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Abstract—In recent years, more biomedical studies have
begun to use multimodal data to improve model performance.
As such, there is a need for improved multimodal explainability
methods. Many studies involving multimodal explainability
have used ablation approaches. Ablation requires the
modification of input data, which may create out-of-distribution
samples and may not always offer a correct explanation. We
propose using an alternative gradient-based feature attribution
approach, called layer-wise relevance propagation (LRP), to
help explain multimodal models. To demonstrate the feasibility
of the approach, we selected automated sleep stage classification
as our use-case and trained a 1-D convolutional neural network
(CNN) with electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG) data. We applied LRP to
explain the relative importance of each modality to the
classification of different sleep stages. Our results showed that
across all samples, EEG was most important, followed by EOG,
and EMG. For individual sleep stages, EEG and EOG had
higher relevance for classifying awake and non-rapid eye
movement 1 (NREM1). EOG was most important for classifying
REM, and EEG was most relevant for classifying NREM2-
NREMa3. Also, LRP gave consistent levels of importance to each
modality for correctly classified samples across folds and
inconsistent levels of importance for incorrectly classified
samples. Our results demonstrate the additional insight that
gradient-based approaches can provide relative to ablation
methods and highlight their feasibility for explaining
multimodal electrophysiology classifiers.

Keywords—Explainability, Multimodal Fusion, Automated
Sleep Staging, Electrophysiology

I. INTRODUCTION

A growing number of biomedical studies have begun to
incorporate data from multiple modalities [1]-[4]. This
growth has occurred because complementary modalities
increase data richness and can improve classifier performance
[2]. However, multimodal data can also increase the difficulty
of model interpretation, and many multimodal studies have
not incorporated explainability methods that could provide
insight into the relative contributions of each modality [3].
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A few studies have applied explainability methods to
identify the relative importance of each modality to classifiers
trained on multimodal data. This includes approaches such as
forward feature selection (FFS) [1], impurity [4], and ablation
[4][5]. However, some of these methods are incompatible with
high-performing deep learning frameworks. FFS requires
retraining classifiers repeatedly, so it is not practical for
computationally intensive deep learning classifiers.
Furthermore, impurity methods can only be applied to
decision tree-based models. Unlike FFS and impurity,
ablation can be applied to nearly all types of classifiers, is easy
to implement, and is not computationally intensive. However,
ablation methods do have some weaknesses.

Ablation, like perturbation, requires that the data input to
the classifier be modified. This modification can create
samples that are out of the data distribution upon which the
classifier was trained [6]. Moreover, in deep learning
classifiers with automated feature extraction, ablation can
cause extracted features that are outside the distribution of
other extracted features within the dataset. Furthermore, the
goal of ablation is to identify how the performance of a model
decreases when the information originally found in a modality
is no longer available. As such, it is necessary to be cautious
while adapting such methods to new application domains [7].
In domains like electrophysiology (EP) analysis, a value of
zero for a modality is abnormal and would likely not bear
adequate resemblance to real-life samples. This could affect
explainability results, as out-of-distribution or abnormal
samples may not correctly assess what a classifier has learned.

Gradient-based feature attribution (GBFA) methods [8] offer
an alternative to ablation for multimodal time-series
explainability. These methods do not require data
modification and are applicable to many deep learning
frameworks. Additionally, they can provide much more
detailed explanations than ablation. Specifically, ablation can
show which modalities were important to the classification of
a class, and GBFA methods can show which modalities were
important to both the correct and incorrect classification of
samples belonging to a class. Layer-wise relevance
propagation (LRP) is a popular gradient-based method [9].
Here, we propose the use of gradient-based feature attribution
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methods, and specifically LRP, for insight into classifiers
trained on multimodal data. To demonstrate the viability of
this approach, we train a 1-dimensional (1D) convolutional
neural network (CNN) for automated sleep stage classification
with electroencephalogram (EEG), electrooculogram (EOG),
and electromyogram (EMG) data from a popular online
dataset [10]. We perform automated sleep stage classification
because it is a representative multimodal classification task
with clinical needs for model explainability [S5]. We apply
LRP in a global manner to show the relative importance of
each modality to the classification of each sleep stage.

II. METHODS

Here we provide a description of our methods. Using
multimodal data, we trained a CNN to discriminate between
each sleep stage and applied LRP to explain the decisions of
the classifier. The dataset, preprocessing, and classifier that
we used here are the same as those which we presented in [7].
The key innovation of this work is its explainability approach.

A. Description of Data

We used the Sleep Telemetry dataset from the Sleep-EDF
Database [10] on Physionet [11]. The dataset included 44,
approximately 9-hour recordings from 22 subjects. Each
subject had a recording following the administration of a
placebo and temazepam. The dataset consisted of EEG, EOG,
and EMG with a sampling rate of 100 Hertz (Hz), as well as a
polysomnogram of the sleep stage at each time point. For
EEG, we used the FPz-Cz electrode. Sleep stages included:
awake, movement, rapid eye movement (REM), non-REM 1
(NREM1), NREM2, NREM3, and NREM4. A marker at 1 Hz
intervals indicated whether an error occurred in the sleep
telemetry device.

B. Description of Data Preprocessing

We separated each recording into 30-second segments and
obtained the corresponding label from the polysomnogram.
We discarded movement samples and samples that
corresponded with recording errors and consolidated the
NREM3 and NREM4 stages into NREM3 [12]. We then z-
scored each modality within each recording. The dataset had
42,218 samples and was very imbalanced. Awake, NREM1,
NREM?2, NREM3, and REM stages composed 9.97%, 8.53%,
46.8%, 14.92%, and 19.78% of the dataset, respectively.

C. Description of CNN

We adapted a 1D-CNN architecture originally developed
for EEG-based sleep stage classification to our multimodal
dataset [13]. The architecture, model hyperparameters, and
training approach are described in [7]. We used a 10-fold cross
validation approach in which training, validation, and test sets
were composed of 17, 2, and 3 randomly assigned subjects,
respectively. To measure classifier performance, we generated
a confusion matrix showing the distribution of sample
classification across all folds. Further details on the precision,
recall, and F1 score of the classifier are included in [7].

D. Description of Explainability Approach

We used LRP to explain the relative importance of each
modality [9]. LRP provides local explanations for the
classification of each individual sample. In LRP, a sample is
fed into the neural network and classified. A total relevance of
1 is assigned to the output node for its respective class, and
that total relevance is propagated back through the network
via LRP relevance rules until a portion of that total relevance

is assigned to each of the points in the input sample. Both
positive and negative relevance can propagate through the
network. Positive relevance shows the features that support
the sample being assigned to the class to which it is assigned.
Negative relevance identifies the features that support the
sample being assigned to other classes. We used the € and off
relevance rules [14]. The e-rule has a parameter, €, that enables
relevance to be filtered when propagated through the network.
Increasing € causes smaller relevance values to be filtered out,
reducing the noise in the explanation. The af-rule has two
parameters, o and B, which control the degree to which
positive and negative relevance are propagated through the
network, respectively. While the e-rule allows both negative
and positive relevance to propagate, the af-rule can enable
only positive relevance to be propagated when a equals 1 and
B equals 0. We used the e-rule with an € of 0.01 and 100 and
the af-rule with an o of 1 and a § of 0.

To obtain a “global” explanation, we combined the local
explanations for all samples in the test set of each fold. We
then calculated the percent of absolute relevance assigned to
each modality in each fold to identify their relative
importance. We did this for all test samples and for each
classification group (e.g. awake classified as awake or
NREMI classified as NREM?2).

III. RESULTS AND DISCUSSION

Here we describe and discuss the LRP results. We also
discuss the study limitations and potential future work.

A. Explainability Results

Figures 1 and 2 show LRP results for all samples and for
each classification group, respectively. When all classes were
considered, all LRP rules indicated that EEG was the most
important modality, followed by EOG, and EMG. For an € of
100, when low relevance values were filtered out, the EEG
and EOG showed an increase in importance while EMG
importance decreased. Interestingly, both the e-rule (¢=100)
and the af-rule gave more importance to EMG than the e-rule
(e=0.01). These results are comparable to the ablation results
in [7], though the importance of EOG and EMG appears
greater for LRP than for ablation.

We also sought to understand the importance of each
modality for the correct or incorrect classification of each
class. The results in Figure 2 fit with sleep scoring guidelines,
as EEG can be used for classifying all stages while EOG and
EMG are useful for classifying between awake, REM, and
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Figure 1. LRP-based global explainability. Plot shows explainability
results for all folds. Blue, yellow, and red boxes are for EEG, EOG, and
EMG, respectively. Within each trio, from left to right are relevance
results for the LRP e-rule (0.01), e-rule (100), and a-B-rule.
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Figure 2. LRP Results for Each Classification Group. Plot shows explainability results for all folds. Blue, yellow, and red boxes are for EEG, EOG, and
EMG, respectively. Within each trio, from left to right are relevance results for the LRP ¢-rule (0.01), e-rule (100), and a-B-rule. Note that the number of

samples in each classification group is included in the title of each panel.

NREM samples [12]. The diagonal of Figure 2 shows the LRP
results for correctly classified samples. For the awake stage,
the CNN relied mostly on EEG and EOG data. For correctly
classifying NREM 1, the CNN model placed importance either
more on EOG than EEG (e=100) or about equally on EEG and
EOG (e=0.01 and op-rule). However, EMG was the least
relevant in correctly classifying NREMI1 for all relevance
rules (column 2, row 2). For correctly classifying NREM2
(row 3, column 3) and NREM3 (row 4, column 4), EEG had
more than 3 times as much relevance as EOG and EMG for all
rules. This is consistent with sleep scoring guidelines, as EEG
in NREM samples is often very distinct [12]. For correctly
classifying REM sleep stages, EOG had the most relevance (¢
rule with e=100 and a-f rule). However, for e-rule (¢=0.1),
EEG and EOG were equally relevant for REM classification.
EMG was the least relevant for REM classification across all
rules (row 5, column 5). Our results corroborate the well-
documented importance of EOG in classifying awake and

REM. EOG is important because it tracks eye movements
which are more common during awake and REM stages. We
also noticed that the relevance across folds of the test samples
that the CNN correctly classified had lower variance than the
that of the misclassified samples. The lower variance of the
correctly classified samples indicates that the features learned
by the CNN for correct classification are likely similar across
all 10 folds, which could indicate that the architecture is
learning generalizable features or that the subjects randomly
assigned to each test group are comparable. However, that the
CNN seems to have greater variance in relevance across folds
for the incorrectly classified samples could indicate that they
are making different mistakes in each fold or identifying
different ungeneralizable patterns in the training data.

B. Limitations and Future Work

LRP is one of a broad class of GBFA methods. It is
possible that other related methods could provide better
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explanations. Some metrics have been developed for
quantifying the quality of explanations produced by different
explainability methods [15], and those metrics could
potentially be applied to identify the methods that provide the
highest quality explanations for multimodal EP time-series.
Furthermore, when we output LRP results, we used each rule
for propagating relevance through the whole network.
Previous studies have shown that using different rules in
different parts of a CNN can improve explanations, especially
in deeper networks [14]. Also, we adapted a CNN architecture
originally developed for EEG-based sleep stage classification.
As such, the architecture was not necessarily developed to
extract features optimally from EOG and EMG, which could
cause the explainability results to show that EEG is most
important. Examining model architectures that might better
extract EOG or EMG features could be helpful. Additionally,
although our classification performance was below the state
of the art, our novel explainability approach, rather than our
classifier, was the focus of our study. Using LRP with a better
classifier could provide more generalizable explanations and
could contribute to novel biomarker identification. Further,
local LRP explanations, rather than global explanations,
would provide higher resolution insights that might better
enable the identification of novel multimodal biomarkers.

IV. CONCLUSION

In this study, we implement a gradient-based model-
introspection technique for insight into the importance of
each modality in multimodal EP data. This offers an
alternative to the popular ablation approaches that have
previously been used to find the relative importance of each
modality to a classifier. Because of its well-characterized
clinical guidelines, we used sleep stage classification as a test
bed and trained a classifier to discriminate between sleep
stages using multimodal data. We further implemented LRP,
a popular gradient-based explainability method, to identify
the relative importance of each modality to the CNN. Our
results corroborate documented findings on the importance of
EEG and EOG in classifying awake and NREM1, EOG for
REM, and EEG for NREM2-NREM3. They also show that
the CNN gave consistent levels of importance to each
modality for correctly classified samples across folds and
inconsistent importance for incorrectly classified samples. As
such, our study demonstrates the additional insight that
GBFA methods can provide relative to ablation, highlights
their viability for explaining multimodal EP classifiers, and
suggests their utility for other multimodal classification
problems.
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