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Language transformers, like GPT-2, have demonstrated remark-

able abilities to process text, and now constitute the backbone of

deep translation, summarization and dialogue algorithms. However,

whether these models encode information that relates to human com-

prehension remains controversial. Here, we show that the represen-

tations of GPT-2 not only map onto the brain responses to spoken

stories, but also predict the extent to which subjects understand nar-

ratives. To this end, we analyze 101 subjects recorded with func-

tional Magnetic Resonance Imaging while listening to 70 min of short

stories. We then fit a linear model to predict brain activity from

GPT-2’s activations, and correlate this mapping with subjects’ com-

prehension scores as assessed for each story. The results show that

GPT-2’s brain predictions significantly correlate with semantic com-

prehension. These effects are bilaterally distributed in the language

network and peak with a correlation of R=0.50 in the angular gyrus.

Overall, this study paves the way to model narrative comprehension

in the brain through the lens of modern language algorithms.
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In less than two years, language transformers like GPT-21

have revolutionized the field of natural language processing2

(NLP). These deep learning architectures are typically trained3

on very large corpora to complete partially-masked texts, and4

provide a one-fit-all solution to translation, summarization,5

and question-answering tasks and algorithms (1).6

Critically, their hidden representations have been shown to7

– at least partially – correspond to those of the brain: single-8

sample fMRI (2–4), MEG (2, 4), and intracranial responses to9

spoken and written texts (3, 5) can be significantly predicted10

from a linear combination of the hidden vectors generated11

by these deep networks. Furthermore, the quality of these12

predictions directly depends on the models’ ability to complete13

text (3, 4).14

In spite of these achievements, strong doubts subsist on15

whether language transformers actually encode meaningful16

constructs (6). When asked to complete "I had $20 and gave17

$10 away. Now, I thus have $", GPT-2 predicts "20"∗. Simi-18

lar trivial errors can be observed for geographical locations,19

temporal ordering, pronoun attribution and causal reasoning.20

These results have thus led some to argue that such "system21

has no idea what it is talking about" (7). Thus, how the rep-22

resentations of GPT-2 relate to a human-like understanding23

remains largely unknown.24

Here, we propose to evaluate how the similarity between the25

brain and GPT-2 vary with semantic comprehension. Specifi-26

cally, we first compare GPT-2’s activations to the functional27

Magnetic Resonance Imaging of 101 subjects listening to28

70 min of seven short stories, and we quantify this similar-29

ity with a "brain score" (M) (8, 9). Second, we evaluate how30

∗as assessed using Huggingface interface (https://github.com/huggingface/transformers) and
GPT-2 pretrained model with temperature=0.

the brain scores systematically vary with semantic comprehen- 31

sion, as individually assessed by a questionnaire at the end of 32

each story. 33

GPT-2’s activations linearly map onto fMRI responses to spoken nar- 34

ratives. To assess whether GPT-2 generates similar represen- 35

tations to those of the brain, we first evaluate, for each voxel, 36

subject and narrative independently, whether the fMRI re- 37

sponses can be predicted from a linear combination of GPT-2’s 38

activations (Figure 1A). We summarize the precision of this 39

mapping with a brain score M: i.e. the correlation between 40

the true fMRI responses and the fMRI responses linearly pre- 41

dicted, with cross-validation, from GPT-2’s responses to the 42

same narratives (cf. Methods). To mitigate fMRI spatial 43

resolution and the necessity to correct each observation by 44

the number of statistical comparisons, we here report either 1) 45

the average brain scores across voxels or 2) the average score 46

within each region of interest (n = 314, following an automatic 47

subdivision of Destrieux atlas (10), cf. SI.1). Consistent with 48

previous findings (2, 4, 11, 12), these brain scores are signif- 49

icant over a distributed and bilateral cortical network, and 50

peak in middle- and superior-temporal gyri and sulci, as well 51

as in the supra-marginal and the infero-frontal cortex (2, 4, 11) 52

(Figure 1B). 53

By extracting GPT-2 activations from multiple layers (from 54

layer one to layer twelve), we confirm that middle layers best 55

map onto the brain (Figure 1C), as seen in previous studies 56

(2, 4, 11). For clarity, the following analyses focus on the 57

activations extracted from the eighth layer, i.e. GPT-2’s most 58

"brain-like" layer (Figure 1B). 59

GPT-2’s brain predictions correlate with semantic comprehension. 60

Does the linear mapping between GPT-2 and the brain reflect 61

a fortunate correspondence (4)? Or, on the contrary, does 62

it reflect similar representations of high-level semantics? To 63

address this issue, we correlate these brain scores to the level of 64

comprehension of the subjects, assessed for each subject-story 65

pair. On average across all voxels, this correlation reaches 66

R = 0.50 (p < 10−15, Figure 1D, as assessed across subject- 67

story pairs with the Pearson’s test provided by SciPy). This 68

correlation is significant across a wide variety of the bilateral 69

temporal, parietal and prefrontal cortices typically linked to 70

language processing (Figure 1E). Together, these results sug- 71

gest that the shared representations between GPT-2 and the 72

brain reliably vary with semantic comprehension. 73

Low-level processing only partially accounts for the correlation be- 74

tween comprehension and GPT-2’s mapping Low-level speech 75

representations typically vary with attention (13, 14), and 76

could thus, in turn, influence down-stream comprehension 77

processes. Consequently, one can legitimately wonder whether 78
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Fig. 1. A. 101 subjects listen to narratives (70 min of unique audio stimulus in total) while their brain signal is recorded using functional MRI. At the end of each story, a
questionnaire is submitted to each subject to assess their understanding, and the answers are summarized into a comprehension score specific to each (narrative, subject) pair
(grey box). In parallel (blue box on the left), we measure the mapping between the subject’s brain activations and the activations of GPT-2, a deep network trained to predict a
word given its past context, both elicited by the same narrative. To this end, a linear spatio-temporal model (f ◦ g) is fitted to predict the brain activity of one voxel Y , given
GPT-2 activations X as input. The degree of mapping, called "brain score" is defined for each voxel as the Pearson correlation between predicted and actual brain activity on
held-out data (blue equation, cf. Methods). Finally, we test the correlation between the comprehension scores of the subjects and their corresponding brain scores using
Pearson’s correlation (red equation). A positive correlation means that the representations shared across the brain and GPT-2 are key for the subjects to understand a narrative.
B. Brain scores (fMRI predictability) of the activations of the eighth layer of GPT-2. Scores are averaged across subjects, narratives, and voxels within brain regions (142
regions in each hemisphere, following a subdivision of Destrieux Atlas (10), cf. SI.1). Only significant regions are displayed, as assessed with a two-sided Wilcoxon test across
(subject, narrative) pairs, testing whether the brain score is significantly different from zero (threshold: .05). C. Brain scores, averaged across fMRI voxels, for different activation
spaces: phonological features (word rate, phoneme rate, phonemes, tone and stress, in green), the non-contextualized word embedding of GPT-2 ("Word", light blue) and the
activations of the contextualized layers of GPT-2 (from layer one to layer twelve, in blue). The error bars refer to the standard error of the mean across (subject, narrative) pairs
(n=237). D. Comprehension and GPT-2 brain scores, averaged across voxels, for each (subject, narrative) pair. In red, Pearson’s correlation between the two (denoted R), the
corresponding regression line and the 95% confidence interval of the regression coefficient. E. Correlations (R) between comprehension and brain scores over regions of
interest. Brain scores are first averaged across voxels within brain regions (similar to B.), then correlated to the subjects’ comprehension scores. Only significant correlations
are displayed (threshold: .05). F. Correlation scores (R) between comprehension and the subjects’ brain mapping with phonological features (M(Phonemic) (i), the share of the
word-embedding mapping that is not accounted by phonological features M(Word) − M(Phonemic) (ii) and the share of the GPT-2 eighth layer’s mapping not accounted
by the word-embedding M(GPT2) − M(Word) (iii). G. Relationship between the average GPT-2-to-brain mapping (eighth layer) per region of interest (similar to B.), and
the corresponding correlation with comprehension (R, similar to D.). Only regions of the left hemisphere, significant in both B. and E. are displayed. In black, the top ten regions
in terms of brain and correlation scores (cf. SI.1 for the acronyms). Significance in D, E and F is assessed with Pearson’s p-value provided by SciPy†. In B, E and F, p-values
are corrected for multiple comparison using a False Discovery Rate (Benjamin/Hochberg) over the 2 × 142 regions of interest.

the correlation between comprehension and GPT-2’s brain79

mapping is simply driven by variations in low-level auditory80

processing. To address this issue, we evaluate the predictabil-81

ity of fMRI given low-level phonological features: the word82

rate, phoneme rate, phonemes, stress and tone of the narrative83

(cf. Methods). The corresponding brain scores correlate with84

the subjects’ understanding (R = 0.17, p < 10−2) but less so85

than the brain scores of GPT-2 (∆R = 0.32). These low-level86

correlations with comprehension peak in the left superior tem-87

poral cortex (Figure 1F). Overall, this result suggests that the88

link between comprehension and GPT-2’s brain mapping may89

be partially explained by – but not reduced to – the variations90

of low-level auditory processing.91

The reliability of high-level representations best predict comprehen-92

sion Is the correlation between comprehension and GPT-2’s93

mapping driven by a lexical process and/or by an ability to94

meaningfully combine words? To tackle this issue, we compare95

the correlations obtained from GPT-2’s word embedding (i.e.96

layer 0) to those obtained from GPT-2’s eighth layer, i.e. a97

contextual embedding. On average across voxels, the corre-98

lation with comprehension is 0.12 lower with GPT-2’s word99

embedding than with its contextual embedding. An analogous100

analysis, comparing word embedding to phonological features101

is displayed in 1F. Strictly lexical effects (word-embedding 102

versus phonological) peak in the superior-temporal lobe and 103

in pars triangularis. By contrast, higher-level effects (GPT-2 104

eighth layer versus word-embedding) peak in the superior- 105

frontal, posterior superior-temporal gyrus, in the precuneus 106

and in both the triangular and opercular parts of the inferior 107

frontal gyrus – a network typically associated with high-level 108

language comprehension (4, 15–19). 109

Comprehension effects are mainly driven by individuals’ variability 110

The variability in comprehension scores could result from 111

exogeneous factors (e.g. some stories may be harder to com- 112

prehend than others for GPT-2) and/or from endogeneous 113

factors (e.g. some subjects may better understand specific 114

texts because of their prior knowledge). To address this issue, 115

we fit a linear mixed model to predict comprehension scores 116

given brain scores, specifying the narrative as a random effect 117

(cf. SI.1). The fixed effect of brain score (shared across nar- 118

ratives) is highly significant: β = 0.04, p < 10−29, cf. SI.1). 119

However, the random effect (slope specific to each single nar- 120

rative) is not (β < 10−2, p > 0.11). We also replicate the 121

main analysis (Figure 1D) within each single narrative: the 122

correlation with comprehension reaches 0.76 for the ‘sherlock’ 123

story and is above 0.40 for every story (cf. SI.1). Overall, 124
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these analyses confirm that the link between GPT-2 and se-125

mantic comprehension is mainly driven by subjects’ individual126

differences in their ability to make sense of the narratives.127

Discussion Our analyses reveal a positive correlation between128

semantic comprehension and the degree to which GPT-2 maps129

onto brain responses to spoken narratives.130

These results strengthen and complete prior work on the131

brain bases of semantic comprehension. In particular, previous132

studies have used inter-subject brain correlation to reveal the133

brain regions associated with understanding (17). For exam-134

ple, Lerner et al. recorded subjects’ fMRI while they listened135

to normal texts or texts scrambled at the word, sentence or136

paragraph level, in order to parametrically manipulate their137

level of comprehension (15). The corresponding fMRI signals138

correlated across subjects in the primary and secondary audi-139

tory areas even when the input was scrambled below the lexical140

level. By contrast, fMRI signals also became correlated in the141

bilateral infero-frontal and temporo-parietal cortex when the142

scrambling was either not performed, or performed at the level143

of sentences and paragraphs. Our results are consistent with144

this hierarchical organization, and thus make an important145

step towards the development of a cerebral model of narrative146

comprehension.147

The relationship between GPT-2’s representations and hu-148

man comprehension remains to be qualified. First, although149

highly significant, our brain scores are relatively low (2, 9, 17).150

This phenomenon likely results from a mixture of different151

elements: i) we ran our analyses across all voxels to avoid152

selection biases, which automatically reduces the average ef-153

fect sizes and ii) we report the results without correcting for154

a noise ceiling (cf. SI.1), as our pilot analyses suggest that155

such noise-ceiling can greatly vary depending on how it is156

implemented (i.e. fit from mean across subjects, from all or on157

voxels etc). Second, the correlation between semantic compre-158

hension and GPT-2’s mapping is robust (p < 10−15) but far159

from perfect (R = 0.50). Such correlation thus indicates that160

the modeling of brain responses with GPT-2 does not fully161

account for the variation in comprehension. While this result162

is expected (7), our study provides a promising framework to163

evaluate the extent to which deep language models represent164

and understand texts like we do.165

Finally, our results suggest that the neural bases of com-166

prehension relate to the high-level representations of deep167

language models. While the mapping of phonological fea-168

tures and word embeddings do correlate with comprehension,169

GPT-2’s contextual embeddings provides brain maps that170

more reliably predict comprehension (Figure 1F). The supe-171

riority of contextual-embedding in predicting comprehension172

suggests that i) GPT-2 encodes features supporting compre-173

hension and ii) our finding are not solely driven by low- or174

mid-level processing (13, 14). These elements remain solely175

based on correlations, however. The factors that causally influ-176

ence comprehension, ranging from prior knowledge, attention177

and language complexity should be explicitly manipulated in178

future work.179

Overall, the present study strengthens and clarifies the simi-180

larity between the brain and deep language models, repeatedly181

observed in the past three years (2–4, 11, 20). Together, these182

findings reinforce the relevance of deep language models in183

unraveling the neural bases of narrative comprehension.184

Materials and Methods 185

186

Our analyses rely on the "Narratives" dataset (21), composed of 187

the brain signals, recorded using fMRI, of 345 subjects listening to 188

27 narratives. 189

Narratives and comprehension score Among the 27 stories of the 190

dataset, we selected the seven stories for which subjects were asked 191

to answer a comprehension questionnaire at the end, and for which 192

the answers varied across subjects (more than ten different com- 193

prehension scores across subjects), resulting in 70 minutes of audio 194

stimuli in total, from four to 19 minutes per story (Figure 2). Ques- 195

tionnaires were either multiple-choice, fill-in-the blank, or open 196

questions (answered with free text) rated by humans (21). Here, 197

we used the comprehension score computed in the original dataset 198

which was either a proportion of correct answers or the sum of the 199

human ratings, scaled between 0 and 1 (21). It summarizes the 200

comprehension of one subject for one narrative (specific to each 201

(narrative, subject) pair). 202

Fig. 2. For each
of the seven nar-
ratives: number of
subjects (n), distri-
bution of comprehen-
sion scores across
subjects and length
of the narrative.

Brain activations The brain activations of the 101 subject who 203

listened to the selected narratives were recorded using fMRI, as de- 204

scribed in (21). As suggested in the original paper, pairs of (subject, 205

narrative) were excluded because of noisy recordings, resulting in 206

237 pairs in total. 207

GPT-2 activations GPT-2 (1) is a high-performing neural language 208

model trained to predict a word given its previous context (it does 209

not have access to succeeding words), given millions of examples 210

(e.g Wikipedia texts). It consists of multiple Transformer modules 211

(twelve, each of them called "layer") stacked on a non-contextual 212

word embedding (a look-up table that outputs a single vector per 213

vocabulary word) (1). Each layer l can be seen as a nonlinear 214

system that takes a sequence of w words as input, and outputs 215

a contextual vector of dimension (w, d), called the “activations" 216

of layer l (d = 768). Intermediate layers were shown to better 217

encode syntactic and semantic information than input and output 218

layers (22), and to better map onto brain activity (2, 4). Here, we 219

show that the eighth layer of GPT-2 best predicts brain activity 220

1C. We thus select the eighth layer of GPT-2 for our analyses. 221

Our conclusions remain unchanged with other intermediate-to-deep 222

layers of GPT-2 (from 6th to 12th layers). 223

In practice, the narratives’ transcripts were formatted (replacing 224

special punctuation marks such as "–" and duplicated marks "?." by 225

dots), tokenized using GPT-2 tokenizer and input to the GPT-2 226

pretrained model provided by Huggingface ‡. The representation of 227

each token is computed separately using a context window a 1024. 228

For instance, to compute the representation of the third token of 229

the story, we input GPT-2 with the third, second and first token, 230

and then extract the activations corresponding to the third token. 231

To compute the representation of a token wk at the end of the 232

story, GPT-2 is input with this token combined with the 1,023 233

preceding tokens. Then, we extract the activations corresponding 234

to wk. The procedure results in a vector of activations of size (w, d) 235

with w the number of tokens in the story and d the dimensionality 236

of the model. There are fewer fMRI scans than words. Thus, 237

the activation vectors between successive fMRI measurements are 238

summed to obtain one vector of size d per measurement. To match 239

the fMRI measurements and the GPT-2 vectors over time, we used 240

the speech-to-text correspondences provided in the fMRI dataset 241

(21). 242

‡https://github.com/huggingface/transformers
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Linear mapping between GPT-2 and the brain For each (subject,243

narrative) pair, we measure the mapping between i) the fMRI244

activations elicited by the narrative and ii) the activations of GPT-2245

(layer nine) elicited by the same narrative. To this end, a linear246

spatiotemporal model is fitted on a train set to predict the fMRI247

scans given the GPT-2 activations as input. Then, the mapping is248

evaluated by computing the Pearson correlation between predicted249

and actual fMRI scans on a held out set I:250

M
(s,w) : I 7→ L

(
f ◦ g(X(w))i∈I , (Y

(s,w)
i

)i∈I

)
[1]251

With f ◦ g the fitted estimator (g: temporal and f: spatial252

mappings), L Pearson’s correlation, X(w) the activations of GPT-2253

and Y (s,w) the fMRI scans of subjects s, both elicited by the254

narrative w.255

In practice, f is a `2-penalized linear regression. We follow scikit-256

learn implementation§ with ten possible regularization parameters257

log-spaced between 10−1 and 108, one optimal parameter per voxel258

and leave-one-out cross-validation. g is a finite impulse response259

(FIR) model with 5 delays, where each delay sums the activations260

of GPT-2 input with the words presented between two TRs. For261

each (subject, narrative) pair, we split the corresponding fMRI time262

series into five contiguous chunks using scikit-learn cross-validation.263

The procedure is repeated across the five train (80% of the fMRI264

scans) and disjoint test folds (20% of the fMRI scans). Pearson265

correlations are averaged across folds to obtain a single score per266

(subject, narrative) pair. This score, denoted M(X) in Figure 1A,267

measures the mapping between the activations space X and the268

brain of one subject, elicited by one narrative.269

Phonological features To account for low-level speech processing,270

we computed the alignment (Eq. (1)) between the fMRI brain record-271

ings Y and phonological features X: the word rate (of dimension272

d = 1, the number of words per fMRI scan), the phoneme rate273

(d = 1, the number of phonemes per fMRI scan) and the concate-274

nation of phonemes, stresses and tones of the words in the stimuli275

(categorical feature, d = 117). The latter features are provided in276

the original Narratives database (21), and computed using Gentle¶
277

forced-alignment algorithm.278

Significance Significance was either assessed by using either (i) a279

second-level Wilcoxon test (two-sided) across subject-narrative pairs,280

testing whether the mapping (one value per pair) was significantly281

different from zero (Figure 1B), or (ii) by using the first-level Pearson282

p-value provided by SciPy‖ (Figure 1D-G). In Figure 1B, E, F, p-283

values were corrected for multiple comparison (2 × 142 ROIs) using284

False Discovery Rate (Benjamin/Hochberg)∗∗.285
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Supporting Information (SI)363

Brain parcellation. In Figure 1B, E, and F, we used a subdi-364

vision of the parcellation from Destrieux Atlas (10). Regions365

with more than 400 vertices were split into smaller regions (so366

that each regions contains less than 400 vertices). The original367

parcellation consists of 75 regions per hemisphere. Our custom368

parcellation consists in 142 regions per hemisphere.369

In Figure 1G, we use the original parcellation for simplicity,370

and the following acronyms:371

Acronym Definition

STG / STS Superior temporal gyrus / sulcus
aSTS Anterior STS
maSTS Mid-anterior STS
mpSTS Mid-posterior STS
pSTS Posterior STS
Angular / Supramar Angular / Supramarginal inferior parietal gyrus
MTG / MTS Medial temporal gyrus / sulcus
SFG / SFS Superior frontal gyrus / sulcus
IFG / IFS Inferior frontal gyrus / sulcus
Tri / Op Pars triangularis / opercularis (IFG)
TTransverse Temporal transverse sulcus
PCG Posterior cingulate gyrus
STO Temporo-occipital lateral sulcus

Mixed-effect model. Not all subjects listened to the same sto-372

ries. To check that the R scores (correlation between compre-373

hension and brain mapping) were not driven by the narratives374

and questionnaires’ variability, a linear mixed-effect model was375

fit to predict the comprehension of a subject given its brain376

mapping scores, specifying the narrative as a random effect.377

More precisely, if wi
∈ R corresponds to the mapping scores378

of the ith subject that listened to the story w, and Cwi
∈ R379

refers to the comprehension scores, we estimate the fixed effect380

parameters β̃ ∈ R and η̃ ∈ R (shared across narratives), and381

the random effect parameter βw ∈ R and ηw ∈ R (specific to382

the narrative w) such that:383

Cwi
= (β̃ + βw) ×wi

+(η̃ + ηw) + εwi
384

with εwi
a vector of i.i.d normal errors with mean 0 and vari-385

ance σ2. In practice, we use the statsmodels†† implementation386

of linear mixed-effect models. Significance of the coefficients387

were assessed with a t-test, as implemented in statsmodels.388

Replication across single narratives. To further support that389

the R were not driven by the narratives’ variability, we repli-390

cate the analysis of Figure 1D within single narratives. In391

Figure 3, we show that correlation scores between brain scores392

and comprehension scores are positive for each of the seven393

narratives.394

Noise Ceiling Estimates. fMRI recordings are inherently noisy.395

Thus, we estimate an upper bound of the best brain score that396

can be obtained given the level of noise in the Narrative dataset.397

To this end, for each (subject, narrative) pair, we linearly398

map the fMRI recordings, not with the GPT-2 activations,399

but with the average fMRI recordings of the other subjects400

who listened to that narrative. More precisely, we use the401

††https://www.statsmodels.org/

Fig. 3. Replication within single narratives. Same as Figure 1D for each single
narrative.

exact same setting as in Eq. (1), but we predict Y (s), not 402

from g(X) (GPT-2’s features after temporal alignment, of size 403

ntimes ×ndim), but from the mean of the other subject’s brains 404

Y = 1
|S|

∑
s′ 6=s

Y (s′) (of size ntimes × nvoxels). This score is 405

called the noise ceiling for the (subject, narrative) pair. The 406

noise ceilings for each brain region are displayed in Figure 4, 407

and correspond to upper bounds of the brain scores displayed 408

in Figure 1B. 409
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Fig. 4. Noise ceiling estimates. Noise ceilings averaged across subjects, narratives
and voxels within each region of interest. They are upper bounds of the brain scores
in Figure 1B.
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