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The response of a neuronal population to a stimulus can be summarized by a vector in a high-
dimensional space. Learning theory suggests that the brain should be most able to produce distinct
behavioral responses to two stimuli when the rate vectors they evoke are close to orthogonal. To
investigate how learning modifies population codes, we measured the orientation tuning of 4,000-
neuron populations in visual cortex before and after training on a visual discrimination task. Learning
suppressed responses to the task-informative stimuli, most strongly amongst weakly-tuned neurons.
This suppression reflected a simple change at the population level: sparsening of population responses
to relevant stimuli, resulting in orthogonalization of their rate vectors. A model of F-I curve modulation,
requiring no synaptic plasticity, quantitatively predicted the learning effect.

When an animal sees a stimulus, this triggers a
pattern of activity across a multitude of neurons
in its visual cortex. These neurons’ firing rates
together define a representation of the stimulus in
a high-dimensional vector space, similar to the
high-dimensional representations constructed by
machine learning algorithms (1, 2). The similarity
of the representations of two stimuli can be
quantified by the angle or dot product between
the corresponding vectors. In machine learning
this similarity measure, known as the “kernel
function” (2), determines the generalizability of
stimuli: stimuli evoking identical representations
will generalize perfectly, while stimuli evoking
orthogonal representations will not generalize at
all. Allowing the representations to themselves
change with learning is the heart of flexible
learning algorithms such as neural networks (1).

In the brain, stimuli that evoke similar neural
representations are likely to evoke similar
responses (3, 4). Furthermore,
stimulus representations evolve as animals learn,
even in primary sensory cortices. One might
expect that after learning, the number of neurons
selective for

behavioral

behaviorally-important  stimuli
increases, as has been observed in auditory (5, 6),
somatosensory (7, 8), and visual cortex (9, 10).
Other studies, however, have found a paradoxical
decrease in the number of cortical neurons
responding optimally to learned stimuli (11, 12),
and in primary visual cortex (V1), neurons
increase their slope at the task stimulus in a

manner dependent on orientation preference (13).

It is not yet clear whether these complex and
apparently contradictory findings result from a
single principle governing plasticity of visual
cortical representations at a population level.

Here, we use two-photon calcium imaging to
show how the tuning of populations of thousands
of V1 neurons changes after mice learn an
orientation discrimination task. At a single-cell
level, the results appear complex: neuronal tuning
curves evolve according to a lawful but
complicated dependence on their
orientation preference and tuning strength. At
the population level, a simple principle emerges:
learning transforms response vectors by a

prior

nonlinear function, whose convexity is largest for
task-informative stimuli. This transformation
sparsens the population representations and
makes them more orthogonal. The degree of
sparsening varied across the
population on a trial-by-trial basis, suggesting it
emerges from rapid circuit dynamics, rather than
slower plasticity mechanisms.

consistently

Results

An orientation discrimination task for mice

To study how cortical representations change
with learning, we trained mice in an orientation
discrimination task (Figure 1A,B). This task
required turning a steering wheel to select one of
two oriented cues, each of which could take on
three different orientations. Two of these
orientations were informative (45° and 90°) but
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Figure 1. Learning an orientation discrimination task reduces the proportion of neurons responding
maximally to task-informative orientations. (A) The orientation discrimination task. On each trial mice are
presented with two stimuli and then turn a wheel to move them on the screen. Bringing a 45° stimulus to the center,
or a 90° stimulus away from the center yields a reward, but 68° stimuli are uninformative. (B) Correct choices for all
stimulus pairings (left) and the average proportion of left choices across mice taken from their ten highest performing
sessions (right). (C) Pipeline for imaging neural activity. Left: V1 was located using widefield imaging with sparse
noise stimuli (red/blue: sign map; yellow outlined square: region selected for two-photon imaging). Middle: retinotopy
map for the two-photon field of view. Right: colored outlines of detected cells. (D) Timeline of experiments. (E) Single-
cell orientation tuning curves from naive mice, for four cells with mean orientation preference 0°, 45°, 68°, and 90°.
Colored polar curves: neural response to each orientation; dots: response to modal orientation; arrows: circular mean
vectors representing mean orientation preference (angle) and orientation selectivity (magnitude). (F) Similar plots for
mice proficient at the task (G) Proportion of cells with each modal orientation preference, in naive and proficient mice.
Error bars: SEM (n = 5 mice). (H) Proportion of cell population that had modal orientation preference 45° (left), 68°
(center), and 90° (right) and specified orientation selectivity. *, p < 0.05, **, p < 0.01.

had opposite behavioral contingencies (select vs.  To study how training in the task affected the
avoid) and a third was an uninformative neural representations of visual stimuli, we
distractor (68°). All mice included in this study assessed the orientation tuning of excitatory cells
successfully learned the task (Figure S1). in V1 using two-photon calcium imaging (Figure
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Figure 2. Learning has multifarious effects on orientation tuning curves. (A) Average orientation tuning curves
for cell groups defined by mean orientation preference (color) and selectivity level (column) for naive mice. Solid
vertical lines indicate task-informative orientations, dashed uninformative (68°). (B) Same plot for proficient mice.
Solid arrows highlight suppression of cell responses to the informative task orientations 45° and 90°. Dashed arrows
highlight tuning curve asymmetry for cells with preferences near the informative orientations. Shading: SEM (n = 5
mice) (C) 2d projection of population response vectors for each orientation from one mouse before (left) and after
learning (right). (D) Cross-validated classification accuracy for decoding stimulus orientation from naive and proficient
mice. Dashed line indicates perfect performance. (n = 5 mice)

1C, D). We obtained two recordings in passive analyzing passive stimulus responses avoids this

conditions: one before task training began (naive  potential confound.
condition), and one after training was complete
(proficient condition). In both cases, mice were
placed in the same apparatus where they

performed the task, and drifting gratings were

Training in the task decreased the fraction of
neurons preferentially tuned to the task-
informative orientations, and this decrease was

presented; no rewards were delivered, and the
wheel was not coupled to visual stimuli. In this
passive condition, the presentation of visual
stimuli triggered minimal whisking, and a
pupillary light reflex, neither of which differed
significantly ~between stimuli or training
conditions (Figure S2). Thus, even though body
movements and changes in arousal strongly

modulate visual cortical activity (14-16),

specific to weakly tuned cells (Figure 1E-H). We
defined a cell’s modal orientation preference to be
the stimulus orientation driving it to fire
maximally (dots in Figure 1E-F). Task training
significantly decreased the fraction of neurons
whose modal orientation preference was one of
the two task-informative orientations (45° and
90°), but not the fraction of neurons preferring the
distractor orientation (68°) (Figure 1G; 45°: p =
0.012; 68°: p = 0.228; 90°: p = 0.006, paired-sample
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t-test, n = 5 mice). To further characterize tuning
curves, we defined a cell’s circular mean response
as a vector in a complex plane (arrows in Figure
1E-F); the length and angle of this vector defined
the cell's selectivity index and mean orientation
preference.  This analysis showed that the
decrease in cells modally preferring the task-
informative orientations came only from weakly-
tuned cells: there was no decrease in the number
of cells strongly tuned to the informative stimuli
(Figure 1H; 45°: p = 0.005 and 0.037 for selectivity
indices 0-0.2 and 0.2 - 0.4; 68°: p=0.130 and 0.390;
90°: p=0.001 and 0.013, paired samples t-test, n =
5 mice).

Task-informative orientations suppress weakly-
tuned cells

Tuning curves also changed shape after training,
in a manner dependent on a cell’s preferred
orientation and selectivity (Figure 2A,B). We
grouped the recorded cells by their selectivity and
mean orientation preference and plotted the mean
tuning curves of cells in each group before and
after training, using held-out repeats. In mice that
had not learned the task, tuning curves had a
uniform structure (Figure 2A). By construction,
these curves peaked at the cells’ mean orientation
and the depth of modulation
increased with the cells’ selectivity index. For

preference,

trained mice, however, a different structure
appeared (Figure 2B). Weakly tuned neurons
suppressed by the task-informative
orientations regardless of their preference. Cells
whose mean orientation preference was at or

were

close to a task-informative orientation exhibited
bimodal tuning curves after training, for which
the mean and modal orientation preference
differed (examples in Figure 1F). For more
strongly tuned cells, suppression by task-
was still visible,
primarily in neurons with a mean orientation
preference adjacent to them. This suppression led
to an asymmetry in tuning curve slopes (Figure

informative orientations

S3A), as previously reported in primate (13). Ata
single-cell level, we training-
dependent increase in the magnitude of the d’
statistic that measures distinguishability of task-
informative orientations (Figure S3C-D) as
previously observed (9), primarily attributable to
a decrease in the standard deviation of responses
to these stimuli (Figure S3E).

observed a

These changes in cellular tuning did not improve
the ability to decode stimulus orientation from
population activity, because the stimulus could be
decoded exceptionally well even prior to task
training (Figure 2C,D). Failures of stimulus
decoding can occur even in large populations of
well-tuned cells, if the structure of trial-to-trial
variability matches differences between stimuli
(17-19). In the current case, however, a simple
two-dimensional projection showed that trial-to-
trial variability did not interfere with stimulus
coding before or after training (Figure 2C), and
linear discriminant analysis gave near perfect
accuracy in both training conditions and for all
orientations (Figure 2D; naive: 799/800 trials
correct; proficient: 808/808 trials correct). Indeed,
populations of V1 neurons can reliably encode
much finer stimulus orientation than demanded
by our task (20).

Training sparsens and orthogonalizes responses
to task-informative orientations

Although task training did not improve the
decodability of the population activity, it did
change its character, sparsening the population
responses to task-informative orientations
(Figure 3A,B). We quantified the sparseness of
population activity using kurtosis and found that
proficient mice exhibited significantly higher
population sparseness for the task-informative
orientations than for the distractor (Figure 3B; 45°
vs 68°: p =0.008; 68° vs 90°: p = 0.023; 45° vs 90°: p
=0.340. Welch’s t-test, n = 5 mice).

This sparsening took a specific form: it made the
population responses to the task-informative
orientations more orthogonal to each other
(Figure 3A,C,D). Training reduced the cosine
similarity between population response vectors to
the task-informative orientations compared to
control orientations (Figure 3C-D; p = 0.006.
Independent samples t-test, n = 5 mice). Thus, by
increasing the number of zero components in the
population response vectors (i.e. sparsening),
training moved them closer to the coordinate axes
of N-dimensional space, and thereby
orthogonalized them (Figure 3E).
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Figure 3. Learning sparsens and orthogonalizes responses to informative task orientations. (A) “Bullseye
plots” showing structure of population responses to the informative task orientations 45° and 90°. Each point
represents a cell. The point’s location in polar coordinates indicates the cell’s circular mean orientation preference
(angle) and selectivity (distance from the origin). The point’s hue represents the cell’s relative response to the 45°
and 90° stimulus orientations (green to magenta); the point’s size and brightness (light to dark) represents the cell’'s
maximal response to these two stimuli. (B) Change in population sparseness following task learning, as a function of
stimulus orientation. Error bars: mean and SEM (n = 5 mice). (C) Change in cosine similarity between mean population
responses to each pair of orientations after task learning. White dashed lines demarcate task stimuli. Black circles
and triangles indicate the orientation pairs shown in (D). (D) Change in cosine similarity of population responses to
45° and 90°, and between 135° and 0°, after task learning. Error bars: mean and SEM (n = 5 mice). (E) lllustration of
learning’s effect on population response vectors to task-informative stimuli. Sparsening of population responses
moves the vectors closer to coordinate axes and increases the angle between them. *, p < 0.05, **, p < 0.01.

A model for learning-evoked sparsening firing rate (the f-I curve; Figure 4A). Under this
hypothesis, cortical neurons receive a stimulus-
dependent bottom-up excitatory input that is
unaffected by learning, but also receive a

These apparently complex learning-induced
tuning changes could be accurately predicted by
a simple computational model (Figure 4A).
Plasticity of cortical representations is often
assumed to arise from coordinated plasticity of
local excitatory synapses (21, 22), but our
observations suggested an alternative possibility.

feedback signal that, after learning, is activated by
salient stimuli. This signal changes the way that
local cells respond to excitatory inputs,
specifically reducing responses to weak
excitation. This could be instantiated by multiple
possible network mechanisms, for example
feedback inhibition from a local inhibitory cell
class, or activation of a long-range
neuromodulatory system by task-informative
stimuli.

Because training further attenuated the responses
to task-informative orientations in cells that
already responded weakly to them, we
hypothesized that the effects of training could be
explained by a stimulus-dependent modulation
in the relationship between excitatory input and
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Fig. 4. Model of learning-evoked sparsening by f-I curve modulation. (A) Model schematic. Following task learning
the f-I curve is stimulus-dependent, becoming more convex when informative task stimuli are presented. This spares
responses in cells with high selectivity (top) but suppresses responses to informative stimuli in cells with low selectivity
(bottom). (B) Effect of learning on responses to task stimulus orientations as a function of cell orientation preference
(color) and selectivity (symbol). Symbols correspond to the selectivity bins of the columns in Fig. 2A-B ordered X, +,
m, ¥, %. Each point shows the average response of cells from all experiments. Black lines are stimulus-specific fits of
piecewise linear functions relating naive responses to proficient responses. (C) Orientation tuning curves predicted by
the model, obtained by applying the functions fit in (B) to naive tuning curves. Solid and dashed arrows highlight the
same features seen in the actual proficient responses, as shown in Fig. 2B. Shading: SEM (n = 5 mice). (D) Convexity
of naive-to-proficient transformation functions, for each stimulus orientation. Points indicate individual mice. Error bars:
mean and SEM (n = 5 mice). (E) Relationship between learning-evoked changes in population sparseness and
convexity of naive-to-proficient transformation. Each point represents a stimulus orientation in a single experiment.
Points for 45°, 68°, and 90° are colored as in (D). *, p < 0.05, **, p < 0.01.

This hypothesis makes a strong and testable
prediction: that population responses before and
after training can be related by a single function
that depends on the stimulus but not the cell.
Denote the bottom-up input received by cell ¢
following stimulus @ by I. 4, and the pre-training
f-I curve by h(I); thus, before training, the
response of cell c to stimulus 6 is f.4 = h(]clg).
Our model holds that after training the f-I curve
depends on the stimulus, but not the cell;
denoting it by h'g(I), the post-training response of
cell ¢ to stimulus 6 is f'cg = hy(I.¢). The firing
rates before and after learning are therefore
predicted to be related as f'.y = gg(f.¢), where

the function go(f) = hy(h2(f)) predicts
proficient from naive responses, in a manner that
depends on the stimulus 8, but not on the cell.
Furthermore, it can be proven that if the function
Jge is convex, then population sparseness will

increase after learning (Appendix).

To test this prediction, we attempted to relate pre-
and post-learning responses through a function
which varies between stimulus orientations but
not between cells, with good success (Figure 4B-
E). Responses before and after training could be
accurately related by piecewise linear functions
(Figure 4B; Figure S4). The shape of the function
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Figure 5. Trial-to-trial variability in response sparsening. (A) Dynamic sparsening model: cells undergo varying levels
of -l curve modulation dependent on brain state. (B) Single-trial sparsening functions for two example 45° trials from the
same recording session, plotted as Figure 4B. For each trial, responses of separate halves of the cell population are
shown. (C) Similarity of single-trial convexities between two different halves of the cell population, for the recording in
(B). Each point represents a single presentation of the 45° stimulus. (D) Correlation of single-trial convexities between
two halves of cells, with each point representing one stimulus orientation in one experiment. Point with dashed outline is
the session shown in (C). Error bars: mean and SEM (n = 5 mice). (E) Trial-to-trial variability of neuropil responses. Left
and right plots show mean df/f of two-photon imaging frames to task-informative orientations for low convexity (< 0) and
high convexity (> 0.3) trials. Colored contours correspond to retinotopic distances from task stimulus location (see
legend). (F) V1 neuropil responses to task-informative orientations, as a function of distance from retinotopic position of
the task stimulus, for trials with low and high convexity. Dashed lines are least-squares fits. Shading: SEM (n = 5 mice).

* p<0.05,*, p<0.01.

but for each
orientation, a single function fit the responses of
cells in all tuning categories, as predicted by the
model. Applying these functions to the naive
tuning curves, we were able to predict neuronal
responses in proficient subjects with remarkable
accuracy (Figure 4C; compare Figure 2B).
Specifically, the model explains why learning
affects mostly the cells that are broadly tuned:
these cells exhibit intermediate levels of response

varied between orientations,

that are affected most by the change in
nonlinearity. The convexity of the nonlinear
function gy relating naive to proficient responses
was larger for task-informative orientations than
for the distractor orientation (Figure 4D; 45° vs
68°: p = 0.006; 68° vs 90°: p = 0.002; 45° vs 90°: p =
0.311. Independent samples ¢-test, n =5 mice), and
accurately predicted the increased sparseness of
population responses to each stimulus (Figure
4E). These changes were local to the region of V1
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representing the task stimulus location, where
they affected neuropil as well as cellular activity,
as might be expected from activation of local
inhibitory cells (Figure S5).

The hypothesis that the of a
population response to a stimulus depends on
local or distal
prediction: if the strength of this feedback varies
between trials, then the amount of sparsening
should also vary between trials. Furthermore,
since this signal modulates all neurons similarly,
the degree of sparsening should be consistent
across the population. Trial-to-trial variability in
neuronal responses is well-documented, and has
been reported to take additive and multiplicative
forms (23-25). The current model predicts a
different type of trial-to-trial variability: it
predicts that responses follow a nonlinear
transformation whose convexity varies from one

Sparseness

feedback makes a second

trial to the next.

To test this second prediction, we examined
population responses on single trials (Figure 5).
We divided cells randomly into two groups,
balanced for
selectivity, and within each group examined how
single-trial population activity was related to
naive trial-averaged responses. The convexity of

orientation preference and

the population response varied substantially
between trials, even within repeats of a single
stimulus orientation, but was consistent across
cell groups (Figure 5A-D; correlation coefficient
significantly exceeds 0 at p < 0.05 for each
stimulus orientation, one sample f-test with
Holm-Sidak correction, n =5 mice.). Furthermore,
suppression of activity on trials of high convexity
was largest in areas of V1 topographically
representing the task stimulus location, as would
be expected if it were driven by local inhibitory
neurons (Figure 5E-F).

Discussion

Although learning-related changes to orientation
tuning curves were apparently complex, they
could be explained to high quantitative accuracy
by a simple principle: neuronal outputs on each
trial reflect a nonlinear transformation of the
mean naive responses, whose convexity varies
from trial to trial but is largest on average for task-
informative orientations after learning. This
convex population

transformation sparsens

responses to task-informative orientations and
makes them more orthogonal to each other. This
orthogonalization may help downstream circuits
produce different behavioral responses to the
two.

This model can explain many of the apparently
complex effects of learning observed in previous
studies of V1. It predicts a reduction in the
number of cells responding modally to the task-
informative orientations (12) and an asymmetrical
increase in tuning curve slope specifically at these
(13). Additionally,
suppression of the task-informative orientations
predicts an increase in the fraction of cells that are
significantly selective between these stimuli (9,
10), as confirmed by an increase in the d’ statistic.
Thus, one simple principle can explain several
apparently diverse results observed in visual
cortex of multiple species.

orientations nonlinear

Despite this concordance with previous results in
visual cortex, our findings do not appear fully
congruent with results from auditory and
Indeed,
multiple tasks, as well as
neuromodulatory systems under anesthesia,
causes an increase in the number of
electrophysiological recording sites responding
modally to the task stimuli (5-7). We suggest

somatosensory cortex. learning  of

stimulation of

three, non-exclusive, reasons for this apparent
discrepancy. First, it would be surprising if there
were only one mechanism by which cortical
representations evolve with learning, and it is
reasonable to expect that different mechanisms
are employed to a different extent in different
cortical regions and different tasks. In fact, one
study of learning in somatosensory cortex did
observe sparsening (11), suggesting that this
mechanism is at least sometimes also employed in
Second, methodological
differences may explain at least some of the
difference. Our study (like Ref. (11)) used two-
photon imaging to record excitatory cells in

non-visual cortices.

superficial layers. Auditory and somatosensory
studies have typically used electrophysiological
multi-unit recordings, which are biased toward
fast-spiking interneurons, and increased activity
of these cells is one possible mechanism by which
sparsening of pyramidal cell activity could occur.
Finally, expansion of sites responding to task
stimuli is a transient phenomenon. After
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continued training or stimulus
expanded maps can “renormalize” to their
original state without compromising behavioral

exposure,

performance (26); furthermore, induction of map
expansion by means other than task training can
actually worsen task performance (27), in
particular by increasing the rate of false responses
to non-target stimuli (28). Our task required long
training, potentially allowing time for map
expansion to reverse; it also requires differentially
responding to the two informative stimuli while
not responding to the similar distractor stimulus,
for which map expansion might actually impair
performance.

It is often assumed that plasticity of cortical
representations arises from plasticity of excitatory
inputs onto the cells being recorded. Our model
suggests that this form of plasticity is not required
to explain our results. Clearly, synaptic or cellular
plasticity must occur somewhere to change the
tuning curves; our model suggests that it occurs
upstream of the circuit carrying the feedback
signal. Several identities of this circuit are
consistent with our data. Sparsening could be
mediated by a class of local interneurons, whose
inputs from local pyramidal cells tuned to task-
informative stimuli are strengthened after
learning (29, 30). Alternatively, it could be
mediated by feedback from more distal cortical
regions or neuromodulators, which target local
inhibitory circuits to cause retinotopically-aligned
suppression. Although we did not observe any
videographic correlates of cortical sparsening
(such as increased pupil diameter or whisking),
our data are not inconsistent with a covert
cognitive state change such as an increase in
attention caused by the task-informative
orientations.

Regardless of the underlying mechanism, the fact
that learning-related sparsening leads to
orthogonalization of the representations of the
task-informative stimuli suggests a function for
this process. We suggest that orthogonalizing the
representations of these stimuli allows the brain
to produce different behavioral responses to
them. Gratings are not natural stimuli, and if a
mouse ever did encounter one in the wild, it
seems unlikely that the grating’s orientation
would be of any behavioral significance. Thus,
one might expect mice by default to generalize

from one orientation of grating to another; only
after should behavioral
responses to them diverge. Orthogonalization of

extensive training
cortical representations of these stimuli may
override this default generalization
encourage differing behavioral responses.
Applications of similar techniques to artificial
learning  systems provide a
mechanism to boost their learning capacity.

and

might new
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References (31 — 37)

Materials and Methods

Experimental procedures

All experimental procedures were conducted according to the UK Animals Scientific Procedures Act
(1986). Experiments were performed at University College London under personal and project licenses
released by the Home Office following appropriate ethics review.

Surgical procedure

Five transgenic adult mice (60 days or older) expressing GCaMP6s in excitatory neurons (CaMK2a-
tTA;tetO-GCaMP6s) underwent a procedure to implant cortical windows over right primary visual
cortex (V1). Mice were anesthetized with isoflurane, an ophthalmic ointment was applied to the eyes,
and injections of carprofen and dexamethasone were administered. The hair on the head at the planned
incision site was shaved away, and the mouse was transferred to a stereotaxic apparatus where its skull
was secured with ear bars. The scalp was cleaned with 70% ethanol to remove loose hairs and other
detritus, after which a lidocaine ointment was applied. Following a final application of iodine and
ethanol, the scalp over visual cortex was excised, and the edges of the incision were sealed to the skull
with a cyanoacrylate adhesive. A sterilized metal head plate with a circular well was cemented onto
the skull using dental acrylic resin. A 4 mm circular craniotomy was made over right V1 using a biopsy
punch, and a glass window was sealed in place with a cyanoacrylate adhesive and dental acrylic resin.
At the end of the procedure, mice were removed from anesthesia and placed on a heating pad to
recover. Carprofen was added to the mice’s drinking water for three days following surgery to mitigate
post-operative pain, and mice were checked daily for any adverse outcomes.

Following recovery, mice were habituated for handling and head-fixation before carrying out
recordings.

An orientation discrimination task

The task is a modification of a two-alternative forced choice contrast discrimination task previously
developed by our lab (31). Mice were head-fixed with their body and hindlimbs resting on a stage,
leaving their front forepaws free to turn a small wheel left or right. Three computer screens surrounded
the mouse, spanning -135 to +135 visual degrees (v°) along the azimuth axis and -35 to +35 v° along the
elevation axis. Trials began after 2 s of continuous quiescence (no wheel movement), after which two
full contrast Gabors with sigmas of 18 v° and spatial frequencies of 0.04 cycles/v°® were presented
simultaneously and centered at -80 and +80 v° azimuth. These Gabors were randomly oriented at either
45°, 68°, or 90°, though the pair were never identical. After an additional quiescence period of
approximately 1 s, an auditory cue (12 kHz, 100 ms) would sound, signaling to the mouse that the
horizontal position of the Gabors could be manipulated via wheel movement. If the mouse moved the
wheel before the auditory cue, the Gabors remained stationary while the quiescence requirement
remained in force. When a Gabor was moved to the center screen, a choice was recorded for that trial,
and a feedback period was initiated. Correct choices (driving a 45° stimulus to the center, or a 90°
stimulus away) were rewarded with 1 - 5 ul of water and a short 0.25 s delay, while incorrect choices
(driving a 90° stimulus to the center, or a 45° stimulus away) resulted in a 1 - 2 s burst of white noise.
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The Gabor was locked at the center position during the feedback, following which it would disappear,
and the next pre-trial period of enforced quiescence would begin. During task training, mice were water
restricted in line with the approved project license. Mice were considered proficient at the task when
they consistently made the correct choice on over 70% of trials.

Recording visual responses in V1

Two sessions of two-photon calcium imaging were performed: one before task training (naive) and one
after mice had achieved high performance in the task (proficient). Imaging in the proficient condition
was performed immediately after a behavioral session and in the same apparatus.

Location of visual areas

Prior to the first two-photon imaging session, we determined the location of V1 in each mouse’s cortical
window by recording cortical responses to sparse noise under mesoscopic wide-field calcium imaging
and then generating a visual sign map, as previously described (32). Mice were placed on a stage of the
same type used in the task, and white squares of width 7.5° visual angle were shown on a black
background at a frame rate of 6 Hz for 10 minutes. Squares appeared randomly at fixed positions in a
12 by 36 grid, spanning the retinotopic range of the computer screens. 12% of the squares shown at any
one time.

Two-photon calcium imaging

Layer 2/3 in V1 was imaged using a commercial two-photon microscope (Bergamo II, Thorlabs Inc)
controlled by Scanlmage (33). A ti:sapphire laser (Chameleon Vision, Coherent) was set to a wavelength
between 940 and 980 nm, and the beam was focused with a 16X water-immersion objective (0.8 NA,
Nikon). Images were acquired at a frequency of 30 Hz across six planes (5 Hz per plane), a resolution
of 512 x 512 pixels, with a frame width between 730 and 810 um. The fly-back plane was excluded from
further analysis. During recordings, mice were head-fixed and placed on the same type of stage used
for the task. Three computer screens surrounded the mouse, spanning -135 to +135 v° along the azimuth
axis and -35 to +35 v° along the elevation axis.

Sparse noise

To map the retinotopy of V1 under two-photon imaging (Fig. 1C, middle), sparse noise stimuli were
again presented. Black or white squares of width 4.5° visual angle were shown on a gray background
at a frame rate of 5 Hz for 8 — 30 minutes. Squares appeared randomly at fixed positions in a 16 by 60
grid, spanning the retinotopic range of the computer screens. 1.5% of the squares were shown at any
one time.

Drifting gratings

At least 16 blocks of drifting grating stimuli were presented in each recording. In each block, gratings
spanning 16 directions (22.5° intervals) and a blank stimulus were each presented once in a randomized
sequence. Each grating lasted 2 s, with an inter-trial interval sampled randomly from a uniform
distribution with a range of 2 — 3 s. Drifting gratings were full contrast and sinusoidal, with a spatial
frequency of 0.04 cycles/v° and a temporal frequency of 4 cycles/s, that either encompassed all three
screens (full-field, three mice) or the entire left screen (two mice), contralateral to the recorded
hemisphere. Data from the two directions for each of the eight orientations covering 180° were analyzed
together.

Face recording

An infrared LED illuminated the mouse’s face, and a camera with an infrared filter was used to capture
any changes in pupil area or whisking behavior.
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Data analysis
Pixel map of retinotopy

To obtain a retinotopic map of the two-photon imaging frame (Fig. 1C middle, Fig. S4A), we analyzed
the two-photon recordings during sparse noise stimuli on a pixel-by-pixel basis, without cell detection.
To accelerate the computation and denoise the data, analyses were performed after singular value
decomposition (SVD), which produces valid results as these computations are linear. First, we z-scored
each pixel’s time course independently. Next, we applied single-value decomposition (S5VD) on the z-
scored image frames, F = USV”, where F was the full movie encoded as a matrix of size Nyyes X T, U
was size Npiyxers X Nsyps, S was a diagonal matrix of singular values, and V was size T X Ng,ps with
T being the number of two-photon imaging frames. A matrix ¥ was computed summarizing the mean
response of each of the first 100 columns of V to each noise frame, as the time-averaged activity in a
window 0.2 to 0.6 s after stimulus onset minus the time-averaged activity in a 1 s pre-stimulus window.
This matrix was of size F X 100, where F is the number of noise stimulus frames. The dependence of
these responses on individual noise pixels was estimated using ridge regression: f = (X'X +
AD)~'XTY, where X was a F X Nyyise squares Matrix containing 1 if a particular square was white or black
on a particular frame (0 if it was grey), A was a ridge parameter (1 = 100), and I was the identity matrix.
The stimulus dependence of each pixel was then obtained by matrix multiplication R = USf, resulting
in a matrix R of size Npixers X Nnoise_squares, €ncoding the receptive field map of each 2p imaging pixel.
To generate retinotopic maps of the imaging frame, each pixel’s receptive field map was smoothed with
a Gaussian (sigma 12 v°) and a peak found, giving retinotopic positions along the elevation and azimuth
axes for each pixel.

Pixel retinotopy maps were used to ensure that the two-photon imaging frames were retinotopically
aligned with the position of the left task stimulus (0 v° elevation, -80 v° azimuth) during drifting grating
recordings. When the optimal imaging location in V1 was identified in naive mice, an image of the
cortical vasculature was saved for positioning subsequent imaging experiments.

Visual sign maps

Due to the retinotopic eccentricity of the imaging location in V1 and the large field of view used, it was
occasionally the case that areas outside V1 were also recorded. To differentiate V1 from adjacent visual
areas, visual sign maps were obtained using the above pixel retinotopy maps averaged across planes
(Fig. S4). First, elevation and azimuth maps were smoothed with a median (width 10 pixels) and a
Gaussian (sigma 60 pixels) filter. Similar to the process described in Ref. (34), the sine of the difference
in angle between the gradients of the elevation and azimuth maps was calculated. This sign map was
then thresholded to values above 0.31, and pixels that were members of the largest patch were
considered to be in V1. This process was consistent in isolating V1, as verified by visual inspection of
the elevation and azimuth retinotopic maps.

Pixel map of orientation responses

To obtain a pixel map of orientation preference (Fig. S4), the average df/f of each pixel was calculated
in response to each stimulus orientation. For each trial, df was defined as the average fluorescence in a
post-stimulus window spanning 0 — 2 s, minus the baseline defined as the average fluorescence in a
pre-stimulus window spanning -1 to 0 s relative to stimulus onset. This value was divided by fo, the
baseline measurement. To isolate neuropil responses (Fig. S4D), only pixels that did not belong to a cell,
as determined by Suite2P and subsequent manual curation, were included in the analysis.

Cell detection

Registration, cell detection, neuropil correction, and deconvolution of the two-photon imaging data
were carried out using Suite2P (35). Imaged planes were aligned with non-rigid registration (four
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blocks, 128 x 128), and spiking activity was deconvolved from calcium fluorescence using a kernel with
a timescale of 2 s.

Characterizing single-cell orientation tuning

All cells identified by Suite2P were analyzed for orientation responses. First, each cell’s trial responses
were computed by time-averaging its deconvolved activity on each trial over a window of width 0 - 2
s from drifting grating onset. Next, the mean response of each cell to each orientation and to the blank
stimulus was computed by averaging over the respective stimulus trials. Each cell’s trial responses
were then normalized by dividing by its mean response to its preferred stimulus condition.

A cell’s orientation preference was defined in two ways: the orientation it responded maximally to
(preferred modal orientation; Fig. 1E-F) or its preferred mean orientation, the argument of the complex
216
Z"%, where 1y is the cell’s mean response to orientation 6. The orientation selectivity of
6o

a cell was defined as the modulus of z. To determine the tuning curve of each cell as a function of its
orientation preference and selectivity (Fig. 2A-B), a cross-validated approach was used to avoid
erroneously detecting tuning due to random fluctuations in responses. The preferred mean orientation
and selectivity of each cell were calculated using odd-numbered trials, while the tuning curves were

number z =

generated using the mean response to each orientation on even-numbered trials.

Tuning curve slope (Fig. S2A) was quantified as the absolute difference between the cell’s response at
a stimulus orientation, and the orientation 22.5° closer to the cell’s preferred mean orientation, divided
by 22.5. The cell’s tuning curve slope at its preferred mean orientation was defined as the absolute
difference between orientations -22.5° or +22.5° from preferred, divided by 45. Thus, in cases where
these responses were equal, the tuning curve slope at the preferred orientation was zero.

Discriminability index

The discriminability index (d”) of a cell, its ability to discriminate between two orientations (6, and 6}),

. Hog— Ko
was defined as ——L%

where p and ¢? are the mean and variance of the respective orientation
c% +0
a b
2
responses. The mean and variance for each stimulus orientation was the average of the mean and

variance of the two corresponding stimulus directions.
Population sparseness

Population sparseness was summarized as the kurtosis of the mean population response to each
orientation, i.e., k = %, where p, is the fourth central moment and o is the standard deviation of mean

orientation cell responses (36).
Orthogonalization of population responses

To calculate the orthogonalization of population responses between different stimulus orientations
(Fig. 3), we split the trials into odd and even halves, and computed the N..;;-dimensional population

response vectors P;(0) to orientation 6 for the trial set i (i = 1: odd trials; i = 2: even trials). We
P1(61)-P2(62)

1P1(8DIIP2 (BN

in an eight-by-eight matrix of similarity values for each mouse and training condition. Computing this

computed the cosine similarity between orientations 6, and 6, as This process resulted

similarity between two separate halves ensured that the diagonal was not 1 by definition.
Dimensionality reduction

To display population responses in a 2-dimensional plot (Fig. 2C), we trained a linear regression model
to predict a 2-dimensional vector (cos 8, sin 8) for each trial, where 8 is the stimulus orientation, from
the N_¢s-dimensional population response vector on that trial. The model was trained on odd trials,
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and then applied to population responses on even trials to obtain a two-dimensional projection of
population activity that separates points by stimulus orientation.

Stimulus prediction

Orientation was also decoded from population activity using linear discriminant analysis (LDA; Fig.
2D). An LDA model was fit using the population responses in odd trials, and its performance was
assessed on even trials. To build the model, we used the class LinearDiscriminantAnalysis from the
Python library scikit-learn, with solver set to “eigen” and the shrinkage coefficient automatically
calculated.

Modeling learning-evoked changes to orientation responses

For each mouse, cells in the naive and proficient recordings were divided into classes by binning mean
orientation preference (eight bins, 0°: 168.75 — 11.25°, 23°: 11.25 — 33.75°, 45°: 33.75 — 56.25°, 68°: 56.25 —
78.75°, 90° 78.75 — 101.25°, 113°% 101.25 — 123.75°, 135°: 123.75 — 146.25°, 158°: 146.25 — 168.75°) and
selectivity (five bins, 0 — 0.16, 0.16 — 0.32, 0.32 - 0.48, 0.48 — 0.64, 0.64 — 1). The mean response of each
cell class to each stimulus was determined by cross-validation, using odd trials to determine the cell’s
tuning class, and using even trials to compute its tuning, as described above. Responses in the proficient
mice were fit by piecewise linear functions of responses in naive mice, r,, = f 5 (7;,), where

xb/a, n<a
= b—-1
Jan() x-1)——+1, 1nr,>a
a—1
The function f, ; is the piecewise linear function constrained to pass through (0,0), (a, b), and (1,1).
The parameters a and b were fit for each mouse and stimulus by nonlinear least squares (Python library

SciPy, optimize.curve_fit), constrained to values between 0 and 1.

The convexity of the transformation from naive to proficient population responses to a stimulus was

Mpref

quantified as C = — 1, where my,.r was the slope of a line from the origin to the point

Mnon-perf
representing the cell class with the strongest selectivity to this stimulus, and m;,,_,,r Was the slope of
a linear regression on the points corresponding to cell classes whose mean orientation preference was
not the stimulus shown. This approach was used to measure convexity on mean responses, relating the
trial-averaged population response in the same mouse prior and after training (Fig. 4D), and on single
trials (Fig. 5), where the population responses in single trial in a proficient mouse was compared to the
trial-averaged population response in that mouse prior to training (Fig. 5).

To assess the consistency of trial-to-trial fluctuations in sparsening across the population (Fig. 5C-D),
we randomly divided the proficient cells into two populations balanced for orientation preference and
selectivity. Trial-by-trial convexity was measured, as described above, for each cell population, and the
correlation coefficient of these convexities was computed. This process was repeated 2000 times, and
the average correlation in convexity over orientations was found for each mouse.

Pupil area and whisking

Facial recordings were processed with the toolkit FaceMap (www.github.com/MouseLand/FaceMap)
to obtain traces of pupil area and whisking intensity. The pupil area was defined as the area of a
Gaussian fit on thresholded pupil frames, where pixels outside the pupil were set to zero. Whisking
intensity was defined as the average change in individual pixels between frames for a region of interest
limited to the whisker pad. From these resulting traces, trial-evoked changes in pupil area and whisking
were calculated. First, for each trial pupil area and whisking were averaged in a post-stimulus time
windows spanning 0.5 to 3 s for pupil and 0 to 3 s for whisking. Next, to compare across sessions, pupil
and whisking trials were normalized by the blank stimulus trial average. Lastly, stimulus-evoked
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changes in pupil area and whisking were calculated by subtracting from the normalized trials a pre-
stimulus baseline, defined as the average normalized pupil area and whisking in a -1 to 0 s window.
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Figure S1. Orientation discrimination task. (A) Temporal structure of the task. (B) Behavioral
performance for all mice. Matrices show the proportion of left choices for all cue pairings averaged
over ten highest performing sessions. Cue pairings that were not presented are shown in white.
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Figure S2. Measures of behavioral responses during passive viewing of grating stimuli. (A)
Stimulus-triggered pupil area time course, averaged over all trials of each stimulus orientation and
training condition. Stimulus presentation causes pupil constriction, but pupil responses to task-
informative stimuli do not appear substantially different to those to other stimuli. Shaded regions: SEM
(n =5 mice). (B) Average change in pupil area within gray shaded time windows shown in (A).
ANOVA indicated no significant effect of training (p = 0.053), stimulus orientation (p = 0.279), or their
interaction (p = 0.951). Error bars: mean and SEM (n = 5 mice). (C and D) Same as in (A and B) but
for whisking, assessed by video motion energy over the whisker pad. ANOVA indicated no significant
effect of training (p = 0.547), stimulus orientation (p = 0.061), or their interaction (p = 0.372).
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Figure S3. Additional metrics of single-cell tuning. (A) Tuning curve slope as a function of mean
orientation preference relative to the informative task orientations (45° and 90°; left), uninformative
distractor orientation (68°, center), and non-task orientation controls (135° and 0°; right). Shading:
SEM (n = 5 mice). Note that the slope increases with training specifically for stimuli adjacent to task-
informative stimuli (73). (B) Change in tuning curve slope at the informative, distractor, and control
orientations for cells with adjacent orientation preferences. Comparisons: 45° and 90° vs 68°, p =
0.036; 45° and 90° vs 135° and 0°, p = 0.0006. Independent samples f-test. Error bars: mean and
SEM (n = 5 mice). (C) Learning-evoked changes in the d’ statistic, measuring the discriminability of
45° from 90° stimuli in individual cells. Each point shows the absolute value of the average d’ across
cells of a single mean orientation preference (color) pooled across all mice. The d’ magnitude
increases significantly for cells preferring the task-informative orientations 45° and 90° (p = 0.010, p =
5.6 x 108, Linear mixed effects model with random intercept). (D) Absolute value of average
difference of mean responses to 45° and 90°, for 45° and 90° preferring cells, before and after training
(p =0.261, p = 0.042, Linear mixed effects model with random intercept.) (E) Average standard
deviation of responses to 45° and 90° for 45° and 90° preferring cells, before and after training.
Learning reduced the standard deviation of responses to 45° and 90°, contributing to an increase in d’
(p=2.7x10"8 p =1.8 x 10", Linear mixed effects model with random intercept). Error bars: SEM (n
= 5 mice, naive cells = 20,857, proficient cells = 16,876). *, p < 0.05, **, p < 0.01.
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Figure S4. Naive and proficient population responses to all stimulus orientations. (A) Learning-
evoked changes in orientation responses averaged over all mice, like figure 4B but showing analyses
for all stimulus orientations. (B and C) Same as (A) but for two representative mice individually.
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Figure S5. Response suppression is aligned with the retinotopic location of the task stimulus.
(A) Retinotopic mapping of visual cortex, for an example mouse. Left two pseudocolor plots show
preferred azimuth and elevation for each pixel in the field of view, assessed by analyzing responses
to sparse noise stimuli. White line demarcates the border of V1. Right panel shows distance in
degrees of visual angle from each pixel’s preferred retinotopic location to the retinotopic position of
the task stimulus, in pseudocolor (grayscale), and with contour representation (dashed colored lines).
(B) Mean df/f of two-photon imaging frames during presentation of full-field gratings of the marked
orientations in the same mouse prior to (top) and after training (bottom). White lines and colored
contours mark V1 boundary and retinotopic distance to stimulus location, as in (A). (C) Zoom into
boxed regions in (B). Note that after training, neuropil is suppressed in the region retinotopically
matching the stimulus, although individual cells continue to respond strongly there. (D) V1 neuropil
responses as a function of stimulus orientation and retinotopic distance from the task stimulus
position (colors), for naive and proficient mice (dashed and solid lines). Shading: SEM (n = 5 mice).
Note specific suppression of responses to task orientations in pixels retinotopically close to the
stimulus location. (E) Histogram of modal orientation preferences of V1 cells in naive and proficient
mice, for cells close to (left) and distant from (right) the retinotopic position of the task stimulus,
plotted as in Figure 1G. The proportion of cells preferring 45° and 90° but not 68° changes
significantly amongst cells within 10 v° of the task stimulus location (p = 0.020, p = 0.045, p = 0.121,
paired samples t-test). For cells further than 20 v° from the task stimulus location, all three changes
are insignificant (p = 0.206, p = 0.132, p = 0.762, paired samples t-test). Error bars: SEM (n = 5 mice).
*, p <0.05.
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Appendix

Here we prove that applying a convex transformation to a neural population response vector increases
its sparseness. Intuitively, the argument works as follows. Sparseness measures the degree to which a
small number of neurons fire more than the mean firing rate. Applying a convex transformation causes
a disproportionate boost in the firing rate of these few highly active neurons, increasing the sparseness
of the population response.

Formally, we will prove that this holds for a wide family of sparseness metrics, which includes those
described by Treves and Rolls and Willmore and Tolhurst (36, 37) as a special case corresponding to
k(x) = x2.

Theorem. Let k(x) be a convex function. Let {x;:i = 1...N} be a finite set of non-negative real numbers. We
define the sparseness measure
N
Silxi] = Z k (E)'
i=1

4

where X = %Z?’ﬂ x;. Let g be a convex non-decreasing function with g(0) = 0, and write y; = g(x;). Then

Selyil = Silx;].

Proof. It is clear that for any scalar a, S [x;] = Si[ax;]. So without loss of generality, we can rescale x and
g sothat ¥ = 1 and y = 1. After this rescaling,

Selyil = Sebxid = ) k) = k(x)
i=1

Now because },; x; = >; g(x;), and g is continuous, there must exist an x, with g(x,) = x,. Because g
is convex and g(0) = 0, x; = x, implies y; = x;, and x; < x, implies y; < x;. Let d be a subgradient of k
at xg, so if either a > b = x, or a < b < x5, then k(a) —k(b) =d(a—b). If x; = xy then y; = x; = x,
and if x; < xythen y; < x; < x,. For all ione of these two conditions is true so k(y;) — k(x;) =
d(y; — x;). Thus Se[y;] — Selx] =XV, k(y;) —k(x;)) =dY;y; —x; = 0,as we have rescaled so that
YiX; = X ¥i- S0 Silyi] = Silx;] and the theorem is proved.
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