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Summary  33 

 An important aspect of motor function is our ability to rapidly generate goal-directed 34 

corrections for disturbances to the limb or behavioural goal. Primary motor cortex (M1) is a key region 35 

involved in feedback processing, yet we know little about how different sources of feedback are 36 

processed by M1. We examined feedback-related activity in M1 to compare how different sources 37 

(visual versus proprioceptive) and types of information (limb versus goal) are represented. We found 38 

sensory feedback had a broad influence on M1 activity with ~73% of neurons responding to at least 39 

one of the feedback sources.  Information was also organized such that limb and goal feedback targeted 40 

the same neurons and evoked similar responses at the single-neuron and population levels indicating a 41 

strong convergence of feedback sources in M1.  42 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Introduction 43 

 Sensory feedback plays a critical role in ensuring motor actions are successfully performed, 44 

providing information about motor errors due to external disturbances and internal noise inherent in the 45 

sensory and motor systems. Feedback is also essential for generating overt corrections such as when 46 

someone bumps your arm while moving, or when the behavioural goal unexpectedly moves such as a 47 

glass tipping over when the table is bumped. While vision plays a dominant role for identifying most 48 

behavioural goals, both vision and proprioception are available for feedback about the limb.  49 

Performing most motor actions thus requires combining visual feedback of the goal with feedback of 50 

the limb from proprioception and vision. 51 

Primary motor cortex (M1) plays an important role in generating goal-directed corrections 52 

during motor actions. M1 receives rich sensory inputs from many brain regions involved in 53 

proprioceptive and visual processing including the parietal and frontal cortices (Jones et al., 1978; 54 

Zarzecki and Strick, 1978; Crammond and Kalaska, 1989; Porter and Lemon, 1993; Buneo et al., 2002; 55 

Pesaran et al., 2006; McGuire and Sabes, 2011; Bremner and Andersen, 2012; Dea et al., 2016; Omrani 56 

et al., 2016; Gamberini et al., 2017; Piserchia et al., 2017; Kalidindi et al., 2020; Takei et al., 2021), as 57 

well as input from cerebellum (Conrad et al., 1975; Vilis et al., 1976; Strick, 1983; Guo et al., 2020; 58 

Sauerbrei et al., 2020). M1 rapidly responds to proprioceptive feedback of the limb within ~20-40ms of 59 

an applied mechanical load (Evarts and Tanji, 1976; Wolpaw, 1980; Lemon, 1981a; Suminski et al., 60 

2009; Pruszynski et al., 2011, 2014; Omrani et al., 2014; Heming et al., 2019) and to visual feedback of 61 

the limb and goal within ~70ms (Georgopoulos et al., 1983; Cisek and Kalaska, 2005; Ames et al., 62 

2014; Stavisky et al., 2017).  Thus, M1 receives both visual and proprioceptive feedback, but we know 63 

little about how these different sources of sensory information are organized in M1 during motor 64 

actions. 65 

On one extreme, all three feedback sources could target a similar population of neurons 66 

(convergence hypothesis).  This hypothesis is consistent with the assumption that the motor system 67 

computes a difference vector between the visual location of the goal and an estimate of hand position, 68 

which is then used to calculate motor commands (Bullock et al., 1998; Sober and Sabes, 2003; 69 

Shadmehr and Wise, 2005; Burns and Blohm, 2010). This difference vector is commonly assumed to 70 

be computed upstream in premotor and/or posterior parietal cortices (Buneo et al., 2002; Pesaran et al., 71 

2006; McGuire and Sabes, 2011; Bremner and Andersen, 2012; Piserchia et al., 2017). Consistent with 72 

this hypothesis are studies showing how corrective responses for sensory feedback of the limb can 73 

depend on properties of the goal including its location (Brenner and Smeets, 2003; Mutha et al., 2008; 74 
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Pruszynski et al., 2008; Yang et al., 2011; Dimitriou et al., 2013; Cluff and Scott, 2015). Visual 75 

feedback about the limb can also affect how participants correct for proprioceptive errors (Wei and 76 

Körding, 2008; Ito and Gomi, 2020). If a difference vector is computed upstream and transmitted to 77 

M1 during movement, the prediction is that a common group of neurons in M1 should rapidly respond 78 

to mechanical and visual disturbances of the limb as well as visual disturbances of the goal.  79 

Alternatively, each feedback source may influence M1 independently (independence 80 

hypothesis).  The motor system rapidly responds to proprioceptive (~20-60ms) and visual (90-120ms) 81 

feedback, which may not allow the brain sufficient time to perform the necessary computations needed 82 

to integrate feedback sources.  Behavioural studies suggest that the motor system may have 83 

independent representations of the limb and goal (Brenner and Smeets, 2003; Franklin et al., 2016) as 84 

well as independent representations for visual and proprioceptive feedback of the limb (Krakauer et al., 85 

1999; Shadmehr and Krakauer, 2008; Oostwoud Wijdenes and Medendorp, 2017).  M1 receives inputs 86 

from many brain areas including primary somatosensory cortex (S1; Jones et al., 1978; Dea et al., 87 

2016), an area that is primarily involved with processing proprioceptive and cutaneous feedback. The 88 

prediction for this hypothesis is that each feedback source will influence an independent set of neurons 89 

in M1.  90 

Here, we explored these two hypotheses by training monkeys to make goal-directed reaches 91 

while disturbances to the limb and goal were applied. Our results demonstrate that proprioceptive 92 

feedback of the limb and visual feedback of the limb and the goal influence similar groups of neurons 93 

in M1.  As well, M1 activity patterns generated by each feedback source were quite similar at the 94 

single-neuron and population levels. Collectively, our results demonstrate visual and proprioceptive 95 

feedback are highly organized in M1, consistent with the convergence hypothesis. 96 

 97 
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Results 98 

 99 

Behaviour, neural and muscle activities are similar with and without visual feedback of hand position 100 

 We trained monkeys to reach to a goal and on random trials applied perturbations to either the 101 

goal or limb during the movement (Figure 1A). For two perturbations, they involved either a jump to 102 

the visual feedback of the goal or visual feedback of the limb (white cursor; Figure 1B, C). We also 103 

probed proprioceptive feedback of the limb by applying a mechanical load that physically displaced the 104 

limb (Figure 1D).  To isolate the proprioceptive feedback response only, we transiently removed visual 105 

feedback of the hand (white cursor, removed for 200ms) at the time of the mechanical load. In order to 106 

verify this transient removal of vision had minimal impact on performance, we compared unperturbed 107 

trials where cursor feedback was provided for the entire trial (cursor-on trials) with trials where cursor 108 

feedback was transiently removed (200ms, cursor-off trials; Figure 1A). We found cursor-on and 109 

cursor-off trials had similar movement times (Figure 1E, S1A, E), but that there was an ~33% increase 110 

for cursor-off trials in the endpoint distance (distance the reach endpoint was from the goal; Figure 111 

S1C, G).  Neural activity in M1 was also highly similar between cursor-on and cursor-off trials (Figure 112 

2A) with activity magnitudes that were strongly correlated across neurons (Figure S2, S3A-D r>0.90) 113 

and had regression slopes near unity.  Only ~5% of neurons displayed significantly different activities 114 

between the trial types (black circles; two-sample t-test, p<0.01). Muscle activity was highly similar 115 

between cursor-on and cursor off-trials (Figure 2A, bottom row) with activity magnitudes that were 116 

highly correlated across muscle samples (Figure S3E, F) and with regression slopes near unity.  Only 117 

6% of muscle samples displayed significantly different activities for cursor-off and cursor-on trials. 118 

Thus, transient removal of visual feedback of the limb had minimal impact on motor performance 119 

during reaching and the corresponding M1 and muscle activities. 120 

 121 

Monkeys rapidly counteract perturbations to the limb and goal 122 

 Next, we examined corrections for the different perturbation types (goal jumps, cursor jumps, 123 

and mechanical loads).  Each perturbation type required corrections that moved the limb either towards 124 

the body (Figure 1B-D solid lines) or away from the body (dashed lines). Monkeys were able to 125 

quickly initiate a correction to each perturbation type within <200ms of the perturbation (Figure 1F-H).  126 

Perturbations resulted in longer movement times (24-138% increase Figure S1B, F) and greater 127 

endpoint distance (13-119% increase Figure S1D, H) than the unperturbed reaches. 128 
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 Many neurons displayed robust responses following mechanical and visual perturbations with 129 

four example neurons shown in Figure 2B-D.  The first neuron (Figure 2B, top row, Md3n41) displayed 130 

a reciprocal response for goal jumps within 100ms of the jump onset with an increase (solid) and 131 

decrease (dashed) in activities for corrective movements towards and away from the body, respectively. 132 

These changes in activity plateaued within 150ms of the jump onset and remained relatively constant 133 

over the next 150ms.  However, the plateau for the inhibition response may reflect that the activity of 134 

the neuron was approaching 0sp/s (see Figure 2A top row). This neuron displayed a similar pattern of 135 

responses for cursor jumps (Figure 2C, top row) and mechanical loads (Figure 2D, top row). Neuron 2 136 

(second row, Ad3n4) displayed similar excitations for corrections away from the body across the 137 

different perturbation types. Neuron 3 (third row, Md4n9) displayed a similar pattern of responses 138 

across the two visual perturbations with an increase and decrease in activities for the corrective 139 

movements away from and towards the body, respectively. This neuron had similar selectivity for the 140 

mechanical loads, however, its responses were noticeably smaller.  In contrast, neuron 4 (fourth row, 141 

Ad3n24) exhibited considerably larger activity for the mechanical loads than either cursor jump or goal 142 

jump while still maintaining the same selectivity across perturbation types.  143 

 144 

Each perturbation type targets similar neurons in M1 145 

Our objective is to identify whether each feedback source targeted independent groups of 146 

neurons in M1. We classified neurons that had a significant response to each perturbation type by 147 

applying a three-way ANOVA with time epoch (two levels: baseline=100ms before perturbation onset, 148 

perturbation=0-300ms after perturbation onset), perturbation type (three levels: mechanical, cursor, 149 

goal) and perturbation direction (two levels: towards and away from the body) as factors. For Monkeys 150 

M|A, we found 71|76% (n=122|65) of neurons had a significant main or interaction effect(s) with time 151 

(p<0.0125), which we labeled as perturbation-responsive neurons. We identified neurons that were 152 

responsive to a particular perturbation type by using a two-way ANOVA with time and perturbation 153 

direction as factors. Similar percentages of neurons were responsive for goal jumps (55|54%, n=94|51), 154 

cursor jumps (44|60% n=75|51) and mechanical loads (55|60% n=94|46). These neurons received 155 

sensory feedback rapidly as the onset of perturbation-related activity at the population level occurred 156 

within <100ms with responses to the mechanical loads arising earlier (Monkey M|A: 43|57ms) than for 157 

either visual jump (goal=78|74ms, cursor=83|82ms; Figure 3A, C).  Similar results were found when 158 

examining individual onsets (Figure 3B, D) and a one-way ANOVA with onset type as a factor (3 159 

levels: mechanical, goal and cursor) revealed a significant main effect (Monkey M: F(2,295)=12.6, 160 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

p<0.001, Monkey A: F(2,168)=10.3, p<0.001).  Post-hoc tests confirmed that onsets for the 161 

mechanical-related activity started earlier (Monkey M|A mean 119|106ms) than either visual 162 

perturbation (goal 140|143ms p=0.01|p=0.002, cursor 159|155ms p<0.001|p<0.001). Onset differences 163 

between the two visual perturbations were not significant (p=0.05|p=0.49). 164 

From the percentages of neurons that responded to each perturbation type we estimated the 165 

number of neurons expected to respond to zero, one, two and three perturbation types assuming 166 

responses were independently assigned (expected distribution). Perturbation responses were 167 

significantly more overlapped than the expected distribution (Monkey M|A: χ2 =113.9|68.1, df=4, 168 

p<0.001|<0.001).  In Monkey M|A, 15|13% (n=26|11) of neurons responded to only one perturbation 169 

type, which was 2.4|2.4 times smaller than the expected distribution (Figure 4A, C). In contrast, 170 

28|36% (49|31) of neurons responded to all three perturbation types (common neurons), which was 171 

2.6|3.4 times greater than the expected distribution. 172 

Thus, there was substantial overlap between groups of neurons responsive to each feedback 173 

source. However, this finding may reflect a strong overlap between just two of the perturbation types or 174 

it could reflect an overlap among all three perturbation types. We repeated the analysis across pairs of 175 

perturbation types (Figure 4B, D).  Consistently, the number of neurons that responded to both 176 

perturbation types was 1.3-1.5 times greater than the expected distribution. In contrast, the number of 177 

neurons that responded to only one perturbation type was 1.5-3.4 times smaller than the expected 178 

distribution.  Significant differences between the observed and expected distribution of neurons were 179 

found across all perturbation pairs (χ
2 test, p<0.01). Collectively, these results indicate that each 180 

perturbation type influenced an overlapping set of neurons in M1. 181 

 182 

Neurons maintain their response ranges across perturbation types 183 

A different way that each feedback source could independently influence M1 is by driving 184 

distinct activity patterns in the same neuron population.  For example, a neuron may be strongly driven 185 

by one perturbation type but only weakly driven by a different perturbation type. At the extreme, 186 

neurons may even change their selectivity (i.e. tuning) for the loads: increase activity for the correction 187 

towards the body for one perturbation type but decrease activity for the same correction for a different 188 

perturbation type.   189 

We explored this by examining the response range, which was calculated by taking the 190 

difference between activities for the two opposite perturbation directions (e.g. Figure 2B dashed 191 

subtracted from solid) and averaging the difference over the perturbation epoch.  Neurons with greater 192 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

responses for the corrections away from or towards the body will have positive or negative response 193 

ranges, respectively. Figure 5A and D compares the response ranges for goal- (abscissa) and cursor-194 

related (ordinate) activities. Neurons responsive to all three perturbation types (black circles) resided 195 

near the unity line (solid line) and were highly correlated across the population (Monkey M|A: 196 

correlation coefficient r=0.90|0.97, p<0.001 for both). The axes that captured the largest amount of 197 

variance (dashed black lines, total least squares regression) had a slope slightly less than unity 198 

(0.84|0.86) indicating that the responses for the cursor jumps were ~15% smaller than the goal jumps 199 

(shuffle control p=0.002|p<0.001). We found significant but noticeably weaker correlations when 200 

comparing the response ranges between the mechanical-related activities (abscissa) and activities 201 

related to either visual perturbation (ordinate; Figure 5B-C, E-F; mechanical with goal r=0.85|0.86, 202 

mechanical with cursor r=0.75|0.86, p<0.001 for all). The slope was less than unity (mechanical with 203 

goal slope=0.86|0.85, mechanical with cursor slope=0.68|0.72) indicating that the responses for the 204 

visual perturbations were ~22% smaller than for the mechanical loads.  Inclusion of all perturbation-205 

responsive neurons yielded similar results (Figure 5 grey circles).   206 

From the response ranges, we could determine if neurons maintained their selectivity for 207 

corrective movements across perturbation types. These neurons resided in the first and third quadrants 208 

of Figure 5 and we found a large majority of neurons maintained their selectivity across all three 209 

perturbation types (neurons responsive to all three perturbation types: Monkey M|A 82|87%; all 210 

perturbation-responsive neurons: 70|72%).  Collectively, these results indicate that each feedback 211 

source had similar influences on individual M1 neuron responses. 212 

Next, we compared the size of the perturbation-related activity relative to the movement-related 213 

activity during unperturbed reaching (Figure 2, S4A).  Figure S4B compares the magnitude of the 214 

movement-related activity during unperturbed reaching (aligned to movement onset: movement epoch -215 

50 to 250ms after movement onset) with the magnitude of the response range for perturbed reaches.  216 

We found approximately equal number of neurons had either larger perturbation-related activities or 217 

movement-related activities (Figure S4B, C).  Thus, the perturbation-related activity was comparable in 218 

magnitude to the activity required to generate the initial reaching movement. 219 

   220 

Overlap between mechanical- and visual-related M1 activity patterns at the population level 221 

Our results so far demonstrate that each feedback source targets a largely overlapping 222 

population of M1 neurons and that individual neuron responses are generally similar across feedback 223 

sources.  However, recent studies have demonstrated that the same neuron population can represent 224 
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different types of information independently by sequestering the information into orthogonal subspaces 225 

(Kobak et al., 2016; Ames and Churchland, 2019; Heming et al., 2019; Keemink and Machens, 2019; 226 

Cross et al., 2020).  For example, neurons in M1 have similar tuning for reach direction during 227 

preparation and execution (Crammond and Kalaska, 2000).  However, these activity patterns reside in 228 

orthogonal subspaces (Kaufman et al., 2014; Elsayed et al., 2016). Thus, for the independent-input 229 

hypothesis each perturbation type may evoke an activity pattern that resides in an orthogonal subspace 230 

with respect to the other two perturbation types.   231 

We explored this hypothesis by using principal component analysis (PCA) to identify the low-232 

dimensional subspace each perturbation-related activity resided in. We used a cross-validated approach 233 

to prevent overestimating differences between subspaces due to sampling noise.  The top-ten principal 234 

components captured 81-90% of the variance for the data used to train the principal components (open 235 

circles Figure 6A-C, E-G).  Figure 6A, E shows the variance captured by the top-ten principal 236 

components generated from the goal-related activity. These components captured a substantial amount 237 

of the goal-related variance from the left-out trials (variance accounted for: Monkey M|A =55|73%) and 238 

the cursor-related variance (44|65%).  These components also captured a substantial amount of the 239 

mechanical-related variance (36|43%), though noticeably smaller than either visual perturbation.  240 

Similarly, Figure 6B and F shows the variance captured by the top-ten cursor principal components.  241 

These components captured more cursor-related (49|69%) and goal-related (44|66%) variance than 242 

mechanical-related variance (30|45%).  Lastly, Figure 6C, G shows the variance captured by the top-ten 243 

mechanical principal components.  These components captured more mechanical-related variance 244 

(59|74%) than variance for either visual perturbation (goal 35|40%, cursor 32|40%). 245 

 Another approach to quantify the similarity in the population structure between feedback 246 

sources is by calculating the overlap index (Rouse and Schieber, 2018).  The overlap index ranges from 247 

0, indicating no overlap between subspaces (i.e. orthogonal), to 1 indicating perfect overlap.  For 248 

comparison, we generated a null distribution that compared how overlapping two subspaces were after 249 

randomly shuffling neuron labels (Shuffle).  We also generated a null distribution that quantified the 250 

maximum overlap expected given sampling noise by calculating the overlap between two independent 251 

samples from the same perturbation type (within-perturbation distribution).  The overlap between goal- 252 

and cursor-related activities was large (Monkey M|A=0.63|0.82; Figure 6D, H) and was close to the 253 

within-perturbation distribution (0.73|0.89), though it was still significantly smaller (p=0.03|0.01).  The 254 

overlap between the mechanical-related and visual-related activities were smaller than the within 255 

perturbation distribution (mechanical with goal = 0.42|0.47; mechanical with cursor = 0.36|0.46; 256 
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within-perturbation p<0.001 for all), however they were still significantly greater than the shuffled 257 

distribution (p<0.001).  Collectively, these results indicate each perturbation type evoked similar 258 

population-level structure. 259 

 260 

Overlap across perturbation types emerges rapidly with perturbation-related activity 261 

 Next, we examined how the overlap evolved over time between the different perturbation types. 262 

One possibility is that each feedback source is initially represented independently by the motor system 263 

before being gradually integrated (Franklin et al., 2016; Oostwoud Wijdenes and Medendorp, 2017).  264 

Thus, the prediction is that the overlap between perturbation types should gradually emerge. We 265 

calculated the overlap index every 20ms over the perturbation epoch (Figure S5A-F).  We found the 266 

overlap index between the goal- and cursor-related M1 activities emerged within ~100ms (Figure S5A, 267 

D, black line) post-perturbation and was comparable to the within-perturbation distributions of the 268 

goal-related (green line) and cursor-related activities (blue line).  Further, the overlap between the 269 

mechanical- and visual-related M1 activities emerged within ~100ms of the perturbation onset (Figure 270 

S5B-C, E-F).  Note, that the increase in the overlap index proceeded the within-perturbation onset for 271 

the mechanical loads (red line) reflecting that M1 responds earlier for mechanical loads than visual 272 

jumps (Figure 3A, C). Interestingly, there was a small delay in the overlap between the mechanical and 273 

visual perturbations for Monkey A (Figure S5E, F) which may reflect a small-time window of 274 

integration. Similar trends were found in the muscle activity (Figure S5G-I).  Thus, the overlap 275 

between perturbation types emerged rapidly in the network. 276 

 277 

Muscle activity exhibits similar overlap between perturbation types as M1 activity 278 

 Next, we examined the change in muscle activity in response to the different perturbation types.  279 

We found a significant change in muscle activity (Figure 2B-D bottom row) in 81% (n=13), 88% (14) 280 

and 100% (16) of muscle samples for the goal jumps, cursor jumps and mechanical loads, respectively.  281 

There was a strong correlation between response ranges for the goal- and cursor-related activities 282 

(r=0.83, p<0.001, Figure 5G) and the slope was less than unity (slope=0.68) indicating responses for 283 

the cursor jump were 32% smaller than for the goal jump.  We also found strong correlations between 284 

the mechanical-related response ranges and the response ranges for either type of visual disturbance 285 

(Figure 5H-I; mechanical with goal r=0.87, mechanical with cursor r=0.89, p<0.001 for both). 286 

However, we found the slopes were considerably smaller than unity (mechanical with goal: 0.39; 287 

mechanical with cursor: 0.29) indicating that muscle activity for the visual perturbations were ~66% 288 
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smaller than for the mechanical loads.  As expected, almost all (except one) of the muscle recordings 289 

maintained their selectivity across all perturbation types.  290 

Figure 6I shows the top-ten goal principal components for muscle activity.  Unlike neural 291 

activity, these ten components captured nearly all of the variance for the goal jump, cursor jump and 292 

mechanical loads.  This is due to the smaller number of muscles recorded as the entire space of muscle 293 

patterns occupies a maximum of 16 dimensions. In contrast, neural activity can occupy 172 and 85 294 

dimensions for Monkeys M and A, respectively.  We mitigated this problem by restricting our 295 

observations to the top-three components as three components captured a similar amount of variance 296 

from the training data (range: 82-84%) as the ten components captured for the neural activity (82-90%).  297 

We found the top-three goal principal components captured a substantial amount of the goal- (76%) and 298 

cursor-related (74%) muscle variance but captured slightly less of the mechanical-related variance 299 

(68%). Similarly, the top-three cursor principal components captured a substantial amount of the 300 

cursor- (77% Figure 6J) and goal-related (73%) muscle variance but captured less of the mechanical-301 

related variance (61%). Lastly, the top-three mechanical principal components captured a substantial 302 

amount of the mechanical-related muscle variance (84% Figure 6K) but captured less of the muscle 303 

variance for either visual perturbation (goal 59%, cursor 58%).   304 

We computed the overlap index between muscle responses and found results that were similar 305 

to M1 activity (Figure 6L).  There was a high overlap between the goal and cursor-related activities 306 

(0.82) that was comparable to the within-perturbation distribution (0.93), though still significantly 307 

smaller (p=0.02).  We also found a partial overlap between the mechanical-related activity and the 308 

visual-related activities (mechanical and goal 0.65, mechanical and cursor 0.62), which were 309 

significantly greater than the shuffle distribution (overlap=0.13, p<0.001). Collectively, these analyses 310 

indicate that different patterns of muscle activity were needed to correct for each perturbation type 311 

which could explain the partial overlap observed between the mechanical- and visual-related M1 312 

activities. 313 

 314 

Overlap is still present when examining other movement directions 315 

One concern is whether we adequately characterized M1’s responses to each perturbation type 316 

as we sampled from only two perturbation directions. This seems unlikely as previous work has shown 317 

that a greater proportion of M1 neurons respond maximally to perturbations that involve either 318 

combined shoulder flexion and elbow extension (whole-arm extension for corrections away from body) 319 

or combined shoulder extension and elbow flexion (whole-arm flexion for corrections towards the 320 
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body; Cabel et al., 2001; Scott et al., 2001; Kurtzer et al., 2006; Lillicrap and Scott, 2013). Nonetheless, 321 

we verified that sampling from more perturbation directions yielded virtually the same overlap. 322 

Monkeys completed separate blocks of the same lateral reach (Figure S6A) and also blocks of a sagittal 323 

reach starting from near the body and reaching to a distant goal (Figure S6B).  For the sagittal reach, 324 

the perturbations required a corrective movement that either flexed the shoulder and elbow joints 325 

(Figure S6B solid lines) or extended the shoulder and elbow joints (dashed lines).  The perturbations 326 

for the lateral and sagittal reaches yielded four perturbation directions for each perturbation type.  We 327 

found response ranges were correlated between perturbation types with the strongest correlation 328 

between goal jumps and cursor jumps (Figure S6C, E, response range for sagittal reach shown only, 329 

Monkey M|A n=82|45).  For the sagittal reach, activity related to goal jumps tended to be larger than 330 

activity related to cursor jumps or mechanical loads.  Critically, we found the overlap between goal- 331 

and cursor-related activities was substantial (Monkey M|A=0.72|0.75, Figure S6D, F) and was close to 332 

the within-perturbation distribution (0.80|0.85), though it was still significantly smaller 333 

(p=0.01|<0.001).  The overlap between the mechanical-related activity with either visual-related 334 

activity was smaller than the within-perturbation distribution (mechanical with goal = 0.50|0.49; 335 

mechanical with cursor = 0.48|0.45; within-perturbation p<0.001 for all). However, it was still 336 

significantly greater than the shuffled distribution (p<0.001). 337 

 338 

M1 is ~3 times more sensitive to proprioceptive than visual feedback 339 

 So far, we have compared visual perturbations that instantaneously jump the position of the goal 340 

or cursor, with mechanical perturbations that gradually displaced the limb over 100-200ms (Figure 1H).  341 

While cursor and target jumps are standard experimental techniques to assess visual feedback 342 

(Georgopoulos et al., 1983; Dimitriou et al., 2013; Ames et al., 2014; Franklin et al., 2016; Stavisky et 343 

al., 2017), the different spatial and temporal characteristics of these perturbations make it difficult to 344 

directly compare M1’s sensitivity to proprioceptive and visual feedback errors. For a direct 345 

comparison, we compared M1’s sensitivity to the mechanical loads with cursor perturbations that slid 346 

along a pre-specified trajectory (cursor slide Figure 7A-B). The cursor’s trajectory on cursor-slide trials 347 

was highly similar to the limb’s trajectory following a mechanical load for the first 200ms with an 348 

average goodness of fit (R2) of 0.95 and 0.93 for Monkeys M and A, respectively (Figure 7C). We 349 

found movement times for the mechanical loads were significantly shorter than for cursor slides 350 

(Figure 7D; Mann-Whitney U test, Monkey M: U=14649, n=230, p<0.001, Monkey A: U=2454, n=98, 351 

p<0.001).   352 
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We included cursor-jump trials to identify neurons that were sensitive to visual stimuli 353 

(kinematics not shown).  Note, we only used cursor perturbations to limit the number of trials as cursor 354 

and goal jumps evoked highly similar activity patterns and only differed in magnitude by ~15% (Figure 355 

5A, D).  We recorded from 60 and 68 neurons from Monkey M and A, respectively.  We found 57|57% 356 

(n=34|39) and 43|60% (26|41) responded to the mechanical loads and cursor jumps, respectively, and 357 

40|44% (24|30) responded to both perturbations.  We found the cursor slide evoked a more gradual 358 

response in M1 as compared to the mechanical load or a cursor jump (Figure 7E, H).  Response ranges 359 

indicated that activity related to the cursor slide was ~65% smaller than activity related to the 360 

mechanical loads (Figure 7F, I), whereas activity related to the cursor jump was 21% smaller than 361 

activity related to the mechanical loads (Figure 7G, J).  Muscle activity in response to the cursor slide 362 

also gradually accumulated (Figure 7K).  Cursor-slide muscle activity was 85% smaller than activity 363 

related to the mechanical loads (Figure 7L), whereas cursor-jump muscle activity was 64% smaller 364 

(Figure 7M).  Collectively, these results suggest M1 and muscle display 2.9- and 6.6-times greater 365 

activities, respectively, for deviations of the hand generated by a mechanical disturbance as compared 366 

to a similar-sized visual disturbance.  367 
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Discussion 368 

We explored how visual and proprioceptive information related to the limb and goal are 369 

represented in M1. We found many neurons in M1 responded to sensory feedback about the limb and 370 

goal. Importantly, these different feedback sources were organized in M1 such that they largely targeted 371 

the same neurons and generated the same population-level structure.  372 

Vision and proprioception had rapid and potent influences on M1 processing. We found a small 373 

majority of neurons responded to proprioceptive (58%) feedback consistent with previous studies 374 

(Rosén and Asanuma, 1972; Conrad et al., 1975; Lemon et al., 1976; Wong et al., 1978; Fetz et al., 375 

1980; Lemon, 1981b; Fromm et al., 1984; Hummelsheim et al., 1988; Bauswein et al., 1991).  We also 376 

found a similar percentage of neurons that responded to visual feedback of the limb (52%) and goal 377 

(55%).  Both visual and mechanical disturbances required corrective responses of about 3-4cm and the 378 

corresponding activity in M1 was comparable in size to the activity that initiated the 8-10 cm reach. 379 

Proprioceptive feedback influenced M1 activity within ~50ms of a disturbance, whereas visual 380 

feedback influenced M1 activity within ~80ms of a disturbance.  The longer delay for vision is partly 381 

due to processing time of the retina as the lateral geniculate nucleus, an area immediately downstream 382 

of the retina, responds to visual input within ~20-30ms (Maunsell et al., 1999). In contrast, muscle 383 

spindles respond to a muscle stretch within ~3ms (Schäfer et al., 1999) and the conduction delay to 384 

first-order thalamic nuclei are approximately 6ms  (Lemon and van der Burg, 1979). Thus, sensory 385 

feedback has a potent influence on M1 processing when responding to external disturbances and it is 386 

likely that sensory errors generated during natural reaching also have a potent influence (Crevecoeur et 387 

al., 2012; Crevecoeur and Kurtzer, 2018; Takei et al., 2018). 388 

Interestingly, the timing for proprioceptive feedback was noticeably longer than previous 389 

studies that demonstrate M1 responds within ~20ms of a mechanical load (Evarts and Tanji, 1976; 390 

Wolpaw, 1980; Fromm et al., 1984; Boudreau and Smith, 2001; Pruszynski et al., 2014; Omrani et al., 391 

2016).  This may reflect task differences as previous studies have applied loads during posture, whereas 392 

the present study applied loads during reaching. Alternatively, the present study recorded M1 neurons 393 

using floating micro-electrode arrays and sampled only neurons on the gyrus of M1 (rostral M1). In 394 

contrast, previous studies including our own studies recorded M1 neurons using single electrodes that 395 

sampled neurons from the gyrus as well as the most caudal portion of M1 residing in the central sulcus. 396 

Previous work suggest that there are gradients along the rostral-caudal axis of M1 for anatomical and 397 

physiological features (Crammond and Kalaska, 1996, 2000; Cisek et al., 2003; Rathelot and Strick, 398 
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2009; Witham et al., 2016).  Thus, faster timing may reside in neurons sampled from the caudal 399 

subdivision of M1. 400 

Importantly, our results support the convergence hypothesis for how M1 responds to different 401 

sources of sensory feedback.  First, each feedback source targeted a highly overlapping population of 402 

neurons. Second, neurons maintained their selectivity and response range for corrections across the 403 

different perturbation types. Lastly, we found a strong similarity in the population structure as principal 404 

components trained on one perturbation type captured a substantial amount of variance for the other 405 

perturbation types. The high similarity in the population structure emerged near the time when 406 

perturbation-related activity emerged suggesting that these feedback sources converged rapidly in the 407 

network.  Thus, sensory feedback about the limb and goal converge onto the same circuit in M1 and 408 

give rise to similar population-level structure. 409 

The high convergence of sensory feedback suggests that areas upstream of M1 are responsible 410 

for combining these information sources. Frontal and parietal cortices are likely involved with state 411 

estimation where proprioceptive and visual feedback are integrated into a common limb estimate 412 

(Desmurget and Grafton, 2000; Shadmehr and Krakauer, 2008; Scott, 2012; Takei et al., 2021).  These 413 

areas receive proprioceptive and visual feedback with subpopulations of neurons that are responsive to 414 

both sensory modalities (Rizzolatti et al., 1981a, 1981b; Snyder et al., 1998; Bakola et al., 2010; 415 

Omrani et al., 2016; Gamberini et al., 2017). Several neurophysiological investigations have also 416 

indicated that these same areas are involved with generating a movement vector by combining limb and 417 

goal feedback (Snyder et al., 1998; Buneo et al., 2002; Pesaran et al., 2006; McGuire and Sabes, 2011; 418 

Bremner and Andersen, 2012; Piserchia et al., 2017). While this movement vector is commonly 419 

assumed to reflect a spatial representation, it may reflect a more complex neural space including 420 

information related to arm geometry (Scott et al., 1997).   421 

Consistent with upstream state estimation is that M1 activity was largely unaffected by the 422 

transient removal of cursor feedback. Other groups also found that the motor system was insensitive to 423 

the removal of cursor feedback, but interpreted this as evidence that reaching involves a ballistic phase 424 

where feedforward motor commands transport the limb towards the goal with little influence from 425 

sensory feedback (Woodworth, 1899; Meyer et al., 1988; Suway and Schwartz, 2019).  However, our 426 

perturbations show that M1 is still highly sensitive to proprioceptive and visual feedback inconsistent 427 

with this ballistic interpretation.  The insensitivity to cursor visibility likely reflects that the motor 428 

system also uses internal and proprioceptive feedback to compensate for missing visual information 429 

consistent with multi-sensory state estimation (Crevecoeur et al., 2016). This compensation strategy is 430 
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likely necessary as shifts in the gaze position and blinks can disrupt the visibility of the hand during 431 

motor actions.  Further, we found a small increase in the distance the reach endpoint was from the goal 432 

when cursor feedback was removed suggesting only a partial compensation by these alternative 433 

feedback sources.  434 

Although convergence upstream of M1 is likely, there are two reasons why convergence may 435 

also arise from local processing in M1.  First, a difference vector by definition is a relative metric about 436 

how far the limb is from the goal and thus cannot update M1 about the current limb configuration.  437 

Information about the limb configuration is necessary for control to account for state-dependent 438 

properties of the limb (e.g. intersegmental dynamics Hollerbach and Flash, 1982; Sober and Sabes, 439 

2003; Kurtzer et al., 2008; Pruszynski et al., 2011). Second, M1 receives direct and substantial inputs 440 

from S1 and the interpositus nuclei of the cerebellum, areas which are likely involved with state 441 

estimation and exhibit activity patterns independent of the goal (Vilis et al., 1976; Strick, 1983; Omrani 442 

et al., 2016). Local convergence of sensory feedback may arise in M1 by initial processing in layers 2/3 443 

as these layers rapidly respond to proprioceptive and visual feedback (Lemon, 1981a; Chandrasekaran 444 

et al., 2017; Heindorf et al., 2018).  Alternatively, convergence may arise from integration by the 445 

dendrites of layer 5 M1 neurons.  Further studies are required to understand how sensory feedback 446 

signals are combined in frontoparietal circuits including M1. 447 

Our results also highlight differences between corrections for mechanical and visual 448 

perturbations at the muscle and M1 levels that provide potential insight about the relative contribution 449 

of M1 in feedback processing. M1 and muscle activities were larger for the mechanical loads than 450 

sliding cursor perturbations that followed a similar kinematic trajectory. This difference in magnitude 451 

may reflect a combination of two factors. First, the motor system may only use visual feedback to 452 

update internal estimates of the kinematic variables and thus corrections are generated to counter the 453 

kinematic error only. In contrast, proprioceptive feedback may be used to update estimates of kinematic 454 

and dynamic variables including the external load and thus corrections are generated to counter both 455 

the kinematic error and the external load. Second, a sliding cursor perturbation introduces a conflict 456 

between visual and proprioceptive feedback which may have attenuated the accompanying corrective 457 

response. Multi-sensory integration theories suggest the motor system should weight proprioceptive 458 

and visual feedback to form a common limb estimate with a recent study suggesting proprioceptive 459 

feedback should be weighted more given its shorter delays compared to vision (Crevecoeur et al., 460 

2016).  In contrast, we removed cursor feedback on mechanical load trials and thus there was no 461 
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conflict between vision and proprioception.  Further studies are needed to probe what state variables 462 

are updated by each sensory modality and the integration rules used by the motor system. 463 

There was also a noticeable difference in the relative magnitudes for visual and mechanical 464 

perturbations between M1 and muscle activities.  Muscle activity was 6 times larger for the mechanical 465 

loads than cursor slides, whereas M1 activity was only 3 times larger for mechanical loads than cursor 466 

slides.  This suggests that M1 only contributes ~50% of the total motor output for mechanical loads 467 

with the remaining output likely generated by subcortical circuits including brainstem and spinal cord 468 

(Mewes and Cheney, 1991; Soteropoulos et al., 2012; Herter et al., 2015; Soteropoulos and Baker, 469 

2020). However, this estimate on the cortical contribution to motor corrections has many assumptions. 470 

First, the activity we recorded in rostral M1 is assumed to be representative of descending cortical 471 

control, in general. Further studies are clearly required to verify whether the relative difference is 472 

reflective of regions such as caudal M1 in the bank of the central sulcus where proprioceptive and 473 

cutaneous responses tend to be greater (Porter and Lemon, 1993). Second, it is assumed that neural 474 

responses for visual and mechanical disturbances contribute similarly to descending signals or output-475 

potent spaces (Kaufman et al., 2014; Stavisky et al., 2017).  This assumption seems reasonable as the 476 

population-level structure was largely similar between mechanical and visual perturbations. Finally, it 477 

is likely that we underestimated the subcortical contribution to mechanical loads as the comparison 478 

between mechanical and visual perturbations assumed M1 was the only circuit involved with 479 

generating visual responses. Visual responses may also involve subcortical circuits including the 480 

superior colliculus (Alstermark et al., 1987; Day and Brown, 2001; Pruszynski et al., 2010; Corneil and 481 

Munoz, 2014; Cross et al., 2019; Kozak et al., 2019). While comparisons of the visual and mechanical 482 

responses at the muscle and neural levels provides a potentially important approach to probe cortical 483 

versus subcortical contributions to feedback corrections, further studies are clearly required to address 484 

the assumptions inherent in these estimates. 485 

The presence of feedback processing at cortical and subcortical levels highlight that the motor 486 

system is hierarchically organized with feedback at multiple levels and transcortical feedback through 487 

M1 being the highest level for online continuous control (Porter and Lemon, 1993; Schweighofer et al., 488 

1998; Loeb et al., 1999; Todorov et al., 2005; Liu and Todorov, 2009; Merel et al., 2019). Current 489 

theories inspired by engineering principles have adopted a serial approach focused on the 490 

transformation of information (e.g. cartesian space to joint torques; Kalaska and Crammond, 1992; 491 

Buneo et al., 2002; Todorov et al., 2005) or a modular approach where each level provides a distinct 492 

role (e.g. motor planning by motor cortex, feedback control by subcortical circuits; Kawato et al., 1987; 493 
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Schweighofer et al., 1998; Loeb et al., 1999; Merel et al., 2019). Alternatively, multiple levels may 494 

contribute to generating feedback responses, but without distinct roles captured by engineering 495 

principles. From this perspective, the contribution by M1 would be to provide the extra motor 496 

commands necessary to attain a behavioural goal that is adjusted based on the expected contributions 497 

provided by lower feedback pathways. This could even include a reduction in motor output when 498 

needed to compensate for increased contributions from lower circuits (e.g. gain scaling, Pruszynski et 499 

al., 2009).  Unravelling the relative contributions of different levels of the motor system during 500 

voluntary control remains an important and challenging area of study. 501 
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Methods 502 

 The study involved two monkeys (Macaque mulatta, males, 17-20kgs) and was approved by the 503 

Queen’s University Research Ethics Board and Animal Care Committee.  Monkeys were trained to 504 

place their upper limb in an exoskeleton robot (Kinarm, Kingston Ontario). 505 

Lateral reaching task. Monkeys were trained to make goal-directed reaches while countering 506 

unexpected perturbations to the limb or goal.  At the beginning of a trial, the monkey placed and held 507 

their hand inside a start target (red square, length and width 1.2cm,) for 750-1500ms.  Then, a goal 508 

target (white square, length and width 1.6cm; joint configuration in middle of reach: shoulder 30˚, 509 

elbow 87˚) appeared lateral to the starting position that indicated the spatial location of the goal and 510 

provided the cue to initiate the reach. The reach primarily involved a shoulder and elbow extension 511 

motion and for Monkeys M and A, the goal targets were placed 10cm and 8cm from the start target, 512 

respectively.  Monkeys had 1400ms to reach the goal and maintain their hand inside the goal for 500ms 513 

to receive water reward.  We included trials where visual feedback of the hand (white circular cursor, 514 

diameter 1.6cm) was provided for the entire trial duration and trials where visual feedback of the hand 515 

was removed 2cm into the reach and re-appeared 200ms later.  On random trials, we applied one of 516 

three perturbation types, goal jumps, cursor jumps, or mechanical loads.  Mechanical loads consisted of 517 

torques applied to the shoulder and elbow joints in two opposite directions, one that flexed the shoulder 518 

and extended the elbow and the other that extended the shoulder and flexed the elbow.  Shoulder and 519 

elbow torques were equivalent in magnitude and were 0.28Nm and 0.24Nm for Monkeys M and A, 520 

respectively.  Visual feedback of the hand was also removed for 200ms after the mechanical load was 521 

applied.  Cursor jumps consisted of displacements to the cursor’s position perpendicular to the axis 522 

connecting the start and goal targets (reach axis, Figure 1A).  Two cursor-jump directions were 523 

included that displaced the cursor away from or towards the body and the size of the displacement was 524 

4cm and 3cm for Monkeys M and A, respectively.  Goal jumps were identical to cursor jumps except 525 

that the goal’s position was displaced.  All perturbations were applied 2cm into the reach.  In a block of 526 

trials, monkeys performed 8 unperturbed reaches with visual feedback of the hand, 4 reaches with 527 

visual feedback of the hand temporally removed for 200ms and 6 perturbation trials (2 directions x 3 528 

perturbation types).  Monkeys completed 10-25 blocks in a recording session. 529 

Anterior reaching task. For a subset of sessions, monkeys also completed reaches to a goal 530 

located directly in front of the shoulder (anterior reach).  These reaches followed the same timing 531 

parameters as the lateral reaches denoted above.  Goal and cursor jumps were still in the direction that 532 

was lateral to the reach axis, which now resulted in jumps that were lateral or medial to the body.  533 
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Mechanical loads were the same magnitude, however now they either flexed the shoulder and elbow 534 

joints or extended the shoulder and elbow joints.  In a recording session, monkeys completed 10-15 535 

blocks of the lateral reaches followed by 10-15 blocks of the anterior reaches or completed the anterior 536 

reaches first followed by the lateral reaches.  The ordering of the blocks were counterbalanced across 537 

sessions.  538 

Cursor slide task. In a separate set of experiments, we probed the sensitivity of M1 activity to 539 

proprioceptive and visual stimuli when the temporal and spatial characteristics were matched.  540 

Monkeys completed the same lateral reaching task with the same mechanical load and cursor jump 541 

perturbations.  However, we also included a cursor slide perturbation where the visual location of the 542 

cursor would traverse a trajectory similar to the trajectory the limb would take following a mechanical 543 

load.  We estimated the trajectory by fitting the limb position on mechanical load trials to a sigmoid 544 

function (a/(exp(-(t+b)/c), where t is time and a, b, c are fit parameters) from 50ms before the load till 545 

200ms after the load onset.  The sigmoid fit parameters were estimated using trials from a previous 546 

day’s recording session. 547 

Estimating visual onsets. There is an approximate 20-40ms latency in the visual display 548 

between when a command is sent to jump the cursor or goal and when it appears on the screen.  On a 549 

trial-by-trial basis, we estimated the visual latency by fixing two photodiodes to the screen.  When the 550 

goal or cursor jumped, two white squares would also appear that were positioned on the screen 551 

coincident with the photodiode placements.  Jump onsets were estimated as the average onset of the 552 

two photodiodes, or the onset detected by a single photodiode when the other photodiode signal was 553 

poor.  On trials where a cursor and goal jump did not occur, the white squares still appeared at the same 554 

point in the reach so that we could align the unperturbed trials.   555 

Neural recordings. In each monkey, floating micro-electrode arrays (96-channel, Utah arrays) 556 

were surgically implanted into the arm region of primary motor cortex.  Surgery was performed under 557 

aseptic conditions and the arm region was identified by visual landmarks.  During surgery we used a 558 

dura substitute (GORE PRECLUDE Dura Substitute, W.L. Gore and Associates Inc) that was placed 559 

over the array and the dura was re-attached (GOR-TEX Suture, W.L. Gore and Associates Inc).  Spike 560 

waveforms were sampled at 30 kHz by either a 128-channel neural signal processor (Blackrock 561 

Microsystems, Salt Lake City, Utah) or a Grapevine processor (Ripple Neuro, Salt Lake City, Utah).  562 

Neural recordings were collected over 5 separate recording sessions in Monkey M and 3 separate 563 

recording sessions in Monkey A.  564 
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Muscle recordings.  In Monkey M, we surgically implanted a 32-channel chronic EMG system 565 

(Link-32, Ripple Neuro, Salt Lake City, Utah).  This system had 8 leads (impedance 20 kOhms) that 566 

could be inserted into the muscle with each lead having 4 separate contacts for recording muscle 567 

activity. Each lead was connected to an internal processor that was surgically implanted under the skin 568 

and located near the midline of the back at the mid-thoracic level. We implanted brachioradialis, 569 

brachialis, the lateral and long heads of the triceps, biceps (long head), pectoralis major, and anterior 570 

and posterior deltoids. During a recording session, an external transmitter was attached on the skin over 571 

the internal processor and maintained in position by a magnet in the processor.  The internal processor 572 

received power from the transmitter and transmitted the EMG signals transcutaneously.  The signal was 573 

transmitted to the Grapevine processor, bandpass filtered (15-375Hz) and recorded at 2 kHz.  EMG 574 

recordings were collected over 3 separate recording sessions in Monkey M. 575 

 576 

Data Analysis 577 

Kinematic analysis. Kinematic signals were low-pass filtered with a 6th order, zero-phase lag 578 

Butterworth filter (cut-off frequency 10Hz).  The endpoint of the reach was defined as the first time 579 

point after the peak hand speed that was less than 10% of the peak hand speed.  Movement time was 580 

defined as the time duration between when the monkey left the start target and first entered the goal 581 

target. We quantified the goodness of fit (R2) of the cursor slide trajectories (Pcurs) to the mechanical 582 

limb (Pmech) by taking the limb position from 0-200ms after the perturbation onset and subtracting off 583 

the mean limb positions for each. We then calculated the R2 = 1-||Pcurs-Pmech||
2/||Pmech||

2 where ‘|| ||’ is the 584 

Frobenius norm.   585 

EMG recordings. Muscle activity was down sampled to 1kHz.  For a given lead, we computed 586 

the differential signals between the two most proximal contacts and the two most distal contacts 587 

resulting in two differential signals from each recorded muscle. The differential signals were rectified 588 

and smoothed with a Butterworth low-pass filter with zero-phase lag at a cut-off frequency of 50Hz.  589 

Muscle activity was aligned to perturbation onset or the equivalent onset on unperturbed trials and trial 590 

averaged. For muscle activity related to mechanical perturbations, we subtracted the activity on 591 

unperturbed reaches without visual feedback from the activity on mechanical perturbation reaches.  For 592 

activity related to the visual perturbations, we employed the same method except using activity on 593 

unperturbed reaches with visual feedback.  The muscle’s preferred perturbation direction was 594 

determined for each perturbation type by calculating the activity with the largest perturbation response 595 
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within the first 300ms of the perturbation onset.  Activity was normalized by the mean activity in the 596 

first 300ms after the perturbation onset for each muscle signal. 597 

 Pre-processing neural recordings. Spike timestamps were convolved with a kernel 598 

approximating a post-synaptic potential (1ms rise time, 20ms fall time; Thompson et al., 1996) to 599 

estimate the instantaneous activities.  Activities were aligned to perturbation onset following the same 600 

procedure as for muscle activities 601 

 ANOVA analysis.  For each neuron/muscle we applied a 3-way ANOVA with time epoch (levels: 602 

baseline epoch -100-0ms, perturbation epoch 0-300ms), perturbation direction (two levels) and 603 

perturbation type (levels: mechanical loads, goal jumps and cursor jumps) as factors.  Neurons/muscles 604 

were classified as “perturbation responsive” if there was a significant main effect for time, or any 605 

interaction effects with time (p<0.05, Bonferroni correction factor=4).  Neurons/muscles classified as 606 

significant were then subjected to separate two-way ANOVAs for each perturbation type with time and 607 

direction as factors.  Neurons/muscles were classified as responsive for a given perturbation type if a 608 

significant main effect or interaction effect was found (p<0.05, Bonferroni correction factor=2).  609 

 Response range. The response range for a neuron was calculated for each perturbation type 610 

separately by taking the activity related to the correction towards the body and subtracting the activity 611 

related to the correction away from the body.  The resulting activity was then averaged over the 612 

perturbation epoch.   613 

 Total least-square (TLS) regression.  TLS regression was used to find a linear relationship 614 

between the response ranges from two perturbation types (Figure 5). Ordinary least square (OLS) 615 

regression has been used in previous studies (Crammond and Kalaska, 2000), however, this method 616 

assumes one set of response ranges is the independent variable (i.e. no sampling noise; denote as x) and 617 

thus only tries to find a line that minimize the error between the dependent variable (y) and the line 618 

(minimize ∑��� � ��
�����

�
).  In contrast, TLS regression does not assume any variables are independent 619 

and finds a line of best fit that minimizes the total error between each data point and the line (minimize 620 

∑��� � ��
�����

�
� �� � ��

�����
�
). TLS was performed by first subtracting the means for each response 621 

range (��, �
) followed by singular value decomposition to find the slope (m).  The left singular vector 622 

with the largest singular value was retained and the slope of the line of best fit was given as the ratio 623 

between the coefficient for the data on the y-axis over the coefficient for the data on the x-axis.  The 624 

equation of the line of best fit is then ����� � � · ����� � � where � � � · �
 � ��.  The significance of 625 

the slope was determined by shuffling the perturbations labels and re-calculating the slope. This was 626 
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repeated 1000 times and a probability value was calculated as the number of shuffled samples with 627 

slope smaller than the actual slope. 628 

 Onsets.  The onset of perturbation-related activity was estimated by calculating the mean and 629 

standard deviation of the perturbation-related activity during the baseline period (100ms before 630 

perturbation onset).  The onset was then defined as the first time-point to exceed the baseline mean by 631 

three standard deviations (positive or negative) for 20 consecutive time points.  This method was used 632 

to calculate the onset for individual neurons, the neural population activity and the muscle population 633 

activity. For individual neurons, the onset was only calculated once per neuron in the perturbation 634 

direction that elicited the largest absolute response from the unperturbed trials during the perturbation 635 

epoch. 636 

 Average population activity. An average population response was calculated to estimate the total 637 

change in the network in response to the perturbations.  We determined each neuron’s preferred 638 

corrective movement by averaging its activity over the perturbation epoch.  The corrective movement 639 

with the absolute largest change in activity from the unperturbed activity was then defined as the 640 

preferred corrective movement. If the change in activity was negative for a neuron in its preferred 641 

corrective movement, we multiplied its time series by negative one.  This reduced the cancelling out of 642 

activity when averaging across the population of neurons.  643 

 Principle components analysis.  Principal components analysis (PCA) was used to identify the 644 

low-dimensional subspace for the perturbation-related activity. For each perturbation type, we averaged 645 

each neuron’s perturbation-related activity in non-overlapping 10ms windows to yield 30 time points 646 

for each perturbation direction.  The activity of each neuron was soft normalized by its range (+5 sp/s) 647 

by finding its maximum and minimum activities during the perturbation epoch over all perturbation 648 

types (mechanical loads, goal jumps, cursor jumps).  Note, the same normalization constant was 649 

applied to each perturbation type.  We then constructed separate matrices for each perturbation type 650 

that were of size NxDT, where N is the number of neurons, D is the number of perturbation directions 651 

(2) and T is the number of time points (30).  The mean activities in each row was then subtracted.  652 

Singular value decomposition was used to identify the principle components of the matrix, and the top-653 

10 principle components were kept.   654 

 We used a cross-validated approach to draw a more accurate comparison between the amount of 655 

variance captured between perturbation types.  For a given perturbation type, we randomly assigned 656 

trials into equally sized groups and the same processing steps were applied as above.  One group was 657 

used to calculate the principle components (Trained) while the left-out group was used to calculate the 658 
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amount of variance captured by those principle components.  These principle components were also 659 

used to calculate the amount of variance accounted for by the other two perturbation types after 660 

randomly down-sampling trials to match the left-out group.  This procedure was repeated 1000 times 661 

for each perturbation type. 662 

 Overlap index.  We quantified the overlap between the subspaces by calculating the overlap 663 

index from Rouse and Schieber, (2018) 664 

 overlap�
����1�2�

��1����2��
 665 

Where ��and �� are the covariance matrices for perturbation types 1 and 2, �� is the trace operator, and 666 

�·�
�
 is the Frobenius norm operator.  Activity was pre-processed the same way as for the PCA analysis. 667 

The overlap index was computed between each pair of perturbation types.  668 

The overlap index can range from 0, indicating no overlap between subspaces, and 1 indicating 669 

perfect overlap between subspaces.  Confidence intervals were generated by randomly selecting half of 670 

the trials for each perturbation condition and calculating the subsequent overlap.  This was repeated 671 

1000 times for each comparison between perturbation types.  672 

 We generated two null distributions for comparison.  One distribution estimated the overlap 673 

between two independent samples from the same perturbation type (within-perturbation distribution).  674 

For a perturbation type, we split trials into two, equally sized groups and then calculated the overlap 675 

between these two groups following the same procedure as above.  This was repeated 1000 times for 676 

each perturbation type and overlap values were pooled.  The second distribution compared how 677 

overlapping two samples were when the neuron labels were shuffled.  For a perturbation type, we again 678 

split trials into two, equally sized groups. The neuron labels were then randomly shuffled in one group 679 

and the overlap was then calculated between the two groups. This was repeated 1000 times for each 680 

perturbation type and overlap values were pooled.   681 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

References 682 

Alstermark B, Gorska T, Lundberg A, Pettersson L-G, Walkowska M (1987) Effect of different spinal 683 
cord lesions on visually guided switching of target-reaching in cats. Neurosci Res 5:63–67. 684 

Ames KC, Churchland MM (2019) Motor cortex signals for each arm are mixed across hemispheres 685 
and neurons yet partitioned within the population response. eLife 8:e46159. 686 

Ames KC, Ryu SI, Shenoy KV (2014) Neural Dynamics of Reaching following Incorrect or Absent 687 
Motor Preparation. Neuron 81:438–451. 688 

Bakola S, Gamberini M, Passarelli L, Fattori P, Galletti C (2010) Cortical Connections of Parietal Field 689 
PEc in the Macaque: Linking Vision and Somatic Sensation for the Control of Limb Action. 690 
Cereb Cortex 20:2592–2604. 691 

Bauswein E, Fromm C, Werner W, Ziemann U (1991) Phasic and tonic responses of premotor and 692 
primary motor cortex neurons to torque changes. Exp Brain Res 86 Available at: 693 
http://link.springer.com/10.1007/BF00228953 [Accessed June 15, 2020]. 694 

Boudreau M-J, Smith AM (2001) Activity in Rostral Motor Cortex in Response to Predictable Force-695 
Pulse Perturbations in a Precision Grip Task. J Neurophysiol 86:1079–1085. 696 

Bremner LR, Andersen RA (2012) Coding of the reach vector in parietal area 5d. Neuron 75:342–351. 697 

Brenner E, Smeets JB (2003) Fast corrections of movements with a computer mouse. Spat Vis 16:365–698 
376. 699 

Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements 700 
under variable force conditions. Cereb Cortex N Y N 1991 8:48–62. 701 

Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for 702 
reaching. Nature 416:632–636. 703 

Burns JK, Blohm G (2010) Multi-Sensory Weights Depend on Contextual Noise in Reference Frame 704 
Transformations. Front Hum Neurosci 4 Available at: 705 
https://www.frontiersin.org/articles/10.3389/fnhum.2010.00221/full [Accessed June 19, 2020]. 706 

Cabel DW, Cisek P, Scott SH (2001) Neural Activity in Primary Motor Cortex Related to Mechanical 707 
Loads Applied to the Shoulder and Elbow During a Postural Task. J Neurophysiol 86:2102–708 
2108. 709 

Chandrasekaran C, Peixoto D, Newsome WT, Shenoy KV (2017) Laminar differences in decision-710 
related neural activity in dorsal premotor cortex. Nat Commun 8 Available at: 711 
http://www.nature.com/articles/s41467-017-00715-0 [Accessed November 27, 2018]. 712 

Cisek P, Crammond DJ, Kalaska JF (2003) Neural Activity in Primary Motor and Dorsal Premotor 713 
Cortex In Reaching Tasks With the Contralateral Versus Ipsilateral Arm. J Neurophysiol 714 
89:922–942. 715 

Cisek P, Kalaska JF (2005) Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: 716 
Specification of Multiple Direction Choices and Final Selection of Action. Neuron 45:801–814. 717 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Cluff T, Scott SH (2015) Apparent and Actual Trajectory Control Depend on the Behavioral Context in 718 
Upper Limb Motor Tasks. J Neurosci 35:12465–12476. 719 

Conrad B, Meyer-Lohmann J, Matsunami K, Brooks VB (1975) Precentral unit activity following 720 
torque pulse injections into elbow movements. Brain Res 94:219–236. 721 

Corneil BD, Munoz DP (2014) Overt Responses during Covert Orienting. Neuron 82:1230–1243. 722 

Crammond DJ, Kalaska JF (1989) Neuronal activity in primate parietal cortex area 5 varies with 723 
intended movement direction during an instructed-delay period. Exp Brain Res 76:458–462. 724 

Crammond DJ, Kalaska JF (1996) Differential relation of discharge in primary motor cortex and 725 
premotor cortex to movements versus actively maintained postures during a reaching task. Exp 726 
Brain Res 108 Available at: http://link.springer.com/10.1007/BF00242903 [Accessed March 1, 727 
2019]. 728 

Crammond DJ, Kalaska JF (2000) Prior Information in Motor and Premotor Cortex: Activity During 729 
the Delay Period and Effect on Pre-Movement Activity. J Neurophysiol 84:986–1005. 730 

Crevecoeur F, Kurtzer I (2018) Long-latency reflexes for inter-effector coordination reflect a 731 
continuous state feedback controller. J Neurophysiol 120:2466–2483. 732 

Crevecoeur F, Kurtzer I, Scott SH (2012) Fast corrective responses are evoked by perturbations 733 
approaching the natural variability of posture and movement tasks. J Neurophysiol 107:2821–734 
2832. 735 

Crevecoeur F, Munoz DP, Scott SH (2016) Dynamic Multisensory Integration: Somatosensory Speed 736 
Trumps Visual Accuracy during Feedback Control. J Neurosci 36:8598–8611. 737 

Cross KP, Cluff T, Takei T, Scott SH (2019) Visual Feedback Processing of the Limb Involves Two 738 
Distinct Phases. J Neurosci 39:6751–6765. 739 

Cross KP, Heming EA, Cook DJ, Scott SH (2020) Maintained Representations of the Ipsilateral and 740 
Contralateral Limbs during Bimanual Control in Primary Motor Cortex. J Neurosci 40:6732–741 
6747. 742 

Day BL, Brown P (2001) Evidence for subcortical involvement in the visual control of human 743 
reaching. Brain 124:1832–1840. 744 

Dea M, Hamadjida A, Elgbeili G, Quessy S, Dancause N (2016) Different Patterns of Cortical Inputs to 745 
Subregions of the Primary Motor Cortex Hand Representation in Cebus apella. Cereb Cortex 746 
26:1747–1761. 747 

Desmurget M, Grafton S (2000) feedback control for fast reaching movements. Trends Cogn Sci 4:9. 748 

Dimitriou M, Wolpert DM, Franklin DW (2013) The Temporal Evolution of Feedback Gains Rapidly 749 
Update to Task Demands. J Neurosci 33:10898–10909. 750 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP (2016) Reorganization between 751 
preparatory and movement population responses in motor cortex. Nat Commun 7 Available at: 752 
http://www.nature.com/articles/ncomms13239 [Accessed November 26, 2018]. 753 

Evarts EV, Tanji J (1976) Reflex and intended responses in motor cortex pyramidal tract neurons of 754 
monkey. J Neurophysiol 39:1069–1080. 755 

Fetz EE, Finocchio DV, Baker MA, Soso MJ (1980) Sensory and motor responses of precentral cortex 756 
cells during comparable passive and active joint movements. J Neurophysiol 43:1070–1089. 757 

Franklin DW, Reichenbach A, Franklin S, Diedrichsen J (2016) Temporal Evolution of Spatial 758 
Computations for Visuomotor Control. J Neurosci 36:2329–2341. 759 

Fromm C, Wise SP, Evarts EV (1984) Sensory response properties of pyramidal tract neurons in the 760 
precentral motor cortex and postcentral gyrus of the rhesus monkey. Exp Brain Res 54 Available 761 
at: http://link.springer.com/10.1007/BF00235829 [Accessed June 24, 2020]. 762 

Gamberini M, Dal Bò G, Breveglieri R, Briganti S, Passarelli L, Fattori P, Galletti C (2017) Sensory 763 
properties of the caudal aspect of the macaque’s superior parietal lobule. Brain Struct Funct 764 
Available at: http://link.springer.com/10.1007/s00429-017-1593-x [Accessed May 14, 2020]. 765 

Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1983) Interruption of motor cortical discharge 766 
subserving aimed arm movements. Exp Brain Res 49:327–340. 767 

Guo J-Z, Sauerbrei B, Cohen JD, Mischiati M, Graves A, Pisanello F, Branson K, Hantman AW (2020) 768 
Dynamics of the Cortico-Cerebellar Loop Fine-Tune Dexterous Movement. bioRxiv:637447. 769 

Heindorf M, Arber S, Keller GB (2018) Mouse Motor Cortex Coordinates the Behavioral Response to 770 
Unpredicted Sensory Feedback. Neuron 99:1040-1054.e5. 771 

Heming EA, Cross KP, Takei T, Cook DJ, Scott SH (2019) Independent representations of ipsilateral 772 
and contralateral limbs in primary motor cortex. eLife 8:e48190. 773 

Herter TM, Takei T, Munoz DP, Scott SH (2015) Neurons in red nucleus and primary motor cortex 774 
exhibit similar responses to mechanical perturbations applied to the upper-limb during posture. 775 
Front Integr Neurosci 9 Available at: 776 
https://www.frontiersin.org/articles/10.3389/fnint.2015.00029/full [Accessed June 19, 2020]. 777 

Hollerbach JM, Flash T (1982) Dynamic interactions between limb segments during planar arm 778 
movement. Biol Cybern 44:67–77. 779 

Hummelsheim H, Bianchetti M, Wiesendanger M, Wiesendanger R (1988) Sensory inputs to the 780 
agranular motor fields: a comparison between precentral, supplementary-motor and premotor 781 
areas in the monkey. Exp Brain Res 69 Available at: 782 
http://link.springer.com/10.1007/BF00247574 [Accessed June 15, 2020]. 783 

Ito S, Gomi H (2020) Visually-updated hand state estimates modulate the proprioceptive reflex 784 
independently of motor task requirements Cressman E, Gold JI, Cressman E, eds. eLife 785 
9:e52380. 786 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Jones EG, Coulter JD, Hendry SHC (1978) Intracortical connectivity of architectonic fields in the 787 
somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347. 788 

Kalaska J, Crammond D (1992) Cerebral cortical mechanisms of reaching movements. Science 789 
255:1517–1523. 790 

Kalidindi HT, Cross KP, Lillicrap TP, Omrani M, Falotico E, Sabes PN, Scott SH (2020) Rotational 791 
dynamics in motor cortex are consistent with a feedback controller. 792 
bioRxiv:2020.11.17.387043. 793 

Kaufman MT, Churchland MM, Ryu SI, Shenoy KV (2014) Cortical activity in the null space: 794 
permitting preparation without movement. Nat Neurosci 17:440–448. 795 

Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning 796 
of voluntary movement. Biol Cybern 57:169–185. 797 

Keemink SW, Machens CK (2019) Decoding and encoding (de)mixed population responses. Curr Opin 798 
Neurobiol 58:112–121. 799 

Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, Mainen ZF, Qi X-L, Romo R, Uchida 800 
N, Machens CK (2016) Demixed principal component analysis of neural population data. eLife 801 
5 Available at: https://elifesciences.org/articles/10989 [Accessed February 21, 2019]. 802 

Kozak RA, Kreyenmeier P, Gu C, Johnston K, Corneil BD (2019) Stimulus-Locked Responses on 803 
Human Upper Limb Muscles and Corrective Reaches Are Preferentially Evoked by Low Spatial 804 
Frequencies. eNeuro 6 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6751371/ 805 
[Accessed April 6, 2020]. 806 

Krakauer JW, Ghilardi M-F, Ghez C (1999) Independent learning of internal models for kinematic and 807 
dynamic control of reaching. Nat Neurosci 2:1026–1031. 808 

Kurtzer I, Herter TM, Scott SH (2006) Nonuniform Distribution of Reach-Related and Torque-Related 809 
Activity in Upper Arm Muscles and Neurons of Primary Motor Cortex. J Neurophysiol 810 
96:3220–3230. 811 

Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-Latency Reflexes of the Human Arm Reflect an 812 
Internal Model of Limb Dynamics. Curr Biol 18:449–453. 813 

Lemon RN (1981a) Functional properties of monkey motor cortex neurones receiving afferent input 814 
from the hand and fingers. J Physiol 311:497–519. 815 

Lemon RN (1981b) Variety of functional organization within the monkey motor cortex. J Physiol 816 
311:521–540. 817 

Lemon RN, Porter R, Phillips CG (1976) Afferent input to movement-related precentral neurones in 818 
conscious monkeys. Proc R Soc Lond B Biol Sci 194:313–339. 819 

Lemon RN, van der Burg J (1979) Short-latency peripheral inputs to thalamic neurones projecting to 820 
the motor cortex in the monkey. Exp Brain Res 36:445–462. 821 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Lillicrap TP, Scott SH (2013) Preference Distributions of Primary Motor Cortex Neurons Reflect 822 
Control Solutions Optimized for Limb Biomechanics. Neuron 77:168–179. 823 

Liu D, Todorov E (2009) Hierarchical optimal control of a 7-DOF arm model. In: 2009 IEEE 824 
Symposium on Adaptive Dynamic Programming and Reinforcement Learning, pp 50–57. 825 

Loeb GE, Brown IE, Cheng EJ (1999) A hierarchical foundation for models of sensorimotor control. 826 
Exp Brain Res 126:1–18. 827 

Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response 828 
latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 829 
16:1–14. 830 

McGuire LMM, Sabes PN (2011) Heterogeneous Representations in the Superior Parietal Lobule Are 831 
Common across Reaches to Visual and Proprioceptive Targets. J Neurosci 31:6661–6673. 832 

Merel J, Botvinick M, Wayne G (2019) Hierarchical motor control in mammals and machines. Nat 833 
Commun 10:5489. 834 

Mewes K, Cheney PD (1991) Facilitation and suppression of wrist and digit muscles from single 835 
rubromotoneuronal cells in the awake monkey. J Neurophysiol 66:1965–1977. 836 

Meyer DE, Kornblum S, Abrams RA, Wright CE (1988) Optimality in Human Motor Performance: 837 
Ideal Control of Rapid Aimed Movements. Psychol Rev 95:340–370. 838 

Mutha PK, Boulinguez P, Sainburg RL (2008) Visual modulation of proprioceptive reflexes during 839 
movement. Brain Res 1246:54–69. 840 

Omrani M, Murnaghan CD, Pruszynski JA, Scott SH (2016) Distributed task-specific processing of 841 
somatosensory feedback for voluntary motor control. eLife 5:e13141. 842 

Omrani M, Pruszynski JA, Murnaghan CD, Scott SH (2014) Perturbation-evoked responses in primary 843 
motor cortex are modulated by behavioral context. J Neurophysiol 112:2985–3000. 844 

Oostwoud Wijdenes L, Medendorp WP (2017) State Estimation for Early Feedback Responses in 845 
Reaching: Intramodal or Multimodal? Front Integr Neurosci 11 Available at: 846 
http://journal.frontiersin.org/article/10.3389/fnint.2017.00038/full [Accessed January 18, 2018]. 847 

Pesaran B, Nelson MJ, Andersen RA (2006) Dorsal Premotor Neurons Encode the Relative Position of 848 
the Hand, Eye, and Goal during Reach Planning. Neuron 51:125–134. 849 

Piserchia V, Breveglieri R, Hadjidimitrakis K, Bertozzi F, Galletti C, Fattori P (2017) Mixed 850 
Body/Hand Reference Frame for Reaching in 3D Space in Macaque Parietal Area PEc. Cereb 851 
Cortex 27:1976–1990. 852 

Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Clarendon Press. 853 

Pruszynski JA, King GL, Boisse L, Scott SH, Flanagan JR, Munoz DP (2010) Stimulus-locked 854 
responses on human arm muscles reveal a rapid neural pathway linking visual input to arm 855 
motor output: Visual responses on human arm muscles. Eur J Neurosci 32:1049–1057. 856 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Pruszynski JA, Kurtzer I, Lillicrap TP, Scott SH (2009) Temporal Evolution of “Automatic Gain-857 
Scaling.” J Neurophysiol 102:992–1003. 858 

Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, Scott SH (2011) Primary motor cortex 859 
underlies multi-joint integration for fast feedback control. Nature 478:387–390. 860 

Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid Motor Responses Are Appropriately Tuned to the 861 
Metrics of a Visuospatial Task. J Neurophysiol 100:224–238. 862 

Pruszynski JA, Omrani M, Scott SH (2014) Goal-Dependent Modulation of Fast Feedback Responses 863 
in Primary Motor Cortex. J Neurosci 34:4608–4617. 864 

Rathelot J-A, Strick PL (2009) Subdivisions of primary motor cortex based on cortico-motoneuronal 865 
cells. Proc Natl Acad Sci 106:918–923. 866 

Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981a) Afferent properties of periarcuate neurons 867 
in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163. 868 

Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periarcuate neurons 869 
in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2:125–146. 870 

Rosén I, Asanuma H (1972) Peripheral afferent inputs to the forelimb area of the monkey motor cortex: 871 
Input-output relations. Exp Brain Res 14:257–273. 872 

Rouse AG, Schieber MH (2018) Condition-Dependent Neural Dimensions Progressively Shift during 873 
Reach to Grasp. Cell Rep 25:3158-3168.e3. 874 

Sauerbrei BA, Guo J-Z, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K, 875 
Hantman AW (2020) Cortical pattern generation during dexterous movement is input-driven. 876 
Nature 577:386–391. 877 

Schäfer SS, Dadfar F, Härtel J, Haupts S, Fischer M (1999) The period of latency before a muscle 878 
receptor generates an action potential as a response to a muscle stretch. Brain Res 843:36–47. 879 

Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in 880 
humans. I. Distributed inverse dynamics control. Eur J Neurosci 10:86–94. 881 

Scott SH (2012) The computational and neural basis of voluntary motor control and planning. Trends 882 
Cogn Sci 16:541–549. 883 

Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and 884 
population vectors from neural activity in motor cortex. Nature 413:161–165. 885 

Scott SH, Sergio LE, Kalaska JF (1997) Reaching Movements With Similar Hand Paths but Different 886 
Arm Orientations. II. Activity of Individual Cells in Dorsal Premotor Cortex and Parietal Area 887 
5. J Neurophysiol 78:2413–2426. 888 

Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 889 
185:359–381. 890 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing: a foundation 891 
for motor learning. MIT press. 892 

Snyder LH, Grieve KL, Brotchie P, Andersen RA (1998) Separate body- and world-referenced 893 
representations of visual space in parietal cortex. Nature 394:887–891. 894 

Sober SJ, Sabes PN (2003) Multisensory Integration during Motor Planning. J Neurosci 23:6982–6992. 895 

Soteropoulos DS, Baker SN (2020) Long-latency Responses to a Mechanical Perturbation of the Index 896 
Finger Have a Spinal Component. J Neurosci 40:3933–3948. 897 

Soteropoulos DS, Williams ER, Baker SN (2012) Cells in the monkey ponto-medullary reticular 898 
formation modulate their activity with slow finger movements. J Physiol 590:4011–4027. 899 

Stavisky SD, Kao JC, Ryu SI, Shenoy KV (2017) Motor Cortical Visuomotor Feedback Activity Is 900 
Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions. 901 
Neuron 95:195-208.e9. 902 

Strick PL (1983) The influence of motor preparation on the response of cerebellar neurons to limb 903 
displacements. J Neurosci 3:2007–2020. 904 

Suminski AJ, Tkach DC, Hatsopoulos NG (2009) Exploiting multiple sensory modalities in brain-905 
machine interfaces. Neural Netw Off J Int Neural Netw Soc 22:1224–1234. 906 

Suway SB, Schwartz AB (2019) Activity in Primary Motor Cortex Related to Visual Feedback. Cell 907 
Rep 29:3872-3884.e4. 908 

Takei T, Crevecoeur F, Herter TM, Cross KP, Scott SH (2018) Correlations Between Primary Motor 909 
Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching. J 910 
Neurosci 38:7787–7799. 911 

Takei T, Lomber SG, Cook DJ, Scott SH (2021) Transient deactivation of dorsal premotor cortex or 912 
parietal area 5 impairs feedback control of the limb in macaques. Curr Biol 1:1–12. 913 

Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages 914 
identified in the activity of macaque frontal eye field neurons during visual search. J 915 
Neurophysiol 76:4040–4055. 916 

Todorov E, Li W, Pan X (2005) From task parameters to motor synergies: A hierarchical framework for 917 
approximately-optimal control of redundant manipulators. J Robot Syst 22:691–710. 918 

Vilis T, Hore J, Meyer-Lohmann J, Brooks VB (1976) Dual nature of the precentral responses to limb 919 
perturbations revealed by cerebellar cooling. Brain Res 117:336–340. 920 

Wei K, Körding KP (2008) Relevance of Error: What Drives Motor Adaptation? J Neurophysiol 921 
101:655–664. 922 

Witham CL, Fisher KM, Edgley SA, Baker SN (2016) Corticospinal Inputs to Primate Motoneurons 923 
Innervating the Forelimb from Two Divisions of Primary Motor Cortex and Area 3a. J Neurosci 924 
36:2605–2616. 925 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Wolpaw JR (1980) Amplitude of responses to perturbation in primate sensorimotor cortex as a function 926 
of task. J Neurophysiol 44:1139–1147. 927 

Wong YC, Kwan HC, MacKay WA, Murphy JT (1978) Spatial organization of precentral cortex in 928 
awake primates. I. Somatosensory inputs. J Neurophysiol 41:1107–1119. 929 

Woodworth RS (1899) Accuracy of voluntary movement. Psychol Rev Monogr Suppl 3:i–114. 930 

Yang L, Michaels JA, Pruszynski JA, Scott SH (2011) Rapid motor responses quickly integrate 931 
visuospatial task constraints. Exp Brain Res 211:231–242. 932 

Zarzecki P, Strick PL (1978) Input to primate motor cortex from posterior parietal cortex (area 5). II. 933 
Identification by antidromic activation. Brain Res 157:331–335. 934 

 935 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Figures Legends 936 

Figure 1. Example kinematics.  A) Example hand paths of Monkey M reaching for cursor-on (top) 937 

and cursor-off trials (bottom). B-D) Example hand paths for goal jumps (B), cursor jumps (C) and 938 

mechanical loads (D). Solid and dashed lines are perturbations requiring corrections towards and away 939 

from the body, respectively.  E) The average hand speed on cursor-on and cursor-off trials.  F-H) The 940 

change in the lateral hand velocity for goal jumps (F), cursor jumps (G), and mechanical loads (H).  941 

Note, for the mechanical loads the change in lateral hand velocity starts at 0ms due to the displacement 942 

caused by the loads. 943 

 944 

Figure 2. Example neuron activities.  A) Activities from four example neurons (first four rows) and 945 

muscle activity (bottom row) during reaches for cursor-on (black) and cursor-off trials (grey).  Grey 946 

area demarcates when vision was removed. B-D) The change in activities (ΔActivity) for the same four 947 

example neurons and muscle activity in response to the goal jumps (B), cursor jumps (C) and 948 

mechanical loads (D). Solid and dashed lines are responses to perturbations requiring corrections 949 

towards and away from the body, respectively. 950 

 951 

Figure 3. Proprioceptive feedback alters M1 activity earlier than visual feedback. A) The average 952 

activity across neurons for Monkey M.  Arrows indicate when a significant increase from baseline was 953 

detected. Only neurons with significant activity for at least one perturbation type were included.  B) 954 

The onset across individual neurons for each perturbation type presented as a cumulative sum. C-D) 955 

Same as A-B) except for Monkey A. E-F) Same as A-B) except for muscle activity from Monkey M.  956 

 957 

Figure 4. Each perturbation type influences overlapping neurons. A) Venn diagram showing the 958 

number of neurons observed (Obs) in each class for Monkey M.  The diagram also shows the number 959 

of expected (Exp) neurons assuming an independent distribution.  Chi reflects the classes contribution 960 

to the total χ2 value ([Obs-Exp]2/Exp). B) Venn diagrams classifying neurons using only two 961 

perturbation types for Monkey M. C-D) Same as A-B) except for Monkey A. 962 

 963 

Figure 5. M1 neurons have similar response ranges across perturbation types.  A) Comparison of 964 

the response ranges between activities for the goal and cursor jumps.  Black circles: neurons responsive 965 

to all three perturbation types.  Grey circles: neurons responsive to at least one perturbation type.  “r” is 966 

the Pearson’s correlation coefficient. Dashed lines reflect the line of best fit identified using total least 967 
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squares regression (slope indicated in quadrant 2).   B) Same as A) except comparing mechanical loads 968 

and goal jumps.  C) Same as A) except comparing mechanical loads and cursor jumps.  D-F) Same as 969 

A-C) except for Monkey A. G-I) Same as A-C) except for muscle activity from Monkey M. 970 

 971 

Figure 6. Activity patterns overlap across perturbation types. A) Variance accounted for by the top 972 

goal-jump principal components for Monkey M. Variance for the goal-jump trials was calculated for 973 

the training set (open) and for the left-out trials (red). Circles and bars denote the median and the 5th 974 

and 95th percentiles of the distributions. B-C) Same as A) for cursor jumps and mechanical loads. D) 975 

Overlap index between perturbation types (clear bars) and the shuffle and within-perturbation 976 

distributions (filled bars).  Bars denote the median and 5th and 95th percentiles of the distribution. E-H) 977 

Same as A-D) except for Monkey A. I-H) Same as A-D) except for EMG from Monkey M. 978 

 979 

Figure 7. M1 is more sensitive to mechanical than visual perturbations. A) For Monkey M, hand 980 

paths for the mechanical loads (red traces) and the cursor’s path on cursor slide trials (cyan traces).  B) 981 

In the lateral direction (see A), the change in position of the hand and cursor on mechanical load and 982 

cursor slide trials respectively. C) The R2 across sessions comparing how well the cursor slide 983 

trajectory fit the limb trajectory on the mechanical load trials (Monkey M|A n=7|3). Yellow diamonds 984 

reflect the mean. D) Movement times for all mechanical load and cursor slide trials.  Arrows denote 985 

medians. E) The average activity across neurons for each perturbation type.  F) Comparison of 986 

response ranges between mechanical loads and cursor slide.  Presented the same as in Figure 5. G) 987 

Same as F) except for comparing mechanical loads with cursor jumps. H-J) Same as E-G) except for 988 

Monkey A. K-M) Same as E-G) except for muscle activity. 989 

 990 

Supplementary Figure 1.  Movement times and endpoint distance from goal across monkeys. A) 991 

Movement times for Monkey M for cursor-on and cursor-off unperturbed reaches.  Movement time was 992 

defined as the time between when the hand left the start target and when the hand first contacted the 993 

goal target. Trials have been pooled across all recording sessions. Arrows denote the median of the 994 

distributions. Distributions for cursor-on and cursor-off trials were not significantly different (two-995 

sample t-test: t(471)=1.6, p=0.12). B) Same as A) for perturbation trials. C) Same as A) except for the 996 

distance the reach endpoint was from the goal. Distributions for cursor-on and cursor-off trials were 997 

significantly different (t(471)=3.6, p<0.001). D) Same as C) for perturbation trials. E-H) Same as A-D) 998 

for Monkey A. E) Distributions for cursor-on and cursor-off trials were not significantly different 999 
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(t(279)=1.9, p=0.06). G) Distributions for cursor-on and cursor-off trials were significantly different 1000 

(t(279)=4.0, p<0.001). 1001 

Note, Monkey M had longer movement times than Monkey A due in part to Monkey M completing a 1002 

10cm reach and Monkey A completing an 8cm reach. 1003 

 1004 

Supplementary Figure 2. Placement of arrays in M1. Both monkeys had floating micro-electrode 1005 

arrays implanted in the arm regions of M1.  Approximate location of array is indicated by the black 1006 

square. Acronyms: CS central sulcus, SPS superior precentral sulcus, AS arcuate sulcus, SAS spur of 1007 

arcuate sulcus, A anterior, P posterior. 1008 

 1009 

Supplementary Figure 3. M1 activity is largely unaffected by removing cursor feedback. A) For 1010 

Monkey M, comparison of the mean activities during unperturbed reaches for cursor-on (abscissa) and 1011 

cursor-off (ordinate) trials.  Activity was averaged from 100-250ms after the cursor feedback was 1012 

removed. Each circle denotes one neuron. Dashed line reflects the line of best fit identified using total 1013 

least squares regression (slope indicated in top left corner).  B) Same as A) except for the standard 1014 

deviation across trials. C-D) Same as A-B) except for Monkey A. E-F) Same as A-B) except for EMG 1015 

from Monkey M. 1016 

 1017 

Supplementary Figure 4.  Perturbation-related activity is comparable to activity during baseline 1018 

reaching.  A) Activities of the same four example neurons in Figure 2 during unperturbed reaches 1019 

aligned to movement onset (5% max hand speed).  Shaded area denotes the movement epoch (-50-1020 

250ms). B) Scatter comparing the absolute magnitude of movement-related activity with the magnitude 1021 

of the perturbation-related activity. C) Cumulative sums of the difference in the magnitudes of the 1022 

movement-related and perturbation-related activities across cells.  1023 

 1024 

Supplementary Figure 5. Overlap time course.  A) Time series of the overlap index between goal 1025 

and cursor jumps (black solid line) for Monkey M.  Activity was binned every 20ms.  The time series 1026 

was also repeated for the shuffle distribution (black dashed line) and the within-perturbation 1027 

distributions for the goal-related (green line) and cursor-related (blue line) activities. B) Same as A) 1028 

except comparing mechanical loads with goal jumps. C) Same as A) except comparing mechanical 1029 

loads with cursor jumps. D-F) Same as A-C) except for Monkey A. G-I) Same as A-C) for EMG 1030 

signals. Prior to overlap calculation, EMG signals were filtered with a low-pass 3rd order Butterworth 1031 
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filter (cut-off 50Hz). Note, the substantial overlap before perturbation onset is in part due to the small 1032 

subspace spanned by EMG signals 1033 

 1034 

Supplementary Figure 6. Overlap across perturbation types with increased perturbation 1035 

directions.  A) Monkey M’s lateral reaches following goal jumps (left), cursor jumps (middle) and 1036 

mechanical loads (right). Same as Figure 1B-D. B) Same as A) except now for Monkey’s M anterior 1037 

reaches. C) Response ranges comparing perturbation types for the anterior reaches.  Data presented the 1038 

same as in Figure 5.  ‘n’ denotes the number of recorded neurons. D) Overlap index presented the same 1039 

as Figure 6. E-F) Same as C-D) for Monkey A. 1040 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

 1041 

 

Figure 1 

 1042 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

 

Figure 2 

 1043 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 

Figure 3 

 1044 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

 

Figure 4 

 1045 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

 

Figure 5 

 1046 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 
 

 

Figure 6 

 1047 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

 

Figure 7 

 1048 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

 

Supplementary Figure 1 

 1049 

  1050 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


45 
 

 

Supplementary Figure 2 

 1051 

  1052 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


46 
 

 1053 

 

Supplementary Figure 3 

 1054 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 
 

 1055 

 

Supplementary Figure 4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

 1056 

 

Supplementary Figure 5 

 1057 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

 

Supplementary Figure 6 

 1058 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2021. ; https://doi.org/10.1101/2021.05.01.442274doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.01.442274
http://creativecommons.org/licenses/by-nc-nd/4.0/

