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Abstract

Understanding how consciousness arises from neural activity remains one of the biggest
challenges for neuroscience. Numerous theories have been proposed in recent years, each
gaining independent empirical support. Currently, there is no comprehensive, quantitative and
theory-neutral overview of the field that enables an evaluation of how theoretical frameworks
interact with empirical research. We provide a bird’s eye view on studies that interpreted their
findings in light of at least one of four leading neuroscientific theories of consciousness (N=412
experiments), asking how methodological choices of the researchers might affect the final
conclusions. We found that supporting a specific theory can be predicted solely from
methodological choices, irrespective of findings. Furthermore, most studies interpret their
findings post-hoc, rather than a-priori testing critical predictions of the theories. Our results
highlight challenges for the field and provide researchers with a unique, open-access website

to further analyze trends in the neuroscience of consciousness.
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Main

Within about three decades, the scientific study of consciousness has transitioned from an
emerging field, trying to establish its legitimacy, to a flourishing source of empirical studies
and theoretical accounts. Concomitant with the empirical quest towards finding the neural
correlates of consciousness'?, the field has seen a steep growth in the number of scientific
theories, each offering a different explanation of the neural basis of consciousness®.
Accordingly, the field has not yet converged around an accepted account, and disagreements
abound even with respect to the neural correlates themselves 7 !9, Existing reviews of the state-
of-the-art of the field are typically written by proponents of the different theories!! '3, with

findings described predominantly through the lens of a given theoretical framework, yielding

dramatically different pictures.

Converging onto a unified account is even harder given the wide range of experimental
paradigms used to study consciousness, which might systematically differ in studies supporting
the different theories. Among other methods, common experimental procedures include
Masking !4, Bistable perception '>-®, Inattentional Blindness'’, Change Blindness '®, Stimulus
Degradation ', Sleep 2, Anesthesia 2!, Direct Stimulation (e.g., by TMS??, intracranial
stimulation 23, etc.). Similarly, different measures of consciousness exist (e.g., report vs. no-
report paradigms?¥). These different procedures probe somewhat different processes?,
sometimes yielding different results?® 7. Thus, if there is a systematic bias in methodological
choices, this could explain how conflicting theories appear to be supported by empirical data,
despite the proclaimed goal to test and account for the very same phenomenon®. Critically, the
choice of paradigm or analysis approach might affect the conclusions one draws. For example,
in the recent debate around the role of prefrontal cortex in consciousness, both sides suggested

the conclusions of their opponents were based on problematic methodological choices®?® (for

24,29 r 30,31).

other debates, see o

Here, we present an unbiased, theory-neutral, quantitative and systematic review of
empirical findings around leading theories of consciousness, providing a bird’s eye view of the
field and looking for potential biases in interpreting empirical findings. We focus on four
theories that have evoked substantial empirical and theoretical interest **3: Global Neuronal
Workspace!>¥? (GNW), Higher-order thought!** (HOT), Integrated Information Theory3*3°
(IIT), and Recurrent Processing Theory%’37 (RPT) (listed in alphabetical order). The theories

differ in their core principles, suggested mechanisms, and predictions they make about neural

activity associated with consciousness®. In a nutshell (for a more detailed description see


https://doi.org/10.1101/2021.06.10.447863
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447863; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Supplementary Box A), GNW claims that conscious processing emerges when information is
globally broadcasted by a frontoparietal network'>*, while HOT ascribes consciousness to
higher-order representations in dorsolateral prefrontal cortex, that accompany first-order
representations elsewhere!>. IIT, conversely, equates consciousness with a maximum of
irreducible intrinsic cause—effect power, as determined from the intrinsic perspective of the
system, and claims that a local maximum of such power likely resides in a posterior cortical
“hot zone**¥0_ Finally, RPT asserts that horizontal connections and recurrent loops between
lower and higher-level brain areas, involving plastic changes mediated by NMDA-dependent

feedback activations, underlie conscious processing11’36’37.

As a first step towards building a robust dataset of relevant empirical findings, we collected
papers that interpreted their results as supporting or challenging GNW, HOT, IIT, or RPT. All
collected papers were classified according to various parameters of interest, including, among
others, the experimental paradigms, stimuli, neuroscientific techniques, empirical findings, and
theoretical interpretations (see Supplementary Table S1 for the full parameter list). Using these
parameters, we provide a descriptive overview of the field, in addition to a data-driven
statistical analysis, aimed to uncover trends, biases, blind spots, and limitations regarding how

the theories and the empirical studies interact.

To reveal such biases, we conducted an epistemic, meta-experimental examination of the
field, asking how findings are interpreted and to what extent supporting a theory depends on
methodological decisions made by researchers. Rather than conducting a standard meta-
analysis aimed at identifying consistent effects and providing consolidated estimates of such
effects, we focused on the way these findings are collected and interpreted. Thus, we took the
reported findings at face value, with no attempt to re-interpret or test the statistical reliability
of the findings, or to critically assess the strength of the experimental design. This allowed us
to identify what claims are being made and what types of findings and paradigms these claims
are based on. Sticking to the original interpretations of the authors also allowed us to keep this
review objective and uncontaminated by subjective judgments of methodological quality or the
correct interpretation of the findings. An additional objective was to provide the scientific
community with an interactive, open-access online tool to gauge the state of the field and the
status of the leading theories. This rich database encompasses 412 experiments reported in 365

studies published between April 2001 and October 2019.
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Results

The database was created following predefined criteria (see methods) in line with the PRISMA
2009 guidelines*! (Figure 1). Our search strategy looked for papers between the years 2001
and 2019 (up until the search date of October 22), relying on (a) Topic search, including papers
in which the name of each of the four theories appears as part of the topic / abstract / keywords;
and (b) Citation search, where we first identified three key papers for each theory
(Supplementary Table S1), and then, collected all empirical papers citing one or more of these

twelve key papers.

Out of 6938 records identified in the initial database searching, 6054 were filtered out
due to predefined constraints (for a full list, see again methods). The remaining 884 unique
papers were assessed for eligibility by a close inspection of their full-text, removing papers
that: (1) did not directly relate to consciousness (n = 232; see Supplementary Figure S1 and
Supplementary Table S2 for the distribution of excluded papers into main fields of research);
(2) did not interpret their results in light of an NCC prediction of one or more of the theories
(n=190); (3) Reviews (n = 89); (4) Meta-analyses (n = 5); and (5) Behavioral studies (n = 3).
This process yielded the final database, which included 365 papers, reporting 412 experiments,
all of which were classified according to our predefined parameters of interest (see

Supplementary Table S3).
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Figure 1. Panel a: Flow diagram outlining the process of article selection*!. Panel b:
Cumulative distribution of the papers found for each of the theories pre-screening,
according to the different search strategies. Panel c: Cumulative distribution of the
final papers post-screening. For panels b & c, each bar depicts the number of unique
papers in that category. Gray bars represent all papers found for each theory across
the different search strategies. Red bars denote papers that mention the theory in their
title, abstract, or keywords. Green, blue, and orange bars denote papers citing the first,
second, and third key papers for each theory (see Supplementary Table S1 for the key
theory papers).
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Division of experiments with respect to the theories

The most prominent finding was the non-uniform distribution of experiments
mentioning each of the four theories (Figure 2a; note that this might be explained — at least in
part — by the different ‘age’ of the theories, see again Supplementary Table S1). Namely, in
this database, GNW is most widely discussed (N=224), followed by RPT (N=140), IIT (N=
101), and HOT (N=12; note that for HOT, our initial search yielded a much larger number of
papers (N= 532), but most of them did not survive the screening process as they were either
not empirical, or did not include neuroscientific results; see Methods). Notably, the distribution
is also highly skewed with respect to confirmatory (experiments supporting the theories) vs.
disconfirmatory experiments (experiments challenging the theories), the latter constituting
only 15% of all experiments. As evident in Figure 2a, this skewed pattern was observed for
GNW (x2(1) =90.02, p < .0001), RPT (xy%(1) = 77.26, p < .0001) and IT(x?(1) =
78.43, p < .0001), but not for HOT (y¥?(1) =0.33, p = .60; note again the low
representation of HOT in our database). An inspection of the distribution over time suggests
that all theories have been increasingly studied (Figure 2b) and have gained support (Figure
2¢) through the years. Interestingly, there does seem to be some rise in challenging experiments
in the last decade (especially for GNW), that might reflect a gradual maturation of the field
(Figure 2d). However, visually inspecting the trends over time suggests that the increasing
support of each theory is unaffected by the changing support of other theories, demonstrating
a parallel progression of leading theories. That is, the number of experiments referring to the
theories keeps growing, as opposed to a replacement model, where the growing success of one
theory leads to a gradual reduction of support for the other (e.g., **, when one theory reductively
replaces the other), which would translate into a plateau-like trend, where no new studies are

added.
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Figure 2; Panel a: Distribution of experiments across theories. Each bar
represents the number of experiments interpreted as supporting the
theory (blue) or challenging it (red). The label above each bar indicates
the proportion of papers supporting each theory. Panel b: Cumulative
distribution over time of experiments studying/discussing each of the
theories (either challenging or supporting them). Panel c: Cumulative
distribution over time of the experiments supporting the theories. Panel
d: Cumulative distribution over time of the experiments challenging the

theories.

Notably, only about a third (35%) of the experiments were presented as explicitly testing theory
predictions, as opposed to 41% of the experiments that interpreted their findings in light of the
theories post-hoc, in the discussion section (the remaining 24% generally mentioned a theory
in the introduction, without formulating clear hypotheses about it and without interpreting the
evidence post-hoc). Importantly, only 7% tested predictions of more than one theory, trying to
pit them against each other. Another important observation was that theory-driven experiments,
post-hoc-interpreted experiments, and experiments that only mentioned the theories in the
introduction differed in their likelihood to challenge a theory (note that in this analysis, papers

were classified as challenging a theory if at least one theory was challenged, even if another
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theory was supported, while the rest were classified as 'not challenging') (x2(2) = 68.79,p <
.0001; Figure 3). Theory-driven experiments challenged the theories more frequently than
expected under the null hypothesis (Z = 6.14,p < .001) and the post-hoc-
interpreting/theory-mentioning papers challenged them less frequently than expected (Z =

—4.07, p < .001 and marginally Z = —2.05,p = .06, respectively).
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Figure 3. Panel a: Distribution of experiments that did not challenge any
theory (N=350) divided into “theory-driven” (i.e., explicitly testing at least one
prediction of at least one theory; dark gray in the inner circle), “mentioning”
at least one theory in their introduction (light gray), or “post-hoc” interpreting

their results in light of at least one theory, without referring to it in the
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introduction (white). The outer circle describes the distribution of experiments
to specific theories. Panel b: Similar to Panel a, but for experiments interpreted
as challenging at least one theory (N=62). Slices with less than five/three
experiments (e.g., studies challenging HOT) were not included in Panel a and
Panel b, respectively (hence the empty spaces in the outer circles). Panel c: a
cumulative distribution of all experiments that are either theory-driven (black),
mention the theories (dark gray) or interpret the findings post hoc (light gray)

over time.
Prediction of supported theory based on methodological parameters

To assess the potential influence of methodological choices on the probability of a study
supporting/challenging a specific theory, a random forest classifier was used. Specifically, we
trained a classifier to predict whether each experiment will support GNW, IIT, RPT or any
combination of these theories (HOT was not included due to insufficient number of
experiments). The classifier used all methodological parameters in our database, excluding
parameters showing multicollinearity ** (for the list of included parameters, see Supplementary
Table S5; for the results of the full model without exclusion, see Supplementary Figure S2a-b
and Supplementary Table S6). A leave-one-out strategy was used to measure the accuracy of
the classifier, which was 80.34%, t(411) = 10.99,p < 0.001, with a chance level at 67.64%
(chance level was determined based on the experiments’ marginal distributions to theories (see
Methods), so the accuracy of the tested model is compared with a model which solely relies on
the frequency of the outcome in our database, without taking into account any of the parameters
(Figure 4a). This accordingly corrects for the different number of experiments for each theory).
Our sensitivity analysis (see Methods) validated these results, showing stable and high
classification accuracies across different random states of the classifier (M = 79.98%, SD =
42%, range: 78.64%-81.31%). Signal Detection Theory (SDT) analysis* revealed that the
classifier performed well for all three theories, with an area under the curve (AUC) of 0.7, 0.84,
and 0.76 for GNW, IIT, and RPT respectively (Figure 4b). The individual importance of the
features on which the classifier was trained was calculated using a permutation importance
method (see Methods). Parameters whose average importance was higher than 95% of the
distribution of importance scores of a random parameter were (in order of importance): (1)
studying state vs. content consciousness; (2) using report vs. no-report paradigms; (3); using

connectivity measures and (4) using subjective measures of consciousness (Supplementary
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Table S5, Supplementary Figure S3). Below we elaborate on each of these factors, and include

HOT for all descriptive statistics.
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Figure 4. Analysis of the classifier's performance in predicting support for each
theory based on methodological choices. Panel a: classification accuracy for the
three theories combined (gray), and for each theory: GNW (red), IIT (yellow), and
RPT (green). Panel b: ROC curves for classification performance for each of the
theories. Blue dashed lines in Panel a indicate chance level performance for each of
the conditions, assessed based on the marginal distributions of the experiments to
theories, and gray diagonal line in Panel b indicates the performance of a random

classifier (see Methods).

Out of the factors identified as important in classifying the supported theory, the most
striking one is content vs. state studies (Figure 5a); experiments supporting IIT are mostly
focused on state consciousness (79%), while the exact opposite pattern appears for GNW (73%
focusing on content consciousness) and is even more extreme for HOT and RPT (100% and
97% focus on content consciousness). Along the same lines, report paradigms are more
prevalent for GNW, RPT, and HOT (58%, 80%, 100%, respectively; note that these numbers
are calculated across state and content studies), while IIT gains more support from no-report
paradigms (85%) (Figure 5b). Notably, this pattern is largely driven by experiments studying
state consciousness, yet it is also observed — to a lesser degree — in studies of content
consciousness (Figure 5c¢). Connectivity dependent measures are more frequently used in
experiments supporting IIT (64%) and GNW (37%), compared with RPT (13%) (Figure 5d).
Lastly, for the factor ‘measure of consciousness’, objective measures of consciousness (i.e.,
judgements that can either be correct or incorrect about the critical stimulus*’) were generally

more prevalent than subjective ones (i.e., reporting the degree to which the stimulus was
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consciously experienced*®*’; 50% vs. 44% overall, and 69% vs. 61% within content

consciousness, respectively). This trend was mostly found for RPT and GNW (73% objective

vs. 51% subjective for RPT, and 51% vs. 44% for GNW, and within experiments studying

content (as opposed to state) consciousness 75% vs. 53%, 69% vs. 59%), which was not the

case for IIT (11% vs. 16%, and within content consciousness 57% vs. 71%) (Figure Se).
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Figure 5. Distribution of experiments supporting a certain theory according to
specific methodological parameters: a: Consciousness type; b: Report vs. no-report
paradigms; c: similar to Panel b, including only experiments that studied 'content'
consciousness. d: Type of dependent measures. e. Measures of consciousness.
Slices with less than 15 experiments were not included in panel d. Abbreviations:
BOLD (Blood-oxygen-level-dependent), ERP (event-related potentials), BBC
(brain-behavior correlation). Note that some experiments used more than one
consciousness measure or reported more than one type of dependent measure, so
they could appear in more than one slice in panels d and e.

Experimental procedures and techniques

Beyond identifying potential methodological biases with respect to the theories, our

database allows for inspection of trends in the field, with respect to preferred paradigms,

techniques, and common practices. The most frequently used experimental paradigms (see

Supplementary Figure S4a) across all experiments is stimulus degradation, where the strength

of the stimulus is reduced (e.g., using contrast*®, noise

# or coherence manipulation™’) (22%)
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followed by masking (18%) and direct stimulation (e.g., TMS, tDCS, tACS, intracranial
stimulation; 17%). When dividing the experiments to studies focusing on content
(Supplementary Figure S4b) or state (Supplementary Figure S4c) consciousness, two very
different distributions emerge, as could be expected. A single exception for this pattern is the
use of direct stimulation, which was prevalent in both distributions. Given the wide
heterogeneity of methods in the field, and especially between state and content studies, we
further conducted a post-hoc exploratory analysis, where we asked whether within each type
(i.e., content vs. state consciousness), the choice of paradigm could predict support for different
theories. We used the same random forest method on experiments investigating content or state
consciousness separately, once relying on the paradigms, and again using the neuroscientific
techniques (e.g., EEG, fMRI, intracranial recordings, MEG, TMS etc.) as factors (see
Supplementary Figure S5, for the distribution of experiments according to neuroscientific
techniques). RPT was excluded from the analysis of state consciousness and IIT was excluded
from the analysis of content consciousness, due to not having sufficient number of papers. For
both post-hoc analyses within studies focusing on state-consciousness, the accuracy of the
classifier was not significantly above chance (see Supplementary Figure S6e-h). For content
consciousness studies, classification was above chance for the classifier that predicted theory
support based on neuroscientific techniques (accuracy = 62.71%, t(290) = 2.96,p = 0.007,
with a chance level at 56.7%; see Supplementary Figure S6a-b) and did not survive correction
for multiple comparisons for the classifier trained on experimental paradigms (accuracy = 61
%, 1(290) = 2.01, p = .061; see Supplementary Figure S6¢c-d). None of the factors in these
analyses was identified as important, suggesting that it is the combination of factors, rather
than any specific factor, that drove the classification (see Supplementary Tables 7 and 8; also
confirmed by the aggregated results over all classifiers used for the sensitivity analysis of these
models). This suggests that generally speaking, when inspecting content and state studies
separately, the data does not indicate a strong methodological bias towards one of the theories,

either because it does not exist, or due to insufficient amount of data to detect a bias.
Neural correlates of consciousness and their interpretation in light of the theories

Aggregating neural findings reported in the experiments in our database reveals a
remarkable heterogeneity of findings, which by itself is not compatible with the predictions of
any of the theories (that is, none of the theories would predict such a vast neural activation as
a marker of consciousness). At the anatomical level, a map of all reported findings seems to

suggest that almost the entire brain has been implicated in conscious perception (Figure 6a).
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Yet when the experiments are divided according to the theory they support, four completely
different patterns emerge, that by and large are well aligned with the predictions of each of the
theories. This raises the concern for a bias, where each theory confirms itself, while ignoring

other findings that are incompatible with its predictions.

All (N=118) All Content (N=96)

b‘ GNW (N=58’ Noontsnt=49) « "T (N=22’ Noonlent=6)

14 (12) 5(3)
6 ) . 0
d. HOT (N=3, N

e. i
comem=3) RPT (N_36' Nconten(=36)

Figure 6. Spatial findings. Panel a: an overlay of fMRI findings reported in all
experiments in the database (left) and all experiments focusing on content
consciousness (right), using the AAL3 atlas’'. Red, yellow, blue, and green activations
represent experiments supporting GNW, IIT, HOT, and RPT, respectively. The
intensity of the color of each activation indicates the relative frequency of experiments
reporting activations in each brain area (see Supplementary Figures S7 for a similar
figure, in which findings of all experiments in the database are overlaid irrespective of
theory, and Supplementary Figure 8 for a figure comparing activations found in report
and no-report paradigms, revealing interesting differences between the two). Panels b-
e: the same findings, separately presented for experiments supporting GNW, IIT, HOT

and RPT respectively, using the same color coding. Panels b-c also depict findings
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reported only in experiments focusing on content consciousness, presented below the
maps for all experiments (in panels d-e, for HOT and RPT, all experiments focused on
content consciousness to begin with). The color scales specify the number of
experiments reporting activations in the same area, ranging from 0 to the maximal

number of such experiments for each theory.

In the temporal domain, a similar picture emerges; when all the data from experiments
using EEG, iEEG or MEG are examined together, irrespective of the supported theory, the only
clear pattern is the great variability of the data, with no clear-cut answer about the timing of
the NCC (Figure 7a). But when divided to theories, the reported timings (e.g., latency, peak,
or pre-defined time-window; for all the above we focused on the earliest time point reported)
reveal later NCCs in experiments supporting GNW (M=290.26ms, SD=142.64; Figure 7b)
compared with experiments supporting RPT (M=245.65 ms, SD=110.6; Figure 7c. t(178) =
2.33, p = .034, comparing reported components). Interestingly, limiting the observations to
theory-driven experiments only (i.e., excluding papers that interpret their findings post-hoc, or
only mention the theories; Figure 7d-e) reveals a more dichotomous picture of NCC timing,
strongly aligned with the predictions of the specific theory targeted by each study (GNW:
M=340.17ms, SD=170.58; RPT: M=227.85, SD=75.38; t(55)= 3.1, p = .007). It appears as if
experiments that only interpret their findings post-hoc in light of the theories find both early
and late components, while researchers who set-out to test a prediction of a theory find evidence
that fits well with the tested predictions. Another notable observation pertains to the variability
of reported timings within a given EEG/MEG component, being most pronounced in post-hoc
interpreted experiments. That is, the reported timing of the very same component (e.g., VAN
52 or P3 ) substantially varies between studies, in the magnitude of hundreds of milliseconds
(VAN range: 130-460 ms, M =251.48 ms, SD = 67.88; P3 range: 130-908 ms, M = 446.39ms,
SD = 108.1), which is not in line with the explicit predictions of the theories themselves®>*,
This raises the concern that researchers have a large degree of freedom when interpreting and

reporting their findings.
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Figure 7. Temporal findings of EEG, iEEG and MEG components that were reported in the
experiments in the database. Findings are sorted based on the earliest reported timepoint for
each component, and plotted together, with the y-axis referring to an arbitrary index number
of the different experiments generated for each plot. Each horizontal line represents a specific
component, colored according to its classification by the authors (see the legend), with darker
colors indicating later components. Components for which only a single time point was
reported (e.g., peak), are represented by dots. a: temporal findings across all experiments. b:
temporal findings in experiments supporting GNW only. c¢: temporal findings in experiments
supporting RPT. Panel d, e: Similar to Panels b and c, except that the experiments were filtered
to include only theory-driven studies.
Discussion

Several key conclusions can be drawn from our analyses of these 412 experiments: First, the
field seems highly skewed towards confirmatory, as opposed to disconfirmatory, evidence®,
which might explain the failure to exclude theories and converge on an accepted, or at least
widely favored, account. This effect is relatively stable over time. Second, theory-driven
studies, aimed at testing the predictions of the theories, are rather scarce, and even rarer are

studies testing more than one theory, or pitting theories against each other — only 7% of the


https://doi.org/10.1101/2021.06.10.447863
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447863; this version posted June 10, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

experiments directly compared two or more theories’ predictions. Though there seems to be an
increasing number of experiments that test predictions a-priori in recent years, a large number
of studies continue to interpret their findings post-hoc in light of the theories. Third, a close
relation was found between methodological choices made by researchers and the theoretical
interpretations of their findings®®. That is, based only on some methodological choices of the
researchers (e.g., using report vs. no-report paradigms, or studying content vs. state
consciousness), we could predict if the experiment will end up supporting each of the theories.
This might represent the different emphasis put by the different theories on different aspects of
consciousness. These three key findings, taken together, help explain why theories of
consciousness continue to co-evolve with little impact on each other, and highlight the need
for more cross-talk between the theories and more inclusive choices of paradigms testing each
one of them. Notably, all of our results can be regenerated in an open-access website

(http://ContrastDB.tau.ac.il/) in which all parameters extracted from the studies in our database

are available, together with online analytic tools. This unique database further allows
researchers to query and analyze the data in novel ways, which might unravel additional trends
in the study of consciousness. It also constitutes a powerful tool for finding relevant studies
based on parameters of interest (e.g., all fMRI studies supporting GNW, or all studies with a
patient population using EEG).

Our analysis of the database highlights the way theories of consciousness have evolved
so far: even when one theory gains accumulating support, opposing theories remain unaffected.
On the contrary, all four theories seem to progress in parallel and continue to grow throughout
the years. This observation is further strengthened by the relative scarcity of experiments that
challenge a theory (15%). This potential confirmation bias is not unique to the field of
consciousness; it has been documented decades ago®’, and widely discussed since in various
areas of psychological research®-®. This might be regarded as a part of the natural progression
of an emerging field of research; it typically starts from a more bottom-up approach, mostly
focusing on accumulation of evidence, and — as theories start to emerge — the data is interpreted
in light of the theories. Only later on the competing theories are critically tested in a top-down
manner. Based on our analysis, the field of consciousness studies seems to still be well within
the initial state, as the predominance of supporting experiments over challenging ones is stable
over time. Here, we suggest that with the maturation of the field — both theoretically®>* and
methodologically®® — the time has come for it to transition into a more critical phase of directly

testing and possibly eliminating theories, as a necessary means for making progress®. This
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could be achieved by identifying opposing predictions of two or more theories and using a

design that experimentally pits them against each other®!.

This shift seems even more important when taking into account the gap between how
the neural findings look when aggregated across all studies, as opposed to their patterns when
divided based on the theories they support (Figures 6 & 7). Despite the heterogeneous pattern
observed when all experiments are collapsed together, each theory seems to find evidence for
its specific predictions. This might reflect a different focus on certain aspects of consciousness
by each theory. Conversely, this might stem from emphasizing specific results that fit the
predictions while overlooking others, or from refraining from testing alternative interpretations
to begin with. In addition, our analyses highlight a substantial amount of flexibility in
interpretation, e.g., the timing of NCC measured by EEG and MEG. This is yet another form
of a confirmation bias, where findings are interpreted in light of the expectations of the

experimenters®.

Another clear trend we found relates to the strong focus on content consciousness. This
accords with the general strategy of searching for the neural correlates of a specific phenomenal
aspect of an experience as an effective means to neuroscientifically study consciousness %°. The
strategy typically relies on contrasting between brain activity when subjects are conscious of
certain content, and when they are unaware of the same content (or are aware of some other
content) (e.g. %, but see ). In contrast, studies focusing on state consciousness target
differences between conditions in which subjects are in an overall state of unconsciousness
(e.g., dreamless sleep, anesthetized, suffering from a disorder of consciousness, etc.) as
opposed to a conscious one (e.g., wakefulness, dreaming, recovery from a disorder of
consciousness, etc.). Notably, both of these approaches have been criticized based on different
grounds: studying content consciousness usually involves keeping the state of consciousness
constant, thereby neglecting the neural processes necessary for being in that state to begin with
% Also, such studies typically assume that the contrast between perceived and not-perceived
stimuli indeed distills the correlates of conscious perception, while often failing to account for
confounding processes that either pertain to the prerequisites or the consequences of
consciousness >*%’. On the other hand, studying state consciousness inherently implies a
difference between experiencing some contents vs. experiencing no contents at all®®. In
addition, the contrast between different states of consciousness typically involves several
uncontrolled, or difficult to control, confounding variables (e.g., overall arousal, attention,

etc.). These complexities, in turn, limit the ability to detect mechanisms that are uniquely
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correlated with consciousness per se . Thus, a refinement of predictions to address both
content and state, along with development of novel ways to test existing predictions while
avoiding confounding factors, will be necessary for achieving progress. These directions are
important because all four theories make claims about both content and state consciousness

43263 and should indeed account for both aspects to provide a comprehensive explanation of

consciousness4’32’66.

Our review was epistemic and descriptive in nature, taking a hands-off neutral
approach, accepting the interpretations made by authors at face value. Future efforts could
complement this database with a meta-analyses aimed at testing the reliability and validity of
findings, and exploring in more detail potential differences between the results themselves and
the authors’ interpretations of such results. Such meta-analyses could also include additional
papers that were not the focus of the current study (e.g., NCC papers that refer to other theories,
or not referring to any theory), explore other search strategies, and statistically examine the
meta-analytic reliability of findings across studies. This was not our goal here (though, our
open-access database and website could be used as a first step for doing so). The data extraction
procedure in our case is solely based on the way the authors themselves interpreted their results,
so that even if we found the interpretation inaccurate/erroneous (e.g., claiming that GNW is
supported by very early activations, or that RPT is supported by frontal findings), the paper
was still included in the analysis as is. We also took a neutral approach to how the theories
have evolved over the years (e.g., IIT once suggested that frontal areas could interact with
posterior ones to generate conscious perception® but claims differently today®®*°; and GNW

once treated P300 as a clear marker for consciousness®’’

and is more hesitant in doing so
today>>3?). Thus, findings that were once taken as evidence in favor of a theory, might actually
be taken today as evidence against it, and this would not be reflected in our analysis. Our review
also calls for a better differentiation between core predictions made by a theory, and auxiliary
ones that are less diagnostic for testing it (e.g., the change with respect to P300 described above
is relevant for an auxiliary prediction by GNW, not to a core hypothesis). Since such a
dissociation is not clear in existing literature — and in the papers we examined — we were unable
to make that distinction in our database. We accordingly invite theory leaders, as well as the
field as a whole, to explicitly pinpoint core and auxiliary hypotheses. This could then be

integrated into our open database, propelling further insights into the theories and the

progression of the field as a whole.
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To conclude, although the field of consciousness studies has been enjoying great
proliferation in the last decades, the impressive body of literature accumulated has yet to
converge into a widely-accepted theory. As the field matures, such a convergence is more
likely, yet to reach that state, it seems that several key steps should be taken. First, future studies
should focus more on testing theories of consciousness, rather than looking for confirmatory
evidence, or relying on post-hoc interpretations that allows them to co-evolve without
convergence and/or elimination of some theories. The confirmation biases we found across
theories, as well as the relatively low number of studies that set-out a-priori to test the theories,
highlight the need to do so. Second, it will be important to expand the type of experiments
testing each theory®®, for example examining both state and content consciousness, over
different populations, measures, and tasks. Given that all theories make claims relevant to both

content and state consciousness>>>>7172

, it would be advisable to avoid limiting investigations
to one type. Similarly, all of the leading theories considered here attempt to explain the neural
basis of consciousness broadly speaking and should therefore be testable using a wide-variety
of neuroscientific measures, manipulations of consciousness, and report and no-report tasks.
Despite some of the trends and potential biases uncovered by the analyses reported here, we
remain optimistic that honest attempts for collaborations, and testing opposing predictions in

an unbiased manner will ultimately lead to theory refinement, elimination, and convergence in

the quest to understand consciousness from a neuroscientific perspective.

Methods

Creation of paper database. The database was created following predefined criteria, that are
reported below in line with the PRISMA 2009 guidelines *' concerning inclusion and exclusion

criteria, search strategy, and data collection procedure.

Inclusions and exclusion criteria. The database includes studies that conform with the
following criteria: (C1) the study reports empirical results published in a peer-reviewed journal,
written in English; (C2) the study pertains to the neural correlates of consciousness; (C3) at
least some of the findings reported in the study were interpreted in light of one or more of an
NCC prediction of the four theories of consciousness reviewed here (GNW, HOT, IIT, RPT);
and (C4) the study was conducted using a neuroscientific technique. Papers that were first

detected in the initial search sweep (see below) but did not meet the above criteria, were
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excluded. Screening of these papers in light of these criteria was done by 1.Y., and papers for
which there was a dilemma concerning one or more of the criteria, were further screened by

L.M

Search strategy. Scopus electronic database (up to 22/10/2019) was searched using two
separate search strategies: (1) Topic search, using the name of each of the four theories as part
of the topic / abstract / keywords of papers in the database; (2) Citation search, where we first
identified three key papers for each theory (for a list of the key papers, see Supplementary
Table S1). The key papers were chosen in a joint discussion between 1.Y., L.M? L.M¢, and
M.P. Then, all papers citing one or more of these twelve papers (three papers times four

theories) were selected.

No constraints were enforced on the initial Topic and Citation searches. Then, the
following filters were applied: (i) exclude non-English records; (ii) include only records with
'document type' = 'Document’; (iii) include only records classified in the Scopus database as
belonging to the categories: 'Neuroscience' / 'Psychology' / 'Multidisciplinary’ (for a detailed
description of the distribution of papers in both included and excluded categories, see
Supplementary Table S2). For each of the theories, the search was conducted using the query:
TITLE-ABS-KEY ("X"), where "X" denotes the theory specific topic keywords. The same
query was used for the citation searches to find the entry of each key paper, from which we
collected the papers that cited them using the Scopus interface. Then, the above-mentioned
filters were applied: (i) LIMIT-TO (LANGUAGE , "English") ; (ii) LIMIT-TO (DOCTYPE
, "ar") ; (iii)) LIMIT-TO (SUBJAREA, "NEUR") OR LIMIT-TO (SUBJAREA, "PSYC")
OR LIMIT-TO (SUBJAREA , "MULT"). Lastly, papers that include one or more
neuroscientific technique keywords (EEG, Imaging, fMRI, ERP, Neuroimaging, TMS, MEG,
intracranial, PET, ECoG, Electrophysiology, single units, iIEEG and multi-units) in their

abstract were detected using an in-house script we developed.

Figure 1a (see Results above) presents the process of article selection and screening,
and Figure 1b-c describes the division of papers to search strategies, before the screening and
following it. Out of 6938 records identified in the initial database searching, 2845 unique
papers passed the first screening stage (constraints 1 — iii detailed above, screened serially on

the database). 187 papers were excluded as they were not written in English (1); 2292 records

4 Liad Mudrik
b Lucia Melloni
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were filtered out since they were not of the "Document” type (ii); and 947 did not belong to
one of the predefined categories (iii). Enforcing the last constrain of using a neuroscientific
technique resulted in excluding 1961 papers. The remaining 884 unique papers were assessed
for eligibility by a close inspection of their full-text articles conducted by LY., with the
supervision of L.M?, and further discussion of unresolved issues with the collaborators L.MP
and M.P, until a consensus was reached. In this process of close inspection, 519 papers were
excluded due to the following reasons: (1) not relating to consciousness studies (n = 232).
These papers focused on other phenomena, like working memory or intelligence or attention,
and mentioned one or more of the theories concerning those phenomena, and not consciousness
(see Supplementary Figure S1 and Supplementary Table S2 for the distribution of excluded
papers into main fields of research); (2) mentioning one or more of the theories, but did not
interpret their findings with respect to any of them (n = 190); (3) Reviews (n = 89); (4) Meta-
analyses (n =5) ; (5) Behavioral studies that still mentioned a neuroscientific technique in their
abstract, despite not using it (n = 3). This process yielded the final database, which included
365 papers, reporting 412 experiments, all of which were classified according to our predefined

parameters of interest.

Data Collection. A custom data extraction sheet was developed. For each paper and nested
experiments, we automatically extracted the following metadata using Scopus' web interface:
title, DOI, authors, affiliations, author keywords, index keywords, source title, publisher,
funding, references, abstract, and number of citations. Then, information about our predefined
parameters of interest was extracted manually: main experimental paradigm, specific
experimental paradigm, indicator whether the experiment used report / no-report paradigm,
indicator whether the experiment studies content / state consciousness, sample type, total
sample size, sample size of included subjects, task description, task type, stimuli categories,
stimuli description, stimuli modality, stimuli duration, stimuli contrast, consciousness measure
taken, consciousness measure type, consciousness measure description, neuroscientific
technique, a summary of the findings, findings coded as tags, dependent measures taken,
interpretation regarding each theory, two Boolean parameters indicating whether the
experiment is an internal replication and whether it was theory-driven, and lastly the ALL3
label for effects reported in fMRI studies (for a full description of the extraction sheet see

Supplementary Table S4). The extraction of these parameters was done by I.Y. Any dilemma

¢ The papers extraction procedure resulted in finding 885 unique papers, yet after manual inspection one
duplicate was found.
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concerning the classification of parameters or inference regarding the interpretations of the

authors were resolved by L.M*.

Critically, the parameters of interest were extracted based on how they were presented in
the original paper. That is, no attempt was made to re-interpret or test the statistical reliability
of the original findings and consequent interpretations or to critically assess the strength of the
experimental design. Choosing to take the reported findings and interpretations at face value
was in line with the goals of this quantitative review; as opposed to a meta-analysis, where one
wishes to assess the strength and reliability of certain effects 7, our goal was to characterize
the field of consciousness studies: what claims are being made and based on what types of
findings and paradigms. Moreover, sticking to the original interpretations of the authors

allowed us to keep this review objective and uncontaminated by our subjective points of view.

Neural Data Extraction. An AAL3 ' label was encoded for each candidate NCC brain area
found in an fMRI experiment, according to the reported coordinates. A script’* (label4MNI)
written in R was used to map MNI coordinates into the respective AAL labels. When Talaraich
(TAL) coordinates were reported, they first were transformed to MNI coordinated using the
MNI <-> TAL online converter’”; based on the mapping reported in ), and then AAL labels
were extracted using the label4MNI script. In cases where no coordinates were reported
whatsoever, which was the case in most experiments using functional localizers, Neurosynth
"7 was used to extract the MNI coordinates showing the greatest fit for the reported brain area
according to the label used by the original authors. Then, for each of the theories, nii masks for
specific brain areas were generated using Matlab, by uniting the masks of all AAL3 labels
extracted from papers supporting the theory. The masks were processed to form a 3D model of

° and

the brain areas associated with each theory, using both ITK-SNAP 7® and Paraview ’
following the procedure suggested by Madan®. The resulting 3D models were then overlaid
on a 95% opaque AAL brain and colored according to the respective theory. The opacity and
intensity of the color of each area were set according to the frequency of activations, normalized
by the frequency of the most frequently reported area. Note that laterality was not encoded for

the AAL3 labels.

Open access and online website. All analysis and pre-processing codes used in this paper are

shared in OSF®! (https://osf.io/avz8b/). Also, we made our database publicly accessible in a

website we developed using the Dash Plotly®? framework. In the website we enable free

querying of the database, and provide interactive visualization tools. By exposing the database
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to the community via an easy-to-use graphical interface we encourage researchers in the field
to examine their meta-questions about the field, possibly leading to new lines of informed
research about the theories of consciousness. Moreover, in addition to the dynamic querying
interface which facilitates cutting the data according to flexible conditions, the website includes
interactive graphs describing sociological information about the field and enables retrieving

papers of interest according different cuts of the data.

Data analysis. Data analysis was performed using R % and Python 34. It included descriptive
reports of the distributions of the extracted parameters, as well as statistical analysis of the
uniformity of these distributions. Importantly, the latter was performed including only theories
supported by at least 20 experiments. Similarly, only parameters with 10 or more observations

(e.g., methods reported in at least 10 experiments) were included.

The uniformity of the distributions was either tested with a Chi-square test, or using
random forest classifiers %, trying to predict the outcome of an experiment based on the
parameters. This was done under the assumption that above-chance classification reflects a
non-uniform distribution of parameters (i.e., a specific combination of parameters is more
likely to predict the support of specific theories). Random forest is a machine learning
technique supporting multi-class classification by learning complex patterns in
multidimensional data using multiple decision trees % and bootstrapping procedures. Here,
random forest classifiers with a zero random state (acts as a seed for the random processes used
to build random forest classifiers), leaving the remaining parameters at the default values of
the scikit-learn python package®’, were used to test whether specific methodological
parameters reported in experiments studying consciousness can be used to predict the
theoretical interpretation of its findings. The model included all extracted parameters, yet we
excluded parameters due to multicollinearity (for a full list of extracted parameters, see all
items on Supplementary Table S6 that are marked with an asterisk) **. Specifically, we
removed parameters with a variation inflation factor (VIF) of more than 5%%% from the full
model. For completeness, we report the results of a full model, from which no parameter was
excluded, in the supplementary material (Supplementary Figure S2, and Supplementary Table
S6).

The predictive power of the classifiers was assessed using a leave-one-out strategy:
support/no-support for each one of the theories was iteratively predicted by the parameters of

each specific experiment, yielding a 0/1 metric that was based on the success of the classifier
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to predict the outcome for that experiment. To allow this binary outcome, experiments that
found evidence against a theory or remained neutral regarding the theory were both considered
as not supporting it, without differentiating between these two cases. Then, three analyses were
conducted to quantitively assess the performance of the classifier: first, a t-test was used to
compare the accuracy of the classifier with the accuracy of a 'chance-level' model which
predicts the support of each theory without taking into account any of the parameters, solely
based on the frequency of the outcome in our database (i.e., how often is a specific theory
supported). Thus, the chance-level model should maximize prediction accuracy given the
marginal distributions of the support of each theory. In this analysis, the dependent variable
was the accuracy of the two models (chance level model vs. our model, using the parameters),
defined as the averaged accuracy across all 412 iterations, where in each iteration accuracy was
defined as the percentile of correct classifications (out of three, as support for each one of three
theories was predicted). Second, to test the robustness of the results, and control for the
randomness of the random forest classifiers fitting procedure, we conducted a sensitivity
analysis. Specifically, we compared the results of our main analysis detailed above with
classifiers trained and tested on the same data, yet with 1000 different random states. We then
tested in how many of these iterations the same results are obtained. Third, an SDT* was used
to further assess classification performance for each theory. Specifically, a Receiver Operating
Characteristic curve (ROC) was calculated for each theory, and the respective Area Under the
Curve (AUC) was reported. AUC weights both true and false-positive predictions of a classifier
and is unaffected by imbalances between positive and negative cases (which makes it especially
suitable for this analysis, since the support for the different theories is unequally distributed).

AUC of 0.5 indicates the classification performance of a random classifier.

When the classifier showed significant performance, the importance of each feature in
the model was assessed using a permutation-based importance assessment on the entire training
data *°. This method provides a measure of how classification performance changes when the
values of each parameter change (i.e., are permuted) and thus should indicate which specific
parameters contributed to the observed classification performance. The Importance score for
each parameter was calculated based on 5000 permutations of the values of each parameter in
1000 iterations where the model was trained with an additional, newly sampled, random
parameter. Then, they were compared with the importance of the random parameter added to
the training data, to evaluate the reliability of the importance assessment result. Only features

with an average importance score higher than the 95% quantile of the importance of a random
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variable were considered important for classification. Akin to the sensitivity analysis of
classifier accuracy, we ran a similar procedure for the importance scores. Here, we calculated
importance scores for each of the 1000 classifiers, as described above, and aggregated the
results of all classifiers together. Importance scores were calculated based on 5000

permutations of each parameter in 100 iterations with newly sampled random parameter.

All p-values reported throughout the manuscript were adjusted using false discovery

rate (FDR), °! to account for possible alpha inflation due to multiple comparisons.
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