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GPT-2’s activations predict the degree of
semantic comprehension in the human brain
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Language transformers, like GPT-2, have demonstrated remark-
able abilities to process text, and now constitute the backbone of
deep translation, summarization and dialogue algorithms. However,
whether these models encode information that relates to human com-
prehension remains controversial. Here, we show that the represen-
tations of GPT-2 not only map onto the brain responses to spoken
stories, but also predict the extent to which subjects understand nar-
ratives. To this end, we analyze 101 subjects recorded with func-
tional Magnetic Resonance Imaging while listening to 70 min of short
stories. We then fit a linear model to predict brain activity from
GPT-2’s activations, and correlate this mapping with subjects’ com-
prehension scores as assessed for each story. The results show that
GPT-2’s brain predictions significantly correlate with semantic com-
prehension. These effects are bilaterally distributed in the language
network and peak with a correlation of R=0.50 in the angular gyrus.
Overall, this study paves the way to model narrative comprehension
in the brain through the lens of modern language algorithms.

Neuroscience of language | Deep Neural Networks

I n less than two years, language transformers like GPT-2
have revolutionized the field of natural language processing
(NLP). These deep learning architectures are typically trained
on very large corpora to complete partially-masked texts, and
provide a one-fit-all solution to translation, summarization,
and question-answering tasks and algorithms (1).

Critically, their hidden representations have been shown to
— at least partially — correspond to those of the brain: single-
sample fIMRI (2-4), MEG (2, 4), and intracranial responses to
spoken and written texts (3, 5) can be significantly predicted
from a linear combination of the hidden vectors generated
by these deep networks. Furthermore, the quality of these
predictions directly depends on the models’ ability to complete
text (3, 4).

In spite of these achievements, strong doubts subsist on
whether language transformers actually encode meaningful
constructs (6). When asked to complete "I had $20 and gave
$10 away. Now, I thus have $", GPT-2 predicts "20"*. Simi-
lar trivial errors can be observed for geographical locations,
temporal ordering, pronoun attribution and causal reasoning.
These results have thus led some to argue that such "system
has no idea what it is talking about" (7). Thus, how the rep-
resentations of GPT-2 relate to a human-like understanding
remains largely unknown.

Here, we propose to evaluate how the similarity between the
brain and GPT-2 vary with semantic comprehension. Specifi-
cally, we first compare GPT-2’s activations to the functional
Magnetic Resonance Imaging of 101 subjects listening to
70min of seven short stories, and we quantify this similar-
ity with a "brain score" (M) (8, 9). Second, we evaluate how

*as assessed using Huggingface interface (https:/github.com/huggingface/transformers) and
GPT-2 pretrained model with temperature=0.

the brain scores systematically vary with semantic comprehen-
sion, as individually assessed by a questionnaire at the end of
each story.

GPT-2’s activations linearly map onto fMRI responses to spoken nar-
ratives. To assess whether GPT-2 generates similar represen-
tations to those of the brain, we first evaluate, for each voxel,
subject and narrative independently, whether the fMRI re-
sponses can be predicted from a linear combination of GPT-2’s
activations (Figure 1A). We summarize the precision of this
mapping with a brain score M: i.e. the correlation between
the true fMRI responses and the fMRI responses linearly pre-
dicted, with cross-validation, from GPT-2’s responses to the
same narratives (cf. Methods). To mitigate fMRI spatial
resolution and the necessity to correct each observation by
the number of statistical comparisons, we here report either 1)
the average brain scores across voxels or 2) the average score
within each region of interest (n = 314, following an automatic
subdivision of Destrieux atlas (10), cf. SI.1). Consistent with
previous findings (2, 4, 11, 12), these brain scores are signif-
icant over a distributed and bilateral cortical network, and
peak in middle- and superior-temporal gyri and sulci, as well
as in the supra-marginal and the infero-frontal cortex (2, 4, 11)
(Figure 1B).

By extracting GPT-2 activations from multiple layers (from
layer one to layer twelve), we confirm that middle layers best
map onto the brain (Figure 1C), as seen in previous studies
(2, 4, 11). For clarity, the following analyses focus on the
activations extracted from the eighth layer, i.e. GPT-2’s most
"brain-like" layer (Figure 1B).

GPT-2’s brain predictions correlate with semantic comprehension.
Does the linear mapping between GPT-2 and the brain reflect
a fortunate correspondence (4)? Or, on the contrary, does
it reflect similar representations of high-level semantics? To
address this issue, we correlate these brain scores to the level of
comprehension of the subjects, assessed for each subject-story
pair. On average across all voxels, this correlation reaches
R =0.50 (p < 1071%, Figure 1D, as assessed across subject-
story pairs with the Pearson’s test provided by SciPy). This
correlation is significant across a wide variety of the bilateral
temporal, parietal and prefrontal cortices typically linked to
language processing (Figure 1E). Together, these results sug-
gest that the shared representations between GPT-2 and the
brain reliably vary with semantic comprehension.

Low-level processing only partially accounts for the correlation be-
tween comprehension and GPT-2’s mapping Low-level speech
representations typically vary with attention (13, 14), and
could thus, in turn, influence down-stream comprehension
processes. Consequently, one can legitimately wonder whether
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Fig. 1. A. 101 subjects listen to narratives (70 min of unique audio stimulus in total) while their brain signal is recorded using functional MRI. At the end of each story, a
questionnaire is submitted to each subject to assess their understanding, and the answers are summarized into a comprehension score specific to each (narrative, subject) pair
(grey box). In parallel (blue box on the left), we measure the mapping between the subject’s brain activations and the activations of GPT-2, a deep network trained to predict a
word given its past context, both elicited by the same narrative. To this end, a linear spatio-temporal model (f o g) is fitted to predict the brain activity of one voxel Y, given
GPT-2 activations X as input. The degree of mapping, called "brain score" is defined for each voxel as the Pearson correlation between predicted and actual brain activity on
held-out data (blue equation, cf. Methods). Finally, we test the correlation between the comprehension scores of the subjects and their corresponding brain scores using
Pearson’s correlation (red equation). A positive correlation means that the representations shared across the brain and GPT-2 are key for the subjects to understand a narrative.
B. Brain scores (fMRI predictability) of the activations of the eighth layer of GPT-2. Scores are averaged across subjects, narratives, and voxels within brain regions (142
regions in each hemisphere, following a subdivision of Destrieux Atlas (10), cf. SI.1). Only significant regions are displayed, as assessed with a two-sided Wilcoxon test across
(subject, narrative) pairs, testing whether the brain score is significantly different from zero (threshold: .05). C. Brain scores, averaged across fMRI voxels, for different activation
spaces: phonological features (word rate, phoneme rate, phonemes, tone and stress, in green), the non-contextualized word embedding of GPT-2 ("Word", light blue) and the
activations of the contextualized layers of GPT-2 (from layer one to layer twelve, in blue). The error bars refer to the standard error of the mean across (subject, narrative) pairs
(n=237). D. Comprehension and GPT-2 brain scores, averaged across voxels, for each (subject, narrative) pair. In red, Pearson’s correlation between the two (denoted R), the
corresponding regression line and the 95% confidence interval of the regression coefficient. E. Correlations (R) between comprehension and brain scores over regions of
interest. Brain scores are first averaged across voxels within brain regions (similar to B.), then correlated to the subjects’ comprehension scores. Only significant correlations
are displayed (threshold: .05). F. Correlation scores (R) between comprehension and the subjects’ brain mapping with phonological features (M(Phonemic) (i), the share of the
word-embedding mapping that is not accounted by phonological features M (Word) — M (Phonemic) (i) and the share of the GPT-2 eighth layer’s mapping not accounted
by the word-embedding M (GPT2) — M (Word) (iii). G. Relationship between the average GPT-2-to-brain mapping (eighth layer) per region of interest (similar to B.), and
the corresponding correlation with comprehension (R, similar to D.). Only regions of the left hemisphere, significant in both B. and E. are displayed. In black, the top ten regions
in terms of brain and correlation scores (cf. Sl.1 for the acronyms). Significance in D, E and F is assessed with Pearson’s p-value provided by SciPyT. In B, E and F, p-values
are corrected for multiple comparison using a False Discovery Rate (Benjamin/Hochberg) over the 2 x 142 regions of interest.

the correlation between comprehension and GPT-2’s brain
mapping is simply driven by variations in low-level auditory
processing. To address this issue, we evaluate the predictabil-
ity of fMRI given low-level phonological features: the word
rate, phoneme rate, phonemes, stress and tone of the narrative
(cf. Methods). The corresponding brain scores correlate with
the subjects’ understanding (R = 0.17,p < 1072) but less so
than the brain scores of GPT-2 (AR = 0.32). These low-level
correlations with comprehension peak in the left superior tem-
poral cortex (Figure 1F). Overall, this result suggests that the
link between comprehension and GPT-2’s brain mapping may
be partially explained by — but not reduced to — the variations
of low-level auditory processing.

The reliability of high-level representations best predict comprehen-
sion Is the correlation between comprehension and GPT-2’s
mapping driven by a lezical process and/or by an ability to
meaningfully combine words? To tackle this issue, we compare
the correlations obtained from GPT-2’s word embedding (i.e.
layer 0) to those obtained from GPT-2’s eighth layer, i.e. a
contextual embedding. On average across voxels, the corre-
lation with comprehension is 0.12 lower with GPT-2’s word
embedding than with its contextual embedding. An analogous
analysis, comparing word embedding to phonological features

is displayed in 1F. Strictly lexical effects (word-embedding
versus phonological) peak in the superior-temporal lobe and
in pars triangularis. By contrast, higher-level effects (GPT-2
eighth layer versus word-embedding) peak in the superior-
frontal, posterior superior-temporal gyrus, in the precuneus
and in both the triangular and opercular parts of the inferior
frontal gyrus — a network typically associated with high-level
language comprehension (4, 15-19).

Comprehension effects are mainly driven by individuals’ variability
The variability in comprehension scores could result from
exogeneous factors (e.g. some stories may be harder to com-
prehend than others for GPT-2) and/or from endogeneous
factors (e.g. some subjects may better understand specific
texts because of their prior knowledge). To address this issue,
we fit a linear mixed model to predict comprehension scores
given brain scores, specifying the narrative as a random effect
(cf. SI.1). The fixed effect of brain score (shared across nar-
ratives) is highly significant: 8 = 0.04,p < 1072° cf. SL.1).
However, the random effect (slope specific to each single nar-
rative) is not (8 < 1072, p > 0.11). We also replicate the
main analysis (Figure 1D) within each single narrative: the
correlation with comprehension reaches 0.76 for the ‘sherlock’
story and is above 0.40 for every story (cf. SI.1). Overall,
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these analyses confirm that the link between GPT-2 and se-
mantic comprehension is mainly driven by subjects’ individual
differences in their ability to make sense of the narratives.

Discussion  Our analyses reveal a positive correlation between
semantic comprehension and the degree to which GPT-2 maps
onto brain responses to spoken narratives.

These results strengthen and complete prior work on the
brain bases of semantic comprehension. In particular, previous
studies have used inter-subject brain correlation to reveal the
brain regions associated with understanding (17). For exam-
ple, Lerner et al. recorded subjects’ fMRI while they listened
to normal texts or texts scrambled at the word, sentence or
paragraph level, in order to parametrically manipulate their
level of comprehension (15). The corresponding fMRI signals
correlated across subjects in the primary and secondary audi-
tory areas even when the input was scrambled below the lexical
level. By contrast, fMRI signals also became correlated in the
bilateral infero-frontal and temporo-parietal cortex when the
scrambling was either not performed, or performed at the level
of sentences and paragraphs. Our results are consistent with
this hierarchical organization, and thus make an important
step towards the development of a cerebral model of narrative
comprehension.

The relationship between GPT-2’s representations and hu-
man comprehension remains to be qualified. First, although
highly significant, our brain scores are relatively low (2, 9, 17).
This phenomenon likely results from a mixture of different
elements: i) we ran our analyses across all voxels to avoid
selection biases, which automatically reduces the average ef-
fect sizes and ii) we report the results without correcting for
a noise ceiling (cf. SI.1), as our pilot analyses suggest that
such noise-ceiling can greatly vary depending on how it is
implemented (i.e. fit from mean across subjects, from all or on
voxels etc). Second, the correlation between semantic compre-
hension and GPT-2’s mapping is robust (p < 107'%) but far
from perfect (R = 0.50). Such correlation thus indicates that
the modeling of brain responses with GPT-2 does not fully
account for the variation in comprehension. While this result
is expected (7), our study provides a promising framework to
evaluate the extent to which deep language models represent
and understand texts like we do.

Finally, our results suggest that the neural bases of com-
prehension relate to the high-level representations of deep
language models. While the mapping of phonological fea-
tures and word embeddings do correlate with comprehension,
GPT-2’s contextual embeddings provides brain maps that
more reliably predict comprehension (Figure 1F). The supe-
riority of contextual-embedding in predicting comprehension
suggests that i) GPT-2 encodes features supporting compre-
hension and ii) our finding are not solely driven by low- or
mid-level processing (13, 14). These elements remain solely
based on correlations, however. The factors that causally influ-
ence comprehension, ranging from prior knowledge, attention
and language complexity should be explicitly manipulated in
future work.

Overall, the present study strengthens and clarifies the simi-
larity between the brain and deep language models, repeatedly
observed in the past three years (2—4, 11, 20). Together, these
findings reinforce the relevance of deep language models in
unraveling the neural bases of narrative comprehension.

Caucheteux et al.

Materials and Methods

Our analyses rely on the "Narratives" dataset (21), composed of
the brain signals, recorded using fMRI, of 345 subjects listening to
27 narratives.

Narratives and comprehension score  Among the 27 stories of the
dataset, we selected the seven stories for which subjects were asked
to answer a comprehension questionnaire at the end, and for which
the answers varied across subjects (more than ten different com-
prehension scores across subjects), resulting in 70 minutes of audio
stimuli in total, from four to 19 minutes per story (Figure 2). Ques-
tionnaires were either multiple-choice, fill-in-the blank, or open
questions (answered with free text) rated by humans (21). Here,
we used the comprehension score computed in the original dataset
which was either a proportion of correct answers or the sum of the
human ratings, scaled between 0 and 1 (21). It summarizes the
comprehension of one subject for one narrative (specific to each
(narrative, subject) pair).

slumlordreach (n=18, ~19min)  Fig.2.  For each
merlin4 — — (n=18, ~10min)  of the seven nar-
sherlock (n=18, ~12min)  ratives: number of
piemanpniq —— — (n=47, ~4min)  subjects (n), distri-
bronx - — — (n=46, ~6min)  bution of comprehen-

forgot| — — (n=46, ~9min) sion scores across

black (n=46, ~9min)  subjects and length

0  Comprehension 1 of the narrative.

Brain activations = The brain activations of the 101 subject who
listened to the selected narratives were recorded using fMRI, as de-
scribed in (21). As suggested in the original paper, pairs of (subject,
narrative) were excluded because of noisy recordings, resulting in
237 pairs in total.

GPT-2 activations  GPT-2 (1) is a high-performing neural language
model trained to predict a word given its previous context (it does
not have access to succeeding words), given millions of examples
(e.g Wikipedia texts). It consists of multiple Transformer modules
(twelve, each of them called "layer") stacked on a non-contextual
word embedding (a look-up table that outputs a single vector per
vocabulary word) (1). Each layer | can be seen as a nonlinear
system that takes a sequence of w words as input, and outputs
a contextual vector of dimension (w,d), called the “activations"
of layer | (d = 768). Intermediate layers were shown to better
encode syntactic and semantic information than input and output
layers (22), and to better map onto brain activity (2, 4). Here, we
show that the eighth layer of GPT-2 best predicts brain activity
1C. We thus select the eighth layer of GPT-2 for our analyses.
Our conclusions remain unchanged with other intermediate-to-deep
layers of GPT-2 (from 6% to 12t layers).

In practice, the narratives’ transcripts were formatted (replacing
special punctuation marks such as "-" and duplicated marks "?." by
dots), tokenized using GPT-2 tokenizer and input to the GPT-2
pretrained model provided by Huggingface ¥. The representation of
each token is computed separately using a context window a 1024.
For instance, to compute the representation of the third token of
the story, we input GPT-2 with the third, second and first token,
and then extract the activations corresponding to the third token.
To compute the representation of a token wj at the end of the
story, GPT-2 is input with this token combined with the 1,023
preceding tokens. Then, we extract the activations corresponding
to wg. The procedure results in a vector of activations of size (w, d)
with w the number of tokens in the story and d the dimensionality
of the model. There are fewer fMRI scans than words. Thus,
the activation vectors between successive fMRI measurements are
summed to obtain one vector of size d per measurement. To match
the fMRI measurements and the GPT-2 vectors over time, we used
the speech-to-text correspondences provided in the fMRI dataset
(21).

f https://github.com/huggingface/transformers
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Linear mapping between GPT-2 and the brain  For each (subject,
narrative) pair, we measure the mapping between i) the fMRI
activations elicited by the narrative and ii) the activations of GPT-2
(layer nine) elicited by the same narrative. To this end, a linear
spatiotemporal model is fitted on a train set to predict the fMRI
scans given the GPT-2 activations as input. Then, the mapping is
evaluated by computing the Pearson correlation between predicted
and actual fMRI scans on a held out set I:

MEW) T s E(f 0 g(X™)icr, (Yi(s’w))iel) (1]

With f o g the fitted estimator (g: temporal and f: spatial
mappings), £ Pearson’s correlation, X (W) the activations of GPT-2
and Y(5w) the fMRI scans of subjects s, both elicited by the
narrative w.

In practice, f is a £2-penalized linear regression. We follow scikit-
learn implementationS with ten possible regularization parameters
log-spaced between 10~! and 108, one optimal parameter per voxel
and leave-one-out cross-validation. g is a finite impulse response
(FIR) model with 5 delays, where each delay sums the activations
of GPT-2 input with the words presented between two TRs. For
each (subject, narrative) pair, we split the corresponding fMRI time
series into five contiguous chunks using scikit-learn cross-validation.
The procedure is repeated across the five train (80% of the fMRI
scans) and disjoint test folds (20% of the fMRI scans). Pearson
correlations are averaged across folds to obtain a single score per
(subject, narrative) pair. This score, denoted M(X) in Figure 1A,
measures the mapping between the activations space X and the
brain of one subject, elicited by one narrative.

Phonological features  To account for low-level speech processing,
we computed the alignment (Eq. (1)) between the fMRI brain record-
ings Y and phonological features X: the word rate (of dimension
d = 1, the number of words per fMRI scan), the phoneme rate
(d = 1, the number of phonemes per fMRI scan) and the concate-
nation of phonemes, stresses and tones of the words in the stimuli
(categorical feature, d = 117). The latter features are provided in
the original Narratives database (21), and computed using Gentle
forced-alignment algorithm.

Significance
second-level Wilcoxon test (two-sided) across subject-narrative pairs,

Significance was either assessed by using either (i) a

testing whether the mapping (one value per pair) was significantly
different from zero (Figure 1B), or (ii) by using the first-level Pearson
p-value provided by SciPy! (Figure 1D-G). In Figure 1B, E, F, p-
values were corrected for multiple comparison (2 x 142 ROIs) using
False Discovery Rate (Benjamin/Hochberg)**.
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Supporting Information (Sl)

Brain parcellation. In Figure 1B, E, and F, we used a subdi-
vision of the parcellation from Destrieux Atlas (10). Regions
with more than 400 vertices were split into smaller regions (so
that each regions contains less than 400 vertices). The original
parcellation consists of 75 regions per hemisphere. Our custom
parcellation consists in 142 regions per hemisphere.

In Figure 1G, we use the original parcellation for simplicity,
and the following acronyms:

Acronym Definition
STG/STS Superior temporal gyrus / sulcus
aSTS Anterior STS
maSTS Mid-anterior STS
mpSTS Mid-posterior STS
pSTS Posterior STS
Angular / Supramar  Angular / Supramarginal inferior parietal gyrus
MTG /MTS Medial temporal gyrus / sulcus
SFG / SFS Superior frontal gyrus / sulcus
IFG/IFS Inferior frontal gyrus / sulcus
Tri/ Op Pars triangularis / opercularis (IFG)
TTransverse Temporal transverse sulcus
PCG Posterior cingulate gyrus
STO Temporo-occipital lateral sulcus

Mixed-effect model. Not all subjects listened to the same sto-
ries. To check that the R scores (correlation between compre-
hension and brain mapping) were not driven by the narratives
and questionnaires’ variability, a linear mixed-effect model was
fit to predict the comprehension of a subject given its brain
mapping scores, specifying the narrative as a random effect.
More precisely, if ., € R corresponds to the mapping scores
of the i** subject that listened to the story w, and Cw, €R
refers to the comprehension scores, we estimate the fixed effect
parameters 3 € R and 77 € R (shared across narratives), and
the random effect parameter £, € R and 1, € R (specific to
the narrative w) such that:

Cui = (B4 Buw) Xws +( + Nw) + €us

with €, a vector of i.i.d normal errors with mean 0 and vari-
ance o2. In practice, we use the statsmodels’ implementation
of linear mixed-effect models. Significance of the coeflicients
were assessed with a t-test, as implemented in statsmodels.

Replication across single narratives. To further support that
the R were not driven by the narratives’ variability, we repli-
cate the analysis of Figure 1D within single narratives. In
Figure 3, we show that correlation scores between brain scores
and comprehension scores are positive for each of the seven
narratives.

Noise Ceiling Estimates. fMRI recordings are inherently noisy.
Thus, we estimate an upper bound of the best brain score that
can be obtained given the level of noise in the Narrative dataset.
To this end, for each (subject, narrative) pair, we linearly
map the fMRI recordings, not with the GPT-2 activations,
but with the average fMRI recordings of the other subjects
who listened to that narrative. More precisely, we use the

f https://www.statsmodels.org/
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Fig. 3. Replication within single narratives. Same as Figure 1D for each single
narrative.

exact same setting as in Eq. (1), but we predict Y not
from g(X) (GPT-2’s features after temporal alignment, of size
Ngimes X Ndim ), but from the mean of the other subject’s brains
Y = ‘1?‘ D e Y (of size Miimes X Nvoxels). This score is
called the noise ceiling for the (subject, narrative) pair. The
noise ceilings for each brain region are displayed in Figure 4,
and correspond to upper bounds of the brain scores displayed
in Figure 1B.
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Fig. 4. Noise ceiling estimates. Noise ceilings averaged across subjects, narratives
and voxels within each region of interest. They are upper bounds of the brain scores
in Figure 1B.

6 | Caucheteux et al.


https://doi.org/10.1101/2021.04.20.440622
http://creativecommons.org/licenses/by/4.0/

	Materials and Methods

