bioRxiv preprint doi: https://doi.org/10.1101/2021.05.16.444349; this version posted May 17, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Mind the gap: performance metric evaluation in brain-age prediction

Ann-Marie G. de Lange*®®¢, Melis Anatiirk®?, Jaroslav Rokicki®®, Laura K.M. Han!,
Katja Franke®, Dag Alnaes®, Klaus P. Ebmeier®, Bogdan Draganski®",
Tobias Kaufmann®i, Lars T. Westlye”»* Tim Hahn!, James H. Coled™

®LREN, Centre for Research in Neurosciences- Dept. of Clinical Neurosciences, CHUV and University of
Lausanne, Lausanne, Switzerland
P NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and
Addiction, Oslo University Hospital, Oslo, Norway
¢Dept. of Psychiatry, University of Oxzford, Oxford, UK
dCentre for Medical Image Computing, Dept. of Computer Science, University College London, London, UK
¢Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
fDept. of Psychiatry, Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest,
Amsterdam Neuroscience, Amsterdam, The Netherlands
9Structural Brain Mapping Group, Dept. of Neurology, Jena University Hospital, Jena, Germany
hDept. of Neurology, Maz Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
i Tiibingen Center for Mental Health, Dept. of Psychiatry and Psychotherapy, University of Tibingen,
Tibingen, Germany
iDept. of Psychology, University of Oslo, Oslo, Norway
kFKG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
Unstitute of Translational Psychiatry, University of Miinster, Miinster, Germany
™ Dementia Research Centre, Institute of Neurology, University College London, London, UK

Abstract

Estimating age based on neuroimaging-derived data has become a popular approach to devel-
oping markers for brain integrity and health. While a variety of machine-learning algorithms
can provide accurate predictions of age based on brain characteristics, there is significant
variation in model accuracy reported across studies. We predicted age based on neuroimag-
ing data in two population-based datasets, and assessed the effects of age range, sample
size, and age-bias correction on the model performance metrics r, R?, Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE). The results showed that these metrics
vary considerably depending on cohort age range; r and R? values are lower when measured
in samples with a narrower age range. RMSE and MAE are also lower in samples with a
narrower age range due to smaller errors/brain age delta values when predictions are closer
to the mean age of the group. Across subsets with different age ranges, performance metrics
improve with increasing sample size. Performance metrics further vary depending on pre-
diction variance as well as mean age difference between training and test sets, and age-bias
corrected metrics indicate high accuracy - also for models showing poor initial performance.
In conclusion, performance metrics used for evaluating age prediction models depend on co-
hort and study-specific data characteristics, and cannot be directly compared across different
studies. Since age-bias corrected metrics in general indicate high accuracy, even for poorly
performing models, inspection of uncorrected model results provides important information
about underlying model attributes such as prediction variance.
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1. Introduction

Brain-predicted age is increasingly used as a marker for structural brain integrity and health
across normative and clinical populations [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17].
Since brain structure is known to vary with age across the lifespan, machine learning (ML)
regression models can be used to predict chronological age based on neuroimaging data [18,
19, 20, 21, 22]. Training a regression model on a wide range of magnetic resonance imaging
(MRI) scans allows it to build a normative trajectory of brain differences across age, and con-
dense a rich variety of brain characteristics into a single quantity per individual. Prediction
models can then be applied to unseen data, providing an estimate of brain-predicted age for
each individual in the dataset. The difference between an individual’s brain-predicted and
chronological age (brain age delta) provides a proxy for deviations from expected age trajec-
tories, and has been associated with clinical risk factors [10, 11, 23] as well as neurological
and neuropsychiatric conditions [2, 9, 13, 20, 24, 25, 26, 27, 28, 29]. Brain age delta estimates
have also been linked to biomedical variables and lifestyle factors in healthy population co-
horts [3, 22, 11, 12, 30, 31, 32|, and the overall evidence supports the use of brain-predicted
age as a surrogate marker for brain integrity and health [21].

A number of recent studies show that ML algorithms can predict age based on MRI data
with high accuracy e.g. [9, 33, 34, 26]. However, in addition to differences in feature sets
included [10, 11, 35], training and test set characteristics such as size and age range [35, 10]
can lead to considerable variation in model performance metrics across studies. Prediction
accuracy is commonly evaluated using the correlation between brain-predicted and chrono-
logical age (r) or R?, in addition to Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE). While these metrics are useful for comparing different algorithms applied to
the same dataset, the comparison of model performance across studies is less straightforward.
For example, the correlation coefficient is reduced when measured in restricted ranges of a
variable [36, 37], while the model error metrics RMSE and MAE depend on the distribution
of the predicted variable, and will thus vary between studies with different cohort age ranges.

Statistical corrections of overestimated predictions in younger subjects and underesti-
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mated predictions in older subjects can also have a large effect on model performance
metrics. This phenomenon, which is commonly referred to as age-bias in brain age stud-
ies [38, 39, 40, 41, 42], occurs due to general statistical features of a regression analysis [38]
(see Section 2.6). Age-bias correction ensures that any associations with other variables of in-
terests are not driven by the age-dependence of the predictions. However, model performance
metrics calculated post-correction may not always provide a relevant or valid representation
of the initial model performance. This is important since the validity of brain-predicted age
estimates depends on aspects such as sufficient variance in predictions, which is contingent
on how well the initial model performs.

With an increasing number of studies using brain age prediction, there is a pressing need to
establish a general understanding of model performance metrics, and how and why they may
vary across studies. In this work, we ran age prediction models based on T1-weighted imaging
data in two population-based datasets, and assessed the effects of age range, sample size, and

age-bias correction on metrics that are commonly used to evaluate model accuracy; r, R?,

RMSE, and MAE.

2. Materials and Methods

2.1. Datasets and data availability

The data were derived from UK Biobank (UKB) and the Cambridge Centre for Ageing and
Neuroscience dataset (Cam-CAN). Sample demographics are provided in Table 1. The two
datasets were chosen due to large sample size (UKB) and wide age range (Cam-CAN). The
data are available through established access procedures for UKB (https://www.ukbiobank.
ac.uk/researchers) and Cam-CAN (http://https://www.cam-can.org/index.php?content=
dataset). The code used for running the age prediction models is available at https://

github.com/amdelange/brainage.

2.2. MRI data acquisition and processing
A detailed overview of the UKB data acquisition and protocols is provided in [43] and [44],
and the processing pipeline is available in [9]. For Cam-CAN;, study protocols are available

in [45] and [46]. For each of the datasets, global and regional measures of cortical volume,
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Table 1: Sample demographics.

UKB Cam-CAN
N 41,285 622
Age Mean &+ SD 64.15 + 7.54 | 54.17 + 18.40
Range [years| 45 - 82 18 - 87
Sex % Men 47.36 50.64
% Women 52.64 49.35

area, and thickness in addition to subcortical volume were extracted based on the Desikan-
Killiany atlas [47] and automatic subcortical segmentation in FreeSurfer (version 5.3) [48].
After excluding participants with low-quality MRI data (based on outlier detection for UKB
as described in [49], and outlier detection plus manual inspection for Cam-CAN as described
in [23]), data from 41,285 and 622 participants were included for UKB and Cam-CAN,

respectively.

2.3. Brain-age prediction

To estimate global brain age, we used the XGBoost regression algorithm (XGB; https://
github.com/dmlc/xgboost), which is based on gradient tree boosting. XGB has demonstrated
high performance in previous machine learning competitions [50], and has been used in a
number of recent brain age studies [9, 10, 12, 31, 49, 51, 52]. Model parameters were set to
number of estimators = 180, max depth = 3, and learning rate = 0.1, as determined based on
previous grid searches in the two datasets [51, 53]. Models were run for i) the full UKB and
Cam-CAN samples using 10-fold cross validation, ii) UKB subsets with different age range
and sample sizes (see section 2.5), and iii) UKB and Cam-CAN samples where fractions
of the data were randomly shuffled (see section 2.6). For each iteration, the MRI input
features were scaled using the robust scaler from the scikit-learn library [54], which removes
the median and scales the data according to the quantile range. To test whether choice
of algorithm influenced the results, we repeated the UKB analyses in sections 2.5 and 2.6
using Linear Support Vector Regression (SVR; https://scikit-learn.org/stable/modules/

generated/sklearn.svm.LinearSVR.html) with loss=‘epsilon insensitive’ and C=1.5.
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2.4. Model performance metrics

Model performance metrics included the correlation between brain-predicted and chronolog-

ical age (Pearson’s 7), R?, RMSE, and MAE. An overview is provided in Table 2.

Table 2: Overview of the model performance metrics and how they are usually interpreted in the context of
model accuracy (blue font). RMSE = Root Mean Squared Error; MAE = Mean Absolute Error. Here, y are
the true age values for each subject, g are their predicted age values, y is the mean true age of the sample,
and 7 is the mean predicted age of the sample.

Metric

Description

Equation

The correlation coefficient (here, Pearson’s r)
between predicted and chronological age.

Higher values indicate better fit

_ S (yi—9)(9:—9)
\/Z(yz‘—?)Q Z(Qi—ﬁ)Z

R2

The proportion of the variance in the dependent
variable that can be explained by the indepen-
dent variables (not equivalent to r squared).

Higher values indicate better fit

RMSE

The square root of the average of squared er-
rors, which provides an overall measure of the
prediction error across the group.

Lower values indicate better fit

RMSE = /& ©, (3 — w)?

MAE

The average of the absolute value of each resid-
ual; similar to RMSE as an overall measure of
the prediction error across the group.

Lower values indicate better fit

N A~
MAE = % Zi:l |0: — vl

2.5. Effects of age range and sample size

To assess the effects of age range and sample size, we first ran 10-fold cross validated models

within the full UKB and Cam-CAN samples to compare performance metrics between the

two cohorts. Due to the large sample size, UKB data were used to systematically assess

effects of age range in the subsets described below. Unless otherwise stated, sample size

was held constant across training and test sets with N representing the maximum number of

participants available with the narrowest age range.

2.5.1. Test sets with varying age ranges, training set held constant

To assess the performance metrics in test sets with different age ranges, we trained a model

on a subset including the full age range, and applied it to unseen test sets with different age

ranges. In this setting, age range varies only for the test sets.
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2.5.2. Training sets with varying age ranges, test set held constant
To assess the performance metrics when age range was varied only for the training sets, we
trained models based on subsets with different age ranges, and applied them to the same test

set.

2.5.8. Training and test sets with equal age ranges

To assess the performance metrics when age range was equal for training and test sets, we ran
models using 10-fold cross validation within a series of subsets with different age ranges. To
test the effects of age range in addition to sample size, we re-ran the 10-fold cross validation
models using fractions of 2.5, 5, 10, 25, 50, 75, and 100 percent of the maximum number of

participants available with the narrowest age range.

2.6. Age-bias correction

Brain-predicted age is often overestimated in younger subjects and underestimated in older
subjects due to general statistical features of the regression analysis [38]. This phenomenon
can be explained by the limiting case where a model is unable to predict age based on the input
features. In this scenario, all subjects will be predicted to have the median age (equivalent to
the mean age if the data are symmetrically distributed), because such an estimate minimises
the residuals; this is the aim of regression/ordinary least squares fitting. Assigning the median
age as the prediction for all subjects will overestimate young subjects and underestimate older
subjects (see Figure 9). With increasing prediction accuracy, the degree to which the model
predicts median age is reduced, since the predictions move closer to true age. Hence, age-
bias is less pronounced in models with high prediction accuracy, but will always be present to
some extent since the relationship between brain characteristics and age is not perfect (as in
x = y). To account for the method-inherent age-bias, a statistical correction can be applied
to the age predictions or brain age delta estimates [11, 12, 39, 41, 38, 55, 40, 33, 39, 56, 13].
An example of a correction procedure is provided in Figure 1, where a correction is applied
to the predictions by first fitting ¥ = a x Q + [, where Y is the modelled predicted age
as a function of chronological age (£2), and « and /3 represent the slope and intercept. The
derived values of o and [ are used to correct predicted age with Corrected Predicted Age

= Predicted Age + [Q — (a x 2+ 3)]. This correction is equivalent to removing the effect
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of chronological age from either predicted age or brain age delta (see e.g. [42, 40, 38]). In
other words, it provides the same results as regressing out chronological age from brain age
delta and using the residuals [41, 6, 9, 25, 12], or including chronological age as a covariate in

regressions/correlations between brain age delta and other variables of interest [41, 42, 49, 31].

B

(o]
o

60

Pred. age
Corr. Delta

Corr. Pred. age

75 50 75

50 75
True age True age True age True age

o0 (6

Figure 1: Example of age-bias correction. A: The uncorrected association between predicted and true age.
The orange line shows the linear fit applied to model the age bias. B: The relationship between predicted
and true age after using the coefficients from the fit (orange line in plot A) to correct predicted age. C: The
uncorrected relationship between brain age delta and true age, illustrating the age dependence of delta. The
negative slope is due to an anti-correlation between true age on the x-axis and negative true age on the
y-axis, which occurs since negative true age is part of delta (predicted age — true age) D: Corrected delta
calculated as corrected predicted age — true age, which shows no age dependence. Corrected delta obtained
via a correction of the predicted age values gives equivalent results to correcting the delta values themselves
for age [42]. Hence, while the corrected delta values show no age dependence, this is due to the alignment of
corrected predicted age and true age as a result of the correction.

To assess the effect of age-bias correction on performance metrics, we applied the correc-
tion described above to i) the full UKB and Cam-CAN models, ii) UKB models based on
subsets with different age range and sample sizes, and iii) a series of UKB and Cam-CAN
models where 0, 10, 25, 50, and 75% of the data was randomly shuffled (age values are ran-
domly reordered across subjects), to systematically assess corrected metrics across models
with different levels of initial prediction accuracy.

As an alternative to simply regressing out age from brain age delta or correcting the
predictions as described above, the coefficients from a fit in a training set can be used to
correct the predictions or brain age deltas in an independent test set [40, 33, 39, 38, 56, 13].
With this approach, the correction in the test set is based only on the information about the
age-bias observed in the training set. To test if this approach yielded different results, we
split the full UKB and Cam-CAN samples in half to provide separate training and test sets,
and corrected the predictions in the test sets based on coefficients derived from the fits in

the training sets. The same cross-check was performed for the UKB models in section 3.3.
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3. Results

3.1. Full models

The performance metrics for the 10-fold cross validated models including the total sample
size and full available age range for each dataset are provided in Table 3. Despite the smaller
sample size (622 versus 41,285 in UKB), the Cam-CAN prediction showed larger r and R?
values. The Cam-CAN model also showed larger RMSE and MAE values due to its wider age
range (18 - 87 versus 45 - 82 in UKB). Hence, the lower RMSE/MAE values in UKB compared
to Cam-CAN are not due to better model performance, but rather reflect that predictions
in samples with a narrower age range are closer to the mean age of the group, which results
in lower errors/smaller brain age delta values as shown in Figure 2. All performance metrics
improved for both models after age-bias correction, as shown in Table 3. When correcting age-
bias using fit coefficients derived from a training set to correct the predictions in a separate
test set, the results were highly comparable (Supplementary Information (SI) Table 1).

Table 3: The correlations (r) between predicted age and chronological age, R?, root mean square
error (RMSE), and mean absolute error (MAE) for the age predictions including the total sample

and full age range in each of the datasets. The uncertainties for each parameter are also indicated.
The performance metrics are provided before and after age-bias correction (corr).

UKB UKB corr. Cam-Can Cam-Can corr.
r 0.722 £0.002 0.900 £ 0.001 0.875 = 0.008 0.927 £ 0.005
R2 0.520 £ 0.003 0.767 =£0.002 0.763 £0.014 0.837 = 0.011
RMSE [years] 5.219 £0.017 3.640 £0.012 8.946 4+ 0.247 7.415 £ 0.191
MAE [years] 4.188 +0.015 2.933 +0.011 7.182 +0.217 5.924 £0.171
—— UKB 0.100 [\ — uks
0.04| — cc 0.06 | —
\ h 0.075
0.03 \
0.02 7 oot 0.050
oo1| A / a \ 0.02 0.025
0.00 < S 000 0.000 L— —
50 100 —25 25
Age [years] Delta [years] Corr. delta [years]

Figure 2: Age distributions (left plot), uncorrected brain age delta distributions (middle plot), and corrected
brain age delta distributions (right plot) in UKB (red) and Cam-CAN (CC; blue). The distributions are
normalised to have the same area, and the y-axes represent the density.
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3.2. Effects of age range and sample size

This section shows model performance metrics measured in subsets with different age ranges.
As a cross check, we repeated the age-range tests using samples where the lower instead of

upper age limit was kept constant. The results were consistent, as shown in SI Figures 1-3.

3.2.1. Test sets with varying age ranges, training set held constant
Figure 3 shows the model performance metrics calculated in UKB test sets with different age

ranges when a model trained on the full age range is applied to each test set.

t Age range models (N = 10,000)
t  Corr. age range models (N = 10,000)
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Figure 3: Performance metrics calculated in UK Biobank (UKB) test sets with different age ranges. Predic-
tions are based on a model trained on the full age range. The x-axes indicate the age range for each of the
test sets. Sample size is kept constant across training and test sets, and represents the maximum number of
participants available with the narrowest age range (65-82y).

r and R? values: As seen in Figure 3, r values are lower when calculated in test sets with
a narrower age range, even though the predictions are based on a training set including the
full age-range. The correlation coefficient is in general lower when measured in restricted

ranges of a variable [36, 37], which is due to a smaller range in predicted and true age leading
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to less covariance. This also applies to the R? values, but R? is influenced by an additional
effect; due to larger difference in mean age between the training and test sets, the R? value
becomes negative for the narrowest age range. The age-bias corrected r and R? values are
generally larger for all models, and the corrected values decrease with a narrower age range.
In this scenario, the prediction variance is similar across test sets, which is a result of the
training set being held constant. Hence, while both corrected and uncorrected r and R?
values are lower when measured in test sets with a restricted age range, low values do not
imply that the brain-predicted age estimates are invalid (prediction variance is further dis-
cussed in Section 3.3). For R?, the test set with the narrowest age range shows the largest
improvement after age-bias correction. This is because the correction adjusts the mean age

difference between the training and test sets, as further described below.

RMSE and MAE values: As seen in Figure 3, RMSE and MAE initially decrease as
the age range is narrowed, but then show a subsequent increase in the test sets with the
narrowest age range. This trend is due to two competing effects: 1) the RMSE and MAE
values generally decrease in test sets with a narrower age range due to smaller prediction
range; 2) the RMSE and MAE values increase with a larger mean age difference between the
training and test sets. When effect 2 becomes more prominent than effect 1, a turning point
in RMSE and MAE is observed. The mean age and delta values for the training set and each

of the test sets are shown in Table 4.

Table 4: Mean =+ standard deviation for age and model errors/brain age delta values in the training
set and each of the test sets with different age ranges. Corr indicates the age-corrected delta values.
Larger mean age difference between training and test sets leads to smaller R? values and larger
RMSE and MAE values, as shown in Figure 3.

Age Brain age delta Corr. Brain age delta
Training set (45-82y) 64.08 & 7.52 0.01 £ 5.29 —3.74 x 104 £ 3.68
Test set (45-82y) 64.17 £ 7.52 —0.08 £5.26 —1.85 x 10'* + 3.66
Test set (50-82y) 64.57 £ 7.21 —0.47 £5.11 —2.26 x 10'5 £ 3.68
Test set (55-82y) 66.22 + 6.10 —2.09 + 4.66 —3.37 x 1017 £3.75
Test set (60-82y) 68.21 + 4.86 —4.09 +4.33 6.47 x 1015 £ 3.85
Test set (65-82y) 70.62 + 3.66 —6.45 £ 4.14 1.05 x 10™ 4+ 3.94

After age-bias correction, the RMSE and MAE values are generally smaller for all models,

with similar values across test sets as seen in Figure 3. The similar values are due to stable

10
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prediction variance across test sets (a result of the training set being held constant). As
seen for R%, the test set with the narrowest age range show the largest improvement in
RMSE/MAE after age-bias correction, due to the adjustment of the mean difference between

the training and test sets.

3.2.2. Training sets with varying age ranges, test set held constant

Figure 4 shows the model performance metrics when models trained on different age ranges

are applied to the same test set.

t Age range models (N = 10,000)
t  Corr. age range models (N = 10,000)
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Figure 4: Performance metrics calculated in a UK Biobank (UKB) test set (age range = 65-82y). Predictions
are based on models trained with different age ranges. The x-axes indicate the age range of the training sets
applied to the same test set. Sample size is kept constant across training and test sets, and represents the
maximum number of participants available with the narrowest age range (65-82y).

r and R? values: As seen in Figure 4, the uncorrected r values are stable for all models,
although the predictions are based on training sets with different age ranges. This is because
the correlation coefficient is determined by the restricted age and prediction range in the

test set (which is held constant). For R? the uncorrected values increase substantially when
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the training is based on a narrower age range, due to the decreasing difference in mean age
between the training and test sets (the mean age difference is largest when the training is
based on the full age range, and smallest when the training is based on the narrowest age
range (65-82y) as it matches the age range of the test set (65-82y)). After age-bias correc-
tion, the r values are generally larger for all models, but the largest improvement is seen
for the model where the training is based on the narrowest age range. This is due to lower
prediction variance in training sets with a narrower age range: the lower the initial variance,
the larger the improvement in r after age-bias correction (see section 3.3). For R?, the largest
improvement after age-bias correction is seen for the model where the training is based on
the widest age range. This is because the correction adjusts the mean age difference between

training and test sets, which is largest when the training is based on the widest age range.

RMSE and MAE values: As shown in Figure 4, RMSE and MAE decrease when the
training is based on a narrower age range. This is due to two effects: i) lower prediction
variance in models trained on a narrower age range, and ii) decreasing mean age difference
between training and test sets. After age-bias correction, the largest improvements in RMSE
and MAE are seen when the training is based on the widest age range. This is because the
correction adjusts the difference in mean age between the training and test sets, which is
largest when the training is based on the widest age range. Although the correction adjusts
mean age differences, corrected RMSE and MAE values still decrease when training sets are
based on a narrower age range. This is due to lower prediction variance with a narrower age

range, which results in smaller model errors/brain age delta values (see Figure 8).

3.2.3. Training and test sets with equal age ranges
Figure 5 shows the model performance metrics when 10-fold cross validations are run within

different age-range subsets (age range is equal for training and test sets).
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Figure 5: Performance metrics calculated in UK Biobank (UKB) subsets with different age ranges. Predictions
are based on models trained using 10-fold cross validation within each subset, i.e. age range is equal for training
and test sets. The x-axes indicate the age range for each of the subsets. Sample size is kept constant across
subsets, and represents the maximum number of participants available with the narrowest age range (65-82y).

r and R? values: As seen in Figure 5, the uncorrected r values decrease with a narrower
age range. This is due to two effects: i) 7 is smaller in subsets with a narrower age range due
to restricted age and prediction range, and ii) the variance in predictions is smaller when the
training is based on a narrower age range. Since age range is equal for training and test sets
within each subset, there are no mean age differences. Thus, R? values are only influenced by
the same effects as r; variable range and variance in predictions. After age-bias correction,
the r values improve substantially across subsets, with the largest improvement seen for mod-
els with the lowest initial r values. This is due to lower prediction variance in subsets with

a narrower age range (see section 3.3). The same effect is reflected in the corrected R? values.

RMSE and MAE values: As shown in Figure 5, RMSE and MAE decrease with a nar-

rower age range. This is due to the restricted prediction range in subsets with a narrower age
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range (predictions in samples with a narrower age range are closer to the mean age of the
group, which equates to lower model errors/smaller brain age delta values). After age-bias
correction, the RMSE and MAE values are generally smaller for all models, but the corrected
values also decrease with a narrower age range. This is due to lower variance in subsets with

a narrower age range, which results in smaller model errors/delta values (see Figure 8).

Effects of age range and sample size: As shown in Figure 6, all performance metrics
improved with increasing sample size across subsets with different age ranges. Across all
sample fractions, the effects of age range corresponded to the trends in Figure 5; lower
uncorrected r and R? values in subsets with a narrower age range due to restricted prediction
range and lower variance, and lower RMSE and MAE values in subsets with a narrower age
range due to restricted prediction range. Age-bias corrected metrics improved for all models,

as shown in Figure 7.
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Figure 6: Performance metrics calculated in UK Biobank subsets with different age range and sample size.
Predictions are based on 10-fold cross validation models run within each age-range subset, i.e. age range is
equal for training and test sets within each subset. The x-axes show the age range for each subset, while
the y-axes indicate the subset sizes in fractions of the maximum number of participants available with the
narrowest age range; N for each sample fraction: 0.025 = 501, 0.05 = 1,002, 0.1 = 2,004, 0.25 = 5,011, 0.5 =
10,022, 0.75 = 15,032, 1 = 20,043.
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Figure 7: Age-bias corrected performance metrics calculated in UK Biobank subsets with different age range
and sample size. Predictions are based on 10-fold cross validation models run within each age-range subset,
i.e. age range is equal for training and test sets within each subset. The x-axes show the age range for
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available with the narrowest age range; N for each sample fraction: 0.025 = 501, 0.05 = 1,002, 0.1 = 2,004,
0.25 = 5,011, 0.5 = 10,022, 0.75 = 15,032, 1 = 20,043.
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3.3. Age-bias correction applied to models with different levels of prediction accuracy

The results of applying the age-bias correction to models where 0, 10, 25, 50, and 75% of the
data was randomly shuffled are shown in Figure 8. All performance metrics improved after
correction, and the models with the poorest initial prediction accuracy (highest fraction of
randomly shuffled data) showed the largest improvement after correction due to lower vari-
ance in predictions, as shown in Figure 9. The lower variance occurs with more predictions
around the median age of the sample, which is a result of the model lacking sufficient in-
formation to provide accurate predictions. For Cam-CAN, all models improved to a similar
extent after correction, as shown in SI Figure 4. The variance in the Cam-CAN data was
more similar across models with different shuffle fractions (SI Figure 5) as compared to UKB,
indicating that the wider age range provides more information for the model - leading to less
predictions around median age.

When using separate UKB training and test sets where the age correction parameters «
and 8 were derived from a fit to the training set and used to correct the predictions in the
test set, the results were highly comparable as shown in SI Figures 6 and 7. As a crosscheck,
we repeated the age-bias analysis for UKB including a quadratic age term in the correction,

which showed similar results (SI Figure 8).
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Figure 8: Age-bias correction in UK Biobank (UKB) models with 0, 10, 25, 50, and 75% randomly shuffled
data. All models improve after correction, and the models with the poorest initial prediction accuracy
(highest fraction of shuffled data) show the largest improvement. Hence, corrected metrics may not provide
a relevant representation of initial model performance. Corr = corrected.
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Figure 9: Age-bias correction in UKB models with randomly shuffled data. SF = shuffle fraction in %. First
column: The plots of predicted versus true age show better performance for models with lower fractions of
shuffled data. The models with the best performance also display the highest prediction variance, whereas the
poorly performing models show predictions that cluster around median true age, resulting in low variance.
Second column: The relationship between predicted and true age improves after age-bias correction, also
for poorly performing models. Third column: Delta versus true age, illustrating the age dependence of
delta. The negative slopes are due to an anti-correlation between true age on the x-axis and negative true
age on the y-axis, which occurs since negative true age is part of delta (predicted age — true age). Models with
smaller slopes in predicted versus true age (first column) show larger negative slopes in delta versus true age
(third column) as a result of this. Fourth column: Corrected delta (corr. pred age — true age), which shows
no dependence on age. Corrected delta obtained via a correction of predicted age gives equivalent results to
correcting the delta values themselves for age [42]. Hence, while corrected delta shows no age dependence,
this is due to a strong correlation between corrected predicted age and true age as a result of the correction
(illustrated in SI Figure 15).
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3.4. UKB results based on SVR instead of XGB
The UKB results based on SVR instead of XGB are shown in SI section 6. In line with

recent studies [38, 30|, we found no evidence that choice of algorithm influenced the observed
patterns: the effects of age range were highly comparable (SI Figures 9-11). The trends
for subsets with different sample size and age range were also highly comparable, but XGB
showed more stable performance across the smallest sample fractions (SI Figure 12). Age-bias
correction showed equivalent effects for SVR and XGB models in samples where fractions of

the data were randomly shuffled (SI Figures 13 and 14).

4. Discussion and summary of findings

Predicting age based on neuroimaging data can provide a useful marker for brain integrity and
health [9, 24, 18, 3, 13], However, the current results emphasise that the model performance
metrics r, R?, RMSE, and MAE cannot be directly compared across different studies, as
they depend on factors including age range, sample size, prediction variance, and mean age

differences between training and test sets.

4.1. Effects of age range

The results in section 3.2 show that model performance metrics depend on cohort age range
in training and test sets. Since r and R? values are lower when measured in restricted ranges
of a variable [36, 37], these metrics can be lower when calculated in test sets with a narrow
age range - also when the predictions are based on a training set with a wider age range. In
this case, low r and R? values are not indicative of poor model performance or insufficient
variance in brain-predicted age estimates, but rather reflect the limited age variance in the
test set. In studies where predictions are estimated in several sub-samples, it may be useful
to include the age variance of the sub-sample with the largest age range in the calculation of
performance metrics [19, 57], provided that the variances are similar in the sub-sample and
a matching/restricted range of the sample used. In contrast, the use of training sets with
a restricted age range can potentially involve poor model performance accompanied by low
prediction variance, which is further discussed in Section 4.2.

In addition to age range and prediction variance, the R? value is also influenced by

differences in the mean age between training and test sets. Larger mean age differences lead
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to smaller R? values, as well as larger RMSE and MAE values. However, the error metrics
RMSE and MAE will in general decrease with a narrower age range, since predictions in
samples with a narrower age range are closer to the mean age of the group (which results
in lower model errors/smaller brain age delta values). Hence, small model errors do not
necessarily reflect better model performance, and a model based on a cohort with a wide age
range may show large R? and r values accompanied by large RMSE and MAE values (as
seen with Cam-CAN versus UKB in Section 3.1). Alternative model error metrics such as
Relative Squared Error (RSE), Relative Absolute Error (RAE), Median Absolute Error, and
weighted MAE also vary depending on age range, as shown in SI Section 8 (Figures 16-18).

4.2. Age-bias corrected versus initial model performance
The results in section 3.3 show how statistical age-bias corrections improve performance met-
rics by forcing an alignment between predicted and true age, leading to accurate predictions
also for poorly performing models. This type of correction accounts for age-bias and mean age
differences between training and test sets, but corrected performance metrics can also conceal
potential issues with low prediction variance. While correcting the delta values instead of
the predictions is common [40], these correction procedures lead to equivalent results [42]
since the delta value contains the prediction minus age, and age is used in the correction fit
(SI Figure 15). Hence, corrected deltas used in analyses to assess relationships with clinical
or cognitive data are not exempt from the potential issues shown in Figures 8 and 9.
Inspection of uncorrected data can provide important information; for example, r and R?
values calculated in test sets with a narrow age range may be low, but prediction variance
may be large if the training set has a wider age range. When the age range of the training set
is also restricted, low r and R? values may be due to low model performance accompanied
by low prediction variance. Since age-bias corrected performance metrics do not contain
information about these underlying model attributes, plotting the initial fit and data points
can be helpful for evaluating the validity of brain-predicted age estimates. For example, if
the relationship between the MRI input features and the dependent variable (age) is low in
the training set, predictions may cluster around the median age of the sample as the model
lacks sufficient information to provide accurate predictions. This would raise the question

of what brain-predicted age estimates derived from models with low prediction accuracy
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actually represent, and whether other types of estimates (e.g. summary scores of the imaging
data that are not obtained via age prediction) may be more appropriate in the given sample.

Since structural and functional brain measures show differential variation with age across
the lifespan, age prediction accuracy varies depending on input features as well as cohort
characteristics. For example, we found low age prediction accuracy based on resting-state
functional MRI (fMRI) in UKB [58] and the Whitehall II MRI sub-study cohort (WHII) [10].
In WHII (N = 610, age range 60-85 years), the fMRI features showed weaker relationships
with age compared to grey matter features derived from T1-weighted scans, and this result
was also replicated in a matched UKB sub-sample in the same study. When systematically
extending the UKB sub-sample, the fMRI prediction accuracy improved with a wider age
range and larger sample size, but remained consistently lower than grey-matter based pre-
dictions in line with other UKB analyses [11]. Such findings further emphasise the challenges
of comparing model results across studies, as model performance depends on specific brain

characteristics and the age span over which they are modelled.

4.8. Conclusion

Performance metrics used for evaluating age prediction models depend on cohort and study-
specific data characteristics, and cannot be directly compared across different studies. Al-
though some effects can be mitigated through study designs where age distributions are
carefully matched across training and test sets, observed model performance in a given test
set cannot be generalised to samples with different age ranges. Since age-bias corrected
metrics in general indicate high accuracy, even for poorly performing models, inspecting un-
corrected results can provide important information about underlying model attributes such
as prediction variance. While age prediction models have been used for more than a decade
to generate imaging-based biomarkers [20], the approach continues to be developed and ex-
tended (see for example [3, 9, 56, 31, 49, 58]). Although not covered in the current study, an
increasingly common scenario involves combining data from various cohorts and scanners,
which poses additional challenges related to site- and scanner-dependent variance [25]. Im-
proving methods for site/scanner adjustments [59, 60], or incorporating uncertainties into
the predictions [61, 62], represent promising avenues for further developing robust and valid

biomarkers for brain health and disease. As evident from the current results, clear reporting
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of sample characteristics and model attributes is important to enable accurate interpretation

of model performance metrics in future work.
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