

1 **TITLE: Convergence of proprioceptive and visual feedback on neurons in primary motor cortex**

2

3 **Authors and affiliations**

4 Kevin P. Cross^{1*}, Douglas J. Cook^{1,2}, Stephen H. Scott^{1,3,4}.

5 ¹Centre for Neuroscience Studies, ² Department of Surgery, ³Department of Biomedical and Molecular
6 Sciences and ⁴Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada.

7

8 *Corresponding author: 13kc18@queensu.ca

9

10

11

12

13

14

15

16

17

18

19

20 **Author contributions**

21 Conceptualization, Methodology, Writing, K.P.C. and S.H.S.; Investigation, Formal Analysis, K.P.C.,
22 Surgical Expertise, D.J.C., Funding Acquisition, Supervision, S.H.S.

23

24 **Acknowledgements**

25 We thank Kim Moore, Simone Appaqaq, Ethan Heming, and Helen Bretzke for their laboratory and
26 technical assistance and the LIMB lab for helpful discussions. This work was supported by grants from
27 the Canadian Institute of Health Research. KPC was supported by an OGS scholarship. SHS was
28 supported by a GSK chair in Neuroscience.

29

30 **Declaration of Interests**

31 SHS is co-founder and CSO of Kinarm which commercializes the robotic technology used in the
32 present study.

33 **Summary**

34 An important aspect of motor function is our ability to rapidly generate goal-directed
35 corrections for disturbances to the limb or behavioural goal. Primary motor cortex (M1) is a key region
36 involved in feedback processing, yet we know little about how different sources of feedback are
37 processed by M1. We examined feedback-related activity in M1 to compare how different sources
38 (visual versus proprioceptive) and types of information (limb versus goal) are represented. We found
39 sensory feedback had a broad influence on M1 activity with ~73% of neurons responding to at least
40 one of the feedback sources. Information was also organized such that limb and goal feedback targeted
41 the same neurons and evoked similar responses at the single-neuron and population levels indicating a
42 strong convergence of feedback sources in M1.

43 **Introduction**

44 Sensory feedback plays a critical role in ensuring motor actions are successfully performed,
45 providing information about motor errors due to external disturbances and internal noise inherent in the
46 sensory and motor systems. Feedback is also essential for generating overt corrections such as when
47 someone bumps your arm while moving, or when the behavioural goal unexpectedly moves such as a
48 glass tipping over when the table is bumped. While vision plays a dominant role for identifying most
49 behavioural goals, both vision and proprioception are available for feedback about the limb.
50 Performing most motor actions thus requires combining visual feedback of the goal with feedback of
51 the limb from proprioception and vision.

52 Primary motor cortex (M1) plays an important role in generating goal-directed corrections
53 during motor actions. M1 receives rich sensory inputs from many brain regions involved in
54 proprioceptive and visual processing including the parietal and frontal cortices (Jones et al., 1978;
55 Zarzecki and Strick, 1978; Crammond and Kalaska, 1989; Porter and Lemon, 1993; Buneo et al., 2002;
56 Pesaran et al., 2006; McGuire and Sabes, 2011; Bremner and Andersen, 2012; Dea et al., 2016; Omrani
57 et al., 2016; Gamberini et al., 2017; Piserchia et al., 2017; Kalidindi et al., 2020; Takei et al., 2021), as
58 well as input from cerebellum (Conrad et al., 1975; Vilis et al., 1976; Strick, 1983; Guo et al., 2020;
59 Sauerbrei et al., 2020). M1 rapidly responds to proprioceptive feedback of the limb within ~20-40ms of
60 an applied mechanical load (Evarts and Tanji, 1976; Wolpaw, 1980; Lemon, 1981a; Suminski et al.,
61 2009; Pruszynski et al., 2011, 2014; Omrani et al., 2014; Heming et al., 2019) and to visual feedback of
62 the limb and goal within ~70ms (Georgopoulos et al., 1983; Cisek and Kalaska, 2005; Ames et al.,
63 2014; Stavisky et al., 2017). Thus, M1 receives both visual and proprioceptive feedback, but we know
64 little about how these different sources of sensory information are organized in M1 during motor
65 actions.

66 On one extreme, all three feedback sources could target a similar population of neurons
67 (convergence hypothesis). This hypothesis is consistent with the assumption that the motor system
68 computes a difference vector between the visual location of the goal and an estimate of hand position,
69 which is then used to calculate motor commands (Bullock et al., 1998; Sober and Sabes, 2003;
70 Shadmehr and Wise, 2005; Burns and Blohm, 2010). This difference vector is commonly assumed to
71 be computed upstream in premotor and/or posterior parietal cortices (Buneo et al., 2002; Pesaran et al.,
72 2006; McGuire and Sabes, 2011; Bremner and Andersen, 2012; Piserchia et al., 2017). Consistent with
73 this hypothesis are studies showing how corrective responses for sensory feedback of the limb can
74 depend on properties of the goal including its location (Brenner and Smeets, 2003; Mutha et al., 2008;

75 Pruszynski et al., 2008; Yang et al., 2011; Dimitriou et al., 2013; Cluff and Scott, 2015). Visual
76 feedback about the limb can also affect how participants correct for proprioceptive errors (Wei and
77 Körding, 2008; Ito and Gomi, 2020). If a difference vector is computed upstream and transmitted to
78 M1 during movement, the prediction is that a common group of neurons in M1 should rapidly respond
79 to mechanical and visual disturbances of the limb as well as visual disturbances of the goal.

80 Alternatively, each feedback source may influence M1 independently (independence
81 hypothesis). The motor system rapidly responds to proprioceptive (~20-60ms) and visual (90-120ms)
82 feedback, which may not allow the brain sufficient time to perform the necessary computations needed
83 to integrate feedback sources. Behavioural studies suggest that the motor system may have
84 independent representations of the limb and goal (Brenner and Smeets, 2003; Franklin et al., 2016) as
85 well as independent representations for visual and proprioceptive feedback of the limb (Krakauer et al.,
86 1999; Shadmehr and Krakauer, 2008; Oostwoud Wijdenes and Medendorp, 2017). M1 receives inputs
87 from many brain areas including primary somatosensory cortex (S1; Jones et al., 1978; Dea et al.,
88 2016), an area that is primarily involved with processing proprioceptive and cutaneous feedback. The
89 prediction for this hypothesis is that each feedback source will influence an independent set of neurons
90 in M1.

91 Here, we explored these two hypotheses by training monkeys to make goal-directed reaches
92 while disturbances to the limb and goal were applied. Our results demonstrate that proprioceptive
93 feedback of the limb and visual feedback of the limb and the goal influence similar groups of neurons
94 in M1. As well, M1 activity patterns generated by each feedback source were quite similar at the
95 single-neuron and population levels. Collectively, our results demonstrate visual and proprioceptive
96 feedback are highly organized in M1, consistent with the convergence hypothesis.

97

98 **Results**

99

100 **Behaviour, neural and muscle activities are similar with and without visual feedback of hand position**

101 We trained monkeys to reach to a goal and on random trials applied perturbations to either the
102 goal or limb during the movement (Figure 1A). For two perturbations, they involved either a jump to
103 the visual feedback of the goal or visual feedback of the limb (white cursor; Figure 1B, C). We also
104 probed proprioceptive feedback of the limb by applying a mechanical load that physically displaced the
105 limb (Figure 1D). To isolate the proprioceptive feedback response only, we transiently removed visual
106 feedback of the hand (white cursor, removed for 200ms) at the time of the mechanical load. In order to
107 verify this transient removal of vision had minimal impact on performance, we compared unperturbed
108 trials where cursor feedback was provided for the entire trial (cursor-on trials) with trials where cursor
109 feedback was transiently removed (200ms, cursor-off trials; Figure 1A). We found cursor-on and
110 cursor-off trials had similar movement times (Figure 1E, S1A, E), but that there was an ~33% increase
111 for cursor-off trials in the endpoint distance (distance the reach endpoint was from the goal; Figure
112 S1C, G). Neural activity in M1 was also highly similar between cursor-on and cursor-off trials (Figure
113 2A) with activity magnitudes that were strongly correlated across neurons (Figure S2, S3A-D $r>0.90$)
114 and had regression slopes near unity. Only ~5% of neurons displayed significantly different activities
115 between the trial types (black circles; two-sample t-test, $p<0.01$). Muscle activity was highly similar
116 between cursor-on and cursor off-trials (Figure 2A, bottom row) with activity magnitudes that were
117 highly correlated across muscle samples (Figure S3E, F) and with regression slopes near unity. Only
118 6% of muscle samples displayed significantly different activities for cursor-off and cursor-on trials.
119 Thus, transient removal of visual feedback of the limb had minimal impact on motor performance
120 during reaching and the corresponding M1 and muscle activities.

121

122 **Monkeys rapidly counteract perturbations to the limb and goal**

123 Next, we examined corrections for the different perturbation types (goal jumps, cursor jumps,
124 and mechanical loads). Each perturbation type required corrections that moved the limb either towards
125 the body (Figure 1B-D solid lines) or away from the body (dashed lines). Monkeys were able to
126 quickly initiate a correction to each perturbation type within <200ms of the perturbation (Figure 1F-H).
127 Perturbations resulted in longer movement times (24-138% increase Figure S1B, F) and greater
128 endpoint distance (13-119% increase Figure S1D, H) than the unperturbed reaches.

129 Many neurons displayed robust responses following mechanical and visual perturbations with
130 four example neurons shown in Figure 2B-D. The first neuron (Figure 2B, top row, Md3n41) displayed
131 a reciprocal response for goal jumps within 100ms of the jump onset with an increase (solid) and
132 decrease (dashed) in activities for corrective movements towards and away from the body, respectively.
133 These changes in activity plateaued within 150ms of the jump onset and remained relatively constant
134 over the next 150ms. However, the plateau for the inhibition response may reflect that the activity of
135 the neuron was approaching 0sp/s (see Figure 2A top row). This neuron displayed a similar pattern of
136 responses for cursor jumps (Figure 2C, top row) and mechanical loads (Figure 2D, top row). Neuron 2
137 (second row, Ad3n4) displayed similar excitations for corrections away from the body across the
138 different perturbation types. Neuron 3 (third row, Md4n9) displayed a similar pattern of responses
139 across the two visual perturbations with an increase and decrease in activities for the corrective
140 movements away from and towards the body, respectively. This neuron had similar selectivity for the
141 mechanical loads, however, its responses were noticeably smaller. In contrast, neuron 4 (fourth row,
142 Ad3n24) exhibited considerably larger activity for the mechanical loads than either cursor jump or goal
143 jump while still maintaining the same selectivity across perturbation types.

144

145 Each perturbation type targets similar neurons in M1

146 Our objective is to identify whether each feedback source targeted independent groups of
147 neurons in M1. We classified neurons that had a significant response to each perturbation type by
148 applying a three-way ANOVA with time epoch (two levels: baseline=100ms before perturbation onset,
149 perturbation=0-300ms after perturbation onset), perturbation type (three levels: mechanical, cursor,
150 goal) and perturbation direction (two levels: towards and away from the body) as factors. For Monkeys
151 M|A, we found 71|76% (n=122|65) of neurons had a significant main or interaction effect(s) with time
152 ($p<0.0125$), which we labeled as perturbation-responsive neurons. We identified neurons that were
153 responsive to a particular perturbation type by using a two-way ANOVA with time and perturbation
154 direction as factors. Similar percentages of neurons were responsive for goal jumps (55|54%, n=94|51),
155 cursor jumps (44|60% n=75|51) and mechanical loads (55|60% n=94|46). These neurons received
156 sensory feedback rapidly as the onset of perturbation-related activity at the population level occurred
157 within <100ms with responses to the mechanical loads arising earlier (Monkey M|A: 43|57ms) than for
158 either visual jump (goal=78|74ms, cursor=83|82ms; Figure 3A, C). Similar results were found when
159 examining individual onsets (Figure 3B, D) and a one-way ANOVA with onset type as a factor (3
160 levels: mechanical, goal and cursor) revealed a significant main effect (Monkey M: $F(2,295)=12.6$,

161 p<0.001, Monkey A: F(2,168)=10.3, p<0.001). Post-hoc tests confirmed that onsets for the
162 mechanical-related activity started earlier (Monkey M|A mean 119|106ms) than either visual
163 perturbation (goal 140|143ms p=0.01|p=0.002, cursor 159|155ms p<0.001|p<0.001). Onset differences
164 between the two visual perturbations were not significant (p=0.05|p=0.49).

165 From the percentages of neurons that responded to each perturbation type we estimated the
166 number of neurons expected to respond to zero, one, two and three perturbation types assuming
167 responses were independently assigned (expected distribution). Perturbation responses were
168 significantly more overlapped than the expected distribution (Monkey M|A: $\chi^2=113.9|68.1$, df=4,
169 p<0.001|<0.001). In Monkey M|A, 15|13% (n=26|11) of neurons responded to only one perturbation
170 type, which was 2.4|2.4 times smaller than the expected distribution (Figure 4A, C). In contrast,
171 28|36% (49|31) of neurons responded to all three perturbation types (common neurons), which was
172 2.6|3.4 times greater than the expected distribution.

173 Thus, there was substantial overlap between groups of neurons responsive to each feedback
174 source. However, this finding may reflect a strong overlap between just two of the perturbation types or
175 it could reflect an overlap among all three perturbation types. We repeated the analysis across pairs of
176 perturbation types (Figure 4B, D). Consistently, the number of neurons that responded to both
177 perturbation types was 1.3-1.5 times greater than the expected distribution. In contrast, the number of
178 neurons that responded to only one perturbation type was 1.5-3.4 times smaller than the expected
179 distribution. Significant differences between the observed and expected distribution of neurons were
180 found across all perturbation pairs (χ^2 test, p<0.01). Collectively, these results indicate that each
181 perturbation type influenced an overlapping set of neurons in M1.

182
183 Neurons maintain their response ranges across perturbation types

184 A different way that each feedback source could independently influence M1 is by driving
185 distinct activity patterns in the same neuron population. For example, a neuron may be strongly driven
186 by one perturbation type but only weakly driven by a different perturbation type. At the extreme,
187 neurons may even change their selectivity (i.e. tuning) for the loads: increase activity for the correction
188 towards the body for one perturbation type but decrease activity for the same correction for a different
189 perturbation type.

190 We explored this by examining the response range, which was calculated by taking the
191 difference between activities for the two opposite perturbation directions (e.g. Figure 2B dashed
192 subtracted from solid) and averaging the difference over the perturbation epoch. Neurons with greater

193 responses for the corrections away from or towards the body will have positive or negative response
194 ranges, respectively. Figure 5A and D compares the response ranges for goal- (abscissa) and cursor-
195 related (ordinate) activities. Neurons responsive to all three perturbation types (black circles) resided
196 near the unity line (solid line) and were highly correlated across the population (Monkey M|A:
197 correlation coefficient $r=0.90|0.97$, $p<0.001$ for both). The axes that captured the largest amount of
198 variance (dashed black lines, total least squares regression) had a slope slightly less than unity
199 ($0.84|0.86$) indicating that the responses for the cursor jumps were $\sim 15\%$ smaller than the goal jumps
200 (shuffle control $p=0.002|p<0.001$). We found significant but noticeably weaker correlations when
201 comparing the response ranges between the mechanical-related activities (abscissa) and activities
202 related to either visual perturbation (ordinate; Figure 5B-C, E-F; mechanical with goal $r=0.85|0.86$,
203 mechanical with cursor $r=0.75|0.86$, $p<0.001$ for all). The slope was less than unity (mechanical with
204 goal slope= $0.86|0.85$, mechanical with cursor slope= $0.68|0.72$) indicating that the responses for the
205 visual perturbations were $\sim 22\%$ smaller than for the mechanical loads. Inclusion of all perturbation-
206 responsive neurons yielded similar results (Figure 5 grey circles).

207 From the response ranges, we could determine if neurons maintained their selectivity for
208 corrective movements across perturbation types. These neurons resided in the first and third quadrants
209 of Figure 5 and we found a large majority of neurons maintained their selectivity across all three
210 perturbation types (neurons responsive to all three perturbation types: Monkey M|A 82|87%; all
211 perturbation-responsive neurons: 70|72%). Collectively, these results indicate that each feedback
212 source had similar influences on individual M1 neuron responses.

213 Next, we compared the size of the perturbation-related activity relative to the movement-related
214 activity during unperturbed reaching (Figure 2, S4A). Figure S4B compares the magnitude of the
215 movement-related activity during unperturbed reaching (aligned to movement onset: movement epoch -
216 50 to 250ms after movement onset) with the magnitude of the response range for perturbed reaches.
217 We found approximately equal number of neurons had either larger perturbation-related activities or
218 movement-related activities (Figure S4B, C). Thus, the perturbation-related activity was comparable in
219 magnitude to the activity required to generate the initial reaching movement.
220

221 Overlap between mechanical- and visual-related M1 activity patterns at the population level

222 Our results so far demonstrate that each feedback source targets a largely overlapping
223 population of M1 neurons and that individual neuron responses are generally similar across feedback
224 sources. However, recent studies have demonstrated that the same neuron population can represent

225 different types of information independently by sequestering the information into orthogonal subspaces
226 (Kobak et al., 2016; Ames and Churchland, 2019; Heming et al., 2019; Keemink and Machens, 2019;
227 Cross et al., 2020). For example, neurons in M1 have similar tuning for reach direction during
228 preparation and execution (Crammond and Kalaska, 2000). However, these activity patterns reside in
229 orthogonal subspaces (Kaufman et al., 2014; Elsayed et al., 2016). Thus, for the independent-input
230 hypothesis each perturbation type may evoke an activity pattern that resides in an orthogonal subspace
231 with respect to the other two perturbation types.

232 We explored this hypothesis by using principal component analysis (PCA) to identify the low-
233 dimensional subspace each perturbation-related activity resided in. We used a cross-validated approach
234 to prevent overestimating differences between subspaces due to sampling noise. The top-ten principal
235 components captured 81-90% of the variance for the data used to train the principal components (open
236 circles Figure 6A-C, E-G). Figure 6A, E shows the variance captured by the top-ten principal
237 components generated from the goal-related activity. These components captured a substantial amount
238 of the goal-related variance from the left-out trials (variance accounted for: Monkey M|A =55|73%) and
239 the cursor-related variance (44|65%). These components also captured a substantial amount of the
240 mechanical-related variance (36|43%), though noticeably smaller than either visual perturbation.
241 Similarly, Figure 6B and F shows the variance captured by the top-ten cursor principal components.
242 These components captured more cursor-related (49|69%) and goal-related (44|66%) variance than
243 mechanical-related variance (30|45%). Lastly, Figure 6C, G shows the variance captured by the top-ten
244 mechanical principal components. These components captured more mechanical-related variance
245 (59|74%) than variance for either visual perturbation (goal 35|40%, cursor 32|40%).

246 Another approach to quantify the similarity in the population structure between feedback
247 sources is by calculating the overlap index (Rouse and Schieber, 2018). The overlap index ranges from
248 0, indicating no overlap between subspaces (i.e. orthogonal), to 1 indicating perfect overlap. For
249 comparison, we generated a null distribution that compared how overlapping two subspaces were after
250 randomly shuffling neuron labels (Shuffle). We also generated a null distribution that quantified the
251 maximum overlap expected given sampling noise by calculating the overlap between two independent
252 samples from the same perturbation type (within-perturbation distribution). The overlap between goal-
253 and cursor-related activities was large (Monkey M|A=0.63|0.82; Figure 6D, H) and was close to the
254 within-perturbation distribution (0.73|0.89), though it was still significantly smaller ($p=0.03|0.01$). The
255 overlap between the mechanical-related and visual-related activities were smaller than the within
256 perturbation distribution (mechanical with goal = 0.42|0.47; mechanical with cursor = 0.36|0.46;

257 within-perturbation $p < 0.001$ for all), however they were still significantly greater than the shuffled
258 distribution ($p < 0.001$). Collectively, these results indicate each perturbation type evoked similar
259 population-level structure.

260

261 Overlap across perturbation types emerges rapidly with perturbation-related activity

262 Next, we examined how the overlap evolved over time between the different perturbation types.
263 One possibility is that each feedback source is initially represented independently by the motor system
264 before being gradually integrated (Franklin et al., 2016; Oostwoud Wijdenes and Medendorp, 2017).
265 Thus, the prediction is that the overlap between perturbation types should gradually emerge. We
266 calculated the overlap index every 20ms over the perturbation epoch (Figure S5A-F). We found the
267 overlap index between the goal- and cursor-related M1 activities emerged within ~ 100 ms (Figure S5A,
268 D, black line) post-perturbation and was comparable to the within-perturbation distributions of the
269 goal-related (green line) and cursor-related activities (blue line). Further, the overlap between the
270 mechanical- and visual-related M1 activities emerged within ~ 100 ms of the perturbation onset (Figure
271 S5B-C, E-F). Note, that the increase in the overlap index proceeded the within-perturbation onset for
272 the mechanical loads (red line) reflecting that M1 responds earlier for mechanical loads than visual
273 jumps (Figure 3A, C). Interestingly, there was a small delay in the overlap between the mechanical and
274 visual perturbations for Monkey A (Figure S5E, F) which may reflect a small-time window of
275 integration. Similar trends were found in the muscle activity (Figure S5G-I). Thus, the overlap
276 between perturbation types emerged rapidly in the network.

277

278 Muscle activity exhibits similar overlap between perturbation types as M1 activity

279 Next, we examined the change in muscle activity in response to the different perturbation types.
280 We found a significant change in muscle activity (Figure 2B-D bottom row) in 81% (n=13), 88% (14)
281 and 100% (16) of muscle samples for the goal jumps, cursor jumps and mechanical loads, respectively.
282 There was a strong correlation between response ranges for the goal- and cursor-related activities
283 ($r=0.83$, $p < 0.001$, Figure 5G) and the slope was less than unity (slope=0.68) indicating responses for
284 the cursor jump were 32% smaller than for the goal jump. We also found strong correlations between
285 the mechanical-related response ranges and the response ranges for either type of visual disturbance
286 (Figure 5H-I; mechanical with goal $r=0.87$, mechanical with cursor $r=0.89$, $p < 0.001$ for both).
287 However, we found the slopes were considerably smaller than unity (mechanical with goal: 0.39;
288 mechanical with cursor: 0.29) indicating that muscle activity for the visual perturbations were $\sim 66\%$

289 smaller than for the mechanical loads. As expected, almost all (except one) of the muscle recordings
290 maintained their selectivity across all perturbation types.

291 Figure 6I shows the top-ten goal principal components for muscle activity. Unlike neural
292 activity, these ten components captured nearly all of the variance for the goal jump, cursor jump and
293 mechanical loads. This is due to the smaller number of muscles recorded as the entire space of muscle
294 patterns occupies a maximum of 16 dimensions. In contrast, neural activity can occupy 172 and 85
295 dimensions for Monkeys M and A, respectively. We mitigated this problem by restricting our
296 observations to the top-three components as three components captured a similar amount of variance
297 from the training data (range: 82-84%) as the ten components captured for the neural activity (82-90%).
298 We found the top-three goal principal components captured a substantial amount of the goal- (76%) and
299 cursor-related (74%) muscle variance but captured slightly less of the mechanical-related variance
300 (68%). Similarly, the top-three cursor principal components captured a substantial amount of the
301 cursor- (77% Figure 6J) and goal-related (73%) muscle variance but captured less of the mechanical-
302 related variance (61%). Lastly, the top-three mechanical principal components captured a substantial
303 amount of the mechanical-related muscle variance (84% Figure 6K) but captured less of the muscle
304 variance for either visual perturbation (goal 59%, cursor 58%).

305 We computed the overlap index between muscle responses and found results that were similar
306 to M1 activity (Figure 6L). There was a high overlap between the goal and cursor-related activities
307 (0.82) that was comparable to the within-perturbation distribution (0.93), though still significantly
308 smaller ($p=0.02$). We also found a partial overlap between the mechanical-related activity and the
309 visual-related activities (mechanical and goal 0.65, mechanical and cursor 0.62), which were
310 significantly greater than the shuffle distribution (overlap=0.13, $p<0.001$). Collectively, these analyses
311 indicate that different patterns of muscle activity were needed to correct for each perturbation type
312 which could explain the partial overlap observed between the mechanical- and visual-related M1
313 activities.

314
315 Overlap is still present when examining other movement directions

316 One concern is whether we adequately characterized M1's responses to each perturbation type
317 as we sampled from only two perturbation directions. This seems unlikely as previous work has shown
318 that a greater proportion of M1 neurons respond maximally to perturbations that involve either
319 combined shoulder flexion and elbow extension (whole-arm extension for corrections away from body)
320 or combined shoulder extension and elbow flexion (whole-arm flexion for corrections towards the

321 body; Cabel et al., 2001; Scott et al., 2001; Kurtzer et al., 2006; Lillicrap and Scott, 2013). Nonetheless,
322 we verified that sampling from more perturbation directions yielded virtually the same overlap.
323 Monkeys completed separate blocks of the same lateral reach (Figure S6A) and also blocks of a sagittal
324 reach starting from near the body and reaching to a distant goal (Figure S6B). For the sagittal reach,
325 the perturbations required a corrective movement that either flexed the shoulder and elbow joints
326 (Figure S6B solid lines) or extended the shoulder and elbow joints (dashed lines). The perturbations
327 for the lateral and sagittal reaches yielded four perturbation directions for each perturbation type. We
328 found response ranges were correlated between perturbation types with the strongest correlation
329 between goal jumps and cursor jumps (Figure S6C, E, response range for sagittal reach shown only,
330 Monkey M|A n=82|45). For the sagittal reach, activity related to goal jumps tended to be larger than
331 activity related to cursor jumps or mechanical loads. Critically, we found the overlap between goal-
332 and cursor-related activities was substantial (Monkey M|A=0.72|0.75, Figure S6D, F) and was close to
333 the within-perturbation distribution (0.80|0.85), though it was still significantly smaller
334 (p=0.01|<0.001). The overlap between the mechanical-related activity with either visual-related
335 activity was smaller than the within-perturbation distribution (mechanical with goal = 0.50|0.49;
336 mechanical with cursor = 0.48|0.45; within-perturbation p<0.001 for all). However, it was still
337 significantly greater than the shuffled distribution (p<0.001).
338

339 M1 is ~3 times more sensitive to proprioceptive than visual feedback

340 So far, we have compared visual perturbations that instantaneously jump the position of the goal
341 or cursor, with mechanical perturbations that gradually displaced the limb over 100-200ms (Figure 1H).
342 While cursor and target jumps are standard experimental techniques to assess visual feedback
343 (Georgopoulos et al., 1983; Dimitriou et al., 2013; Ames et al., 2014; Franklin et al., 2016; Stavisky et
344 al., 2017), the different spatial and temporal characteristics of these perturbations make it difficult to
345 directly compare M1's sensitivity to proprioceptive and visual feedback errors. For a direct
346 comparison, we compared M1's sensitivity to the mechanical loads with cursor perturbations that slid
347 along a pre-specified trajectory (cursor slide Figure 7A-B). The cursor's trajectory on cursor-slide trials
348 was highly similar to the limb's trajectory following a mechanical load for the first 200ms with an
349 average goodness of fit (R^2) of 0.95 and 0.93 for Monkeys M and A, respectively (Figure 7C). We
350 found movement times for the mechanical loads were significantly shorter than for cursor slides
351 (Figure 7D; Mann-Whitney U test, Monkey M: U=14649, n=230, p<0.001, Monkey A: U=2454, n=98,
352 p<0.001).

353 We included cursor-jump trials to identify neurons that were sensitive to visual stimuli
354 (kinematics not shown). Note, we only used cursor perturbations to limit the number of trials as cursor
355 and goal jumps evoked highly similar activity patterns and only differed in magnitude by ~15% (Figure
356 5A, D). We recorded from 60 and 68 neurons from Monkey M and A, respectively. We found 57|57%
357 (n=34|39) and 43|60% (26|41) responded to the mechanical loads and cursor jumps, respectively, and
358 40|44% (24|30) responded to both perturbations. We found the cursor slide evoked a more gradual
359 response in M1 as compared to the mechanical load or a cursor jump (Figure 7E, H). Response ranges
360 indicated that activity related to the cursor slide was ~65% smaller than activity related to the
361 mechanical loads (Figure 7F, I), whereas activity related to the cursor jump was 21% smaller than
362 activity related to the mechanical loads (Figure 7G, J). Muscle activity in response to the cursor slide
363 also gradually accumulated (Figure 7K). Cursor-slide muscle activity was 85% smaller than activity
364 related to the mechanical loads (Figure 7L), whereas cursor-jump muscle activity was 64% smaller
365 (Figure 7M). Collectively, these results suggest M1 and muscle display 2.9- and 6.6-times greater
366 activities, respectively, for deviations of the hand generated by a mechanical disturbance as compared
367 to a similar-sized visual disturbance.

368 **Discussion**

369 We explored how visual and proprioceptive information related to the limb and goal are
370 represented in M1. We found many neurons in M1 responded to sensory feedback about the limb and
371 goal. Importantly, these different feedback sources were organized in M1 such that they largely targeted
372 the same neurons and generated the same population-level structure.

373 Vision and proprioception had rapid and potent influences on M1 processing. We found a small
374 majority of neurons responded to proprioceptive (58%) feedback consistent with previous studies
375 (Rosén and Asanuma, 1972; Conrad et al., 1975; Lemon et al., 1976; Wong et al., 1978; Fetz et al.,
376 1980; Lemon, 1981b; Fromm et al., 1984; Hummelsheim et al., 1988; Bauswein et al., 1991). We also
377 found a similar percentage of neurons that responded to visual feedback of the limb (52%) and goal
378 (55%). Both visual and mechanical disturbances required corrective responses of about 3-4cm and the
379 corresponding activity in M1 was comparable in size to the activity that initiated the 8-10 cm reach.
380 Proprioceptive feedback influenced M1 activity within ~50ms of a disturbance, whereas visual
381 feedback influenced M1 activity within ~80ms of a disturbance. The longer delay for vision is partly
382 due to processing time of the retina as the lateral geniculate nucleus, an area immediately downstream
383 of the retina, responds to visual input within ~20-30ms (Maunsell et al., 1999). In contrast, muscle
384 spindles respond to a muscle stretch within ~3ms (Schäfer et al., 1999) and the conduction delay to
385 first-order thalamic nuclei are approximately 6ms (Lemon and van der Burg, 1979). Thus, sensory
386 feedback has a potent influence on M1 processing when responding to external disturbances and it is
387 likely that sensory errors generated during natural reaching also have a potent influence (Crevecoeur et
388 al., 2012; Crevecoeur and Kurtzer, 2018; Takei et al., 2018).

389 Interestingly, the timing for proprioceptive feedback was noticeably longer than previous
390 studies that demonstrate M1 responds within ~20ms of a mechanical load (Evarts and Tanji, 1976;
391 Wolpaw, 1980; Fromm et al., 1984; Boudreau and Smith, 2001; Pruszynski et al., 2014; Omrani et al.,
392 2016). This may reflect task differences as previous studies have applied loads during posture, whereas
393 the present study applied loads during reaching. Alternatively, the present study recorded M1 neurons
394 using floating micro-electrode arrays and sampled only neurons on the gyrus of M1 (rostral M1). In
395 contrast, previous studies including our own studies recorded M1 neurons using single electrodes that
396 sampled neurons from the gyrus as well as the most caudal portion of M1 residing in the central sulcus.
397 Previous work suggest that there are gradients along the rostral-caudal axis of M1 for anatomical and
398 physiological features (Crammond and Kalaska, 1996, 2000; Cisek et al., 2003; Rathelot and Strick,

399 2009; Witham et al., 2016). Thus, faster timing may reside in neurons sampled from the caudal
400 subdivision of M1.

401 Importantly, our results support the convergence hypothesis for how M1 responds to different
402 sources of sensory feedback. First, each feedback source targeted a highly overlapping population of
403 neurons. Second, neurons maintained their selectivity and response range for corrections across the
404 different perturbation types. Lastly, we found a strong similarity in the population structure as principal
405 components trained on one perturbation type captured a substantial amount of variance for the other
406 perturbation types. The high similarity in the population structure emerged near the time when
407 perturbation-related activity emerged suggesting that these feedback sources converged rapidly in the
408 network. Thus, sensory feedback about the limb and goal converge onto the same circuit in M1 and
409 give rise to similar population-level structure.

410 The high convergence of sensory feedback suggests that areas upstream of M1 are responsible
411 for combining these information sources. Frontal and parietal cortices are likely involved with state
412 estimation where proprioceptive and visual feedback are integrated into a common limb estimate
413 (Desmurget and Grafton, 2000; Shadmehr and Krakauer, 2008; Scott, 2012; Takei et al., 2021). These
414 areas receive proprioceptive and visual feedback with subpopulations of neurons that are responsive to
415 both sensory modalities (Rizzolatti et al., 1981a, 1981b; Snyder et al., 1998; Bakola et al., 2010;
416 Omrani et al., 2016; Gamberini et al., 2017). Several neurophysiological investigations have also
417 indicated that these same areas are involved with generating a movement vector by combining limb and
418 goal feedback (Snyder et al., 1998; Buneo et al., 2002; Pesaran et al., 2006; McGuire and Sabes, 2011;
419 Bremner and Andersen, 2012; Piserchia et al., 2017). While this movement vector is commonly
420 assumed to reflect a spatial representation, it may reflect a more complex neural space including
421 information related to arm geometry (Scott et al., 1997).

422 Consistent with upstream state estimation is that M1 activity was largely unaffected by the
423 transient removal of cursor feedback. Other groups also found that the motor system was insensitive to
424 the removal of cursor feedback, but interpreted this as evidence that reaching involves a ballistic phase
425 where feedforward motor commands transport the limb towards the goal with little influence from
426 sensory feedback (Woodworth, 1899; Meyer et al., 1988; Suway and Schwartz, 2019). However, our
427 perturbations show that M1 is still highly sensitive to proprioceptive and visual feedback inconsistent
428 with this ballistic interpretation. The insensitivity to cursor visibility likely reflects that the motor
429 system also uses internal and proprioceptive feedback to compensate for missing visual information
430 consistent with multi-sensory state estimation (Crevecoeur et al., 2016). This compensation strategy is

431 likely necessary as shifts in the gaze position and blinks can disrupt the visibility of the hand during
432 motor actions. Further, we found a small increase in the distance the reach endpoint was from the goal
433 when cursor feedback was removed suggesting only a partial compensation by these alternative
434 feedback sources.

435 Although convergence upstream of M1 is likely, there are two reasons why convergence may
436 also arise from local processing in M1. First, a difference vector by definition is a relative metric about
437 how far the limb is from the goal and thus cannot update M1 about the current limb configuration.
438 Information about the limb configuration is necessary for control to account for state-dependent
439 properties of the limb (e.g. intersegmental dynamics Hollerbach and Flash, 1982; Sober and Sabes,
440 2003; Kurtzer et al., 2008; Pruszynski et al., 2011). Second, M1 receives direct and substantial inputs
441 from S1 and the interpositus nuclei of the cerebellum, areas which are likely involved with state
442 estimation and exhibit activity patterns independent of the goal (Vilis et al., 1976; Strick, 1983; Omrani
443 et al., 2016). Local convergence of sensory feedback may arise in M1 by initial processing in layers 2/3
444 as these layers rapidly respond to proprioceptive and visual feedback (Lemon, 1981a; Chandrasekaran
445 et al., 2017; Heindorf et al., 2018). Alternatively, convergence may arise from integration by the
446 dendrites of layer 5 M1 neurons. Further studies are required to understand how sensory feedback
447 signals are combined in frontoparietal circuits including M1.

448 Our results also highlight differences between corrections for mechanical and visual
449 perturbations at the muscle and M1 levels that provide potential insight about the relative contribution
450 of M1 in feedback processing. M1 and muscle activities were larger for the mechanical loads than
451 sliding cursor perturbations that followed a similar kinematic trajectory. This difference in magnitude
452 may reflect a combination of two factors. First, the motor system may only use visual feedback to
453 update internal estimates of the kinematic variables and thus corrections are generated to counter the
454 kinematic error only. In contrast, proprioceptive feedback may be used to update estimates of kinematic
455 and dynamic variables including the external load and thus corrections are generated to counter both
456 the kinematic error and the external load. Second, a sliding cursor perturbation introduces a conflict
457 between visual and proprioceptive feedback which may have attenuated the accompanying corrective
458 response. Multi-sensory integration theories suggest the motor system should weight proprioceptive
459 and visual feedback to form a common limb estimate with a recent study suggesting proprioceptive
460 feedback should be weighted more given its shorter delays compared to vision (Crevecoeur et al.,
461 2016). In contrast, we removed cursor feedback on mechanical load trials and thus there was no

462 conflict between vision and proprioception. Further studies are needed to probe what state variables
463 are updated by each sensory modality and the integration rules used by the motor system.

464 There was also a noticeable difference in the relative magnitudes for visual and mechanical
465 perturbations between M1 and muscle activities. Muscle activity was 6 times larger for the mechanical
466 loads than cursor slides, whereas M1 activity was only 3 times larger for mechanical loads than cursor
467 slides. This suggests that M1 only contributes ~50% of the total motor output for mechanical loads
468 with the remaining output likely generated by subcortical circuits including brainstem and spinal cord
469 (Mewes and Cheney, 1991; Soteropoulos et al., 2012; Herter et al., 2015; Soteropoulos and Baker,
470 2020). However, this estimate on the cortical contribution to motor corrections has many assumptions.
471 First, the activity we recorded in rostral M1 is assumed to be representative of descending cortical
472 control, in general. Further studies are clearly required to verify whether the relative difference is
473 reflective of regions such as caudal M1 in the bank of the central sulcus where proprioceptive and
474 cutaneous responses tend to be greater (Porter and Lemon, 1993). Second, it is assumed that neural
475 responses for visual and mechanical disturbances contribute similarly to descending signals or output-
476 potent spaces (Kaufman et al., 2014; Stavisky et al., 2017). This assumption seems reasonable as the
477 population-level structure was largely similar between mechanical and visual perturbations. Finally, it
478 is likely that we underestimated the subcortical contribution to mechanical loads as the comparison
479 between mechanical and visual perturbations assumed M1 was the only circuit involved with
480 generating visual responses. Visual responses may also involve subcortical circuits including the
481 superior colliculus (Alstermark et al., 1987; Day and Brown, 2001; Pruszynski et al., 2010; Corneil and
482 Munoz, 2014; Cross et al., 2019; Kozak et al., 2019). While comparisons of the visual and mechanical
483 responses at the muscle and neural levels provides a potentially important approach to probe cortical
484 versus subcortical contributions to feedback corrections, further studies are clearly required to address
485 the assumptions inherent in these estimates.

486 The presence of feedback processing at cortical and subcortical levels highlight that the motor
487 system is hierarchically organized with feedback at multiple levels and transcortical feedback through
488 M1 being the highest level for online continuous control (Porter and Lemon, 1993; Schweighofer et al.,
489 1998; Loeb et al., 1999; Todorov et al., 2005; Liu and Todorov, 2009; Merel et al., 2019). Current
490 theories inspired by engineering principles have adopted a serial approach focused on the
491 transformation of information (e.g. cartesian space to joint torques; Kalaska and Crammond, 1992;
492 Buneo et al., 2002; Todorov et al., 2005) or a modular approach where each level provides a distinct
493 role (e.g. motor planning by motor cortex, feedback control by subcortical circuits; Kawato et al., 1987;

494 Schweighofer et al., 1998; Loeb et al., 1999; Merel et al., 2019). Alternatively, multiple levels may
495 contribute to generating feedback responses, but without distinct roles captured by engineering
496 principles. From this perspective, the contribution by M1 would be to provide the extra motor
497 commands necessary to attain a behavioural goal that is adjusted based on the expected contributions
498 provided by lower feedback pathways. This could even include a reduction in motor output when
499 needed to compensate for increased contributions from lower circuits (e.g. gain scaling, Pruszynski et
500 al., 2009). Unravelling the relative contributions of different levels of the motor system during
501 voluntary control remains an important and challenging area of study.

502 **Methods**

503 The study involved two monkeys (*Macaque mulatta*, males, 17-20kgs) and was approved by the
504 Queen's University Research Ethics Board and Animal Care Committee. Monkeys were trained to
505 place their upper limb in an exoskeleton robot (Kinarm, Kingston Ontario).

506 *Lateral reaching task.* Monkeys were trained to make goal-directed reaches while countering
507 unexpected perturbations to the limb or goal. At the beginning of a trial, the monkey placed and held
508 their hand inside a start target (red square, length and width 1.2cm,) for 750-1500ms. Then, a goal
509 target (white square, length and width 1.6cm; joint configuration in middle of reach: shoulder 30°,
510 elbow 87°) appeared lateral to the starting position that indicated the spatial location of the goal and
511 provided the cue to initiate the reach. The reach primarily involved a shoulder and elbow extension
512 motion and for Monkeys M and A, the goal targets were placed 10cm and 8cm from the start target,
513 respectively. Monkeys had 1400ms to reach the goal and maintain their hand inside the goal for 500ms
514 to receive water reward. We included trials where visual feedback of the hand (white circular cursor,
515 diameter 1.6cm) was provided for the entire trial duration and trials where visual feedback of the hand
516 was removed 2cm into the reach and re-appeared 200ms later. On random trials, we applied one of
517 three perturbation types, goal jumps, cursor jumps, or mechanical loads. Mechanical loads consisted of
518 torques applied to the shoulder and elbow joints in two opposite directions, one that flexed the shoulder
519 and extended the elbow and the other that extended the shoulder and flexed the elbow. Shoulder and
520 elbow torques were equivalent in magnitude and were 0.28Nm and 0.24Nm for Monkeys M and A,
521 respectively. Visual feedback of the hand was also removed for 200ms after the mechanical load was
522 applied. Cursor jumps consisted of displacements to the cursor's position perpendicular to the axis
523 connecting the start and goal targets (reach axis, Figure 1A). Two cursor-jump directions were
524 included that displaced the cursor away from or towards the body and the size of the displacement was
525 4cm and 3cm for Monkeys M and A, respectively. Goal jumps were identical to cursor jumps except
526 that the goal's position was displaced. All perturbations were applied 2cm into the reach. In a block of
527 trials, monkeys performed 8 unperturbed reaches with visual feedback of the hand, 4 reaches with
528 visual feedback of the hand temporally removed for 200ms and 6 perturbation trials (2 directions x 3
529 perturbation types). Monkeys completed 10-25 blocks in a recording session.

530 *Anterior reaching task.* For a subset of sessions, monkeys also completed reaches to a goal
531 located directly in front of the shoulder (anterior reach). These reaches followed the same timing
532 parameters as the lateral reaches denoted above. Goal and cursor jumps were still in the direction that
533 was lateral to the reach axis, which now resulted in jumps that were lateral or medial to the body.

534 Mechanical loads were the same magnitude, however now they either flexed the shoulder and elbow
535 joints or extended the shoulder and elbow joints. In a recording session, monkeys completed 10-15
536 blocks of the lateral reaches followed by 10-15 blocks of the anterior reaches or completed the anterior
537 reaches first followed by the lateral reaches. The ordering of the blocks were counterbalanced across
538 sessions.

539 *Cursor slide task.* In a separate set of experiments, we probed the sensitivity of M1 activity to
540 proprioceptive and visual stimuli when the temporal and spatial characteristics were matched.
541 Monkeys completed the same lateral reaching task with the same mechanical load and cursor jump
542 perturbations. However, we also included a cursor slide perturbation where the visual location of the
543 cursor would traverse a trajectory similar to the trajectory the limb would take following a mechanical
544 load. We estimated the trajectory by fitting the limb position on mechanical load trials to a sigmoid
545 function ($a/(exp(-(t+b)/c)$, where t is time and a , b , c are fit parameters) from 50ms before the load till
546 200ms after the load onset. The sigmoid fit parameters were estimated using trials from a previous
547 day's recording session.

548 *Estimating visual onsets.* There is an approximate 20-40ms latency in the visual display
549 between when a command is sent to jump the cursor or goal and when it appears on the screen. On a
550 trial-by-trial basis, we estimated the visual latency by fixing two photodiodes to the screen. When the
551 goal or cursor jumped, two white squares would also appear that were positioned on the screen
552 coincident with the photodiode placements. Jump onsets were estimated as the average onset of the
553 two photodiodes, or the onset detected by a single photodiode when the other photodiode signal was
554 poor. On trials where a cursor and goal jump did not occur, the white squares still appeared at the same
555 point in the reach so that we could align the unperturbed trials.

556 *Neural recordings.* In each monkey, floating micro-electrode arrays (96-channel, Utah arrays)
557 were surgically implanted into the arm region of primary motor cortex. Surgery was performed under
558 aseptic conditions and the arm region was identified by visual landmarks. During surgery we used a
559 dura substitute (GORE PRECLUDE Dura Substitute, W.L. Gore and Associates Inc) that was placed
560 over the array and the dura was re-attached (GOR-TEX Suture, W.L. Gore and Associates Inc). Spike
561 waveforms were sampled at 30 kHz by either a 128-channel neural signal processor (Blackrock
562 Microsystems, Salt Lake City, Utah) or a Grapevine processor (Ripple Neuro, Salt Lake City, Utah).
563 Neural recordings were collected over 5 separate recording sessions in Monkey M and 3 separate
564 recording sessions in Monkey A.

565 *Muscle recordings.* In Monkey M, we surgically implanted a 32-channel chronic EMG system
566 (Link-32, Ripple Neuro, Salt Lake City, Utah). This system had 8 leads (impedance 20 kOhms) that
567 could be inserted into the muscle with each lead having 4 separate contacts for recording muscle
568 activity. Each lead was connected to an internal processor that was surgically implanted under the skin
569 and located near the midline of the back at the mid-thoracic level. We implanted brachioradialis,
570 brachialis, the lateral and long heads of the triceps, biceps (long head), pectoralis major, and anterior
571 and posterior deltoids. During a recording session, an external transmitter was attached on the skin over
572 the internal processor and maintained in position by a magnet in the processor. The internal processor
573 received power from the transmitter and transmitted the EMG signals transcutaneously. The signal was
574 transmitted to the Grapevine processor, bandpass filtered (15-375Hz) and recorded at 2 kHz. EMG
575 recordings were collected over 3 separate recording sessions in Monkey M.

576

577 Data Analysis

578 *Kinematic analysis.* Kinematic signals were low-pass filtered with a 6th order, zero-phase lag
579 Butterworth filter (cut-off frequency 10Hz). The endpoint of the reach was defined as the first time
580 point after the peak hand speed that was less than 10% of the peak hand speed. Movement time was
581 defined as the time duration between when the monkey left the start target and first entered the goal
582 target. We quantified the goodness of fit (R^2) of the cursor slide trajectories (P_{curs}) to the mechanical
583 limb (P_{mech}) by taking the limb position from 0-200ms after the perturbation onset and subtracting off
584 the mean limb positions for each. We then calculated the $R^2 = 1 - \|\mathbf{P}_{curs} - \mathbf{P}_{mech}\|^2 / \|\mathbf{P}_{mech}\|^2$ where ' $\|\ \|$ ' is the
585 Frobenius norm.

586 *EMG recordings.* Muscle activity was down sampled to 1kHz. For a given lead, we computed
587 the differential signals between the two most proximal contacts and the two most distal contacts
588 resulting in two differential signals from each recorded muscle. The differential signals were rectified
589 and smoothed with a Butterworth low-pass filter with zero-phase lag at a cut-off frequency of 50Hz.
590 Muscle activity was aligned to perturbation onset or the equivalent onset on unperturbed trials and trial
591 averaged. For muscle activity related to mechanical perturbations, we subtracted the activity on
592 unperturbed reaches without visual feedback from the activity on mechanical perturbation reaches. For
593 activity related to the visual perturbations, we employed the same method except using activity on
594 unperturbed reaches with visual feedback. The muscle's preferred perturbation direction was
595 determined for each perturbation type by calculating the activity with the largest perturbation response

596 within the first 300ms of the perturbation onset. Activity was normalized by the mean activity in the
597 first 300ms after the perturbation onset for each muscle signal.

598 *Pre-processing neural recordings.* Spike timestamps were convolved with a kernel
599 approximating a post-synaptic potential (1ms rise time, 20ms fall time; Thompson et al., 1996) to
600 estimate the instantaneous activities. Activities were aligned to perturbation onset following the same
601 procedure as for muscle activities

602 *ANOVA analysis.* For each neuron/muscle we applied a 3-way ANOVA with time epoch (levels:
603 baseline epoch -100-0ms, perturbation epoch 0-300ms), perturbation direction (two levels) and
604 perturbation type (levels: mechanical loads, goal jumps and cursor jumps) as factors. Neurons/muscles
605 were classified as “perturbation responsive” if there was a significant main effect for time, or any
606 interaction effects with time ($p < 0.05$, Bonferroni correction factor=4). Neurons/muscles classified as
607 significant were then subjected to separate two-way ANOVAs for each perturbation type with time and
608 direction as factors. Neurons/muscles were classified as responsive for a given perturbation type if a
609 significant main effect or interaction effect was found ($p < 0.05$, Bonferroni correction factor=2).

610 *Response range.* The response range for a neuron was calculated for each perturbation type
611 separately by taking the activity related to the correction towards the body and subtracting the activity
612 related to the correction away from the body. The resulting activity was then averaged over the
613 perturbation epoch.

614 *Total least-square (TLS) regression.* TLS regression was used to find a linear relationship
615 between the response ranges from two perturbation types (Figure 5). Ordinary least square (OLS)
616 regression has been used in previous studies (Crammond and Kalaska, 2000), however, this method
617 assumes one set of response ranges is the independent variable (i.e. no sampling noise; denote as x) and
618 thus only tries to find a line that minimize the error between the dependent variable (y) and the line
619 ($\text{minimize } \sum (y_i - y_i^{\text{line}})^2$). In contrast, TLS regression does not assume any variables are independent
620 and finds a line of best fit that minimizes the total error between each data point and the line ($\text{minimize } \sum (y_i - y_i^{\text{line}})^2 + (x - x_i^{\text{line}})^2$). TLS was performed by first subtracting the means for each response
621 range (\bar{y}, \bar{x}) followed by singular value decomposition to find the slope (m). The left singular vector
622 with the largest singular value was retained and the slope of the line of best fit was given as the ratio
623 between the coefficient for the data on the y-axis over the coefficient for the data on the x-axis. The
624 equation of the line of best fit is then $y^{\text{line}} = m \cdot x^{\text{line}} + b$ where $b = m \cdot \bar{x} + \bar{y}$. The significance of
625 the slope was determined by shuffling the perturbations labels and re-calculating the slope. This was

627 repeated 1000 times and a probability value was calculated as the number of shuffled samples with
628 slope smaller than the actual slope.

629 *Onsets.* The onset of perturbation-related activity was estimated by calculating the mean and
630 standard deviation of the perturbation-related activity during the baseline period (100ms before
631 perturbation onset). The onset was then defined as the first time-point to exceed the baseline mean by
632 three standard deviations (positive or negative) for 20 consecutive time points. This method was used
633 to calculate the onset for individual neurons, the neural population activity and the muscle population
634 activity. For individual neurons, the onset was only calculated once per neuron in the perturbation
635 direction that elicited the largest absolute response from the unperturbed trials during the perturbation
636 epoch.

637 *Average population activity.* An average population response was calculated to estimate the total
638 change in the network in response to the perturbations. We determined each neuron's preferred
639 corrective movement by averaging its activity over the perturbation epoch. The corrective movement
640 with the absolute largest change in activity from the unperturbed activity was then defined as the
641 preferred corrective movement. If the change in activity was negative for a neuron in its preferred
642 corrective movement, we multiplied its time series by negative one. This reduced the cancelling out of
643 activity when averaging across the population of neurons.

644 *Principle components analysis.* Principal components analysis (PCA) was used to identify the
645 low-dimensional subspace for the perturbation-related activity. For each perturbation type, we averaged
646 each neuron's perturbation-related activity in non-overlapping 10ms windows to yield 30 time points
647 for each perturbation direction. The activity of each neuron was soft normalized by its range (+5 sp/s)
648 by finding its maximum and minimum activities during the perturbation epoch over all perturbation
649 types (mechanical loads, goal jumps, cursor jumps). Note, the same normalization constant was
650 applied to each perturbation type. We then constructed separate matrices for each perturbation type
651 that were of size NxDT, where N is the number of neurons, D is the number of perturbation directions
652 (2) and T is the number of time points (30). The mean activities in each row was then subtracted.
653 Singular value decomposition was used to identify the principle components of the matrix, and the top-
654 10 principle components were kept.

655 We used a cross-validated approach to draw a more accurate comparison between the amount of
656 variance captured between perturbation types. For a given perturbation type, we randomly assigned
657 trials into equally sized groups and the same processing steps were applied as above. One group was
658 used to calculate the principle components (Trained) while the left-out group was used to calculate the

659 amount of variance captured by those principle components. These principle components were also
660 used to calculate the amount of variance accounted for by the other two perturbation types after
661 randomly down-sampling trials to match the left-out group. This procedure was repeated 1000 times
662 for each perturbation type.

663 *Overlap index.* We quantified the overlap between the subspaces by calculating the overlap
664 index from Rouse and Schieber, (2018)

$$665 \text{overlap} = \frac{\text{tr}(\Sigma_1 \Sigma_2)}{\|\Sigma_1\|_F \|\Sigma_2\|_F}$$

666 Where Σ_1 and Σ_2 are the covariance matrices for perturbation types 1 and 2, tr is the trace operator, and
667 $\|\cdot\|_F$ is the Frobenius norm operator. Activity was pre-processed the same way as for the PCA analysis.
668 The overlap index was computed between each pair of perturbation types.

669 The overlap index can range from 0, indicating no overlap between subspaces, and 1 indicating
670 perfect overlap between subspaces. Confidence intervals were generated by randomly selecting half of
671 the trials for each perturbation condition and calculating the subsequent overlap. This was repeated
672 1000 times for each comparison between perturbation types.

673 We generated two null distributions for comparison. One distribution estimated the overlap
674 between two independent samples from the same perturbation type (within-perturbation distribution).
675 For a perturbation type, we split trials into two, equally sized groups and then calculated the overlap
676 between these two groups following the same procedure as above. This was repeated 1000 times for
677 each perturbation type and overlap values were pooled. The second distribution compared how
678 overlapping two samples were when the neuron labels were shuffled. For a perturbation type, we again
679 split trials into two, equally sized groups. The neuron labels were then randomly shuffled in one group
680 and the overlap was then calculated between the two groups. This was repeated 1000 times for each
681 perturbation type and overlap values were pooled.

682 **References**

683 Alstermark B, Gorska T, Lundberg A, Pettersson L-G, Walkowska M (1987) Effect of different spinal
684 cord lesions on visually guided switching of target-reaching in cats. *Neurosci Res* 5:63–67.

685 Ames KC, Churchland MM (2019) Motor cortex signals for each arm are mixed across hemispheres
686 and neurons yet partitioned within the population response. *eLife* 8:e46159.

687 Ames KC, Ryu SI, Shenoy KV (2014) Neural Dynamics of Reaching following Incorrect or Absent
688 Motor Preparation. *Neuron* 81:438–451.

689 Bakola S, Gamberini M, Passarelli L, Fattori P, Galletti C (2010) Cortical Connections of Parietal Field
690 PEc in the Macaque: Linking Vision and Somatic Sensation for the Control of Limb Action.
691 *Cereb Cortex* 20:2592–2604.

692 Bauswein E, Fromm C, Werner W, Ziemann U (1991) Phasic and tonic responses of premotor and
693 primary motor cortex neurons to torque changes. *Exp Brain Res* 86 Available at:
694 <http://link.springer.com/10.1007/BF00228953> [Accessed June 15, 2020].

695 Boudreau M-J, Smith AM (2001) Activity in Rostral Motor Cortex in Response to Predictable Force-
696 Pulse Perturbations in a Precision Grip Task. *J Neurophysiol* 86:1079–1085.

697 Bremner LR, Andersen RA (2012) Coding of the reach vector in parietal area 5d. *Neuron* 75:342–351.

698 Brenner E, Smeets JB (2003) Fast corrections of movements with a computer mouse. *Spat Vis* 16:365–
699 376.

700 Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements
701 under variable force conditions. *Cereb Cortex* N Y N 1991 8:48–62.

702 Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for
703 reaching. *Nature* 416:632–636.

704 Burns JK, Blohm G (2010) Multi-Sensory Weights Depend on Contextual Noise in Reference Frame
705 Transformations. *Front Hum Neurosci* 4 Available at:
706 <https://www.frontiersin.org/articles/10.3389/fnhum.2010.00221/full> [Accessed June 19, 2020].

707 Cabel DW, Cisek P, Scott SH (2001) Neural Activity in Primary Motor Cortex Related to Mechanical
708 Loads Applied to the Shoulder and Elbow During a Postural Task. *J Neurophysiol* 86:2102–
709 2108.

710 Chandrasekaran C, Peixoto D, Newsome WT, Shenoy KV (2017) Laminar differences in decision-
711 related neural activity in dorsal premotor cortex. *Nat Commun* 8 Available at:
712 <http://www.nature.com/articles/s41467-017-00715-0> [Accessed November 27, 2018].

713 Cisek P, Crammond DJ, Kalaska JF (2003) Neural Activity in Primary Motor and Dorsal Premotor
714 Cortex In Reaching Tasks With the Contralateral Versus Ipsilateral Arm. *J Neurophysiol*
715 89:922–942.

716 Cisek P, Kalaska JF (2005) Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex:
717 Specification of Multiple Direction Choices and Final Selection of Action. *Neuron* 45:801–814.

718 Cluff T, Scott SH (2015) Apparent and Actual Trajectory Control Depend on the Behavioral Context in
719 Upper Limb Motor Tasks. *J Neurosci* 35:12465–12476.

720 Conrad B, Meyer-Lohmann J, Matsunami K, Brooks VB (1975) Precentral unit activity following
721 torque pulse injections into elbow movements. *Brain Res* 94:219–236.

722 Corneil BD, Munoz DP (2014) Overt Responses during Covert Orienting. *Neuron* 82:1230–1243.

723 Crammond DJ, Kalaska JF (1989) Neuronal activity in primate parietal cortex area 5 varies with
724 intended movement direction during an instructed-delay period. *Exp Brain Res* 76:458–462.

725 Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and
726 premotor cortex to movements versus actively maintained postures during a reaching task. *Exp
727 Brain Res* 108 Available at: <http://link.springer.com/10.1007/BF00242903> [Accessed March 1,
728 2019].

729 Crammond DJ, Kalaska JF (2000) Prior Information in Motor and Premotor Cortex: Activity During
730 the Delay Period and Effect on Pre-Movement Activity. *J Neurophysiol* 84:986–1005.

731 Crevecoeur F, Kurtzer I (2018) Long-latency reflexes for inter-effector coordination reflect a
732 continuous state feedback controller. *J Neurophysiol* 120:2466–2483.

733 Crevecoeur F, Kurtzer I, Scott SH (2012) Fast corrective responses are evoked by perturbations
734 approaching the natural variability of posture and movement tasks. *J Neurophysiol* 107:2821–
735 2832.

736 Crevecoeur F, Munoz DP, Scott SH (2016) Dynamic Multisensory Integration: Somatosensory Speed
737 Trumps Visual Accuracy during Feedback Control. *J Neurosci* 36:8598–8611.

738 Cross KP, Cluff T, Takei T, Scott SH (2019) Visual Feedback Processing of the Limb Involves Two
739 Distinct Phases. *J Neurosci* 39:6751–6765.

740 Cross KP, Heming EA, Cook DJ, Scott SH (2020) Maintained Representations of the Ipsilateral and
741 Contralateral Limbs during Bimanual Control in Primary Motor Cortex. *J Neurosci* 40:6732–
742 6747.

743 Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human
744 reaching. *Brain* 124:1832–1840.

745 Dea M, Hamadjida A, Elgbeili G, Quessy S, Dancause N (2016) Different Patterns of Cortical Inputs to
746 Subregions of the Primary Motor Cortex Hand Representation in *Cebus apella*. *Cereb Cortex*
747 26:1747–1761.

748 Desmurget M, Grafton S (2000) feedback control for fast reaching movements. *Trends Cogn Sci* 4:9.

749 Dimitriou M, Wolpert DM, Franklin DW (2013) The Temporal Evolution of Feedback Gains Rapidly
750 Update to Task Demands. *J Neurosci* 33:10898–10909.

751 Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP (2016) Reorganization between
752 preparatory and movement population responses in motor cortex. *Nat Commun* 7 Available at:
753 <http://www.nature.com/articles/ncomms13239> [Accessed November 26, 2018].

754 Evarts EV, Tanji J (1976) Reflex and intended responses in motor cortex pyramidal tract neurons of
755 monkey. *J Neurophysiol* 39:1069–1080.

756 Fetz EE, Finocchio DV, Baker MA, Soso MJ (1980) Sensory and motor responses of precentral cortex
757 cells during comparable passive and active joint movements. *J Neurophysiol* 43:1070–1089.

758 Franklin DW, Reichenbach A, Franklin S, Diedrichsen J (2016) Temporal Evolution of Spatial
759 Computations for Visuomotor Control. *J Neurosci* 36:2329–2341.

760 Fromm C, Wise SP, Evarts EV (1984) Sensory response properties of pyramidal tract neurons in the
761 precentral motor cortex and postcentral gyrus of the rhesus monkey. *Exp Brain Res* 54 Available
762 at: <http://link.springer.com/10.1007/BF00235829> [Accessed June 24, 2020].

763 Gamberini M, Dal Bò G, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C (2017) Sensory
764 properties of the caudal aspect of the macaque's superior parietal lobule. *Brain Struct Funct*
765 Available at: <http://link.springer.com/10.1007/s00429-017-1593-x> [Accessed May 14, 2020].

766 Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1983) Interruption of motor cortical discharge
767 subserving aimed arm movements. *Exp Brain Res* 49:327–340.

768 Guo J-Z, Sauerbrei B, Cohen JD, Mischiati M, Graves A, Pisanello F, Branson K, Hantman AW (2020)
769 Dynamics of the Cortico-Cerebellar Loop Fine-Tune Dexterous Movement. *bioRxiv*:637447.

770 Heindorf M, Arber S, Keller GB (2018) Mouse Motor Cortex Coordinates the Behavioral Response to
771 Unpredicted Sensory Feedback. *Neuron* 99:1040-1054.e5.

772 Heming EA, Cross KP, Takei T, Cook DJ, Scott SH (2019) Independent representations of ipsilateral
773 and contralateral limbs in primary motor cortex. *eLife* 8:e48190.

774 Herter TM, Takei T, Munoz DP, Scott SH (2015) Neurons in red nucleus and primary motor cortex
775 exhibit similar responses to mechanical perturbations applied to the upper-limb during posture.
776 *Front Integr Neurosci* 9 Available at:
777 <https://www.frontiersin.org/articles/10.3389/fnint.2015.00029/full> [Accessed June 19, 2020].

778 Hollerbach JM, Flash T (1982) Dynamic interactions between limb segments during planar arm
779 movement. *Biol Cybern* 44:67–77.

780 Hummelsheim H, Bianchetti M, Wiesendanger M, Wiesendanger R (1988) Sensory inputs to the
781 agranular motor fields: a comparison between precentral, supplementary-motor and premotor
782 areas in the monkey. *Exp Brain Res* 69 Available at:
783 <http://link.springer.com/10.1007/BF00247574> [Accessed June 15, 2020].

784 Ito S, Gomi H (2020) Visually-updated hand state estimates modulate the proprioceptive reflex
785 independently of motor task requirements Cressman E, Gold JI, Cressman E, eds. *eLife*
786 9:e52380.

787 Jones EG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the
788 somatic sensory, motor and parietal cortex of monkeys. *J Comp Neurol* 181:291–347.

789 Kalaska J, Crammond D (1992) Cerebral cortical mechanisms of reaching movements. *Science*
790 255:1517–1523.

791 Kalidindi HT, Cross KP, Lillicrap TP, Omrani M, Falotico E, Sabes PN, Scott SH (2020) Rotational
792 dynamics in motor cortex are consistent with a feedback controller.
793 bioRxiv:2020.11.17.387043.

794 Kaufman MT, Churchland MM, Ryu SI, Shenoy KV (2014) Cortical activity in the null space:
795 permitting preparation without movement. *Nat Neurosci* 17:440–448.

796 Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning
797 of voluntary movement. *Biol Cybern* 57:169–185.

798 Keemink SW, Machens CK (2019) Decoding and encoding (de)mixed population responses. *Curr Opin
799 Neurobiol* 58:112–121.

800 Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepcs A, Mainen ZF, Qi X-L, Romo R, Uchida
801 N, Machens CK (2016) Demixed principal component analysis of neural population data. *eLife*
802 5 Available at: <https://elifesciences.org/articles/10989> [Accessed February 21, 2019].

803 Kozak RA, Kreyenmeier P, Gu C, Johnston K, Corneil BD (2019) Stimulus-Locked Responses on
804 Human Upper Limb Muscles and Corrective Reaches Are Preferentially Evoked by Low Spatial
805 Frequencies. *eNeuro* 6 Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751371/>
806 [Accessed April 6, 2020].

807 Krakauer JW, Ghilardi M-F, Ghez C (1999) Independent learning of internal models for kinematic and
808 dynamic control of reaching. *Nat Neurosci* 2:1026–1031.

809 Kurtzer I, Herter TM, Scott SH (2006) Nonuniform Distribution of Reach-Related and Torque-Related
810 Activity in Upper Arm Muscles and Neurons of Primary Motor Cortex. *J Neurophysiol*
811 96:3220–3230.

812 Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-Latency Reflexes of the Human Arm Reflect an
813 Internal Model of Limb Dynamics. *Curr Biol* 18:449–453.

814 Lemon RN (1981a) Functional properties of monkey motor cortex neurones receiving afferent input
815 from the hand and fingers. *J Physiol* 311:497–519.

816 Lemon RN (1981b) Variety of functional organization within the monkey motor cortex. *J Physiol*
817 311:521–540.

818 Lemon RN, Porter R, Phillips CG (1976) Afferent input to movement-related precentral neurones in
819 conscious monkeys. *Proc R Soc Lond B Biol Sci* 194:313–339.

820 Lemon RN, van der Burg J (1979) Short-latency peripheral inputs to thalamic neurones projecting to
821 the motor cortex in the monkey. *Exp Brain Res* 36:445–462.

822 Lillicrap TP, Scott SH (2013) Preference Distributions of Primary Motor Cortex Neurons Reflect
823 Control Solutions Optimized for Limb Biomechanics. *Neuron* 77:168–179.

824 Liu D, Todorov E (2009) Hierarchical optimal control of a 7-DOF arm model. In: 2009 IEEE
825 Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pp 50–57.

826 Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control.
827 *Exp Brain Res* 126:1–18.

828 Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response
829 latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. *Vis Neurosci*
830 16:1–14.

831 McGuire LMM, Sabes PN (2011) Heterogeneous Representations in the Superior Parietal Lobule Are
832 Common across Reaches to Visual and Proprioceptive Targets. *J Neurosci* 31:6661–6673.

833 Merel J, Botvinick M, Wayne G (2019) Hierarchical motor control in mammals and machines. *Nat
834 Commun* 10:5489.

835 Mewes K, Cheney PD (1991) Facilitation and suppression of wrist and digit muscles from single
836 rubromotoneuronal cells in the awake monkey. *J Neurophysiol* 66:1965–1977.

837 Meyer DE, Kornblum S, Abrams RA, Wright CE (1988) Optimality in Human Motor Performance:
838 Ideal Control of Rapid Aimed Movements. *Psychol Rev* 95:340–370.

839 Mutha PK, Boulinguez P, Sainburg RL (2008) Visual modulation of proprioceptive reflexes during
840 movement. *Brain Res* 1246:54–69.

841 Omrani M, Murnaghan CD, Pruszynski JA, Scott SH (2016) Distributed task-specific processing of
842 somatosensory feedback for voluntary motor control. *eLife* 5:e13141.

843 Omrani M, Pruszynski JA, Murnaghan CD, Scott SH (2014) Perturbation-evoked responses in primary
844 motor cortex are modulated by behavioral context. *J Neurophysiol* 112:2985–3000.

845 Oostwoud Wijdenes L, Medendorp WP (2017) State Estimation for Early Feedback Responses in
846 Reaching: Intramodal or Multimodal? *Front Integr Neurosci* 11 Available at:
847 <http://journal.frontiersin.org/article/10.3389/fnint.2017.00038/full> [Accessed January 18, 2018].

848 Pesaran B, Nelson MJ, Andersen RA (2006) Dorsal Premotor Neurons Encode the Relative Position of
849 the Hand, Eye, and Goal during Reach Planning. *Neuron* 51:125–134.

850 Piserchia V, Breveglieri R, Hadjidimitrakis K, Bertozzi F, Galletti C, Fattori P (2017) Mixed
851 Body/Hand Reference Frame for Reaching in 3D Space in Macaque Parietal Area PEc. *Cereb
852 Cortex* 27:1976–1990.

853 Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Clarendon Press.

854 Pruszynski JA, King GL, Boisse L, Scott SH, Flanagan JR, Munoz DP (2010) Stimulus-locked
855 responses on human arm muscles reveal a rapid neural pathway linking visual input to arm
856 motor output: Visual responses on human arm muscles. *Eur J Neurosci* 32:1049–1057.

857 Pruszynski JA, Kurtzer I, Lillicrap TP, Scott SH (2009) Temporal Evolution of “Automatic Gain-
858 Scaling.” *J Neurophysiol* 102:992–1003.

859 Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, Scott SH (2011) Primary motor cortex
860 underlies multi-joint integration for fast feedback control. *Nature* 478:387–390.

861 Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid Motor Responses Are Appropriately Tuned to the
862 Metrics of a Visuospatial Task. *J Neurophysiol* 100:224–238.

863 Pruszynski JA, Omrani M, Scott SH (2014) Goal-Dependent Modulation of Fast Feedback Responses
864 in Primary Motor Cortex. *J Neurosci* 34:4608–4617.

865 Rathelot J-A, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal
866 cells. *Proc Natl Acad Sci* 106:918–923.

867 Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981a) Afferent properties of periarcuate neurons
868 in macaque monkeys. II. Visual responses. *Behav Brain Res* 2:147–163.

869 Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periarcuate neurons
870 in macaque monkeys. I. Somatosensory responses. *Behav Brain Res* 2:125–146.

871 Rosén I, Asanuma H (1972) Peripheral afferent inputs to the forelimb area of the monkey motor cortex:
872 Input-output relations. *Exp Brain Res* 14:257–273.

873 Rouse AG, Schieber MH (2018) Condition-Dependent Neural Dimensions Progressively Shift during
874 Reach to Grasp. *Cell Rep* 25:3158–3168.e3.

875 Sauerbrei BA, Guo J-Z, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K,
876 Hantman AW (2020) Cortical pattern generation during dexterous movement is input-driven.
877 *Nature* 577:386–391.

878 Schäfer SS, Dadfar F, Härtel J, Haupts S, Fischer M (1999) The period of latency before a muscle
879 receptor generates an action potential as a response to a muscle stretch. *Brain Res* 843:36–47.

880 Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in
881 humans. I. Distributed inverse dynamics control. *Eur J Neurosci* 10:86–94.

882 Scott SH (2012) The computational and neural basis of voluntary motor control and planning. *Trends
883 Cogn Sci* 16:541–549.

884 Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and
885 population vectors from neural activity in motor cortex. *Nature* 413:161–165.

886 Scott SH, Sergio LE, Kalaska JF (1997) Reaching Movements With Similar Hand Paths but Different
887 Arm Orientations. II. Activity of Individual Cells in Dorsal Premotor Cortex and Parietal Area
888 5. *J Neurophysiol* 78:2413–2426.

889 Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. *Exp Brain Res*
890 185:359–381.

891 Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation
892 for motor learning. MIT press.

893 Snyder LH, Grieve KL, Brotchie P, Andersen RA (1998) Separate body- and world-referenced
894 representations of visual space in parietal cortex. *Nature* 394:887–891.

895 Sober SJ, Sabes PN (2003) Multisensory Integration during Motor Planning. *J Neurosci* 23:6982–6992.

896 Soteropoulos DS, Baker SN (2020) Long-latency Responses to a Mechanical Perturbation of the Index
897 Finger Have a Spinal Component. *J Neurosci* 40:3933–3948.

898 Soteropoulos DS, Williams ER, Baker SN (2012) Cells in the monkey ponto-medullary reticular
899 formation modulate their activity with slow finger movements. *J Physiol* 590:4011–4027.

900 Stavisky SD, Kao JC, Ryu SI, Shenoy KV (2017) Motor Cortical Visuomotor Feedback Activity Is
901 Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.
902 *Neuron* 95:195–208.e9.

903 Strick PL (1983) The influence of motor preparation on the response of cerebellar neurons to limb
904 displacements. *J Neurosci* 3:2007–2020.

905 Suminski AJ, Tkach DC, Hatsopoulos NG (2009) Exploiting multiple sensory modalities in brain-
906 machine interfaces. *Neural Netw Off J Int Neural Netw Soc* 22:1224–1234.

907 Suway SB, Schwartz AB (2019) Activity in Primary Motor Cortex Related to Visual Feedback. *Cell*
908 *Rep* 29:3872–3884.e4.

909 Takei T, Crevecoeur F, Herter TM, Cross KP, Scott SH (2018) Correlations Between Primary Motor
910 Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching. *J*
911 *Neurosci* 38:7787–7799.

912 Takei T, Lomber SG, Cook DJ, Scott SH (2021) Transient deactivation of dorsal premotor cortex or
913 parietal area 5 impairs feedback control of the limb in macaques. *Curr Biol* 1:1–12.

914 Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages
915 identified in the activity of macaque frontal eye field neurons during visual search. *J*
916 *Neurophysiol* 76:4040–4055.

917 Todorov E, Li W, Pan X (2005) From task parameters to motor synergies: A hierarchical framework for
918 approximately-optimal control of redundant manipulators. *J Robot Syst* 22:691–710.

919 Vilis T, Hore J, Meyer-Lohmann J, Brooks VB (1976) Dual nature of the precentral responses to limb
920 perturbations revealed by cerebellar cooling. *Brain Res* 117:336–340.

921 Wei K, Kording KP (2008) Relevance of Error: What Drives Motor Adaptation? *J Neurophysiol*
922 101:655–664.

923 Witham CL, Fisher KM, Edgley SA, Baker SN (2016) Corticospinal Inputs to Primate Motoneurons
924 Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a. *J Neurosci*
925 36:2605–2616.

926 Wolpaw JR (1980) Amplitude of responses to perturbation in primate sensorimotor cortex as a function
927 of task. *J Neurophysiol* 44:1139–1147.

928 Wong YC, Kwan HC, MacKay WA, Murphy JT (1978) Spatial organization of precentral cortex in
929 awake primates. I. Somatosensory inputs. *J Neurophysiol* 41:1107–1119.

930 Woodworth RS (1899) Accuracy of voluntary movement. *Psychol Rev Monogr Suppl* 3:i–114.

931 Yang L, Michaels JA, Pruszynski JA, Scott SH (2011) Rapid motor responses quickly integrate
932 visuospatial task constraints. *Exp Brain Res* 211:231–242.

933 Zarzecki P, Strick PL (1978) Input to primate motor cortex from posterior parietal cortex (area 5). II.
934 Identification by antidromic activation. *Brain Res* 157:331–335.

935

936 **Figures Legends**

937 **Figure 1. Example kinematics.** A) Example hand paths of Monkey M reaching for cursor-on (top)
938 and cursor-off trials (bottom). B-D) Example hand paths for goal jumps (B), cursor jumps (C) and
939 mechanical loads (D). Solid and dashed lines are perturbations requiring corrections towards and away
940 from the body, respectively. E) The average hand speed on cursor-on and cursor-off trials. F-H) The
941 change in the lateral hand velocity for goal jumps (F), cursor jumps (G), and mechanical loads (H).
942 Note, for the mechanical loads the change in lateral hand velocity starts at 0ms due to the displacement
943 caused by the loads.

944

945 **Figure 2. Example neuron activities.** A) Activities from four example neurons (first four rows) and
946 muscle activity (bottom row) during reaches for cursor-on (black) and cursor-off trials (grey). Grey
947 area demarcates when vision was removed. B-D) The change in activities (Δ Activity) for the same four
948 example neurons and muscle activity in response to the goal jumps (B), cursor jumps (C) and
949 mechanical loads (D). Solid and dashed lines are responses to perturbations requiring corrections
950 towards and away from the body, respectively.

951

952 **Figure 3. Proprioceptive feedback alters M1 activity earlier than visual feedback.** A) The average
953 activity across neurons for Monkey M. Arrows indicate when a significant increase from baseline was
954 detected. Only neurons with significant activity for at least one perturbation type were included. B)
955 The onset across individual neurons for each perturbation type presented as a cumulative sum. C-D)
956 Same as A-B) except for Monkey A. E-F) Same as A-B) except for muscle activity from Monkey M.

957

958 **Figure 4. Each perturbation type influences overlapping neurons.** A) Venn diagram showing the
959 number of neurons observed (Obs) in each class for Monkey M. The diagram also shows the number
960 of expected (Exp) neurons assuming an independent distribution. Chi reflects the classes contribution
961 to the total χ^2 value ($[Obs-Exp]^2/Exp$). B) Venn diagrams classifying neurons using only two
962 perturbation types for Monkey M. C-D) Same as A-B) except for Monkey A.

963

964 **Figure 5. M1 neurons have similar response ranges across perturbation types.** A) Comparison of
965 the response ranges between activities for the goal and cursor jumps. Black circles: neurons responsive
966 to all three perturbation types. Grey circles: neurons responsive to at least one perturbation type. “r” is
967 the Pearson’s correlation coefficient. Dashed lines reflect the line of best fit identified using total least

968 squares regression (slope indicated in quadrant 2). B) Same as A) except comparing mechanical loads
969 and goal jumps. C) Same as A) except comparing mechanical loads and cursor jumps. D-F) Same as
970 A-C) except for Monkey A. G-I) Same as A-C) except for muscle activity from Monkey M.
971

972 **Figure 6. Activity patterns overlap across perturbation types.** A) Variance accounted for by the top
973 goal-jump principal components for Monkey M. Variance for the goal-jump trials was calculated for
974 the training set (open) and for the left-out trials (red). Circles and bars denote the median and the 5th
975 and 95th percentiles of the distributions. B-C) Same as A) for cursor jumps and mechanical loads. D)
976 Overlap index between perturbation types (clear bars) and the shuffle and within-perturbation
977 distributions (filled bars). Bars denote the median and 5th and 95th percentiles of the distribution. E-H)
978 Same as A-D) except for Monkey A. I-H) Same as A-D) except for EMG from Monkey M.
979

980 **Figure 7. M1 is more sensitive to mechanical than visual perturbations.** A) For Monkey M, hand
981 paths for the mechanical loads (red traces) and the cursor's path on cursor slide trials (cyan traces). B)
982 In the lateral direction (see A), the change in position of the hand and cursor on mechanical load and
983 cursor slide trials respectively. C) The R² across sessions comparing how well the cursor slide
984 trajectory fit the limb trajectory on the mechanical load trials (Monkey M|A n=7|3). Yellow diamonds
985 reflect the mean. D) Movement times for all mechanical load and cursor slide trials. Arrows denote
986 medians. E) The average activity across neurons for each perturbation type. F) Comparison of
987 response ranges between mechanical loads and cursor slide. Presented the same as in Figure 5. G)
988 Same as F) except for comparing mechanical loads with cursor jumps. H-J) Same as E-G) except for
989 Monkey A. K-M) Same as E-G) except for muscle activity.
990

991 **Supplementary Figure 1. Movement times and endpoint distance from goal across monkeys.** A)
992 Movement times for Monkey M for cursor-on and cursor-off unperturbed reaches. Movement time was
993 defined as the time between when the hand left the start target and when the hand first contacted the
994 goal target. Trials have been pooled across all recording sessions. Arrows denote the median of the
995 distributions. Distributions for cursor-on and cursor-off trials were not significantly different (two-
996 sample t-test: t(471)=1.6, p=0.12). B) Same as A) for perturbation trials. C) Same as A) except for the
997 distance the reach endpoint was from the goal. Distributions for cursor-on and cursor-off trials were
998 significantly different (t(471)=3.6, p<0.001). D) Same as C) for perturbation trials. E-H) Same as A-D)
999 for Monkey A. E) Distributions for cursor-on and cursor-off trials were not significantly different

1000 (t(279)=1.9, p=0.06). G) Distributions for cursor-on and cursor-off trials were significantly different
1001 (t(279)=4.0, p<0.001).

1002 Note, Monkey M had longer movement times than Monkey A due in part to Monkey M completing a
1003 10cm reach and Monkey A completing an 8cm reach.

1004

1005 **Supplementary Figure 2. Placement of arrays in M1.** Both monkeys had floating micro-electrode
1006 arrays implanted in the arm regions of M1. Approximate location of array is indicated by the black
1007 square. Acronyms: CS central sulcus, SPS superior precentral sulcus, AS arcuate sulcus, SAS spur of
1008 arcuate sulcus, A anterior, P posterior.

1009

1010 **Supplementary Figure 3. M1 activity is largely unaffected by removing cursor feedback.** A) For
1011 Monkey M, comparison of the mean activities during unperturbed reaches for cursor-on (abscissa) and
1012 cursor-off (ordinate) trials. Activity was averaged from 100-250ms after the cursor feedback was
1013 removed. Each circle denotes one neuron. Dashed line reflects the line of best fit identified using total
1014 least squares regression (slope indicated in top left corner). B) Same as A) except for the standard
1015 deviation across trials. C-D) Same as A-B) except for Monkey A. E-F) Same as A-B) except for EMG
1016 from Monkey M.

1017

1018 **Supplementary Figure 4. Perturbation-related activity is comparable to activity during baseline**
1019 **reaching.** A) Activities of the same four example neurons in Figure 2 during unperturbed reaches
1020 aligned to movement onset (5% max hand speed). Shaded area denotes the movement epoch (-50-
1021 250ms). B) Scatter comparing the absolute magnitude of movement-related activity with the magnitude
1022 of the perturbation-related activity. C) Cumulative sums of the difference in the magnitudes of the
1023 movement-related and perturbation-related activities across cells.

1024

1025 **Supplementary Figure 5. Overlap time course.** A) Time series of the overlap index between goal
1026 and cursor jumps (black solid line) for Monkey M. Activity was binned every 20ms. The time series
1027 was also repeated for the shuffle distribution (black dashed line) and the within-perturbation
1028 distributions for the goal-related (green line) and cursor-related (blue line) activities. B) Same as A)
1029 except comparing mechanical loads with goal jumps. C) Same as A) except comparing mechanical
1030 loads with cursor jumps. D-F) Same as A-C) except for Monkey A. G-I) Same as A-C) for EMG
1031 signals. Prior to overlap calculation, EMG signals were filtered with a low-pass 3rd order Butterworth

1032 filter (cut-off 50Hz). Note, the substantial overlap before perturbation onset is in part due to the small
1033 subspace spanned by EMG signals

1034

1035 **Supplementary Figure 6. Overlap across perturbation types with increased perturbation**
1036 **directions.** A) Monkey M's lateral reaches following goal jumps (left), cursor jumps (middle) and
1037 mechanical loads (right). Same as Figure 1B-D. B) Same as A) except now for Monkey's M anterior
1038 reaches. C) Response ranges comparing perturbation types for the anterior reaches. Data presented the
1039 same as in Figure 5. 'n' denotes the number of recorded neurons. D) Overlap index presented the same
1040 as Figure 6. E-F) Same as C-D) for Monkey A.

1041

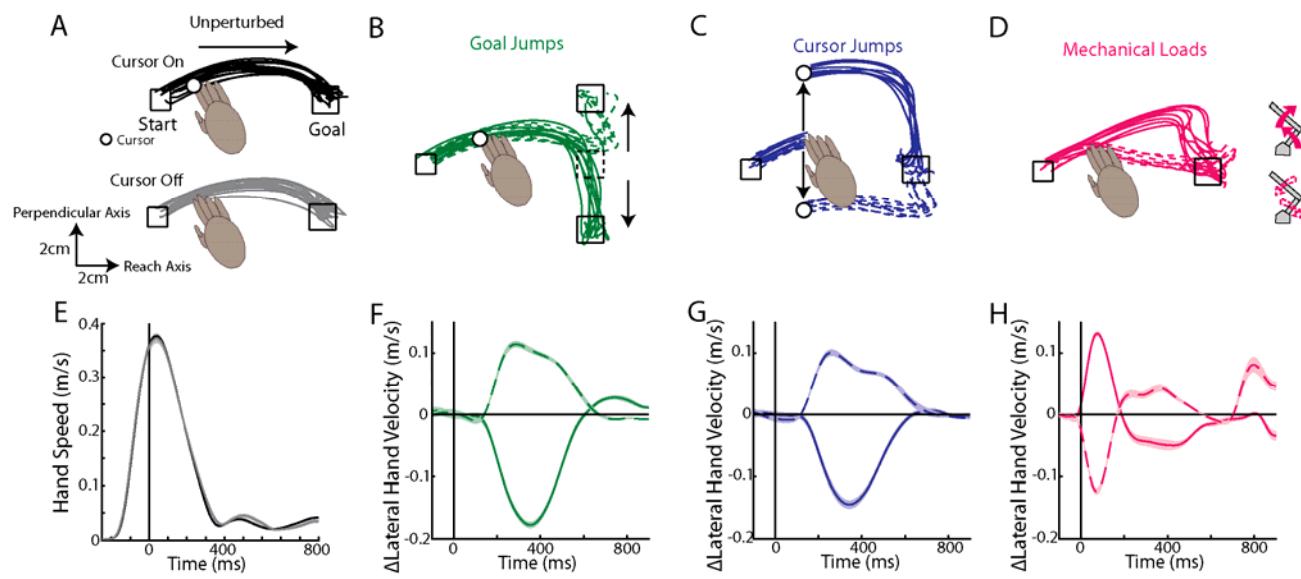


Figure 1

1042

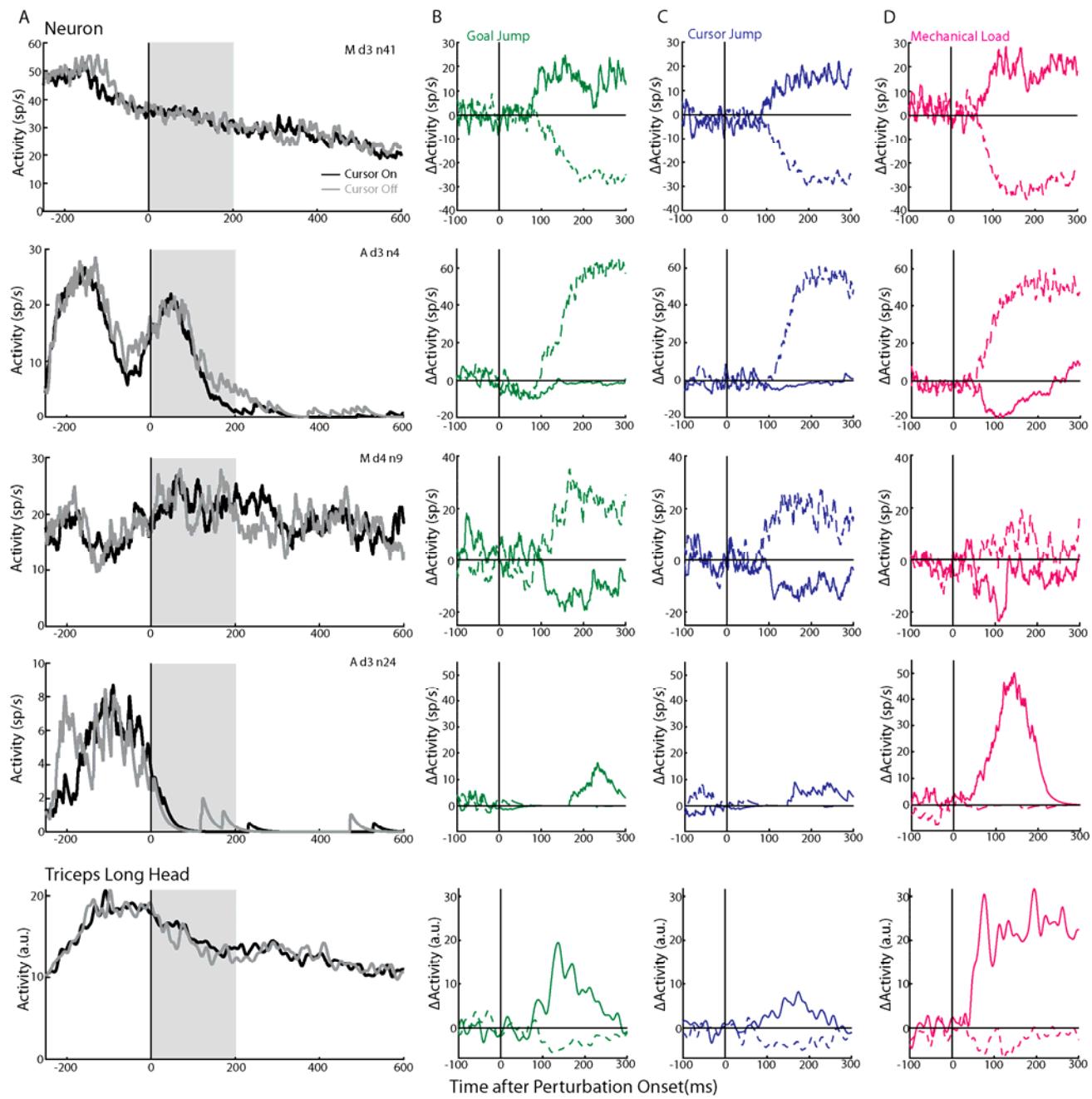


Figure 2

1043

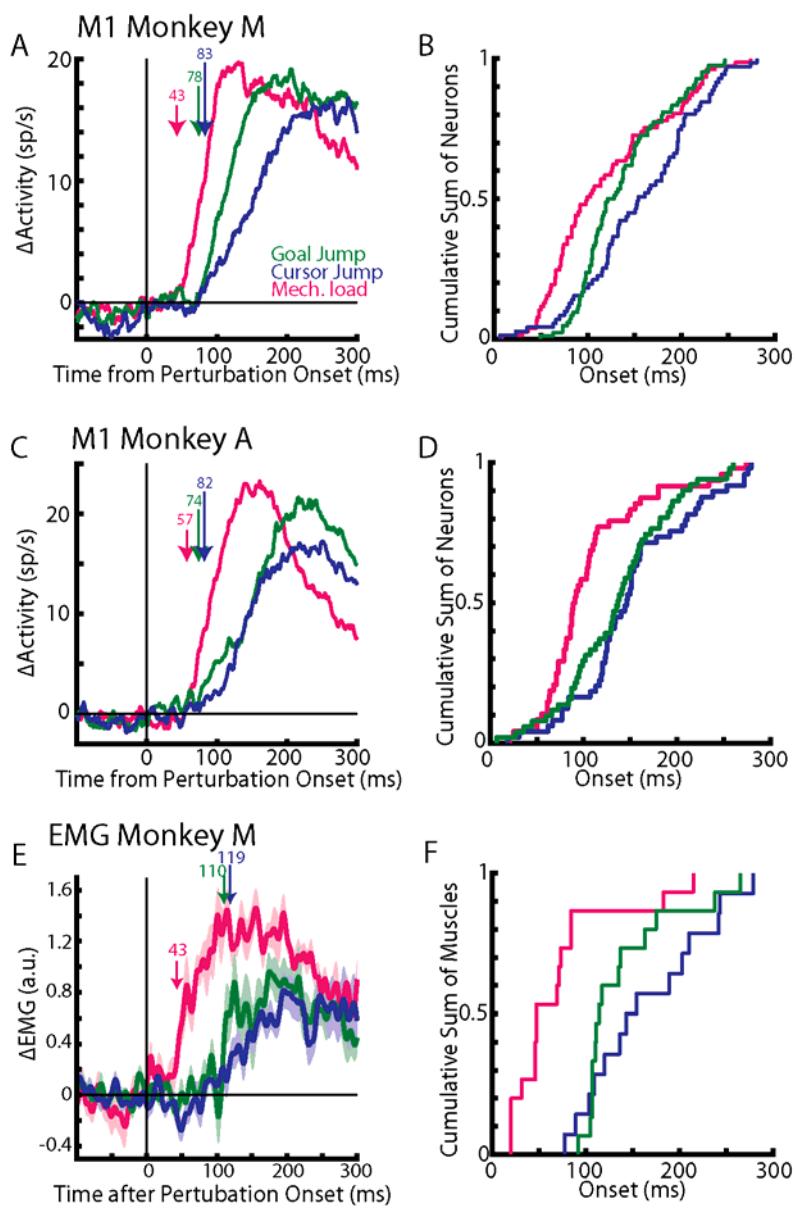
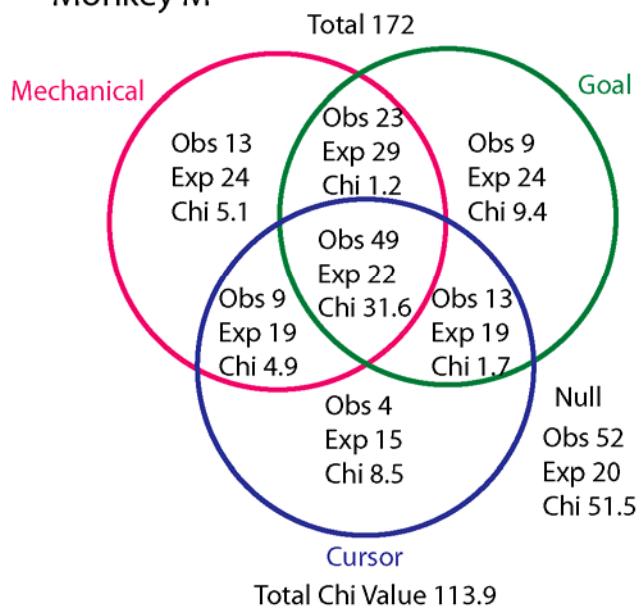


Figure 3

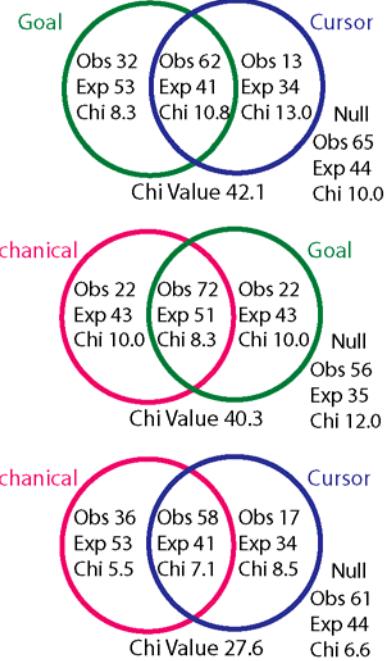
1044

A

Monkey M

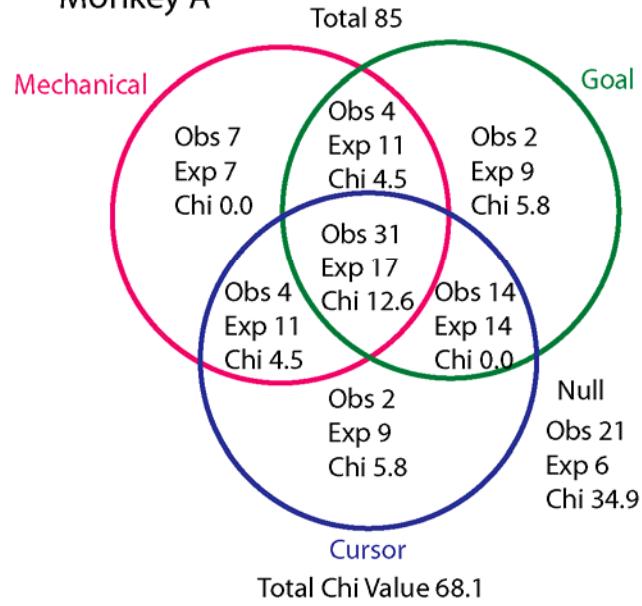


B



C

Monkey A



D

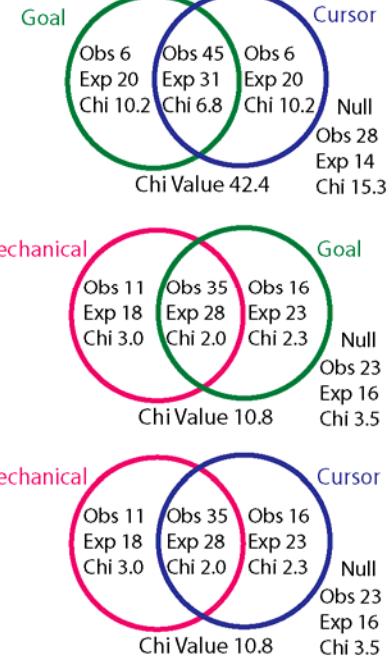


Figure 4

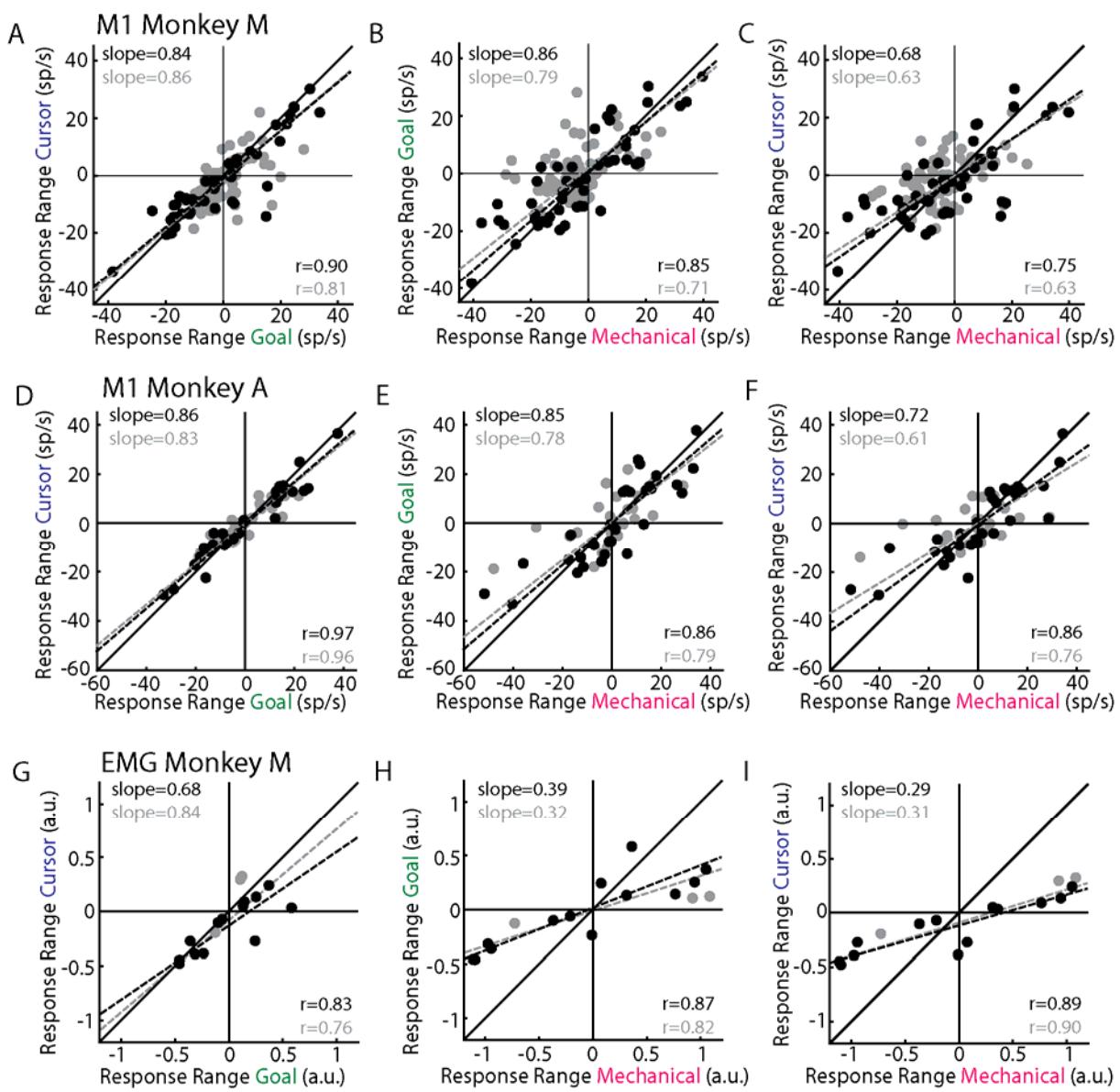


Figure 5

1046

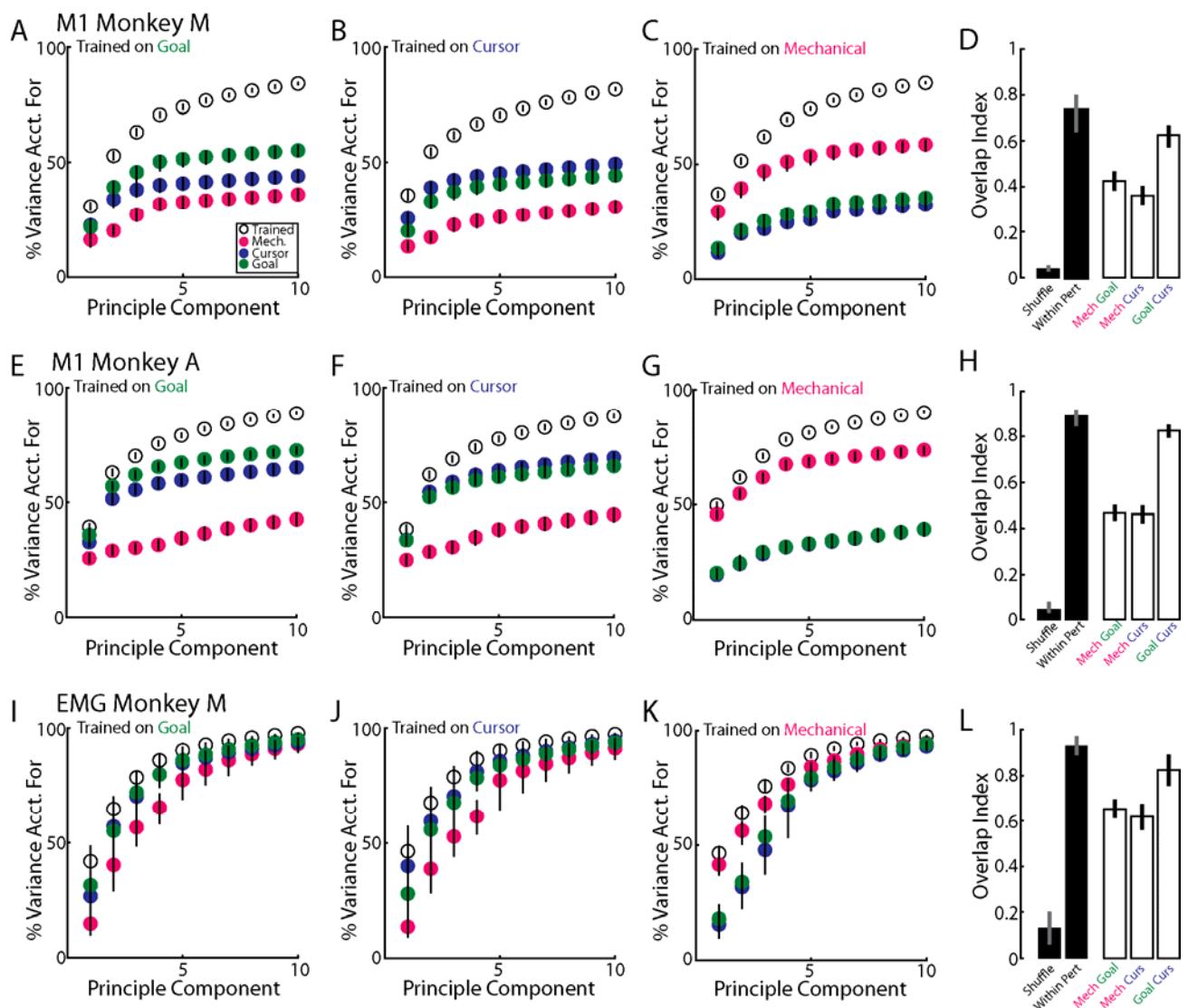


Figure 6

1047

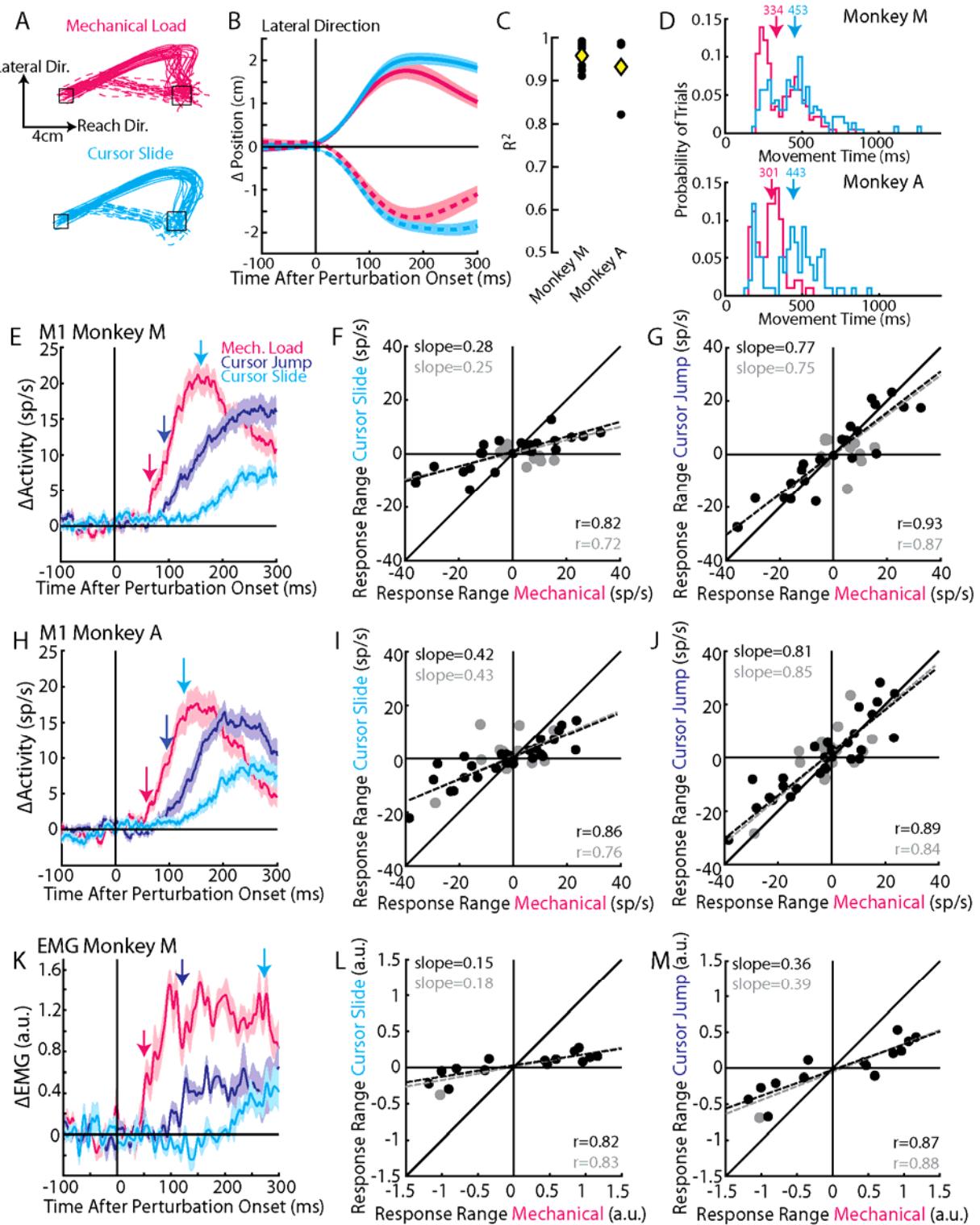
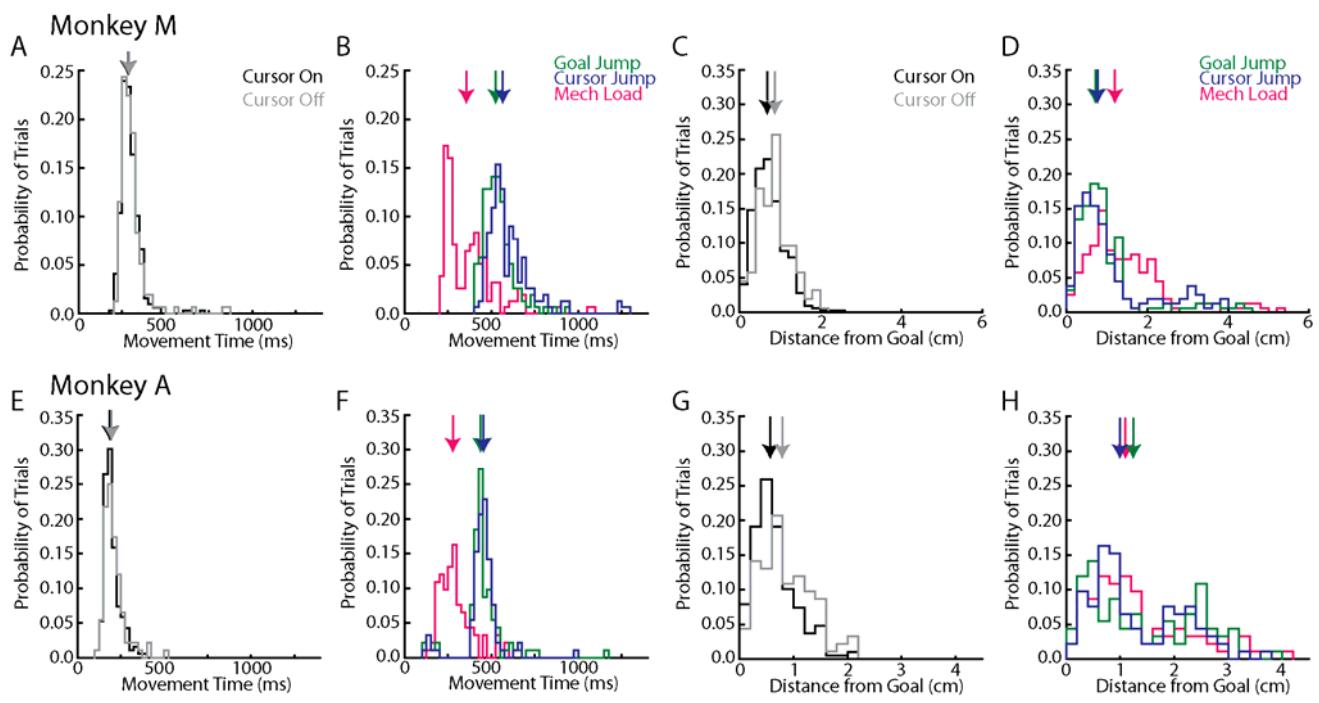


Figure 7

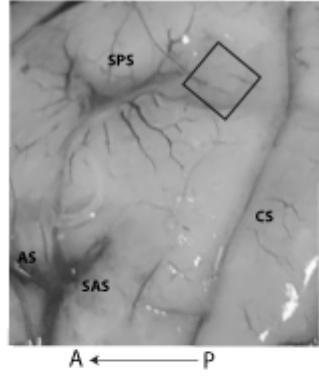


Supplementary Figure 1

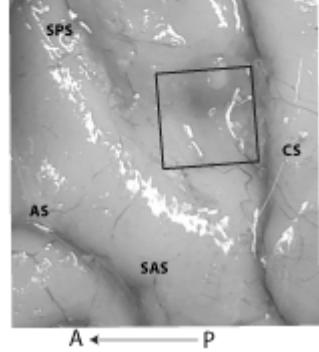
1049

1050

Monkey M



Monkey A

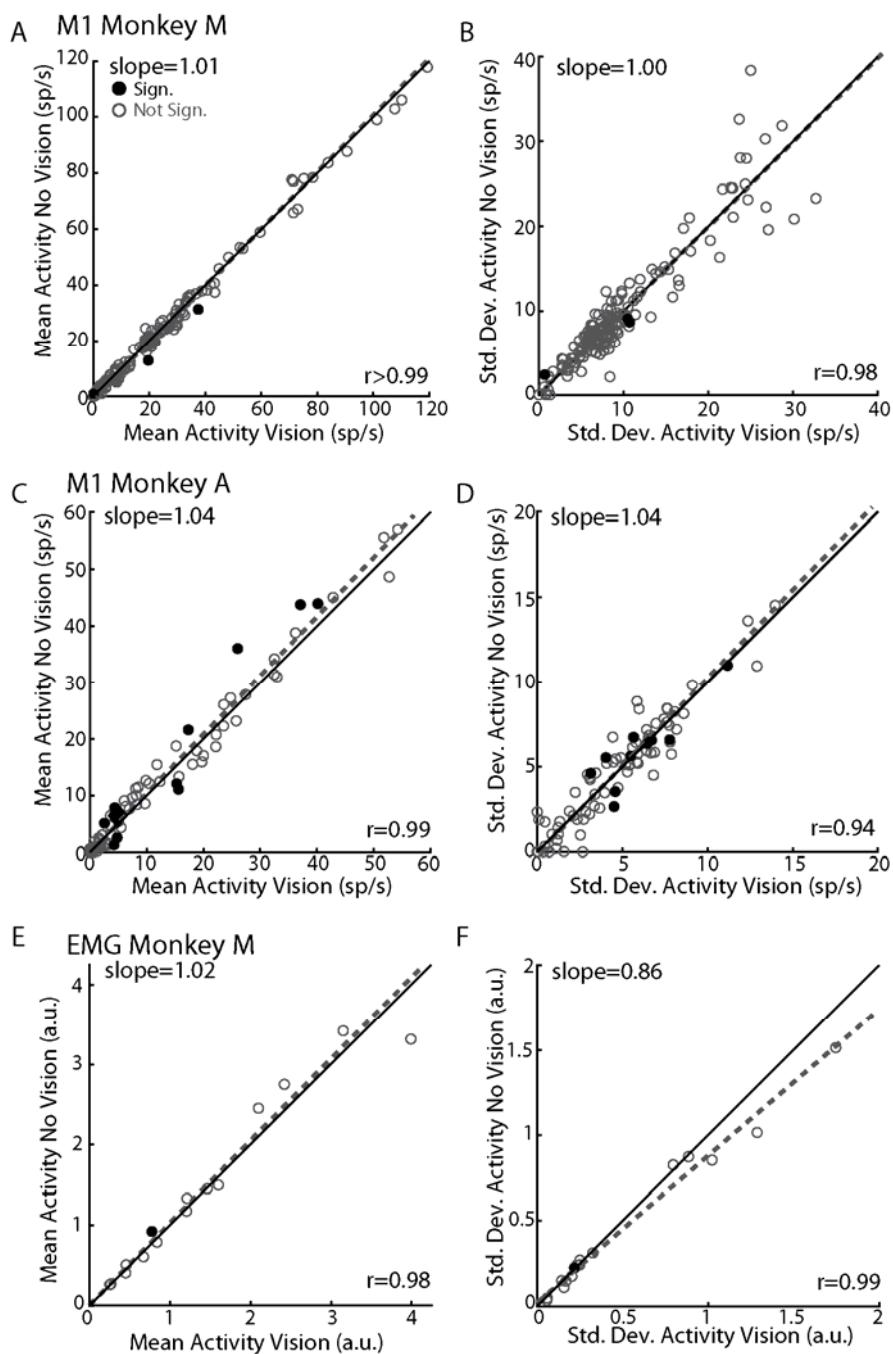


Supplementary Figure 2

1051

1052

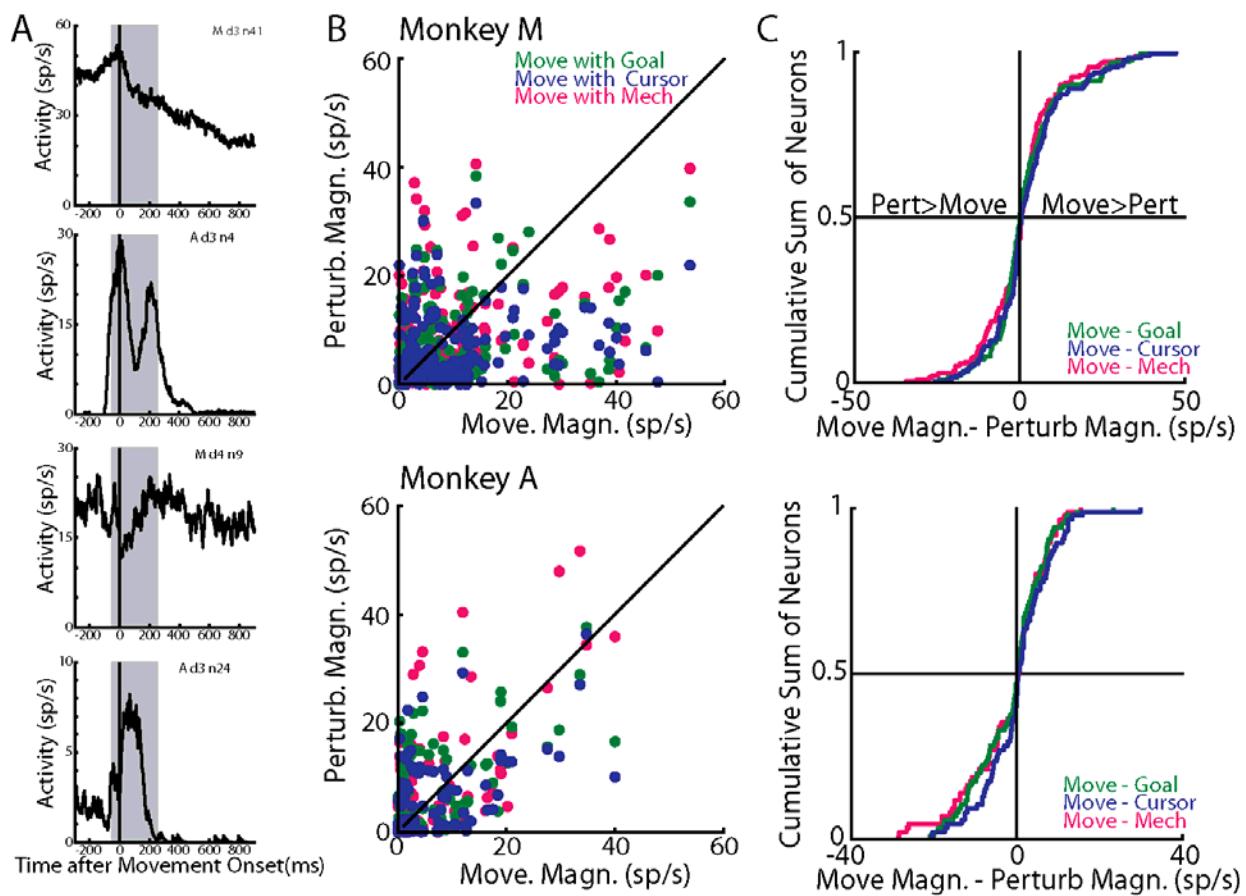
1053



Supplementary Figure 3

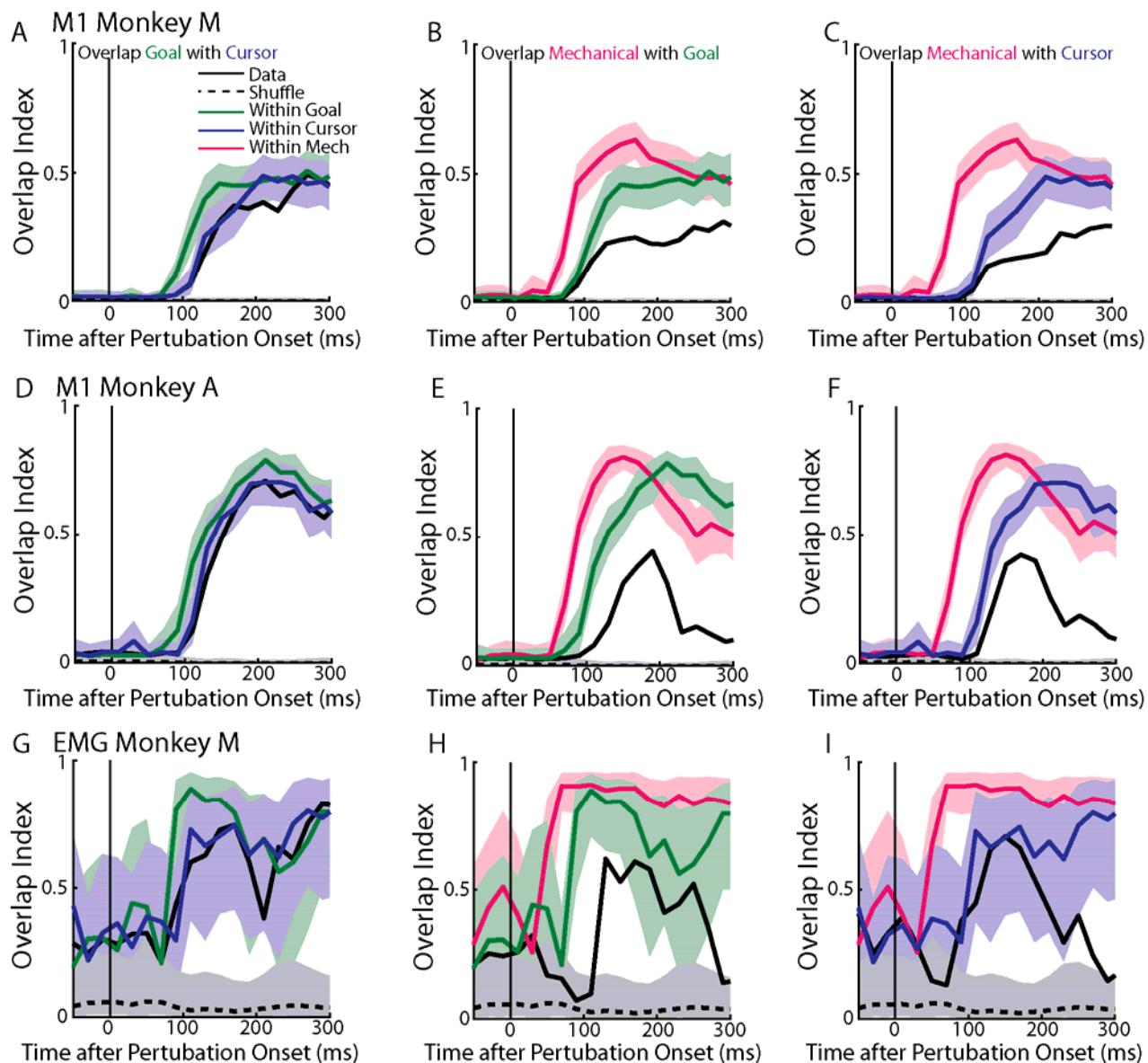
1054

1055



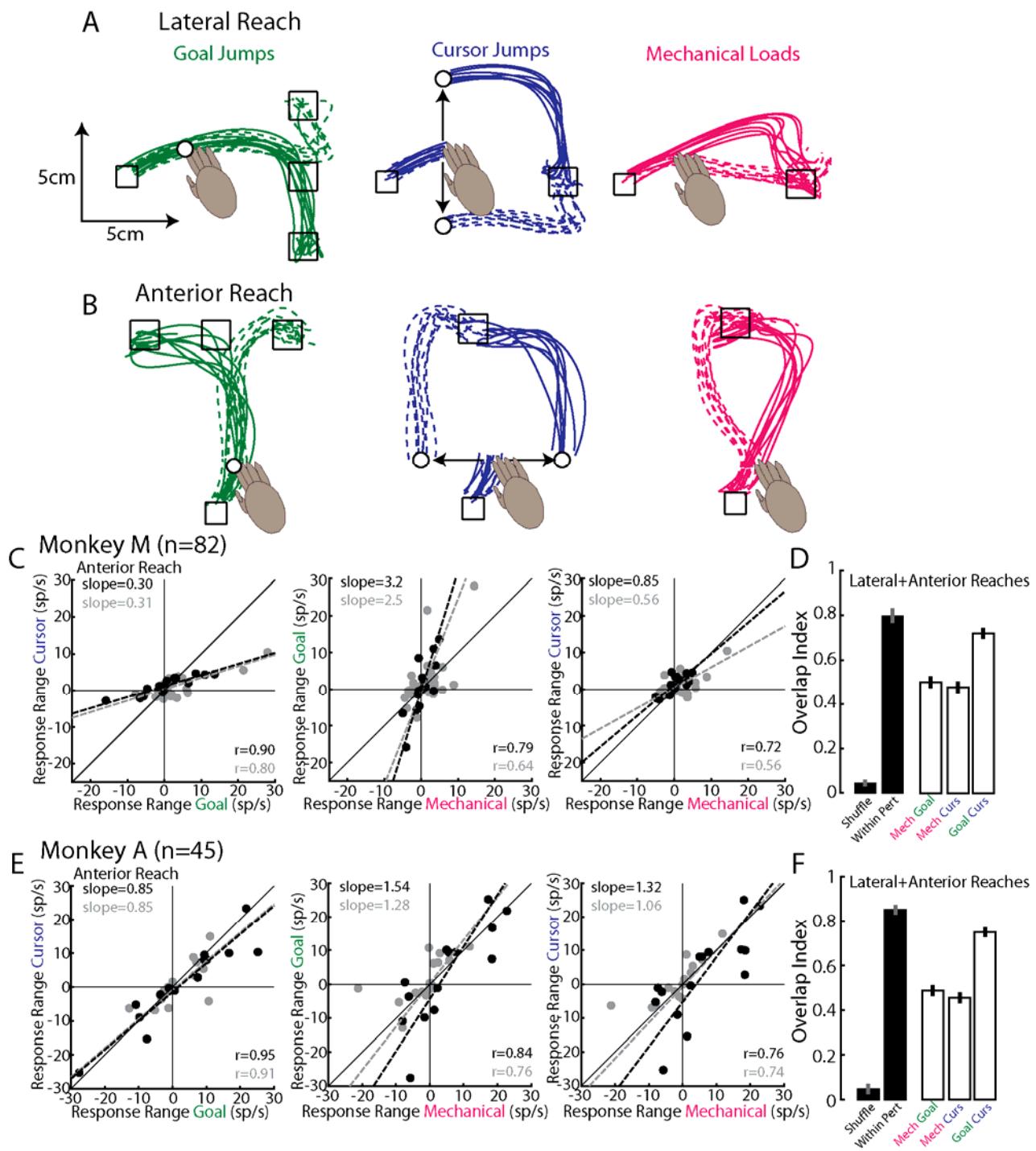
Supplementary Figure 4

1056



Supplementary Figure 5

1057



Supplementary Figure 6