a substantial fraction of the RGCs in
the mouse retina (14/42; 33% of types). We identified ON-OFF DS RGCs preferring all four cardinal directions
(dorsal, ventral, nasal, temporal), ON DS sustained types preferring three different directions, and one ON DS
transient type encountered infrequently and with a wide distribution of preferred directions (Figure S7). While
there is broad agreement that there are four ON-OFF DS RGC types in the mouse, there is not as strong a
consensus about ON DS RGCs. Some studies have reported three types (Estevez et al., 2013) while another
reported four (Sabbah et al., 2017). It remains unclear whether this discrepancy is due to one of the ON DS
RGC types being transient and the other three being sustained. One study reported a functionally and
morphologically distinct ON DS RGC that projects to superior colliculus (SC) and not to the medial terminal
nucleus (MTN) or nucleus of the optic tract (NOT) of the accessory optic system (Gauvain and Murphy, 2015).
This SC-projecting ON DS RGC had transient responses and more balanced ON and OFF dendritic strata than
the MTN-projecting types, consistent with type ‘7o’ in the Eyewire museum. While the previous study on these
cells did not report the distribution of their preferred directions (Gauvain and Murphy, 2015), calcium responses
for Eyewire type ‘7o’ consistently preferred a nearly nasal direction on the retina (Bae et al., 2018). Our sample
of ON DS sustained RGCs had a distribution of preferred directions with three clusters, separated by ~120
degrees, but the sparsely sampled ON DS transient RGCs had inconsistent direction preference (Figure S7),
and we have so far been unable to reconstruct its morphology. Thus, we have provisionally assigned the ON
DS trans. RGC to Eyewire type ‘7o’, but it is one of the matches in which we have the least confidence. A more
focused study on ON DS RGCs will be needed to resolve this final issue in the classification of DS RGC types.

OS RGCs, described long ago in other species (Levick, 1967; Maturana and Frenk, 1963), were only recently
identified in the mouse (Nath and Schwartz, 2016, 2017). OFF OS RGCs were separated into horizontal- and
vertical-preferring types based on their physiology, and the vertical-preferring type tended to have ventrally
directed dendrites, while horizontally-preferring cells had a less consistent asymmetry (Nath and Schwartz,
2017). The Eyewire data did not have a corresponding type consisting only of cells with strong ventrally
directed dendrites, although they note that type ‘2aw,’ with its similar range in dendritic asymmetry, has a much
higher coverage factor than the other types and likely corresponds to at least two RGC types that were not
separable based on morphology alone (Bae et al., 2018). Given these facts and the corresponding stratification
patterns between these types, we are confident in the categorization of both OFFhOS and OFFvOS RGCs as
Eyewire type ‘2aw’.

ON OS RGCs were also classified into horizontal- and vertical-preferring types when they were reported in
mouse (Nath and Schwartz, 2016), but here we further subdivide each group into separate “Small RF” and
“Large RF” types based on the spot size to which they respond optimally and their degree of surround
suppression. All four ON OS RGC types are among the largest in the retina in terms of dendritic span, so their
morphology is captured incompletely in the Eyewire dataset. Nonetheless, we have been able to assign each
of these functional OS RGC types to its most likely matching morphological type.

We identified three RGC types as suppressed-by-contrast (SbC), and a fourth, the ON delayed RGC, has been
classified as an SbC RGC under some conditions (Jacoby and Schwartz, 2018; Tien et al., 2015). The RGC
type we originally identified as the sustained SbC (Jacoby et al., 2015) has now been split into two types
(EW27 and EW28) based on both physiological and morphological criteria. The bursty SbC (bSbC) RGC is
distinguished from the sustained SbC types by its much higher baseline firing rate, more transient suppression,
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and monostratified morphology (Wienbar and Schwartz, 2021). Overall, our data underscores the fact that, like
the other three polarities (ON, OFF, and ON-OFF), SbC is a response class composed of multiple RGC types
(Jacoby and Schwartz, 2018).

Relationships between morphology, function, and gene expression
Having matched functional, morphological, and transcriptomic information for most RGC types, we were able
to assess the relationships among these properties. Disappointingly, proximity of types as assessed by any
single criterion failed to strongly predict proximity by either of the other two criteria. For transcriptomic
relationships, one possibility is that genes expressed during development, when morphology and connectivity
are being established, will need to be taken into account. On the other hand, the comparison between
morphology and funuctin was valuable in highlighting three unexpected trends. First, there are many
exceptions to the rule that RGCs with dendrites in the outer half of the IPL have OFF responses. The M1
ipRGC was a well-known exception, because it receives ectopic synapses from ON bipolar cells in the outer
IPL (Dumitrescu et al., 2009), but it is far from the only exception to this rule. All four ON OS RGC types, the
ON delayed, the M6, and both sSbC types have OFF dendrites but lack OFF spike responses. Additionally, the
OFF OS RGCs and the F-mini-ON RGC receive OFF input via gap junctions but lack OFF bipolar cell input
under any stimulus condition we have tested (Cooler and Schwartz, 2020; Nath and Schwartz, 2017). An
important caveat is that stimuli beyond our test set could reveal OFF responses, perhaps in bright conditions
(Pearson and Kerschensteiner, 2015; Tikidji-Hamburyan et al., 2015).

Second, the dendritic area of an RGC has often been associated with the size of its RF center. While this
association has a strong basis in the anatomy of the vertical excitatory pathways of the retina, there are a
number of exceptions in our data set. For example, “Small RF” and “Large RF” ON OS RGC types do not differ
appreciably in dendritic area, and M6 RGCs have smaller RFs than ON delayed RGCs despite substantially
larger dendritic area. Differential influences of inhibition and disinhibition likely explain some of these effects
(Mani and Schwartz, 2017; Wienbar and Schwartz, 2018).

Finally, RGCs with dendrites near the inner and outer margins of the IPL are typically assumed to have more
sustained light responses while those stratifying near the middle of the IPL are assumed to be more transient
(Awatramani and Slaughter, 2000; Roska and Werblin, 2001). This association has gained support from
large-scale measurements of the kinetics of glutamate release from bipolar cells throughout the IPL (Franke et
al., 2017; Marvin et al., 2013). While our data generally fit this trend, there were two notable exceptions. The
M6 RGC is transient despite stratification at both margins of the IPL, and the LED RGC is sustained despite
stratification near the middle of the IPL (Jacoby and Schwartz, 2017).

The literature linking gene expression in particular RGC types to their morphology and function has been more
fragmentary because the lack of known matches has prevented a wide view. We found that expression of the
gene Tusc5 is strongly associated with a particular physiological profile (transient light responses and strong
surround suppression) and a morphological profile (stratification between the ChAT bands)(Figure 6B). As
more information about each of the RGC types becomes available, including their projection patterns in the
brain, we expect more insights into the molecular determinants of RGC wiring patterns both within the retina
and to the brain. Future studies may also link biophysical properties of RGCs to the expression of ion
channels.

Limitations of the dataset and future directions
Several limitations of our dataset suggest directions for future work. First, our stimuli were limited to a single
wavelength distribution, a small range of scotopic to mesopic luminance, and a simple set of artificial patterns
(spots, gratings, and moving bars). These stimulus choices meant that we could not explore how RGC
responses differed over the parameters of luminance or wavelength. More generally, RGCs evolved not for
selectivity to the artificial parameterized stimuli we presented but to detect behaviorally relevant features of
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natural scenes. Second, while centering the stimulus for each RGC was important for measuring the spatial
features of its response, this step complicates the recovery of locally-complete RGC mosaics. Therefore, a
future step in RGC typology alignment will be needed to match our types with those in large-scale recordings
using either calcium imaging or multi-electrode arrays. We hope to collaborate with other labs performing
large-scale RGC recordings with some version of a sparse noise stimulus to validate the robustness of our
functional classification across labs and preparations. Finally, our morphological alignment to the Eyewire
dataset was not validated by a classification algorithm. The limited number of cells in both datasets and their
methodological differences made such a morphology classifier impractical, but with additional data an RGC
morphology classifier is a goal (Laturnus and Berens, 2021). Since our functional classification algorithm
produces a posterior probability for each class, functional and morphological information could be incorporated
seamlessly into a single prediction. Similarly, our improving understanding of the gene expression profiles of
each RGC type could enable more accurate composite predictions from the expression of a few key genes
plus functional and/or morphological data.

Web-based resource
Standardization in the definitions of RGC types among different research groups is essential to support studies
on retinal computation, circuit connectivity, and disease pathology. Additionally, there is rapidly expanding
interest in the projection patterns of different RGC types throughout the brain (Dhande et al., 2015; Johnson et
al., 2021; Martersteck et al., 2017), which similarly relies on standardized type definitions. For these reasons,
we created an open online resource at rgctypes.org where users can search and download full datasets, use
our classification algorithm, and contribute their own data to this effort. By unifying the separate functional,
morphological, and molecular RGC classification schemas, this resource will allow researchers to connect data
across experimental modalities. For example, a set of RGCs labeled by their projection to a certain brain
region could be classified by gene expression, and our alignment between transcriptomics and function would
provide insights into the functional input to that brain region without additional measurements of light
responses. Or the complement of RGC types in a new transgenic mouse line could be measured by confocal
microscopy, and our alignment between morphology and function could help generate hypotheses about the
functional deficits that might exist if this RGC population were ablated. We expect rgctypes.org to play a central
role in the fields of retinal neurobiology and vision science moving forward and, more broadly, to serve as a
template for data sharing and collaboration that is applicable to neuronal classification projects throughout the
CNS.

Methods
Animals.
Wild-type mice (C57/Bl6 - JAX 000664) of either sex were dark-adapted overnight and sacrificed according to
standards provided by Northwestern University Center for Comparative Medicine. 4 transgenic lines were used
to target subsets of RGCs. All other mice were WT

PV-Cre (JAX #008069) x Ai14 (JAX #007908): 4 animals

Opn4-GFP (Generous gift from lab of Tiffany Schmidt, Northwestern University): 2 animals

TYW3-GFP (Lab of author J. Sanes): 9 animals

JAMB-eYFP (Lab of author J. Sanes): 3 animals
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Retinal tissue was isolated under infrared illumination (900 nm) with the aid of night-vision goggles and IR
dissection scope attachments (BE Meyers).  Retinal orientation was identified using scleral landmarks (Wei et
al., 2010), and preserved using relieving cuts in cardinal directions, with the largest cut at the ventral retina.
Retinas were mounted on 12mm poly-D-lysine coated glass affixed to a recording dish with grease, with the
ganglion cell layer up. Oxygenation was maintained by superfusing the dish with carbogenated Ames medium
(US Biological, A1372-25) warmed to 32˚C. Our dataset included 1859 recorded RGCs from 551 eyes of 544
animals.

Visual stimuli.
RGC types were identified via cell-attached capacitive spike train responses to light stimuli as previously
described (Jacoby and Schwartz, 2017; Jacoby et al., 2015; Mani and Schwartz, 2017; Nath and Schwartz,
2016, 2017). Briefly, stimuli were presented using a custom designed light-projector (DLP LightCrafter; Texas
Instruments) at a frame rate of 60 Hz. Spatial stimuli patterns were generated on a 912x1140-pixel digital
projector using blue (450nm) LEDs focused on the photoreceptor layer. Neutral density filters (Thorlabs) were
used to attenuate the light intensity of stimuli to 200 rhodopsin isomerizations per rod per second (R*/rod/s)
from darkness.

The receptive field (RF) centers of individual RGCs were determined by monitoring their relative light
responses to horizontal and vertical bars (200 x 40 μm, or 100 x 40 μm in the case of cells with high surround
suppression) flashed at 30 μm intervals at 11 locations along each axis. Subsequent stimuli were presented at
the RF center. For generic light steps, a spot of 200 μm diameter was presented for 1 s, with cell-attached
responses recorded for at least 0.5 s pre-stimulus and 1s post-stimulus. For spots of multiple sizes, spots with
diameters from 30-1200 μm (on a logarithmic scale) were presented in pseudorandom order, with similarly
timed epochs. Direction preference of direction-selective (DS) RGCs was determined by moving bar stimuli,
consisting of a rectangular bar (600 x 200 μm) passing through the receptive field center at 1000 μm/s
(ON-OFF DS RGCs) or 500 μm/s (ON DS RGCs). Flashed bar stimuli for testing orientation selectivity were
800 x 50 μm and presented at 12 different orientations (Nath and Schwartz, 2016). Drifting gratings and
contrast series were presented from a background luminance of 1000 R*/rod/s following protocols from
previous studies (Jacoby et al., 2015; Nath and Schwartz, 2017).

Functional response metrics.
We measured 6 standard response metrics from the flashed spots data. Distributions for each metric for each
RGC type are shown in Figure S4.

Baseline firing rate. Mean firing rate in darkness before spot presentation across all trials.

Peak firing rate. Highest firing rate (baseline subtracted) achieved in a 10 ms bin at light onset or offset across
all spot sizes.

Peak response latency. Time from light onset or offset until the peak firing rate.

Response duration. Time from peak firing rate until firing rate drops below baseline +10 percent.

Suppression index. First we determined the dominant polarity for the cell by whether the maximum ON or OFF
response (in total spike count from baseline) was larger across spot sizes. For the dominant polarity, the
suppression index was the ratio of the difference between this maximum response and the response to the
largest (1200 μm) spot divided by the sum of these two quantities.

ON:OFF index. Maximum ON response across spot sizes (spike count from baseline) minus the maximum
OFF response divided by the sum of these two quantities.
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Automated classification.
A classifier was trained to recognize RGC types based on cell-attached recordings of responses to spots of
multiple sizes. RGC type labels were assigned manually by two of the authors (JG and GWS), and cells were
further labeled as externally validated or unvalidated by GWS based on the presence of identifying data not
available to the classifier, including morphological, transcriptomic, whole-cell, and physiological (response to
moving bars or drifting gratings) data. Types with 5 or fewer examples were excluded from training, and OS
and DS cells were condensed across orientation/direction based on the similarity of their light responses to
spots of multiple sizes.

Cells were randomly assigned to a testing set (~25% of cells) and a training set, which was further subdivided
into a training set for a base classifier (~50% of cells) and a calibration set (~25% of cells). The scheme
favored assignment of validated cells to the calibration set and unvalidated cells to the training set for the base
classifier. The classifier implements a semi-supervised learning model: a base classifier learns to recognize
features of the probability distribution of RGC light responses that are useful for predicting the manual labels,
subject to labeling error; this knowledge is “transferred” by the calibrator to reweight the base model’s
predictions in order to better predict the labels which are influenced by external validation. Thus we minimize
error propagation while maintaining a large enough training set to form robust predictions about RGC type.

The multi-class classification problem was broken down into a series of binary ones using the error-correcting
output code (ECOC) scheme, such that a series of classifiers each learns to discern different combinations of
RGC types. Each binary learner in the ECOC scheme was trained using Ada-boosted decision trees (Hastie et
al., 2009) with initial weights set to enforce a uniform prior probability of each RGC type.

Individual trees were trained by performing elastic net logistic regression on a random subset of firing rates
from peristimulus time histogram (PSTH) vs. spot size for feature reduction and choosing the threshold that
minimized class uncertainty (Friedman et al., 2010; Schneider et al., 2015). Since not all PSTHs were recorded
over the same time and spot size ranges, we imputed missing data using a nearest neighbor approach. Poorly
sampled points were penalized in both random selection and regression: for time points the penalty was
inversely proportional to their frequency of occurrence across cells (since all PSTHs were binned with the
same Δt); for spot sizes we aimed to account for the nonlinearity of responses in the penalty with the following
formula:

,𝑝𝑒𝑛𝑎𝑙𝑡𝑦−1(𝑠) ∝ 𝑚𝑎𝑥 (𝑙𝑜𝑔(𝑀𝑆𝐸(·))
+

) −  𝑙𝑜𝑔(𝑀𝑆𝐸(𝑠))
+

where MSE is the mean across cells of the squared error between the chosen spot size, s, and the nearest
recorded spot size, and denotes positive rectification.(·) 

+

To implement the calibrator, the calibration fold was used to train an isotonic regression model that transformed
each binary learner score into a probability, again enforcing a uniform prior using sample weighting (Zadrozny
and Elkan, 2002). The probabilities from each binary learner were then coupled to obtain a probability for each
class (Zadrozny, 2002).

We used three-fold cross validation to train a Bayesian optimization model for hyperparameter tuning. Table 3
lists the hyperparameters we optimized and their final values. The classifier is available for use at rgctypes.org,
and the source code is available at https://github.com/zfj1/rgc-classifier.
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Parameter Algorithm level Optimized value Optimization range

Number of features Elastic net 54 5 to 100

Number of folds Elastic net 6 2 to 10

Alpha Elastic net .326 0.0 to 1.0

Number of lambda values Elastic net 6 5 to 50

Number of repetitions Decision node 5 5 to 20

Minimum size Decision node 13 5 to 100

Maximum depth Decision tree 6 2 to 8

Minimum tree count Adaboost forest 76 20 to 100

Maximum tree count Adaboost forest 95 25 to 100

Stopping criterion Adaboost forest 1.44% improvement over last
44 trees

1% to 50% improvement over last 10 to 50
trees

Ensemble size ECOC 96 32 to 100

Probability of ensemble membership ECOC 22.2% in positive class, 38.2%
in negative class, 60.4% null

10% to 90% in positive/negative class

Table 1. Hyperparameters for the automated RGC classifier.

Imaging.
A subset of recorded RGCs were injected with Neurobiotin (Vector Laboratories, SP-1150, ∼3% w/v and ∼280
mOsm in potassium aspartate internal solution) using patch pipettes. Retinas were then fixed in 4%
paraformaldehyde for 15 minutes at 25˚C, washed three times with PBS, and incubated for 1 hour in blocking
solution (1X PBS with 3% normal donkey serum, 0.05% sodium azide, 0.5% Triton X-100) including
streptavidin conjugated to a fluorophore (Alexa Fluor-488 or Alexa Fluor-568). Next, retinas were incubated
again in blocking solution with primary antibody against choline acetyltransferase (ChAT; Millipore, AB144P,
goat anti-ChAT, 1:1000) for 5 nights at 4˚C. Retinas were then rinsed in PBS three times at no less than 1 hour
per wash before incubation overnight at 4˚C with streptavidin (Jackson, 016-600-084) and secondary antibody
(Donkey anti-Goat 647, Fisher, A11055). Retinas were then rinsed again in PBS three times at no less than 1
hour per wash before mounting on slides with Fluoromount.

RGCs filled with AlexaFluor were imaged immediately using two-photon microscopy (920 nm, MaiTai HP;
SpectraPhysics) under a 60× water-immersion objective (Olympus LUMPLan FLN 60×/1.00 numerical
aperture). A 520–540 nm band-pass filter was used to collect emission. After immunohistochemistry, confocal
imaging was performed at the Center for Advanced Microscopy at Northwestern University Feinberg School of
Medicine generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive
Cancer Center. Dendrites were traced in Fiji using the SNT plugin (Arshadi et al., 2021).

Morphology analysis
Dendrite skeleton images were flattened using a custom MATLAB tool based on the method in (Sümbül et al.,
2014) and available at github.com/SchwartzNU/SymphonyAnalysis/tree/master/imageAnalysis/RGC_analyzer.
In cases where we had ChAT staining, the ChAT bands were used as the reference surfaces. In cases where
ChAT staining was not available, we used a smoothed version of each (hand-selected) stratum as reference
surfaces and used soma position to register to IPL depth. In addition to the stratification profile, we computed
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10 additional metrics from each arbor skeleton. All of these metrics were combined for the unsupervised
clustering analyzed in Fig. S5.

Area. Area of the polygon connecting the tips of the dendrites in each stratum.

Convexity Index. Convex hull area around each stratum divided by the polygon area.

Total length. Linear length of dendritic tree.

Arbor density. Linear length divided by area for each stratum.

Arbor complexity. Number of branches divided by total length.

Soma size. Diameter of soma at its largest axial cross section.

Branch length. Distribution of lengths of all branches of the dendritic tree.

Branch angle. Distribution of angles at branch points in the arbor.

Tortuosity. Distribution of path length divided by Euclidean distance between endpoints for each branch.

Depth range. Distribution of range in depth in the IPL spanned by each branch.

Single-cell transcriptomics
Library generation. Following physiological recording, a subset of RGCs was isolated for single-cell
transcriptome sequencing. First, the area surrounding cells of interest was cleaned of nearby cells and visible
debris by aspiration through a large (3-4um inner diameter) patch pipette. Cells were then aspirated using a
freshly flame-pulled patch pipette (2.5 inner diameter) and placed into a 5 μl of lysis Buffer TCL (Qiagen,
1031576) + 1% 2-mercaptoethanol (Millipore-Sigma, 63689) before being flash-frozen on dry ice.

We generated RNA-Seq libraries using a modified Smart-seq2 method (Picelli et al., 2014) with the following
minor changes: Before reverse transcription, RNA was purified using 2.2X SPRI-beads (Beckman Coulter,
A3987) followed by 3 wash steps with 80% EtOH, elution in 4 µl of RT primer mix and denatured at 72 °C for 3
min. Six µl of the first-strand reaction mix, containing 0.1 μl SuperScript II reverse transcriptase (200 U/μl,
Invitrogen), 0.25 μl RNAse inhibitor (40 U/μl, Clontech), 2 μl Superscript II First-Strand Buffer (5x, Invitrogen),
0.1 μl MgCl2 (100 mM, Sigma), 0.1 μl TSO (100 μM) and 3.45 μl Trehalose (1M), were added to each sample.
Reverse transcription was carried out at 50°C for 90 min followed by inactivation at 85 °C for 5 min. After PCR
preamplification, product was purified using a 0.8X of AMPure XP beads (Beckman Coulter), with the final
elution in 12 μl of EB solution (Qiagen). For tagmentation the Nextera DNA Sample Preparation kit
(FC-131-1096, Illumina) was used and final PCR was performed as follows: 72 °C 3 min, 95 °C 30 s, then 12
cycles of (95 °C 10 s, 55 °C 30 s, 72 °C 1 min), 72°C 5min. Purification was done with a 0.9X of AMPure XP
beads. Libraries were diluted to a final concentration of 2 nM, pooled and sequenced on Next-Seq(Mid), 75bp
paired end.

Alignment and quantification of scRNA-cell transcriptomic libraries. Gene expression levels were quantified
using RNA-seq by Expectation Maximization (RSEM) (Li and Dewey, 2011). Under the hood, Bowtie 2
(Langmead and Salzberg, 2012) was used to map paired-end reads to a mouse transcriptome index
(mm10/GRCm38 UCSC build). RSeQC (Wang et al., Bioinformatics, 2012) was used to quantify quality metrics
for the alignment results. We only considered cells where the read alignment rate to the genome and
transcriptome exceeded 85% and 35% respectively, and the total number of transcriptome-mapped reads was
less than 350,000. RSEM yielded an expression matrix (genes x samples) of transcript per million counts
(TPM), which were log-transformed after the addition of 1 to avoid zeros. Overall 103 RGCs, each of which
carried a functional type label, were selected for further analysis.
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Matching gene-expression clusters to cell types. To map each of the 103 RGC transcriptomes to a molecular
cluster in Tran et al., 2019 we used the XGboost algorithm (Chen and Guestrin, 2016), as implemented in the
R package xgboost. Briefly, we trained and validated an xgboost multi-class classifier on the atlas of 35,699
RGCs subdivided into 45 molecularly distinct groups (C1-C45). Around 50% of the data was used for training
and the remaining 50% was held out and used for validation. We optimized hyperparameters (e.g. tree depth,
number of features, class-specific weights) to achieve a validation set accuracy of >90% across each of the 45
transcriptomic classes. This trained classifier was then used to assign a cluster label for each of the 105
transcriptomes profiled in this study. We assigned a transcriptomic label to each RGC if a minimum of 15% of
trees in the forest voted on the majority decision. This choice of voting margin was >6x higher than the random
threshold of 2.3%, based on the fact that there are 45 classes. The correspondences between functional and
transcriptomic labels were visualized as confusion matrices.

UMAP and cross-modality neighborhood comparisons.
The functional input data to the UMAP algorithm was a linearized version of the full matrix of the PSTH for
each cell across spot sizes (as in Figure 2). We used a MATLAB implementation of UMAP
(https://www.mathworks.com/matlabcentral/fileexchange/71902) supervised by the RGC type labels for the
data set of 1859 cells. The input to the UMAP algorithm for morphology was the unnormalized stratification
profile for each RGC from the Eyewire museum (381 cells) supervised by the labels in the museum. Although
no attempt was made to capture details of the en face morphological characteristics of each cell, the
unnormalized stratification data allowed the algorithm to use information about total dendritic length. The input
to the UMAP algorithm for transcriptomic space was a vector of gene expression values for
RGC-type-selective genes from the published dataset (~35,699 cells) as described in (Tran et al., 2019).

We measured similarities between the three UMAP spaces (function, morphology, and genetics) by comparing
nearest neighbors between spaces. For each RGC type in which we established a match between the two
spaces being compared, we measured the fractional overlap between the nearest neighbors in the first space
and those in the second space (matching types / neighborhood size). The analysis was repeated for
neighborhood sizes from 2 - 12. To assess the statistics of the measured overlap values, we created a
bootstrap distribution by randomly shuffling the cluster identities in one of the spaces. Data in Figure 7D–F are
z scores with respect to this bootstrap distribution which was Gaussian.

References

Arshadi, C., Günther, U., Eddison, M., Harrington, K.I.S., and Ferreira, T.A. (2021). SNT: a unifying toolbox for
quantification of neuronal anatomy. Nat. Methods 18, 374–377.

Awatramani, G.B., and Slaughter, M.M. (2000). Origin of transient and sustained responses in ganglion cells of
the retina. J. Neurosci. 20, 7087–7095.

Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M., and Euler, T. (2016). The functional diversity
of retinal ganglion cells in the mouse. Nature 529, 345–350.

Bae, J.A., Mu, S., Kim, J.S., Turner, N.L., Tartavull, I., Kemnitz, N., Jordan, C.S., Norton, A.D., Silversmith,
W.M., Prentki, R., et al. (2018). Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology.
Cell 173, 1293–1306.e19.

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and Newell, E.W. (2018).
Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol.

Bleckert, A., Schwartz, G.W., Turner, M.H., Rieke, F., and Wong, R.O.L. (2014). Visual space is represented by

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

https://paperpile.com/c/pP8mgM/m9Ey
http://paperpile.com/b/pP8mgM/XqWP
http://paperpile.com/b/pP8mgM/XqWP
http://paperpile.com/b/pP8mgM/7DAb
http://paperpile.com/b/pP8mgM/7DAb
http://paperpile.com/b/pP8mgM/6CWM
http://paperpile.com/b/pP8mgM/6CWM
http://paperpile.com/b/pP8mgM/O5c7
http://paperpile.com/b/pP8mgM/O5c7
http://paperpile.com/b/pP8mgM/O5c7
http://paperpile.com/b/pP8mgM/xXLo
http://paperpile.com/b/pP8mgM/xXLo
http://paperpile.com/b/pP8mgM/Q0RF
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24, 310–315.

BRAIN Initiative Cell Census Network (BICCN) (2021). A multimodal cell census and atlas of the mammalian
primary motor cortex. Nature 598, 86–102.

Cadwell, C.R., Palasantza, A., Jiang, X., Berens, P., Deng, Q., Yilmaz, M., Reimer, J., Shen, S., Bethge, M.,
Tolias, K.F., et al. (2016). Electrophysiological, transcriptomic and morphologic profiling of single neurons using
Patch-seq. Nat. Biotechnol. 34, 199–203.

Chen, T., and Guestrin, C. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Close, J.L., Long, B.R., and Zeng, H. (2021). Spatially resolved transcriptomics in neuroscience. Nat. Methods
18, 23–25.

Cooler, S., and Schwartz, G.W. (2020). An offset ON–OFF receptive field is created by gap junctions between
distinct types of retinal ganglion cells. Nat. Neurosci. 1–11.

Dhande, O.S., Stafford, B.K., Lim, J.-H.A., and Huberman, A.D. (2015). Contributions of Retinal Ganglion Cells
to Subcortical Visual Processing and Behaviors. Annu Rev Vis Sci 1, 291–328.

Dumitrescu, O.N., Pucci, F.G., Wong, K.Y., and Berson, D.M. (2009). Ectopic retinal ON bipolar cell synapses
in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J.
Comp. Neurol. 517, 226–244.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., and Others (1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. In Kdd, pp. 226–231.

Estevez, M., Quattrochi, L., Dhande, O., Kim, I., Firman, T., Eldanaf, R., Huberman, A., and Berson, D. (2013).
Form and function of the three ON-type direction-selective retinal ganglion cells in the Hoxd10 mouse. Invest.
Ophthalmol. Vis. Sci. 54, 1298–1298.

Euler, T., Franke, K., and Baden, T. (2019). Studying a Light Sensor with Light: Multiphoton Imaging in the
Retina. In Multiphoton Microscopy, E. Hartveit, ed. (New York, NY: Springer New York), pp. 225–250.

Farrow, K., and Masland, R.H. (2011). Physiological clustering of visual channels in the mouse retina. J.
Neurophysiol. 105, 1516–1530.

Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T., and Baden, T. (2017). Inhibition decorrelates visual
feature representations in the inner retina. Nature 542, 439–444.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via
Coordinate Descent. J. Stat. Softw. 33, 1–22.

Gauvain, G., and Murphy, G.J. (2015). Projection-Specific Characteristics of Retinal Input to the Brain. Journal
of Neuroscience 35, 6575–6583.

Grimes, W.N., Schwartz, G.W., and Rieke, F. (2014). The synaptic and circuit mechanisms underlying a
change in spatial encoding in the retina. Neuron 82, 460–473.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

http://paperpile.com/b/pP8mgM/Q0RF
http://paperpile.com/b/pP8mgM/TVa8
http://paperpile.com/b/pP8mgM/TVa8
http://paperpile.com/b/pP8mgM/G4dI
http://paperpile.com/b/pP8mgM/G4dI
http://paperpile.com/b/pP8mgM/G4dI
http://paperpile.com/b/pP8mgM/24IG
http://paperpile.com/b/pP8mgM/24IG
http://paperpile.com/b/pP8mgM/5LDt
http://paperpile.com/b/pP8mgM/5LDt
http://paperpile.com/b/pP8mgM/yStu
http://paperpile.com/b/pP8mgM/yStu
http://paperpile.com/b/pP8mgM/FecW
http://paperpile.com/b/pP8mgM/FecW
http://paperpile.com/b/pP8mgM/GOnD
http://paperpile.com/b/pP8mgM/GOnD
http://paperpile.com/b/pP8mgM/GOnD
http://paperpile.com/b/pP8mgM/45Pi
http://paperpile.com/b/pP8mgM/45Pi
http://paperpile.com/b/pP8mgM/W9lh
http://paperpile.com/b/pP8mgM/W9lh
http://paperpile.com/b/pP8mgM/W9lh
http://paperpile.com/b/pP8mgM/32Gc
http://paperpile.com/b/pP8mgM/32Gc
http://paperpile.com/b/pP8mgM/JnxL
http://paperpile.com/b/pP8mgM/JnxL
http://paperpile.com/b/pP8mgM/tu9V
http://paperpile.com/b/pP8mgM/tu9V
http://paperpile.com/b/pP8mgM/jJuu
http://paperpile.com/b/pP8mgM/jJuu
http://paperpile.com/b/pP8mgM/HwiQ
http://paperpile.com/b/pP8mgM/HwiQ
http://paperpile.com/b/pP8mgM/gDiB
http://paperpile.com/b/pP8mgM/gDiB
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hastie, T., Rosset, S., Zhu, J., and Zou, H. (2009). Multi-class adaboost. Stat. Interface 2, 349–360.

Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B.,
Johansen, N., Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse
cortex. Nature 573, 61–68.

Hoon, M., Okawa, H., Della Santina, L., and Wong, R.O.L. (2014). Functional architecture of the retina:
development and disease. Prog. Retin. Eye Res. 42, 44–84.

Jacoby, J., and Schwartz, G.W. (2017). Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are
Distinctly Tuned to Size, Speed, and Object Motion. Journal of Neuroscience 37, 610–625.

Jacoby, J., and Schwartz, G.W. (2018). Typology and Circuitry of Suppressed-by-Contrast Retinal Ganglion
Cells. Front. Cell. Neurosci. 12, 269.

Jacoby, J., Zhu, Y., DeVries, S.H., and Schwartz, G.W. (2015). An Amacrine Cell Circuit for Signaling Steady
Illumination in the Retina. Cell Rep. 13, 2663–2670.

Joesch, M., and Meister, M. (2016). A neuronal circuit for colour vision based on rod–cone opponency. Nature
532, 236–239.

Johnson, K.P., Zhao, L., and Kerschensteiner, D. (2018). A Pixel-Encoder Retinal Ganglion Cell with Spatially
Offset Excitatory and Inhibitory Receptive Fields. Cell Rep. 22, 1462–1472.

Johnson, K.P., Fitzpatrick, M.J., Zhao, L., Wang, B., McCracken, S., Williams, P.R., and Kerschensteiner, D.
(2021). Cell-type-specific binocular vision guides predation in mice. Neuron 109, 1527–1539.e4.

Jouty, J., Hilgen, G., Sernagor, E., and Hennig, M.H. (2018). Non-parametric Physiological Classification of
Retinal Ganglion Cells in the Mouse Retina. Front. Cell. Neurosci. 12, 481.

Kay, J.N., Chu, M.W., and Sanes, J.R. (2012). MEGF10 and MEGF11 mediate homotypic interactions required
for mosaic spacing of retinal neurons. Nature 483, 465–469.

Krieger, B., Qiao, M., Rousso, D.L., Sanes, J.R., and Meister, M. (2017). Four alpha ganglion cell types in
mouse retina: Function, structure, and molecular signatures. PLoS One 12, e0180091.

Krishnaswamy, A., Yamagata, M., Duan, X., Hong, Y.K., and Sanes, J.R. (2015). Sidekick 2 directs formation of
a retinal circuit that detects differential motion. Nature 524, 466–470.

Laboulaye, M.A., Duan, X., Qiao, M., Whitney, I.E., and Sanes, J.R. (2018). Mapping Transgene Insertion Sites
Reveals Complex Interactions Between Mouse Transgenes and Neighboring Endogenous Genes. Front. Mol.
Neurosci. 11, 385.

Laturnus, S., and Berens, P. (2021). MorphVAE: Generating Neural Morphologies from 3D-Walks using a
Variational Autoencoder with Spherical Latent Space.

Levick, W.R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s
retina. J. Physiol. 188, 285–307.

Liu, J., Reggiani, J.D.S., Laboulaye, M.A., Pandey, S., Chen, B., Rubenstein, J.L.R., Krishnaswamy, A., and
Sanes, J.R. (2018). Tbr1 instructs laminar patterning of retinal ganglion cell dendrites. Nat. Neurosci. 21,

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

http://paperpile.com/b/pP8mgM/n2zL
http://paperpile.com/b/pP8mgM/22c0
http://paperpile.com/b/pP8mgM/22c0
http://paperpile.com/b/pP8mgM/22c0
http://paperpile.com/b/pP8mgM/MGkK
http://paperpile.com/b/pP8mgM/MGkK
http://paperpile.com/b/pP8mgM/fG7a
http://paperpile.com/b/pP8mgM/fG7a
http://paperpile.com/b/pP8mgM/HuvL
http://paperpile.com/b/pP8mgM/HuvL
http://paperpile.com/b/pP8mgM/sgab
http://paperpile.com/b/pP8mgM/sgab
http://paperpile.com/b/pP8mgM/6Tfz
http://paperpile.com/b/pP8mgM/6Tfz
http://paperpile.com/b/pP8mgM/jgL9
http://paperpile.com/b/pP8mgM/jgL9
http://paperpile.com/b/pP8mgM/zzlO
http://paperpile.com/b/pP8mgM/zzlO
http://paperpile.com/b/pP8mgM/9XLe
http://paperpile.com/b/pP8mgM/9XLe
http://paperpile.com/b/pP8mgM/ydqn
http://paperpile.com/b/pP8mgM/ydqn
http://paperpile.com/b/pP8mgM/70gk
http://paperpile.com/b/pP8mgM/70gk
http://paperpile.com/b/pP8mgM/FBzM
http://paperpile.com/b/pP8mgM/FBzM
http://paperpile.com/b/pP8mgM/eq7n
http://paperpile.com/b/pP8mgM/eq7n
http://paperpile.com/b/pP8mgM/eq7n
http://paperpile.com/b/pP8mgM/Qfdl
http://paperpile.com/b/pP8mgM/Qfdl
http://paperpile.com/b/pP8mgM/P8gB
http://paperpile.com/b/pP8mgM/P8gB
http://paperpile.com/b/pP8mgM/BXYo
http://paperpile.com/b/pP8mgM/BXYo
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


659–670.

Mani, A., and Schwartz, G.W. (2017). Circuit Mechanisms of a Retinal Ganglion Cell with Stimulus-Dependent
Response Latency and Activation Beyond Its Dendrites. Curr. Biol. 27, 471–482.

Marco, S.D., Di Marco, S., Protti, D.A., and Solomon, S.G. (2013). Excitatory and inhibitory contributions to
receptive fields of alpha-like retinal ganglion cells in mouse. Journal of Neurophysiology 110, 1426–1440.

Martersteck, E.M., Hirokawa, K.E., Evarts, M., Bernard, A., Duan, X., Li, Y., Ng, L., Oh, S.W., Ouellette, B.,
Royall, J.J., et al. (2017). Diverse Central Projection Patterns of Retinal Ganglion Cells. Cell Rep. 18,
2058–2072.

Marvin, J.S., Looger, L.L., and Demb, J.B. (2013). Two-photon imaging of nonlinear glutamate release
dynamics at bipolar cell synapses in the mouse retina. Journal of.

Maturana, H.R., and Frenk, S. (1963). DIRECTIONAL MOVEMENT AND HORIZONTAL EDGE DETECTORS
IN THE PIGEON RETINA. Science 142, 977–979.

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction.

Nadal-Nicolás, F.M., Kunze, V.P., Ball, J.M., Peng, B.T., Krishnan, A., Zhou, G., Dong, L., and Li, W. (2020).
True S-cones are concentrated in the ventral mouse retina and wired for color detection in the upper visual
field. Elife 9.

Nath, A., and Schwartz, G.W. (2016). Cardinal Orientation Selectivity Is Represented by Two Distinct Ganglion
Cell Types in Mouse Retina. Journal of Neuroscience 36, 3208–3221.

Nath, A., and Schwartz, G.W. (2017). Electrical synapses convey orientation selectivity in the mouse retina.
Nat. Commun. 8, 2025.

Pearson, J.T., and Kerschensteiner, D. (2015). Ambient illumination switches contrast preference of specific
retinal processing streams. J. Neurophysiol. 114, 540–550.

Reese, B.E., and Keeley, P.W. (2015). Design principles and developmental mechanisms underlying retinal
mosaics. Biol. Rev. Camb. Philos. Soc. 90, 854–876.

Regev, A., Teichmann, S.A., Lander, E.S., Amit, I., Benoist, C., Birney, E., Bodenmiller, B., Campbell, P.,
Carninci, P., Clatworthy, M., et al. (2017). The Human Cell Atlas. Elife 6.

Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., Sun, L., Robson, P., and
Trakhtenberg, E.F. (2018). Single cell transcriptome profiling of retinal ganglion cells identifies cellular
subtypes. Nat. Commun. 9, 2759.

Rockhill, R.L., Euler, T., and Masland, R.H. (2000). Spatial order within but not between types of retinal
neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 2303–2307.

Roska, B., and Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the
mammalian retina. Nature 410, 583–587.

Rousso, D.L., Qiao, M., Kagan, R.D., Yamagata, M., Palmiter, R.D., and Sanes, J.R. (2016). Two Pairs of ON

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

http://paperpile.com/b/pP8mgM/BXYo
http://paperpile.com/b/pP8mgM/r8wx
http://paperpile.com/b/pP8mgM/r8wx
http://paperpile.com/b/pP8mgM/UdAU
http://paperpile.com/b/pP8mgM/UdAU
http://paperpile.com/b/pP8mgM/ADXk
http://paperpile.com/b/pP8mgM/ADXk
http://paperpile.com/b/pP8mgM/ADXk
http://paperpile.com/b/pP8mgM/swTk
http://paperpile.com/b/pP8mgM/swTk
http://paperpile.com/b/pP8mgM/qtF7
http://paperpile.com/b/pP8mgM/qtF7
http://paperpile.com/b/pP8mgM/JLdi
http://paperpile.com/b/pP8mgM/JLdi
http://paperpile.com/b/pP8mgM/xPcQ
http://paperpile.com/b/pP8mgM/xPcQ
http://paperpile.com/b/pP8mgM/xPcQ
http://paperpile.com/b/pP8mgM/Z3bG
http://paperpile.com/b/pP8mgM/Z3bG
http://paperpile.com/b/pP8mgM/TNu3
http://paperpile.com/b/pP8mgM/TNu3
http://paperpile.com/b/pP8mgM/ksBO
http://paperpile.com/b/pP8mgM/ksBO
http://paperpile.com/b/pP8mgM/rW1i
http://paperpile.com/b/pP8mgM/rW1i
http://paperpile.com/b/pP8mgM/EHTa
http://paperpile.com/b/pP8mgM/EHTa
http://paperpile.com/b/pP8mgM/bZKY
http://paperpile.com/b/pP8mgM/bZKY
http://paperpile.com/b/pP8mgM/bZKY
http://paperpile.com/b/pP8mgM/nQR7
http://paperpile.com/b/pP8mgM/nQR7
http://paperpile.com/b/pP8mgM/Wzea
http://paperpile.com/b/pP8mgM/Wzea
http://paperpile.com/b/pP8mgM/Lk09
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. Cell
Rep. 15, 1930–1944.

Sabbah, S., Gemmer, J.A., Bhatia-Lin, A., Manoff, G., Castro, G., Siegel, J.K., Jeffery, N., and Berson, D.M.
(2017). A retinal code for motion along the gravitational and body axes. Nature 546, 492–497.

Sanes, J.R., and Masland, R.H. (2015). The types of retinal ganglion cells: current status and implications for
neuronal classification. Annu. Rev. Neurosci. 38, 221–246.

Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C.R., Castro, J.R., Hartmanis, L., Jiang, X.,
Laturnus, S., Miranda, E., et al. (2020). Phenotypic variation of transcriptomic cell types in mouse motor cortex.
Nature.

Schneider, M., Hirsch, S., Weber, B., Székely, G., and Menze, B.H. (2015). Joint 3-D vessel segmentation and
centerline extraction using oblique Hough forests with steerable filters. Med. Image Anal. 19, 220–249.

Sümbül, U., Song, S., McCulloch, K., Becker, M., Lin, B., Sanes, J.R., Masland, R.H., and Sebastian Seung, H.
(2014). A genetic and computational approach to structurally classify neuronal types. Nature Communications
5.

Surgucheva, I., Weisman, A.D., Goldberg, J.L., Shnyra, A., and Surguchov, A. (2008). Gamma-synuclein as a
marker of retinal ganglion cells. Mol. Vis. 14, 1540–1548.

Tien, N.-W., Pearson, J.T., Heller, C.R., Demas, J., and Kerschensteiner, D. (2015). Genetically Identified
Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli. J. Neurosci. 35,
10815–10820.

Tikidji-Hamburyan, A., Reinhard, K., Seitter, H., Hovhannisyan, A., Procyk, C.A., Allen, A.E., Schenk, M.,
Lucas, R.J., and Münch, T.A. (2015). Retinal output changes qualitatively with every change in ambient
illuminance. Nat. Neurosci. 18, 66–74.

Tran, N.M., Shekhar, K., Whitney, I.E., Jacobi, A., Benhar, I., Hong, G., Yan, W., Adiconis, X., Arnold, M.E.,
Lee, J.M., et al. (2019). Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal
Neuroprotective Genes. Neuron 104, 1039–1055.e12.

Warwick, R.A., Kaushansky, N., Sarid, N., Golan, A., and Rivlin-Etzion, M. (2018). Inhomogeneous Encoding of
the Visual Field in the Mouse Retina. Curr. Biol.

Wässle, H., Peichl, L., and Boycott, B.B. (1981). Dendritic territories of cat retinal ganglion cells. Nature 292,
344–345.

Wei, W., Elstrott, J., and Feller, M.B. (2010). Two-photon targeted recording of GFP-expressing neurons for
light responses and live-cell imaging in the mouse retina. Nat. Protoc. 5, 1347–1352.

Wienbar, S., and Schwartz, G.W. (2018). The dynamic receptive fields of retinal ganglion cells. Progress in
Retinal and Eye Research 67, 102–117.

Wienbar, S., and Schwartz, G.W. (2021). Differences in spike generation instead of synaptic inputs determine
the feature selectivity of two retinal cell types.

Wilbrey-Clark, A., Roberts, K., and Teichmann, S.A. (2020). Cell Atlas technologies and insights into tissue

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

http://paperpile.com/b/pP8mgM/Lk09
http://paperpile.com/b/pP8mgM/Lk09
http://paperpile.com/b/pP8mgM/wHZd
http://paperpile.com/b/pP8mgM/wHZd
http://paperpile.com/b/pP8mgM/4sWz
http://paperpile.com/b/pP8mgM/4sWz
http://paperpile.com/b/pP8mgM/gt4E
http://paperpile.com/b/pP8mgM/gt4E
http://paperpile.com/b/pP8mgM/gt4E
http://paperpile.com/b/pP8mgM/2YnW
http://paperpile.com/b/pP8mgM/2YnW
http://paperpile.com/b/pP8mgM/aMPE
http://paperpile.com/b/pP8mgM/aMPE
http://paperpile.com/b/pP8mgM/aMPE
http://paperpile.com/b/pP8mgM/iFZ8
http://paperpile.com/b/pP8mgM/iFZ8
http://paperpile.com/b/pP8mgM/g1ZO
http://paperpile.com/b/pP8mgM/g1ZO
http://paperpile.com/b/pP8mgM/g1ZO
http://paperpile.com/b/pP8mgM/WSNt
http://paperpile.com/b/pP8mgM/WSNt
http://paperpile.com/b/pP8mgM/WSNt
http://paperpile.com/b/pP8mgM/m9Ey
http://paperpile.com/b/pP8mgM/m9Ey
http://paperpile.com/b/pP8mgM/m9Ey
http://paperpile.com/b/pP8mgM/5G3l
http://paperpile.com/b/pP8mgM/5G3l
http://paperpile.com/b/pP8mgM/eovU
http://paperpile.com/b/pP8mgM/eovU
http://paperpile.com/b/pP8mgM/jAi6
http://paperpile.com/b/pP8mgM/jAi6
http://paperpile.com/b/pP8mgM/TNxN
http://paperpile.com/b/pP8mgM/TNxN
http://paperpile.com/b/pP8mgM/otjm
http://paperpile.com/b/pP8mgM/otjm
http://paperpile.com/b/pP8mgM/XG69
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/


architecture. Biochem. J 477, 1427–1442.

Yuste, R., Hawrylycz, M., Aalling, N., Aguilar-Valles, A., Arendt, D., Armañanzas, R., Ascoli, G.A., Bielza, C.,
Bokharaie, V., Bergmann, T.B., et al. (2020). A community-based transcriptomics classification and
nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468.

Zadrozny, B. (2002). Reducing multiclass to binary by coupling probability estimates. In Advances in Neural
Information Processing Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds. (MIT Press), pp.
1041–1048.

Zadrozny, B., and Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability
estimates. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, (New York, NY, USA: Association for Computing Machinery), pp. 694–699.

Zeng, H., and Sanes, J.R. (2017). Neuronal cell-type classification: challenges, opportunities and the path
forward. Nat. Rev. Neurosci. 18, 530–546.

Zhang, Y., Kim, I.-J., Sanes, J.R., and Meister, M. (2012). The most numerous ganglion cell type of the mouse
retina is a selective feature detector. Proc. Natl. Acad. Sci. U. S. A. 109, E2391–E2398.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 27, 2022. ; https://doi.org/10.1101/2021.06.10.447922doi: bioRxiv preprint 

http://paperpile.com/b/pP8mgM/XG69
http://paperpile.com/b/pP8mgM/eOVW
http://paperpile.com/b/pP8mgM/eOVW
http://paperpile.com/b/pP8mgM/eOVW
http://paperpile.com/b/pP8mgM/3Fh4
http://paperpile.com/b/pP8mgM/3Fh4
http://paperpile.com/b/pP8mgM/3Fh4
http://paperpile.com/b/pP8mgM/UJ0C
http://paperpile.com/b/pP8mgM/UJ0C
http://paperpile.com/b/pP8mgM/UJ0C
http://paperpile.com/b/pP8mgM/NOLk
http://paperpile.com/b/pP8mgM/NOLk
http://paperpile.com/b/pP8mgM/dFWs
http://paperpile.com/b/pP8mgM/dFWs
https://doi.org/10.1101/2021.06.10.447922
http://creativecommons.org/licenses/by-nc-nd/4.0/

