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The response of a neuronal population to a stimulus can be summarized by a vector in a high-
dimensional space. Learning theory suggests that the brain should be most able to produce distinct 
behavioral responses to two stimuli when the rate vectors they evoke are close to orthogonal. To 
investigate how learning modifies population codes, we measured the orientation tuning of 4,000-
neuron populations in visual cortex before and after training on a visual discrimination task. Learning 
suppressed responses to the task-informative stimuli, most strongly amongst weakly-tuned neurons. 
This suppression reflected a simple change at the population level: sparsening of population responses 
to relevant stimuli, resulting in orthogonalization of their rate vectors. A model of F-I curve modulation, 
requiring no synaptic plasticity, quantitatively predicted the learning effect. 

When an animal  sees a  stimulus,  this  triggers a 
pattern of activity across a multitude of neurons 
in  its  visual  cortex.  These  neurons�  firing  rates 
together define a representation of the stimulus in 
a  high‐dimensional  vector  space,  similar  to  the 
high‐dimensional representations constructed by 
machine learning algorithms (1, 2).  The similarity 
of  the  representations  of  two  stimuli  can  be 
quantified by  the angle or dot product between 
the  corresponding  vectors.  In machine  learning 
this  similarity  measure,  known  as  the  �kernel 
function�  (2), determines  the  generalizability  of 
stimuli: stimuli evoking identical representations 
will  generalize  perfectly, while  stimuli  evoking 
orthogonal representations will not generalize at 
all.   Allowing  the  representations  to  themselves 
change  with  learning  is  the  heart  of  flexible 
learning algorithms such as neural networks (1). 
In  the  brain,  stimuli  that  evoke  similar  neural 
representations  are  likely  to  evoke  similar 
behavioral  responses  (3,  4).  Furthermore, 
stimulus representations evolve as animals learn, 
even  in  primary  sensory  cortices.  One  might 
expect that after learning, the number of neurons 
selective  for  behaviorally‐important  stimuli 
increases, as has been observed in auditory (5, 6), 
somatosensory  (7,  8),  and  visual  cortex  (9,  10). 
Other studies, however, have found a paradoxical 
decrease  in  the  number  of  cortical  neurons 
responding optimally to learned stimuli (11, 12), 
and  in  primary  visual  cortex  (V1),  neurons 
increase  their  slope  at  the  task  stimulus  in  a 
manner dependent on orientation preference (13). 

It  is  not  yet  clear  whether  these  complex  and 
apparently  contradictory  findings  result  from  a 
single  principle  governing  plasticity  of  visual 
cortical representations at a population level. 

Here,  we  use  two‐photon  calcium  imaging  to 
show how the tuning of populations of thousands 
of  V1  neurons  changes  after  mice  learn  an 
orientation  discrimination  task. At  a  single‐cell 
level, the results appear complex: neuronal tuning 
curves  evolve  according  to  a  lawful  but 
complicated  dependence  on  their  prior 
orientation  preference  and  tuning  strength.   At 
the population level, a simple principle emerges: 
learning  transforms  response  vectors  by  a 
nonlinear function, whose convexity is largest for 
task‐informative  stimuli.    This  transformation 
sparsens  the  population  representations  and 
makes  them  more  orthogonal.    The  degree  of 
sparsening  varied  consistently  across  the 
population on a trial‐by‐trial basis, suggesting  it 
emerges from rapid circuit dynamics, rather than 
slower plasticity mechanisms. 

Results 
An orientation discrimination task for mice 

To  study  how  cortical  representations  change 
with  learning, we  trained mice  in an orientation 
discrimination  task  (Figure  1A,B).  This  task 
required turning a steering wheel to select one of 
two oriented  cues,  each of which  could  take on 
three  different  orientations.  Two  of  these 
orientations were  informative  (45°  and  90°)  but 
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had opposite behavioral contingencies (select vs. 
avoid)  and  a  third  was  an  uninformative 
distractor  (68°). All mice  included  in  this  study 
successfully learned the task (Figure S1). 

To  study  how  training  in  the  task  affected  the 
neural  representations  of  visual  stimuli,  we 
assessed the orientation tuning of excitatory cells 
in V1 using two‐photon calcium imaging (Figure 

 

Figure 1. Learning an orientation discrimination task reduces the proportion of neurons responding 
maximally to task-informative orientations. (A) The orientation discrimination task. On each trial mice are 
presented with two stimuli and then turn a wheel to move them on the screen. Bringing a 45⁰ stimulus to the center, 
or a 90⁰ stimulus away from the center yields a reward, but 68⁰ stimuli are uninformative. (B) Correct choices for all 
stimulus pairings (left) and the average proportion of left choices across mice taken from their ten highest performing 
sessions (right). (C) Pipeline for imaging neural activity. Left: V1 was located using widefield imaging with sparse 
noise stimuli (red/blue: sign map; yellow outlined square: region selected for two-photon imaging). Middle: retinotopy 
map for the two-photon field of view. Right: colored outlines of detected cells. (D) Timeline of experiments. (E) Single-
cell orientation tuning curves from naïve mice, for four cells with mean orientation preference 0°, 45°, 68°, and 90°. 
Colored polar curves: neural response to each orientation; dots: response to modal orientation; arrows: circular mean 
vectors representing mean orientation preference (angle) and orientation selectivity (magnitude). (F) Similar plots for 
mice proficient at the task (G) Proportion of cells with each modal orientation preference, in naïve and proficient mice. 
Error bars: SEM (n = 5 mice). (H) Proportion of cell population that had modal orientation preference 45° (left), 68° 
(center), and 90° (right) and specified orientation selectivity. *, p < 0.05, **, p < 0.01.  
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1C, D). We  obtained  two  recordings  in  passive 
conditions: one before task training began (naïve 
condition), and one  after  training was  complete 
(proficient  condition).  In  both  cases, mice were 
placed  in  the  same  apparatus  where  they 
performed  the  task,  and  drifting  gratings were 
presented;  no  rewards were  delivered,  and  the 
wheel was not coupled  to visual stimuli.  In  this 
passive  condition,  the  presentation  of  visual 
stimuli  triggered  minimal  whisking,  and  a 
pupillary  light  reflex,  neither  of which  differed 
significantly  between  stimuli  or  training 
conditions  (Figure S2). Thus, even  though body 
movements  and  changes  in  arousal  strongly 
modulate  visual  cortical  activity  (14�16), 

analyzing passive stimulus responses avoids this 
potential confound. 

Training  in  the  task  decreased  the  fraction  of 
neurons  preferentially  tuned  to  the  task‐
informative  orientations,  and  this  decrease was 
specific to weakly tuned cells (Figure 1E‐H). We 
defined a cell�s modal orientation preference to be 
the  stimulus  orientation  driving  it  to  fire 
maximally  (dots  in  Figure  1E‐F).  Task  training 
significantly  decreased  the  fraction  of  neurons 
whose modal orientation preference was one of 
the  two  task‐informative  orientations  (45°  and 
90°), but not the fraction of neurons preferring the 
distractor  orientation  (68°)  (Figure  1G;  45°:  p  = 
0.012; 68°: p = 0.228; 90°: p = 0.006, paired‐sample 

 
Figure 2. Learning has multifarious effects on orientation tuning curves. (A) Average orientation tuning curves 
for cell groups defined by mean orientation preference (color) and selectivity level (column) for naïve mice. Solid 
vertical lines indicate task-informative orientations, dashed uninformative (68°). (B) Same plot for proficient mice. 
Solid arrows highlight suppression of cell responses to the informative task orientations 45° and 90°. Dashed arrows 
highlight tuning curve asymmetry for cells with preferences near the informative orientations. Shading: SEM (n = 5 
mice) (C) 2d projection of population response vectors for each orientation from one mouse before (left) and after 
learning (right). (D) Cross-validated classification accuracy for decoding stimulus orientation from naïve and proficient 
mice. Dashed line indicates perfect performance. (n = 5 mice) 
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t‐test, n = 5 mice). To further characterize tuning 
curves, we defined a cell�s circular mean response 
as a vector in a complex plane (arrows in Figure 
1E‐F); the length and angle of this vector defined 
the  cellʹs  selectivity  index and mean orientation 
preference.    This  analysis  showed  that  the 
decrease  in  cells  modally  preferring  the  task‐
informative orientations came only from weakly‐
tuned cells: there was no decrease in the number 
of cells strongly tuned to the informative stimuli 
(Figure 1H; 45°: p = 0.005 and 0.037 for selectivity 
indices 0 ‐ 0.2 and 0.2 ‐ 0.4; 68°: p = 0.130 and 0.390; 
90°: p = 0.001 and 0.013, paired samples t‐test, n = 
5 mice).  

Task‐informative orientations suppress weakly‐
tuned cells 

Tuning curves also changed shape after training, 
in  a  manner  dependent  on  a  cell�s  preferred 
orientation  and  selectivity  (Figure  2A,B).  We 
grouped the recorded cells by their selectivity and 
mean orientation preference and plotted the mean 
tuning  curves of  cells  in each group before and 
after training, using held‐out repeats. In mice that 
had  not  learned  the  task,  tuning  curves  had  a 
uniform  structure  (Figure  2A). By  construction, 
these curves peaked at the cells� mean orientation 
preference,  and  the  depth  of  modulation 
increased  with  the  cells�  selectivity  index.  For 
trained  mice,  however,  a  different  structure 
appeared  (Figure  2B).  Weakly  tuned  neurons 
were  suppressed  by  the  task‐informative 
orientations  regardless of  their preference. Cells 
whose  mean  orientation  preference  was  at  or 
close  to a  task‐informative orientation  exhibited 
bimodal  tuning  curves  after  training,  for which 
the  mean  and  modal  orientation  preference 
differed  (examples  in  Figure  1F).  For  more 
strongly  tuned  cells,  suppression  by  task‐
informative  orientations  was  still  visible, 
primarily  in  neurons  with  a  mean  orientation 
preference adjacent to them.  This suppression led 
to an asymmetry  in  tuning curve slopes  (Figure 
S3A), as previously reported in primate (13). At a 
single‐cell  level,  we  observed  a  training‐
dependent  increase  in  the magnitude  of  the  d� 
statistic that measures distinguishability of  task‐
informative  orientations  (Figure  S3C‐D)  as 
previously observed (9), primarily attributable to 
a decrease in the standard deviation of responses 
to these stimuli (Figure S3E).  

These changes in cellular tuning did not improve 
the  ability  to  decode  stimulus  orientation  from 
population activity, because the stimulus could be 
decoded  exceptionally  well  even  prior  to  task 
training  (Figure  2C,D).  Failures  of  stimulus 
decoding can occur even in  large populations of 
well‐tuned  cells,  if  the  structure  of  trial‐to‐trial 
variability matches  differences  between  stimuli 
(17�19).  In  the  current  case,  however,  a  simple 
two‐dimensional projection showed that trial‐to‐
trial  variability  did  not  interfere with  stimulus 
coding before or after  training  (Figure 2C), and 
linear  discriminant  analysis  gave  near  perfect 
accuracy  in both  training  conditions  and  for  all 
orientations  (Figure  2D;  naïve:  799/800  trials 
correct; proficient: 808/808 trials correct). Indeed, 
populations  of  V1  neurons  can  reliably  encode 
much  finer stimulus orientation  than demanded 
by our task (20).  

Training sparsens and orthogonalizes responses 
to task‐informative orientations 

Although  task  training  did  not  improve  the 
decodability  of  the  population  activity,  it  did 
change  its  character,  sparsening  the  population 
responses  to  task‐informative  orientations 
(Figure  3A,B). We  quantified  the  sparseness  of 
population activity using kurtosis and found that 
proficient  mice  exhibited  significantly  higher 
population  sparseness  for  the  task‐informative 
orientations than for the distractor (Figure 3B; 45° 
vs 68°: p = 0.008; 68° vs 90°: p = 0.023; 45° vs 90°: p 
= 0.340. Welch�s t‐test, n = 5 mice). 

This sparsening took a specific form:  it made the 
population  responses  to  the  task‐informative 
orientations  more  orthogonal  to  each  other 
(Figure  3A,C,D).  Training  reduced  the  cosine 
similarity between population response vectors to 
the  task‐informative  orientations  compared  to 
control  orientations  (Figure  3C‐D;  p  =  0.006. 
Independent samples t‐test, n = 5 mice). Thus, by 
increasing the number of zero components in the 
population  response  vectors  (i.e.  sparsening), 
training moved them closer to the coordinate axes 
of  N‐dimensional  space,  and  thereby 
orthogonalized them (Figure 3E). 
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A model for learning‐evoked sparsening 

These  apparently  complex  learning‐induced 
tuning changes could be accurately predicted by 
a  simple  computational  model  (Figure  4A). 
Plasticity  of  cortical  representations  is  often 
assumed  to  arise  from  coordinated plasticity  of 
local  excitatory  synapses  (21,  22),  but  our 
observations suggested an alternative possibility. 
Because training further attenuated the responses 
to  task‐informative  orientations  in  cells  that 
already  responded  weakly  to  them,  we 
hypothesized that the effects of training could be 
explained  by  a  stimulus‐dependent modulation 
in the relationship between excitatory  input and 

firing  rate  (the  f‐I curve; Figure 4A). Under  this 
hypothesis,  cortical  neurons  receive  a  stimulus‐
dependent  bottom‐up  excitatory  input  that  is 
unaffected  by  learning,  but  also  receive  a 
feedback signal that, after learning, is activated by 
salient stimuli. This signal changes the way that 
local  cells  respond  to  excitatory  inputs, 
specifically  reducing  responses  to  weak 
excitation.  This could be instantiated by multiple 
possible  network  mechanisms,  for  example 
feedback  inhibition  from  a  local  inhibitory  cell 
class,  or  activation  of  a  long‐range 
neuromodulatory  system  by  task‐informative 
stimuli.  

 
Figure 3. Learning sparsens and orthogonalizes responses to informative task orientations. (A) �Bullseye 
plots� showing structure of population responses to the informative task orientations 45° and 90°. Each point 
represents a cell. The point�s location in polar coordinates indicates the cell�s circular mean orientation preference 
(angle) and selectivity (distance from the origin). The point�s hue represents the cell�s relative response to the 45° 
and 90° stimulus orientations (green to magenta); the point�s size and brightness (light to dark) represents the cell�s 
maximal response to these two stimuli. (B) Change in population sparseness following task learning, as a function of 
stimulus orientation. Error bars: mean and SEM (n = 5 mice). (C) Change in cosine similarity between mean population 
responses to each pair of orientations after task learning. White dashed lines demarcate task stimuli. Black circles 
and triangles indicate the orientation pairs shown in (D). (D) Change in cosine similarity of population responses to 
45° and 90°, and between 135° and 0°, after task learning. Error bars: mean and SEM (n = 5 mice). (E) Illustration of 
learning�s effect on population response vectors to task-informative stimuli. Sparsening of population responses 
moves the vectors closer to coordinate axes and increases the angle between them. *, p < 0.05, **, p < 0.01. 
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This  hypothesis  makes  a  strong  and  testable 
prediction: that population responses before and 
after training can be related by a single function 
that  depends  on  the  stimulus  but  not  the  cell. 
Denote  the  bottom‐up  input  received  by  cell  ý 
following stimulus ÿ by ý௖,ఏ, and the pre‐training 
f‐I  curve  by  ℎሺýሻ;  thus,  before  training,  the 
response  of  cell  ý to  stimulus  ÿ  is  ÿ௖,ఏ ൌ ℎ൫ý௖,ఏ൯.  
Our model holds that after training the f‐I curve 
depends  on  the  stimulus,  but  not  the  cell; 
denoting it by ℎ′ఏሺýሻ, the post‐training response of 
cell ý to stimulus ÿ  is ÿ′௖,ఏ ൌ ℎఏᇱ ൫ý௖,ఏ൯.   The  firing 
rates  before  and  after  learning  are  therefore 
predicted  to be related as ÿ′௖,ఏ ൌ ýఏ൫ÿ௖,ఏ൯, where 

the  function  ýఏሺÿሻ ൌ ℎఏᇱ ൫ℎିଵሺÿሻ൯  predicts 
proficient from naïve responses, in a manner that 
depends on  the  stimulus ÿ, but not on  the  cell. 
Furthermore, it can be proven that if the function ýఏ  is  convex,  then  population  sparseness  will 
increase after learning (Appendix).  

To test this prediction, we attempted to relate pre‐ 
and post‐learning  responses  through  a  function 
which  varies  between  stimulus  orientations  but 
not between cells, with good success (Figure 4B‐
E).  Responses before and after training could be 
accurately  related  by  piecewise  linear  functions 
(Figure 4B; Figure S4). The shape of the function 

   
Fig. 4. Model of learning-evoked sparsening by f-I curve modulation. (A) Model schematic. Following task learning 
the f-I curve is stimulus-dependent, becoming more convex when informative task stimuli are presented. This spares 
responses in cells with high selectivity (top) but suppresses responses to informative stimuli in cells with low selectivity 
(bottom). (B) Effect of learning on responses to task stimulus orientations as a function of cell orientation preference 

(color) and selectivity (symbol). Symbols correspond to the selectivity bins of the columns in Fig. 2A-B ordered ÿ, ✚, 

■, ▼, ★. Each point shows the average response of cells from all experiments. Black lines are stimulus-specific fits of 

piecewise linear functions relating naïve responses to proficient responses. (C) Orientation tuning curves predicted by 
the model, obtained by applying the functions fit in (B) to naïve tuning curves. Solid and dashed arrows highlight the 
same features seen in the actual proficient responses, as shown in Fig. 2B. Shading: SEM (n = 5 mice). (D) Convexity 
of naïve-to-proficient transformation functions, for each stimulus orientation. Points indicate individual mice. Error bars: 
mean and SEM (n = 5 mice). (E) Relationship between learning-evoked changes in population sparseness and 
convexity of naïve-to-proficient transformation. Each point represents a stimulus orientation in a single experiment. 
Points for 45°, 68°, and 90° are colored as in (D). *, p < 0.05, **, p < 0.01. 
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varied  between  orientations,  but  for  each 
orientation, a single function fit the responses of 
cells in all tuning categories, as predicted by the 
model.  Applying  these  functions  to  the  naïve 
tuning curves, we were able to predict neuronal 
responses  in proficient subjects with remarkable 
accuracy  (Figure  4C;  compare  Figure  2B). 
Specifically,  the  model  explains  why  learning 
affects mostly  the  cells  that  are  broadly  tuned: 
these cells exhibit intermediate levels of response 

that  are  affected  most  by  the  change  in 
nonlinearity.  The  convexity  of  the  nonlinear 
function ýఏ relating naïve to proficient responses 
was larger for task‐informative orientations than 
for  the distractor orientation  (Figure  4D;  45° vs 
68°: p = 0.006; 68° vs 90°: p = 0.002; 45° vs 90°: p = 
0.311. Independent samples t‐test, n = 5 mice), and 
accurately predicted  the  increased sparseness of 
population  responses  to  each  stimulus  (Figure 
4E). These changes were local to the region of V1 

 
Figure 5. Trial-to-trial variability in response sparsening. (A) Dynamic sparsening model: cells undergo varying levels 
of f-I curve modulation dependent on brain state. (B) Single-trial sparsening functions for two example 45° trials from the 
same recording session, plotted as Figure 4B. For each trial, responses of separate halves of the cell population are 
shown. (C) Similarity of single-trial convexities between two different halves of the cell population, for the recording in 
(B). Each point represents a single presentation of the 45° stimulus. (D) Correlation of single-trial convexities between 
two halves of cells, with each point representing one stimulus orientation in one experiment. Point with dashed outline is 
the session shown in (C). Error bars: mean and SEM (n = 5 mice). (E) Trial-to-trial variability of neuropil responses. Left 
and right plots show mean df/f of two-photon imaging frames to task-informative orientations for low convexity (< 0) and 
high convexity (> 0.3) trials. Colored contours correspond to retinotopic distances from task stimulus location (see 
legend). (F) V1 neuropil responses to task-informative orientations, as a function of distance from retinotopic position of 
the task stimulus, for trials with low and high convexity. Dashed lines are least-squares fits. Shading: SEM (n = 5 mice). 
*, p < 0.05, **, p < 0.01. 
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representing  the  task  stimulus  location,  where 
they affected neuropil as well as cellular activity, 
as  might  be  expected  from  activation  of  local 
inhibitory cells (Figure S5).  

The  hypothesis  that  the  sparseness  of  a 
population  response  to  a  stimulus  depends  on 
local  or  distal  feedback  makes  a  second 
prediction: if the strength of this feedback varies 
between  trials,  then  the  amount  of  sparsening 
should  also  vary  between  trials.  Furthermore, 
since this signal modulates all neurons similarly, 
the  degree  of  sparsening  should  be  consistent 
across the population.  Trial‐to‐trial variability in 
neuronal responses is well‐documented, and has 
been reported to take additive and multiplicative 
forms  (23�25).  The  current  model  predicts  a 
different  type  of  trial‐to‐trial  variability:  it 
predicts  that  responses  follow  a  nonlinear 
transformation whose convexity varies from one 
trial to the next.  

To  test  this  second  prediction,  we  examined 
population  responses on  single  trials  (Figure 5).  
We  divided  cells  randomly  into  two  groups, 
balanced  for  orientation  preference  and 
selectivity, and within each group examined how 
single‐trial  population  activity  was  related  to 
naïve  trial‐averaged responses. The convexity of 
the  population  response  varied  substantially 
between  trials,  even within  repeats  of  a  single 
stimulus  orientation,  but was  consistent  across 
cell groups  (Figure 5A‐D; correlation  coefficient 
significantly  exceeds  0  at  p  <  0.05  for  each 
stimulus  orientation,  one  sample  t‐test  with 
 Holm‐Sidak correction, n = 5 mice.). Furthermore, 
suppression of activity on trials of high convexity 
was  largest  in  areas  of  V1  topographically 
representing the task stimulus location, as would 
be expected  if  it were driven by  local  inhibitory 
neurons (Figure 5E‐F). 

Discussion 
Although learning‐related changes to orientation 
tuning  curves  were  apparently  complex,  they 
could be explained to high quantitative accuracy 
by a simple principle: neuronal outputs on each 
trial  reflect  a  nonlinear  transformation  of  the 
mean  naïve  responses,  whose  convexity  varies 
from trial to trial but is largest on average for task‐
informative  orientations  after  learning.    This 
convex  transformation  sparsens  population 

responses  to  task‐informative  orientations  and 
makes them more orthogonal to each other.  This 
orthogonalization may help downstream circuits 
produce  different  behavioral  responses  to  the 
two.  

This model  can explain many of  the apparently 
complex effects of learning observed in previous 
studies  of  V1.  It  predicts  a  reduction  in  the 
number of cells responding modally to the task‐
informative orientations (12) and an asymmetrical 
increase in tuning curve slope specifically at these 
orientations  (13).    Additionally,  nonlinear 
suppression of  the  task‐informative orientations 
predicts an increase in the fraction of cells that are 
significantly  selective  between  these  stimuli  (9, 
10), as confirmed by an increase in the d� statistic. 
Thus,  one  simple  principle  can  explain  several 
apparently  diverse  results  observed  in  visual 
cortex of multiple species. 

Despite this concordance with previous results in 
visual  cortex,  our  findings  do  not  appear  fully 
congruent  with  results  from  auditory  and 
somatosensory  cortex.  Indeed,  learning  of 
multiple  tasks,  as  well  as  stimulation  of 
neuromodulatory  systems  under  anesthesia, 
causes  an  increase  in  the  number  of 
electrophysiological  recording  sites  responding 
modally  to  the  task  stimuli  (5�7).  We  suggest 
three,  non‐exclusive,  reasons  for  this  apparent 
discrepancy. First, it would be surprising if there 
were  only  one  mechanism  by  which  cortical 
representations  evolve  with  learning,  and  it  is 
reasonable  to  expect  that  different mechanisms 
are  employed  to  a  different  extent  in  different 
cortical  regions  and different  tasks.  In  fact,  one 
study  of  learning  in  somatosensory  cortex  did 
observe  sparsening  (11),  suggesting  that  this 
mechanism is at least sometimes also employed in 
non‐visual  cortices.    Second,  methodological 
differences  may  explain  at  least  some  of  the 
difference. Our  study  (like Ref.  (11))  used  two‐
photon  imaging  to  record  excitatory  cells  in 
superficial  layers. Auditory  and  somatosensory 
studies  have  typically used  electrophysiological 
multi‐unit  recordings, which  are  biased  toward 
fast‐spiking  interneurons, and  increased activity 
of these cells is one possible mechanism by which 
sparsening of pyramidal cell activity could occur. 
Finally,  expansion  of  sites  responding  to  task 
stimuli  is  a  transient  phenomenon.  After 
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continued  training  or  stimulus  exposure, 
expanded  maps  can  �renormalize�  to  their 
original  state without  compromising  behavioral 
performance (26); furthermore, induction of map 
expansion by means other than task training can 
actually  worsen  task  performance  (27),  in 
particular by increasing the rate of false responses 
to non‐target stimuli (28). Our task required long 
training,  potentially  allowing  time  for  map 
expansion to reverse; it also requires differentially 
responding to the two informative stimuli while 
not responding to the similar distractor stimulus, 
for which map expansion might actually  impair 
performance. 

It  is  often  assumed  that  plasticity  of  cortical 
representations arises from plasticity of excitatory 
inputs onto the cells being recorded.  Our model 
suggests that this form of plasticity is not required 
to explain our results. Clearly, synaptic or cellular 
plasticity must  occur  somewhere  to  change  the 
tuning curves; our model suggests that  it occurs 
upstream  of  the  circuit  carrying  the  feedback 
signal.  Several  identities  of  this  circuit  are 
consistent  with  our  data.  Sparsening  could  be 
mediated by a class of local interneurons, whose 
inputs  from  local pyramidal cells  tuned  to  task‐
informative  stimuli  are  strengthened  after 
learning  (29,  30).  Alternatively,  it  could  be 
mediated by  feedback  from more distal  cortical 
regions  or  neuromodulators, which  target  local 
inhibitory circuits to cause retinotopically‐aligned 
suppression. Although we  did  not  observe  any 
videographic  correlates  of  cortical  sparsening 
(such as  increased pupil diameter or whisking), 
our  data  are  not  inconsistent  with  a  covert 
cognitive  state  change  such  as  an  increase  in 
attention  caused  by  the  task‐informative 
orientations.  

Regardless of the underlying mechanism, the fact 
that  learning‐related  sparsening  leads  to 
orthogonalization  of  the  representations  of  the 
task‐informative  stimuli  suggests  a  function  for 
this process. We suggest that orthogonalizing the 
representations of  these stimuli allows  the brain 
to  produce  different  behavioral  responses  to 
them.   Gratings are not natural stimuli, and  if a 
mouse  ever  did  encounter  one  in  the  wild,  it 
seems  unlikely  that  the  grating�s  orientation 
would  be  of  any  behavioral  significance.  Thus, 
one might  expect mice  by default  to  generalize 

from one orientation of grating  to another; only 
after  extensive  training  should  behavioral 
responses to them diverge. Orthogonalization of 
cortical  representations  of  these  stimuli  may 
override  this  default  generalization  and 
encourage  differing  behavioral  responses.  
Applications  of  similar  techniques  to  artificial 
learning  systems  might  provide  a  new 
mechanism to boost their learning capacity. 
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Materials and Methods 

Experimental procedures 

All experimental procedures were conducted according to the UK Animals Scientific Procedures Act 
(1986). Experiments were performed at University College London under personal and project licenses 
released by the Home Office following appropriate ethics review. 

Surgical procedure 

Five  transgenic adult mice  (60 days or older) expressing GCaMP6s  in excitatory neurons  (CaMK2a‐
tTA;tetO‐GCaMP6s) underwent a procedure  to  implant cortical windows over  right primary visual 
cortex (V1). Mice were anesthetized with isoflurane, an ophthalmic ointment was applied to the eyes, 
and injections of carprofen and dexamethasone were administered.  The hair on the head at the planned 
incision site was shaved away, and the mouse was transferred to a stereotaxic apparatus where its skull 
was secured with ear bars. The scalp was cleaned with 70% ethanol to remove loose hairs and other 
detritus, after which a  lidocaine ointment was applied. Following a  final application of  iodine and 
ethanol, the scalp over visual cortex was excised, and the edges of the incision were sealed to the skull 
with a cyanoacrylate adhesive. A sterilized metal head plate with a circular well was cemented onto 
the skull using dental acrylic resin. A 4 mm circular craniotomy was made over right V1 using a biopsy 
punch, and a glass window was sealed in place with a cyanoacrylate adhesive and dental acrylic resin. 
At  the  end of  the procedure, mice were  removed  from  anesthesia and placed on  a heating pad  to 
recover. Carprofen was added to the mice�s drinking water for three days following surgery to mitigate 
post‐operative pain, and mice were checked daily for any adverse outcomes.   

Following  recovery,  mice  were  habituated  for  handling  and  head‐fixation  before  carrying  out 
recordings. 

An orientation discrimination task 

The task  is a modification of a two‐alternative forced choice contrast discrimination task previously 
developed by our  lab  (31). Mice were head‐fixed with  their body and hindlimbs resting on a stage, 
leaving their front forepaws free to turn a small wheel left or right. Three computer screens surrounded 
the mouse, spanning ‐135 to +135 visual degrees (v°) along the azimuth axis and ‐35 to +35 v° along the 
elevation axis. Trials began after 2 s of continuous quiescence (no wheel movement), after which two 
full  contrast Gabors with  sigmas of  18 v°  and  spatial  frequencies of  0.04  cycles/v° were presented 
simultaneously and centered at ‐80 and +80 v° azimuth. These Gabors were randomly oriented at either 
45°,  68°,  or  90°,  though  the  pair  were  never  identical.  After  an  additional  quiescence  period  of 
approximately 1 s, an auditory cue  (12 kHz, 100 ms) would sound, signaling  to  the mouse  that  the 
horizontal position of the Gabors could be manipulated via wheel movement. If the mouse moved the 
wheel  before  the  auditory  cue,  the Gabors  remained  stationary while  the  quiescence  requirement 
remained in force. When a Gabor was moved to the center screen, a choice was recorded for that trial, 
and a  feedback period was  initiated. Correct choices  (driving a 45°  stimulus  to  the center, or a 90° 
stimulus away) were rewarded with 1 ‐ 5 μl of water and a short 0.25 s delay, while incorrect choices 
(driving a 90° stimulus to the center, or a 45° stimulus away) resulted in a 1 ‐ 2 s burst of white noise. 
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The Gabor was locked at the center position during the feedback, following which it would disappear, 
and the next pre‐trial period of enforced quiescence would begin. During task training, mice were water 
restricted in line with the approved project license. Mice were considered proficient at the task when 
they consistently made the correct choice on over 70% of trials.  

Recording visual responses in V1  

Two sessions of two‐photon calcium imaging were performed: one before task training (naïve) and one 
after mice had achieved high performance in the task (proficient). Imaging in the proficient condition 
was performed immediately after a behavioral session and in the same apparatus. 

Location of visual areas 

Prior to the first two‐photon imaging session, we determined the location of V1 in each mouse�s cortical 
window by recording cortical responses to sparse noise under mesoscopic wide‐field calcium imaging 
and then generating a visual sign map, as previously described (32). Mice were placed on a stage of the 
same  type used  in  the  task,  and white  squares  of width  7.5° visual  angle were  shown  on  a  black 
background at a frame rate of 6 Hz for 10 minutes. Squares appeared randomly at fixed positions in a 
12 by 36 grid, spanning the retinotopic range of the computer screens. 12% of the squares shown at any 
one time.  

Two‐photon calcium imaging  

Layer 2/3  in V1 was  imaged using a commercial two‐photon microscope (Bergamo II, Thorlabs Inc) 
controlled by ScanImage (33). A ti:sapphire laser (Chameleon Vision, Coherent) was set to a wavelength 
between 940 and 980 nm, and the beam was focused with a 16X water‐immersion objective (0.8 NA, 
Nikon). Images were acquired at a frequency of 30 Hz across six planes (5 Hz per plane), a resolution 
of 512 x 512 pixels, with a frame width between 730 and 810 μm. The fly‐back plane was excluded from 
further analysis. During recordings, mice were head‐fixed and placed on the same type of stage used 
for the task. Three computer screens surrounded the mouse, spanning ‐135 to +135 v° along the azimuth 
axis and ‐35 to +35 v° along the elevation axis.  

Sparse noise 

To map the retinotopy of V1 under two‐photon imaging (Fig. 1C, middle), sparse noise stimuli were 
again presented. Black or white squares of width 4.5° visual angle were shown on a gray background 
at a frame rate of 5 Hz for 8 � 30 minutes. Squares appeared randomly at fixed positions in a 16 by 60 
grid, spanning the retinotopic range of the computer screens. 1.5% of the squares were shown at any 
one time.  

Drifting gratings 

At least 16 blocks of drifting grating stimuli were presented in each recording. In each block, gratings 
spanning 16 directions (22.5° intervals) and a blank stimulus were each presented once in a randomized 
sequence.  Each  grating  lasted  2  s, with  an  inter‐trial  interval  sampled  randomly  from  a  uniform 
distribution with a range of 2 � 3 s. Drifting gratings were full contrast and sinusoidal, with a spatial 
frequency of 0.04 cycles/v° and a temporal frequency of 4 cycles/s, that either encompassed all three 
screens  (full‐field,  three mice)  or  the  entire  left  screen  (two mice),  contralateral  to  the  recorded 
hemisphere. Data from the two directions for each of the eight orientations covering 180° were analyzed 
together.  

Face recording 

An infrared LED illuminated the mouse�s face, and a camera with an infrared filter was used to capture 
any changes in pupil area or whisking behavior. 
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Data analysis 

Pixel map of retinotopy 

To obtain a retinotopic map of the two‐photon imaging frame (Fig. 1C middle, Fig. S4A), we analyzed 
the two‐photon recordings during sparse noise stimuli on a pixel‐by‐pixel basis, without cell detection. 
To accelerate  the  computation and denoise  the data, analyses were performed after  singular value 
decomposition (SVD), which produces valid results as these computations are linear. First, we z‐scored 
each pixel�s time course independently. Next, we applied single‐value decomposition (SVD) on the z‐
scored image frames, ý ൌ ýÿý், where ý was the full movie encoded as a matrix of size ý௣௜௫௘௟௦ ൈ ÿ, ý 
was  size ý௣௜௫௘௟௦ ൈ ýௌ௏஽௦, ÿ was a diagonal matrix of  singular values, and V was size ÿ ൈ ýௌ௏஽௦ with ÿ being the number of two‐photon imaging frames. A matrix ý was computed summarizing the mean 
response of each of the first 100 columns of ý to each noise frame, as the time‐averaged activity in a 
window 0.2 to 0.6 s after stimulus onset minus the time‐averaged activity in a 1 s pre‐stimulus window. 
This matrix was of size ý ൈ 100, where ý is the number of noise stimulus frames. The dependence of 
these  responses  on  individual  noise  pixels  was  estimated  using  ridge  regression:  ÿ ൌ  ሺÿ்ÿ ൅
 ÿýሻିଵÿ்ý, where ÿ was a ý ൈ ý௡௢௜௦௘_௦௤௨௔௥௘௦ matrix containing 1 if a particular square was white or black 
on a particular frame (0 if it was grey), ÿ was a ridge parameter (ÿ ൌ 100ሻ, and ý was the identity matrix. 
The stimulus dependence of each pixel was then obtained by matrix multiplication ý ൌ  ýÿÿ, resulting 
in a matrix ý of size ý௣௜௫௘௟௦ ൈ ý௡௢௜௦௘_௦௤௨௔௥௘௦, encoding the receptive field map of each 2p imaging pixel. 
To generate retinotopic maps of the imaging frame, each pixel�s receptive field map was smoothed with 
a Gaussian (sigma 12 v°) and a peak found, giving retinotopic positions along the elevation and azimuth 
axes for each pixel.  

Pixel retinotopy maps were used to ensure that the two‐photon imaging frames were retinotopically 
aligned with the position of the left task stimulus (0 v° elevation, ‐80 v° azimuth) during drifting grating 
recordings. When  the optimal  imaging  location  in V1 was  identified  in naïve mice, an  image of  the 
cortical vasculature was saved for positioning subsequent imaging experiments. 

Visual sign maps 

Due to the retinotopic eccentricity of the imaging location in V1 and the large field of view used, it was 
occasionally the case that areas outside V1 were also recorded. To differentiate V1 from adjacent visual 
areas, visual sign maps were obtained using the above pixel retinotopy maps averaged across planes 
(Fig. S4). First, elevation and azimuth maps were smoothed with a median  (width 10 pixels) and a 
Gaussian (sigma 60 pixels) filter. Similar to the process described in Ref. (34), the sine of the difference 
in angle between the gradients of the elevation and azimuth maps was calculated. This sign map was 
then  thresholded  to  values  above  0.31,  and  pixels  that were members  of  the  largest  patch were 
considered to be in V1. This process was consistent in isolating V1, as verified by visual inspection of 
the elevation and azimuth retinotopic maps.  

Pixel map of orientation responses 

To obtain a pixel map of orientation preference (Fig. S4), the average df/f of each pixel was calculated 
in response to each stimulus orientation. For each trial, df was defined as the average fluorescence in a 
post‐stimulus window spanning 0 � 2 s, minus the baseline defined as the average fluorescence in a 
pre‐stimulus window spanning ‐1 to 0 s relative to stimulus onset. This value was divided by f0, the 
baseline measurement. To isolate neuropil responses (Fig. S4D), only pixels that did not belong to a cell, 
as determined by Suite2P and subsequent manual curation, were included in the analysis.  

Cell detection 

Registration, cell detection, neuropil correction, and deconvolution of  the  two‐photon  imaging data 
were  carried out using Suite2P  (35).  Imaged planes were  aligned with non‐rigid  registration  (four 
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blocks, 128 x 128), and spiking activity was deconvolved from calcium fluorescence using a kernel with 
a timescale of 2 s.  

Characterizing single‐cell orientation tuning 

All cells identified by Suite2P were analyzed for orientation responses. First, each cell�s trial responses 
were computed by time‐averaging its deconvolved activity on each trial over a window of width 0 ‐ 2 
s from drifting grating onset. Next, the mean response of each cell to each orientation and to the blank 
stimulus was computed by averaging over  the  respective stimulus  trials. Each cell�s  trial  responses 
were then normalized by dividing by its mean response to its preferred stimulus condition.  

A cell�s orientation preference was defined  in  two ways:  the orientation  it  responded maximally  to 
(preferred modal orientation; Fig. 1E‐F) or its preferred mean orientation, the argument of the complex 

number ÿ ൌ ∑ ௥ഇ௘మ೔ഇഇ∑ ௥ഇഇ , where ÿఏ is the cell�s mean response to orientation ÿ. The orientation selectivity of 
a cell was defined as the modulus of ÿ. To determine the tuning curve of each cell as a function of its 
orientation  preference  and  selectivity  (Fig.  2A‐B),  a  cross‐validated  approach was  used  to  avoid 
erroneously detecting tuning due to random fluctuations in responses. The preferred mean orientation 
and selectivity of each cell were calculated using odd‐numbered trials, while the tuning curves were 
generated using the mean response to each orientation on even‐numbered trials.  

Tuning curve slope (Fig. S2A) was quantified as the absolute difference between the cell�s response at 
a stimulus orientation, and the orientation 22.5° closer to the cell�s preferred mean orientation, divided 
by 22.5. The cell�s  tuning curve slope at  its preferred mean orientation was defined as  the absolute 
difference between orientations  ‐22.5° or +22.5° from preferred, divided by 45. Thus,  in cases where 
these responses were equal, the tuning curve slope at the preferred orientation was zero.  

Discriminability index 

The discriminability index (d�) of a cell, its ability to discriminate between two orientations (ÿ௔ and ÿ௕), 
was  defined  as 

ఓഇೌି ఓഇ್ඨ഑ഇೌమ శ഑ഇ್మమ
 where  ÿ  and  ÿଶ  are  the mean  and  variance  of  the  respective  orientation 

responses. The mean and variance  for  each  stimulus orientation was  the average of  the mean and 
variance of the two corresponding stimulus directions.  

Population sparseness 

Population  sparseness was  summarized  as  the  kurtosis  of  the mean  population  response  to  each 
orientation, i.e., ý ൌ  

ఓరఙర, where ÿସ is the fourth central moment and ÿ is the standard deviation of mean 
orientation cell responses (36). 

Orthogonalization of population responses 

To  calculate  the orthogonalization of population  responses between different  stimulus orientations 
(Fig. 3), we split the trials into odd and even halves, and computed the ý௖௘௟௟௦‐dimensional population 
response vectors ÿ௜ሺÿሻ  to orientation ÿ  for  the  trial  set  ÿ  (ÿ ൌ 1: odd  trials;  ÿ ൌ 2:  even  trials).   We 
computed the cosine similarity between orientations ÿଵ and ÿଶ as  ÿభሺఏభሻ⋅ÿమሺఏమሻ‖ÿభሺఏభሻ‖‖ÿమሺఏమሻ‖. This process resulted 
in an eight‐by‐eight matrix of similarity values for each mouse and training condition. Computing this 
similarity between two separate halves ensured that the diagonal was not 1 by definition.  

Dimensionality reduction 

To display population responses in a 2‐dimensional plot (Fig. 2C), we trained a linear regression model 
to predict a 2‐dimensional vector ሺcosÿ , sinÿሻ for each trial, where ÿ is the stimulus orientation, from 
the ý௖௘௟௟௦‐dimensional population response vector on that trial. The model was trained on odd trials, 
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and  then applied  to population  responses on  even  trials  to obtain a  two‐dimensional projection of 
population activity that separates points by stimulus orientation.  

Stimulus prediction 

Orientation was also decoded from population activity using linear discriminant analysis (LDA; Fig. 
2D). An LDA model was  fit using  the population  responses  in odd  trials, and  its performance was 
assessed on  even  trials. To build  the model, we used  the  class LinearDiscriminantAnalysis  from  the 
Python  library  scikit‐learn, with  solver  set  to  �eigen�  and  the  shrinkage  coefficient  automatically 
calculated.  

Modeling learning‐evoked changes to orientation responses 

For each mouse, cells in the naïve and proficient recordings were divided into classes by binning mean 
orientation preference (eight bins, 0°: 168.75 � 11.25°, 23°: 11.25 � 33.75°, 45°: 33.75 � 56.25°, 68°: 56.25 � 
78.75°, 90°: 78.75 � 101.25°, 113°: 101.25 � 123.75°, 135°: 123.75 � 146.25°, 158°: 146.25 � 168.75°) and 
selectivity (five bins, 0 � 0.16, 0.16 � 0.32, 0.32 � 0.48, 0.48 � 0.64, 0.64 � 1). The mean response of each 
cell class to each stimulus was determined by cross‐validation, using odd trials to determine the cell�s 
tuning class, and using even trials to compute its tuning, as described above. Responses in the proficient 
mice were fit by piecewise linear functions of responses in naïve mice, ÿ௣ ൌ ÿ௔,௕ሺÿ௡ሻ, where 

ÿ௔,௕ሺýሻ ൌ ൝ ýÿ/ÿ, ÿ௡ ൑ ÿሺý െ 1ሻ ÿ െ 1ÿ െ 1
൅ 1, ÿ௡ ൐ ÿ 

The function ÿ௔,௕ is the piecewise linear function constrained to pass through ሺ0,0ሻ, ሺÿ, ÿሻ, and ሺ1,1ሻ. 
The parameters ÿ and ÿ were fit for each mouse and stimulus by nonlinear least squares (Python library 
SciPy, optimize.curve_fit), constrained to values between 0 and 1.  

The convexity of the transformation from naïve to proficient population responses to a stimulus was 
quantified  as  ÿ ൌ  

௠೛ೝ೐೑௠೙೚೙ష೛೐ೝ೑ െ 1, where ÿ௣௥௘௙ was  the  slope  of  a  line  from  the  origin  to  the  point 

representing the cell class with the strongest selectivity to this stimulus, and ÿ௡௢௡ି௣௥௘௙ was the slope of 
a linear regression on the points corresponding to cell classes whose mean orientation preference was 
not the stimulus shown. This approach was used to measure convexity on mean responses, relating the 
trial‐averaged population response in the same mouse prior and after training (Fig. 4D), and on single 
trials (Fig. 5), where the population responses in single trial in a proficient mouse was compared to the 
trial‐averaged population response in that mouse prior to training (Fig. 5).  

To assess the consistency of trial‐to‐trial fluctuations in sparsening across the population (Fig. 5C‐D), 
we randomly divided the proficient cells into two populations balanced for orientation preference and 
selectivity. Trial‐by‐trial convexity was measured, as described above, for each cell population, and the 
correlation coefficient of these convexities was computed. This process was repeated 2000 times, and 
the average correlation in convexity over orientations was found for each mouse.  

Pupil area and whisking 

Facial recordings were processed with the toolkit FaceMap (www.github.com/MouseLand/FaceMap) 
to obtain  traces of pupil area and whisking  intensity. The pupil area was defined as  the area of a 
Gaussian fit on thresholded pupil frames, where pixels outside the pupil were set to zero. Whisking 
intensity was defined as the average change in individual pixels between frames for a region of interest 
limited to the whisker pad. From these resulting traces, trial‐evoked changes in pupil area and whisking 
were calculated. First, for each trial pupil area and whisking were averaged  in a post‐stimulus time 
windows spanning 0.5 to 3 s for pupil and 0 to 3 s for whisking. Next, to compare across sessions, pupil 
and whisking  trials were  normalized  by  the  blank  stimulus  trial  average. Lastly,  stimulus‐evoked 
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changes in pupil area and whisking were calculated by subtracting from the normalized trials a pre‐
stimulus baseline, defined as the average normalized pupil area and whisking in a ‐1 to 0 s window. 
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Figure S1.  Orientation discrimination task. (A) Temporal structure of the task. (B) Behavioral 
performance for all mice. Matrices show the proportion of left choices for all cue pairings averaged 
over ten highest performing sessions. Cue pairings that were not presented are shown in white.  
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Figure S2.  Measures of behavioral responses during passive viewing of grating stimuli. (A) 
Stimulus-triggered pupil area time course, averaged over all trials of each stimulus orientation and 
training condition. Stimulus presentation causes pupil constriction, but pupil responses to task-
informative stimuli do not appear substantially different to those to other stimuli. Shaded regions: SEM 
(n = 5 mice). (B) Average change in pupil area within gray shaded time windows shown in (A). 
ANOVA indicated no significant effect of training (p = 0.053), stimulus orientation (p = 0.279), or their 
interaction (p = 0.951). Error bars: mean and SEM (n = 5 mice). (C and D) Same as in (A and B) but 
for whisking, assessed by video motion energy over the whisker pad. ANOVA indicated no significant 

effect of training (p = 0.547), stimulus orientation (p = 0.061), or their interaction (p = 0.372).  
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Figure S3. Additional metrics of single-cell tuning. (A) Tuning curve slope as a function of mean 
orientation preference relative to the informative task orientations (45° and 90°; left), uninformative 
distractor orientation (68°, center), and non-task orientation controls (135° and 0°; right). Shading: 
SEM (n = 5 mice). Note that the slope increases with training specifically for stimuli adjacent to task-
informative stimuli (13). (B) Change in tuning curve slope at the informative, distractor, and control 
orientations for cells with adjacent orientation preferences. Comparisons: 45° and 90° vs 68°, p = 
0.036; 45° and 90° vs 135° and 0°, p = 0.0006. Independent samples t-test. Error bars: mean and 
SEM (n = 5 mice). (C) Learning-evoked changes in the d� statistic, measuring the discriminability of 
45° from 90° stimuli in individual cells. Each point shows the absolute value of the average d� across 
cells of a single mean orientation preference (color) pooled across all mice. The d� magnitude 
increases significantly for cells preferring the task-informative orientations 45° and 90° (p = 0.010, p = 
5.6 x 10-8, Linear mixed effects model with random intercept). (D) Absolute value of average 
difference of mean responses to 45° and 90°, for 45° and 90° preferring cells, before and after training 
(p = 0.261, p = 0.042, Linear mixed effects model with random intercept.) (E) Average standard 
deviation of responses to 45° and 90° for 45° and 90° preferring cells, before and after training. 
Learning reduced the standard deviation of responses to 45° and 90°, contributing to an increase in d� 
(p = 2.7 x 10-18, p = 1.8 x 10-14, Linear mixed effects model with random intercept). Error bars: SEM (n 
= 5 mice, naïve cells = 20,857, proficient cells = 16,876). *, p < 0.05, **, p < 0.01. 
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Figure S4. Naïve and proficient population responses to all stimulus orientations. (A) Learning-
evoked changes in orientation responses averaged over all mice, like figure 4B but showing analyses 
for all stimulus orientations. (B and C) Same as (A) but for two representative mice individually. 
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Figure S5. Response suppression is aligned with the retinotopic location of the task stimulus. 
(A) Retinotopic mapping of visual cortex, for an example mouse. Left two pseudocolor plots show 
preferred azimuth and elevation for each pixel in the field of view, assessed by analyzing responses 
to sparse noise stimuli. White line demarcates the border of V1. Right panel shows distance in 
degrees of visual angle from each pixel�s preferred retinotopic location to the retinotopic position of 
the task stimulus, in pseudocolor (grayscale), and with contour representation (dashed colored lines). 
(B) Mean df/f of two-photon imaging frames during presentation of full-field gratings of the marked 
orientations in the same mouse prior to (top) and after training (bottom).  White lines and colored 
contours mark V1 boundary and retinotopic distance to stimulus location, as in (A). (C) Zoom into 
boxed regions in (B). Note that after training, neuropil is suppressed in the region retinotopically 
matching the stimulus, although individual cells continue to respond strongly there. (D) V1 neuropil 
responses as a function of stimulus orientation and retinotopic distance from the task stimulus 
position (colors), for naïve and proficient mice (dashed and solid lines). Shading: SEM (n = 5 mice). 
Note specific suppression of responses to task orientations in pixels retinotopically close to the 
stimulus location. (E) Histogram of modal orientation preferences of V1 cells in naïve and proficient 
mice, for cells close to (left) and distant from (right) the retinotopic position of the task stimulus, 
plotted as in Figure 1G. The proportion of cells preferring 45° and 90° but not 68° changes 
significantly amongst cells within 10 v° of the task stimulus location (p = 0.020, p = 0.045, p = 0.121, 
paired samples t-test). For cells further than 20 v° from the task stimulus location, all three changes 
are insignificant (p = 0.206, p = 0.132, p = 0.762, paired samples t-test). Error bars: SEM (n = 5 mice). 
*, p < 0.05. 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.23.445338doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445338
http://creativecommons.org/licenses/by/4.0/


 
 

23

Appendix 
Here we prove that applying a convex transformation to a neural population response vector increases 
its sparseness. Intuitively, the argument works as follows. Sparseness measures the degree to which a 
small number of neurons fire more than the mean firing rate. Applying a convex transformation causes 
a disproportionate boost in the firing rate of these few highly active neurons, increasing the sparseness 
of the population response. 

Formally, we will prove that this holds for a wide family of sparseness metrics, which includes those 
described by Treves and Rolls and Willmore and Tolhurst (36, 37) as a special case corresponding to ýሺýሻ ൌ ýଶ.   
Theorem. Let ýሺýሻ be a convex function. Let ሼý௜: ÿ ൌ 1 �ýሽ be a finite set of non‐negative real numbers. We 
define the sparseness measure  

ÿ௞ሾý௜ሿ ൌ෍ý ቀý௜ý̅ ቁே
௜ୀଵ , 

where ý̅ ൌ ଵே∑ ý௜ே௜ୀଵ . Let ý be a convex non‐decreasing function with ýሺ0ሻ ൌ 0, and write ÿ௜ ൌ ýሺý௜ሻ. Then  ÿ௞ሾÿ௜ሿ ൒ ÿ௞ሾý௜ሿ. 
Proof. It is clear that for any scalar ÿ, ÿ௞ሾý௜ሿ ൌ ÿ௞ሾÿý௜ሿ. So without loss of generality, we can rescale ý and ý so that ý̅ ൌ 1 and ÿത ൌ 1. After this rescaling,  

ÿ௞ሾÿ௜ሿ െ ÿ௞ሾý௜ሿ ൌ෍ýሺÿ௜ሻ െ ýሺý௜ሻே
௜ୀଵ  

Now because ∑ ý௜௜ ൌ ∑ ýሺý௜ሻ௜ , and ý is continuous, there must exist an ý଴  with ýሺý଴ሻ ൌ ý଴. Because ý 
is convex and ýሺ0ሻ ൌ 0, ý௜ ൒ ý଴ implies ÿ௜ ൒ ý௜, and ý௜ ൑ ý଴ implies ÿ௜ ൑ ý௜. Let ý be a subgradient of ý 
at ý଴, so if either ÿ ൒ ÿ ൒ ý଴ or ÿ ൑ ÿ ൑ ý଴, then   ýሺÿሻ െ ýሺÿሻ ൒ ýሺÿ െ ÿሻ.   If ý௜ ൒ ý଴ then ÿ௜ ൒ ý௜ ൒ ý଴ 
and  if  ý௜ ൑ ý଴ then  ÿ௜ ൑ ý௜ ൑ ý଴.  For  all  ÿ one  of  these  two  conditions  is  true  so   ýሺÿ௜ሻ െ ýሺý௜ሻ ൒ýሺÿ௜ െ ý௜ሻ.  Thus  ÿ௞ሾÿ௜ሿ െ ÿ௞ሾý௜ሿ ൌ ∑ ýሺÿ௜ሻ െ ýሺý௜ሻே௜ୀଵ ൒ ý∑ ÿ௜ െ ý௜௜ ൌ 0, as  we  have  rescaled  so  that ∑ ý௜ ൌ ∑ ÿ௜௜௜ . So  ÿ௞ሾÿ௜ሿ ൒ ÿ௞ሾý௜ሿ and the theorem is proved. 
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