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Abstract1

Animal behavior emerges from a seamless interaction between neural network dynamics, mus-2

culoskeletal properties, and the physical environment. Accessing and understanding the interplay3

between these intertwined elements requires the development of integrative and morphologically4

realistic neuromechanical simulations. Until now, there has been no such simulation framework5

for the widely studied model organism, Drosophila melanogaster. Here we present NeuroMech-6

Fly, a data-driven model of the adult female fly within a physics-based simulation environment.7

NeuroMechFly combines a series of independent computational modules including a biomechan-8

ical exoskeleton with articulating body parts—legs, halteres, wings, abdominal segments, head,9

proboscis, and antennae—muscle models, and neural network controllers. To enable illustrative10

use cases, we first define minimal leg degrees-of-freedom by analyzing real 3D kinematic mea-11

surements during real Drosophila walking and grooming. Then, we show how, by replaying these12

behaviors using NeuroMechFly’s biomechanical exoskeleton in its physics-based simulation envi-13

ronment, one can predict otherwise unmeasured torques and contact reaction forces. Finally, we14

leverage NeuroMechFly’s full neuromechanical capacity to discover neural networks and muscle15

parameters that enable locomotor gaits optimized for speed and stability. Thus, NeuroMech-16

Fly represents a powerful testbed for building an understanding of how behaviors emerge from17

interactions between complex neuromechanical systems and their physical surroundings.18

1 Introduction19

Uncoupling the contributions to behavior of many neuronal and biomechanical elements is daunting.20

Systems-level numerical simulations can assist in this ambitious goal by consolidating data into a21

dynamic framework, generating predictions to be tested, and probing the sufficiency of prevailing22

theories to account for experimental observations [1–6]. Computational models, including neurome-23

chanical simulations, have long played a particularly important role in the study of movement control24

in vertebrates [7–10] and invertebrates, including stick insects [11–14], cockroaches [15, 16], praying25

mantises [17], and ants [18].26

For animals like invertebrates with a relatively small number of neurons that can be identified27

across individuals, a mapping of real to simulated biomechanical or circuit elements might enable28

a cross-talk whereby models make predictions that can then be tested experimentally. However,29

for many of the animals for which neuromechanical models currently exist, there is a dearth or30

absence of genetic tools that would facilitate repeatedly recording, or perturbing the same neurons31

across animals. By contrast, for a few commonly studied ‘model’ organisms, a dialogue between32

experimental results and computational predictions represents an exciting but largely unrealized33

opportunity. This is recently enabled by advances in computing power, the realism of physics-based34

simulation environments, and improvements in numerical optimization approaches. Neuromechanical35

models of some commonly studied organisms have already been developed including for the worm36
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(Caenorhabditis elegans [19, 20]), maggots (larval Drosophila melanogaster [21]), and rodents [22].37

However, for the adult fly, Drosophila melanogaster, only 2-dimensional (2D) [23] and morphologically38

unrefined [24] neuromechanical models exist.39

Adult flies are an ideal organism for establishing a synergy between experimental and computa-40

tional neuroscience. First, flies generate a large repertoire of complex behaviors including groom-41

ing [25], courtship [26], flight [27], and walking [28, 29] which they use to navigate complex environ-42

ments [30]. The kinematics of these behaviors can now be quantified precisely using deep learning-43

based computer vision tools [31, 32] in 3-dimensions (3D) [33, 34]. Second, flies have a relatively44

small number of neurons that can be repeatedly genetically targeted [35] for recordings or perturba-45

tions in tethered, behaving animals [36–39]. These neurons can also be placed within their circuit46

context using recently acquired brain and ventral nerve cord (VNC) connectomes [40, 41]. We pre-47

viously developed a simple physics-based simulation of adult Drosophila melanogaster to investigate48

hexapod locomotor gaits [24]. However, this older model has a number of important limitations that49

restrict its widespread use: it lacks (i) the morphological accuracy needed to simulate mass distribu-50

tions, compliance, and physical constraints, (ii) muscle models and their associated passive dynamical51

properties, as well as (iii) neural networks or other control architectures.52

Here we describe NeuroMechFly, a neuromechanical model of adult Drosophila that fills this53

methodological gap by incorporating a new, open-source computational framework consisting of ex-54

changeable modules which provide access to biomechanics, neuromuscular control, and parameter55

optimization approaches. These modules maintain the capacity for whole organism simulation while56

also facilitating further open source extensions and improvements by the scientific community. Thus,57

NeuroMechFly is a completely new modeling framework and not simply an improvement of an earlier58

model [24].59

60

Figure 1: Data-driven development and applications of NeuroMechFly. (A) Body
structures—morphology, joint locations, and degrees-of-freedom—were defined by x-ray microtomog-
raphy and kinematic measurements. (B) Real 3D poses were used to replay kinematics in the model
permitting the prediction of unmeasured contact reaction forces and joint torques. (C) Real limb
kinematics were used to constrain the evolutionary optimization of neuromuscular parameters aiming
to satisfy high-level objectives for walking—speed and static stability. The properties of optimized
networks could then be more deeply analyzed.
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The biomechanical exoskeleton of NeuroMechFly was obtained from a detailed CT-scan of an69

adult female fly which was then digitally rendered. We defined the model’s leg degrees-of-freedom70

based on an investigation of Drosophila 3D leg kinematics (Figure 1A), allowing us to discover that a71

previously unreported coxa-trochanter leg degree-of-freedom (DoF) is required to accurately recapitu-72

2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.04.17.440214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440214
http://creativecommons.org/licenses/by-nc/4.0/


late real fly walking and grooming. Using this biomechanical exoskeleton and replaying experimental73

leg kinematics within the PyBullet physics-based simulation environment (Figure 1B) [42], we then74

explored how one can estimate quantities that cannot be experimentally measured in behaving flies—75

ground reaction forces (GRFs), joint torques, and tactile contacts. As a second use-case illustration76

of NeuroMechFly’s potential, we leveraged the full neuromechanical framework—now including neu-77

ral and muscle models—to show how the parameters of a central pattern generator (CPG)-inspired78

coupled-oscillator network and associated torsional spring and damper muscle model could be opti-79

mized to discover and explore controllers for fast and stable walking (Figure 1C ). Importantly, the80

NeuroMechFly framework is modular and open-source, enabling future extensions including the use81

of more detailed neural and muscle models that permit more interpretable experimental predictions82

that can inform our understanding of real Drosophila neural circuits. Thus, NeuroMechFly represents83

an important step towards comprehending how behaviors emerge from a complex interplay between84

neural dynamics, musculoskeletal biomechanics, and physical interactions with the environment.85

2 Results86

2.1 Constructing a data-driven biomechanical model of adult Drosophila87

Behavior depends heavily on the body’s physical constraints and its interactions with the environment.88

Therefore, morphological realism is critical to accurately model leg movements and their associated89

self-collisions, joint ranges of motion, mass distributions, and mechanical loading. To achieve this90

level of realism in our model, we first measured the morphology of an adult female fly using x-ray mi-91

crotomography (Video 1). We first embedded the animal in resin to reduce blurring associated with92

scanner movements (Figure 2A). Then we processed the resulting microtomography data (Figure 2B)93

by binarizing it to discriminate between foreground (fly) and background (Figure 2C ). Finally, we94

applied a Lewiner marching cubes algorithm [43] to generate a polygon mesh 3D reconstruction of95

the animal’s exoskeleton (Figure 2D).96

97

Figure 2: Constructing a data-driven biomechanical model of adult Drosophila. (A) An
adult female fly is encased in resin for x-ray microtomography. (B) Cross-section of the resulting
x-ray scan. Cuticle, muscles, nervous tissues, and internal organs are visible. (C) A threshold is
applied to these data to separate the foreground (white) from the background (black). (D) A 3D
polygon mesh of the exoskeleton and wings is constructed. (E) Articulated body parts are separated
from one another. (F) These parts are reassembled into a natural resting pose. Joint locations are
defined and constraints are introduced to create an articulated body (dark red). (G) Textures are
added to improve the visual realism of the model.
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Subsequently, to articulate appendages from this polygon mesh, we separated the body into 65107

segments (see Table 1)(Figure 2E ) and reassembled them into an empirically defined natural resting108
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pose. Joints were added manually to permit actuation of the antennae, proboscis, head, wings,109

halteres, abdominal segments, and leg segments. Leg articulation points were based on observations110

from high-resolution videography [33], and previously reported leg DoFs [44–46](Table 1)(Figure 2F ).111

By measuring leg segment lengths across animals (n = 10), we confirmed that the model’s legs are112

within the range of natural size variation (Figure S1).113

To facilitate the control of each DoF in the physics engine, we used hinge-type joints to connect114

each of the body parts. We later show that this approximation permits accurate replay of leg end-115

effector trajectories. Therefore, to construct thorax-coxa joints with three DoFs, we combined three116

hinge joints along the yaw, pitch, and roll axes of the base link. Finally, we textured the model for117

visualization purposes (Figure 2G). This entire process yielded a rigged model of adult Drosophila118

with the morphological accuracy required for biomechanical studies as well as, in potential future119

work, model-based computer vision tasks like pose estimation [47–51].120

2.2 Identifying minimal joint degrees-of-freedom required to accurately121

replay real 3D leg kinematics122

After constructing an articulating biomechanical model of an adult fly, we next asked whether the123

six reported and implemented leg DoFs—(i-iii) thorax-coxa (ThC) elevation/depression, protrac-124

tion/retraction, and rotation, (iv) coxa-trochanter (CTr) flexion/extension, (v) femur-tibia (FTi)125

flexion/extension, and (vi) tibia-tarsus (TiTa) flexion/extension [44,45]—would be sufficient to accu-126

rately replay measured 3D leg kinematics. We did not add a trochanter-femur (TrF) joint because127

the Drosophila trochanter is thought to be fused to the femur [45]. For the middle and hind legs, ThC128

protraction/retraction occurs along a different axis than similarly named movements of the front legs.129

Therefore, we chose to instead use the notations ‘roll’, ‘pitch’, and ‘yaw’ to refer to rotations around130

the anterior/posterior, medial/lateral, and dorsal/ventral axes of articulated segments, respectively131

(Video 2).132

For our studies of leg kinematics, we focused on forward walking and grooming, two of the most133

common spontaneously-generated Drosophila behaviors. First, we used DeepFly3D [33] to acquire 3D134

poses from recordings of tethered flies behaving spontaneously on a spherical treadmill. Due to 3D135

pose estimation-related noise and some degree of inter-animal morphological variability (Figure S1),136

directly actuating NeuroMechFly using raw 3D poses was impossible. To overcome this issue, we137

fixed the positions of base ThC joints as stable reference points and set each body part’s length to its138

mean length for a given experiment. Then, we scaled relative ThC positions and body part lengths139

using our biomechanical model as a template. Thus, instead of using 3D cartesian coordinates, we140

could now calculate joint angles that were invariant across animals and that matched the DoFs used141

by NeuroMechFly. At first we calculated these joint angles for the six reported DoFs [44, 45] by142

computing the dot product between the global rotational axes and coxal joints and between adjacent143

leg segments joined by single-rotational joints (see Materials and Methods).144

When only these six DoFs were used to replay walking and grooming, we consistently observed145

a large discrepancy between 3D pose-derived cartesian joint locations and those computed from146

joint angles via forward kinematics (Figure 3, Base DoF Dot product). Visualization of these errors147

showed significant out-of-plane movements of the tibia and tarsus (Video 3, top-left). This was148

surprising given that each leg is thought to consist of a ball-and-socket joint (three DoFs in the ThC149

joint) followed by a series of one DoF hinge joints that, based on their orientations, should result150

in leg segments distal to the coxa residing in the same plane. Therefore, we next tried to identify151

alternative leg configurations that might better match 3D poses. First we performed an inverse152

kinematics optimization of joint angles rather than dot product operations. This would allow us to153

identify angle configurations that minimize error at the most distal tip of the kinematic chain—in this154

case, the pretarsus. Although inverse kinematics yielded a lower discrepancy (Figure 3, Base DoF155

Inverse kinematics), we still observed consistent out-of-plane leg movements (Video 3, top-middle).156

We next examined whether an extra DoF might be needed at the CTr joint to accurately replicate168

real fly leg movements. This analysis was motivated by the fact that: (i) other insects use addi-169

tional stabilizing rotations at or near the TrF joint [52–55], (ii) unlike other insects, the Drosophila170

trochanter and femur are fused, and (iii) Drosophila hosts reductor muscles of unknown function171

near the CTr joint [44]. To ensure that any improvements did not result simply from overfitting by172

increasing the number of DoFs, we also tested the effect of adding one roll or yaw DoF to each of the173

more distal hinge-type joints (CTr, FTi and TiTa)(Video 2). Indeed, for both walking (Video 3,174
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Figure 3: Adding a CTr roll DoF to base DoFs enables the most accurate kinematic replay
of real walking and grooming. Body-length normalized mean absolute errors (MAE) comparing
measured 3D poses and angle-derived joint positions for various DoF configurations. Measurements
were made for representative examples of (A) forward walking, or (B) foreleg/antennal grooming.
For each condition, n = 2400 samples were computed for all six legs across 4 s of 100 Hz video data.
Data for each leg are color-coded. ‘R’ and ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’,
and ‘H’ indicate front, middle, and hind legs, respectively. Violin plots indicate median, upper, and
lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to based DoFs are
highlighted in light gray.
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top-right) and foreleg/antennal grooming (Video 4, top-right), we observed that adding a CTr roll175

DoF to the six previously reported (‘base’) DoFs significantly and uniquely reduced the discrepancy176

between 3D pose-derived and forward kinematics-derived joint positions, even when compared with177

improvements from inverse kinematics (Figure 3, Base DoF & CTr roll; for statistical analysis, see178

Table 2 and Table 3). This improvement was also evident on a joint-by-joint basis for walking (Fig-179

ure S2) and grooming (Figure S3) and it was not achieved by any other kinematic chain tested—a180

result that argues against the possibility of over-fitting (Figure 3, Base DoF & CTr yaw, Base DoF181

& FTi roll, Base DoF & FTi yaw, Base DoF & TiTa roll, Base DoF & TiTa yaw). These findings182

demonstrate that accurate kinematic replay of Drosophila leg movements requires seven DoFs per leg:183
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the previously reported six DoFs [44, 45] as well as a roll DoF near the CTr joint. Thus, by default,184

NeuroMechFly’s biomechanical exoskeleton incorporates this additional DoF for each leg (Table 1).185

2.3 Using NeuroMechFly to estimate joint torques and contact forces186

through kinematic replay of real fly behaviors187

Having identified a suitable set of leg DoFs, we next aimed to illustrate the utility of NeuroMechFly188

as a biomechanical model within the PyBullet physics-based environment. PyBullet is an integrative189

framework that not only gives access to collisions, reaction forces, and torques but also imposes gravity,190

time, friction, and other morphological collision constraints, allowing one to explore their respective191

roles in observed animal behaviors. Specifically, we focused on testing the extent to which one might192

use kinematic replay of real behaviors to infer torques, and contact forces like body part collisions and193

ground reaction forces (GRFs)—quantities that remain technically challenging to measure in small194

insects like Drosophila [18,56]. Although kinematic replay may not provide information about internal195

forces that are not reflected in 3D poses (e.g., how tightly the legs grip the spherical treadmill without196

changes in posture), estimates of collisions and interaction forces may be a good first approximation197

of an animal’s proprioception and mechanosensation.198

We explored this possibility by using a proportional-derivative (PD) controller implemented in199

PyBullet to actuate the model’s leg joints, replaying measured leg kinematics during forward walking200

and foreleg/antennal grooming. We used joint angles and angular velocities as target signals for201

the controller. Because, when applying this kind of controller, there is no unique set of contact202

solutions that match forces and torques to prescribed kinematics (i.e., experimental validation of203

force estimates would ultimately be necessary), we first quantified how sensitive torque and force204

estimates were to changes in PD controller gains. Based on this sensitivity analysis, we selected gain205

values that optimized the precision of kinematic replay (Figure S4, blue squares) and for which small206

deviations did not result in large variations in measured physical quantities (Figure S5, red traces).207

We included all seven leg degrees-of-freedom from our error analysis (Figure S6) and the model’s208

‘zero-angle pose’ was selected to make joint angles intuitive (Figure S7). We also set fixed values for209

the orientation of abdominal segments, wings, halteres, head, proboscis, and antennae to generate a210

natural pose (Table 4).211

When we replayed walking (Figure 4A-C )(Video 5) and foreleg/antennal grooming (Figure 5A-226

C ) (Video 6), we observed that the model’s leg movements were largely identical to those measured227

from Drosophila. By measuring real ball rotations [57] and comparing them with simulated spherical228

treadmill rotations, for a range of soft constraint parameters (Figure S8), we quantified high similarity229

between real and simulated spherical treadmill forward velocities (Figure S9D), and to some extent,230

yaw velocities (Figure S9F ). Sideways velocities were smaller and, thus, difficult to compare (Fig-231

ure S9E ). This was notable given that the ball’s rotations were not explicitly controlled but emerged232

from tarsal contacts and forces in our simulation. These observations support the accuracy of our233

computational pipeline in processing and replaying recorded joint positions.234

Next, we more directly validated collisions and forces computed within the PyBullet physics-based235

simulation environment. From kinematic replay of joint angles during walking (Figure 4E, top), we236

measured rich, periodic torque dynamics (Figure 4E, middle). These were accompanied by ground237

reaction forces (GRFs) that closely tracked subtle differences in leg placement across walking cycles238

(Figure 4E, bottom). Superimposing these GRF vectors on raw video recordings of the fly allowed239

us to visualize expected tarsal forces (Figure 4D)(Video 5, top-left) which could also be used to240

generate predicted gait diagrams during tethered walking (Figure 4F ). These predictions were highly241

accurate (83.5 - 87.3% overlap) when compared with manually labeled ground-truth gait diagrams for242

three different animals and experiments (Figure S10). This result was notable given that the thorax243

is fixed and, in principle, subtle changes in attachment height could increase or decrease the duration244

of leg-treadmill contacts.245

Similarly, for foreleg/antennal grooming (Figure 5A-C ), we observed that measured joint angles246

(Figure 5E, top) could give rise to complex torque dynamics (Figure 5E, middle). Associated leg247

and antennal contact forces (Figure 5D, E, bottom) reached magnitudes about three times the fly’s248

weight. These fall within the range of previously observed maximum forces measured at the tip of the249

tibia (∼100µN) for ballistic movements [58], but further experimental data will be required to fully250

validate these measurements. These leg and antennal contact forces were used to generate groom-251

ing diagrams—akin to locomotor gait diagrams—that illustrate predicted contacts between distal leg252
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Figure 4: Kinematic replay of forward walking allows the estimation of ground contacts
and reaction forces. (A) Multiple cameras and deep learning-based 2D pose estimation are used
to track the positions of each leg joint while a tethered fly is walking on a spherical treadmill. (B)
Multiview 2D poses (solid lines) are triangulated and processed to obtain 3D joint positions (dashed
lines). These are further processed to compute joint angles for seven DoFs per leg. (C) Joint
angles are replayed using PD control in NeuroMechFly. Body segments in contact with the ground
are indicated (green). (D) Estimated ground reaction force vectors (red arrows) are superimposed
on original video data. (E, top) Kinematic replay of real 3D joint angles permits estimation of
unmeasured (E, middle) joint torques, and (E, bottom) ground reaction forces. Only data for
the left front leg (LF) are shown. Grey bars indicate stance phases when the leg is in contact with
the ground. Joint DoFs are color-coded. (F) A gait diagram illustrating stance (black) and swing
(white) phases for each leg as computed by measuring simulated tarsal contacts with the ground.
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segments and the antennae (Figure 5F ). During leg-leg grooming, we observed collisions that moved253

continuously along the leg segments in proximal to distal sweeps. These collision data provide a richer254

description of grooming beyond classifying the body part that is being cleaned and can enable a more255

precise physical quantification of many other behaviors including, for example, inter-animal boxing or256

courtship tapping. This approach also revealed the importance of having a morphologically accurate257

biomechanical model. When we replaced our CT scan-based leg segments and antennae with more258

conventional stick segments having similar diameters and lengths, we observed less rich collision dy-259

namics including the elimination of interactions between the tarsi and antennae (Figure S11) (Video260

7).261

Because our 3D pose estimates were made on a tethered fly behaving on a spherical treadmill,277

we also ‘tethered’ our simulation by fixing the thorax position. Next, we asked to what extent278

our model might be able to walk without body support (i.e., keeping its balance while carrying279

its body weight). To do this, we replayed 3D kinematics from tethered walking (Figure 4)(Video280

5) while NeuroMechFly could walk freely (untethered) on flat terrain. Indeed, we observed that281

our model walked stably on the ground (Video 8). Although an animal’s legs would naturally282

be positioned differently on a curved versus a flat surface, the flexibility of NeuroMechFly’s tarsal283

segments allowed it to walk freely with a natural pose using 3D poses taken from tethered walking on284

a curved spherical treadmill. As expected, flat ground locomotion matched the velocities of tethered285
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Figure 5: Kinematic replay allows the estimation of self-collisions and reaction forces
during foreleg/antennal grooming. (A) Multiple cameras and deep learning-based 2D pose
estimation are used to track the positions of each leg joint while a tethered fly grooms its forelegs
and antennae. (B) Multiview 2D poses (solid lines) are triangulated and processed to obtain 3D
joint positions (dashed lines). These are further processed to compute joint angles for seven DoFs per
leg. (C) Joint angles are replayed using PD control in NeuroMechFly. Body segments undergoing
collisions are indicated (green). (D) Estimated leg-leg and leg-antennae contact forces (red arrows)
are superimposed on original video data. (E, top) Kinematic replay of real joint angles permits
estimations of unmeasured (E, middle) joint torques, and (E, bottom) contact forces. Only data
for the right front (RF) leg are shown. Dark grey bars indicate leg-leg contacts. Light grey bars
indicate leg-antenna contacts. Joints are color-coded. (F) A grooming diagram illustrating contacts
(black) made by the front leg’s five tarsal segments (‘Ta1’ and ‘Ta5’ being the most proximal and the
most distal, respectively), tibia (‘Ti’), and both antennae (‘Ant’).
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walking (Figure S12) better than walking paths (Video 8): small deviations in heading direction286

yield large changes in trajectories.287

In summary, we have shown how NeuroMechFly’s biomechanical exoskeleton—without muscle288

or neuron models—can be used to replay real 3D poses to estimate otherwise inaccessible physical289

quantities like joint torques, collisions, and reaction forces that are accessible from its physics-based290

simulation engine.291

2.4 Using NeuroMechFly to explore locomotor controllers by optimizing292

CPG-oscillator networks and muscles293

As a full neuromechanical model, NeuroMechFly consists not only of biomechanical elements, like294

those used for kinematic replay, but also neuromuscular elements. In our computational framework,295

these represent additional modules that the investigator can define to be more abstract—e.g., leaky296

integrate-and-fire neurons and spring-and-damper models—or more detailed—e.g., Hodgkin-Huxley297

neurons and Hill-type muscle models. Parameters for neural networks and muscles that maximize298

user-defined objectives and minimize penalties can be identified using evolutionary optimization.299

Here, to provide a proof-of-concept of this approach, we aimed to discover neuromuscular con-300
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trollers that optimize fast and statically stable tethered walking. Insect walking gaits are commonly301

thought to emerge from the connectivity and dynamics of networks of CPGs within the ventral nerve302

cord (VNC) [15, 16, 59, 60]. Although alternative, decentralized approaches have also been pro-303

posed [14, 61], we focused on exploring a CPG-based model of locomotor control. First, we designed304

a neural network controller consisting of a CPG-like coupled oscillator [62] for each joint (Figure 6A).305

For simplicity, we denote the output of each coupled oscillator as the activity of a CPG. These CPGs,306

in turn, were connected to spring-and-damper (‘Ekeberg-type’) muscles [63]. This simple muscle307

model has been used to effectively simulate lamprey [63], stick insect [11], and salamander [9]308

locomotion.309

310

Figure 6: Using evolutionary optimization to identify oscillator network and muscle pa-
rameters that achieve fast and stable locomotion. (A) A network of coupled oscillators
modeling CPG-based intra- and interleg circuits in the ventral nerve cord of Drosophila. Oscillator
pairs control specific antagonistic leg DoFs (gray). Network parameter values are either fixed (black),
modified during optimization (red), or mirrored from oscillators on the other side of the body (pink).
(B) Multi-objective optimization of network and muscle parameters maximizes forward walking dis-
tance traveled (speed) and static stability. (C) A ‘trade-off’ solution’s locomotor trajectory (distance
traveled over x and y axes) across 60 optimization generations. (D) Pareto front of solutions from
the final (60th) optimization generation. Three individuals were selected from the population using
different criteria: the longest distance traveled (fastest, purple), the most statically stable solution
(‘most stable’, green), and the solution having the smallest 2-norm of both objective functions after
normalization (trade-off). (E) Gait diagrams for selected solutions from generation 60. Stance (black)
and swing (white) phases were determined based on tarsal ground contacts for each leg. Velocity val-
ues were obtained by averaging the ball’s forward velocity over 2 s. (F) Central Pattern Generator
(CPG) outputs, joint torques, and joint angles of each leg’s femur for the ’trade-off’ solution. Intraleg
joint angles for the left front, middle, and hind legs are also shown. Legs are color-coded and joints
are shown in different line styles.
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We aimed to identify suitable neuromuscular parameters for walking in an reasonably short period329

of optimization time (less than 24 h per run on a workstation). Therefore, we reduced the number330

of parameters and, thus, the search space. Specifically, we limited controlled DoFs to those which (i)331

were sufficient to generate walking in other insect simulations [64] and (ii) had the most pronounced332

effect on overall leg trajectories in our kinematic analysis of real flies (Figure S13). Thus, we used333

the following three DoFs per leg that satisfied these criteria: CTr pitch, and FTi pitch for all legs as334
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well as ThC pitch for the forelegs and ThC roll for the middle and hind legs.335

Each DoF was controlled by two coupled CPGs that drove the extensor and antagonistic flexor336

muscles. We assumed left-right body symmetry and optimized intraleg joint phase differences and337

muscle parameters for the right legs, mirroring these results for the left legs. In the same manner,338

we optimized the phase differences between the coxae flexor CPGs and mirrored them for the coxae339

extensor CPGs. Thus, we could connect 36 coupled oscillators in a minimal configuration to remove340

redundancy and reduce the optimization search space (Figure 6A). Finally, to permit a wide range341

of joint movements, each CPG’s intrinsic frequency was set as an open parameter, whose limits342

were constrained to biologically relevant frequencies observed from real fly joint movements during343

walking [28, 65](Figure S13). In total, 63 open parameters were optimized including CPG intrinsic344

frequencies, CPG phase differences, and muscle parameters (see Materials and Methods).345

We performed multi-objective optimization [66] using the NSGA-II genetic algorithm [67] to346

identify neuromuscular parameters that drove walking gaits satisfying two high-level objective func-347

tions: forward speed and static stability. Notably, these objectives can be inversely correlated: fast348

walking might be achieved by minimizing stance duration and reducing static stability. Forward speed349

was defined as the number of backward ball rotations within a fixed period of time and quantified350

as fictive distance traveled (Figure 6B, top). Static stability refers to the stability of an animal’s351

given pose if, hypothetically, tested while immobile. This metric can be quantified during walking as352

the minimal distance between the model’s center-of-mass (COM) and the closest edge of the support353

polygon formed by the legs in stance phase (i.e., in contact with the ground). This means that the354

closer the COM is to the center of the support polygon, the higher the static stability score. (Fig-355

ure 6B, bottom). Additionally, we defined four penalties to discourage unrealistic solutions including356

those with excessive joint velocities (these cause jittering or muscle instability), speeds slower or faster357

than real locomotion (a ‘moving boundary’), as well as joint angle ranges of motion and duty factors358

that violate those observed in real flies. Because the optimizer minimizes the objective functions, we359

inverted the sign for both functions. Thus, during optimization the Pareto front of best solutions360

evolved toward more negative values (Figure S14A) and forward walking speeds became faster over361

generations (Figure 6C )(Video 9).362

To more deeply investigate our optimization results, we examined three individual solutions from363

the final generation. These were: (i) the fastest solution, (ii) the most stable solution, and (iii) a364

‘trade-off’ solution that was the best compromise between speed and static stability (see Methods for a365

precise mathematical definition) (Figure 6D). By generating gait diagrams for each of these solutions,366

we found a diversity of strategies—non-tripod gaits were observed in all generations (Figure S14B)367

even after objectives were maximized and penalties minimized at generation 60 (Figure S14C ). How-368

ever, the trade-off solution—a compromise between speed and static stability—closely resembled a369

typical insect tripod gait [28, 68], supporting the notion that tripod locomotion satisfies a need for370

stability during fast insect walking [24].371

Because NeuroMechFly provides access to neuromuscular dynamics and physical interactions,372

we could also analyze then further analyze how these underlying quantities give rise to optimized373

locomotor gaits. To illustrate this, we focused on the femur flexors of each leg for the ‘trade-off’374

solution (Figure 6F ). As expected for a tripod gait, stance and swing phases of the left front (LF)375

and hind (LH) legs were coordinated with those of the right middle (RM) leg. This coordination376

implies that the middle and hind legs CPG activities (Figure 6F, top, green and brown) are in phase377

with each other and phase shifted by 180º with respect to the front leg (Figure 6F, top, orange). This378

is because, during stance phases, the front legs flex while the middle and hind legs extend. However,379

for the tripod generated by other three legs, the CPG activity of the left, middle (LM) femur was380

phase shifted with respect to the right front (RF) and hind (RH) legs (Figure 6F, top, red). Torques381

were highest for the hind legs, suggesting an important role for driving ball rotations (Figure 6F,382

middle, purple and brown). Finally, we confirmed that the increased torque of the hind legs was383

associated with a larger range of motion as measured by joint angles (Figure 6F, bottom).384

These results illustrate how, by combining our biomechanical exoskeleton with neuromuscular385

elements and an optimization framework, we could discover control strategies that maximize high-386

level behavioral objectives and minimize penalties informed by real measurements of Drosophila.387

For these solutions, neuromuscular dynamics, collisions, and forces could then be further examined388

because of their instantiation within a physics-based simulation environment.389
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3 Discussion390

Here we have introduced NeuroMechFly, a computational model of adult Drosophila that can be391

used for biomechanical, and—by also including available neural and muscle models—neuromechanical392

studies. We first illustrated a biomechanical use case in which one can estimate joint torques and393

contact forces including ground-reaction forces and body part collisions by replaying real, measured394

fly walking and grooming. In the future, directly through force measurements [69, 70] or indirectly395

through recordings of proprioceptive and tactile neurons [38, 71], these estimates might be further396

validated. Next, we demonstrated a neuromechanical use case by showing how high-level optimiza-397

tion of a neural network and muscles could be used to discover and more deeply study locomotor398

controllers. Although here we optimized for speed and static stability during tethered locomotion,399

NeuroMechFly can also locomote without body support, opening up the possibility of optimizing400

neuromuscular controllers for diverse, untethered behaviors.401

402

Figure 7: Modules that can be independently modified in NeuroMechFly. A neural con-
troller’s output drives muscles to move a biomechanical model in a physics-based environment. Each
of these modules can be independently modified or replaced within the NeuroMechFly simulation
framework. The controller generates neural-like activity to drive muscles. These muscles produce
torques to operate a biomechanical model embedded in PyBullet’s physics-based environment. When
replacing any module it is only necessary to preserve the inputs and outputs (colored arrows).

403

404
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408409

3.1 Limitations and future extensions of the biomechanical module410

The biomechanical exoskeleton of NeuroMechFly can benefit from several near-term extensions by411

the community. First, actuation is currently only implemented for leg joints. Additional effort will412

be required to actuate other body parts including the head, or abdomen by defining their DoFs, joint413

angle ranges and velocities based on 3D pose measurements. Second, the model currently achieves414

compliant joints during kinematic replay through position control (akin to a spring-and-damper)415

in PyBullet. However, future work may include implementing compliant joints with stiffness and416

damping based on measurements from real flies. Third, NeuroMechFly employs rigid bodies that417

do not reflect the flexibility of insect cuticle. Although our modeling framework could potentially418

include soft-bodied elements—these are supported by the underlying physics engine—we have chosen419

not to because it would first require challenging measurements of cuticular responses to mechanical420

stresses and strains (i.e. Young’s modulus) [72,73], and this would increase the model’s computational421

complexity, making it less amenable to evolutionary optimization. NeuroMechFly currently supports422
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flexibility in terms of compliance because the muscle model includes stiffness and damping terms.423

Additionally, the fact that kinematic replay is already accurate—with similar real and simulated joint424

angle and end-effector positions—suggests that modeling additional cuticular deformations might only425

have negligible effects. Therefore, we currently offer what we believe to be a practical balance between426

accuracy and computational cost. Finally, future iterations of our biomechanical model might also427

include forces that are observed at small scales, including Van der Waals and attractive capillary428

forces of footpad hairs [74].429

3.2 Limitations and future extensions of the neuromuscular modules430

In addition to its biomechanical exoskeleton, NeuroMechFly includes modules for neural controllers,431

muscle models, and the physical environment (Figure 7). These interact with one another to gen-432

erate rich in silico motor behaviors. Each of these modules can be independently modified in fu-433

ture work to improve biological interpretability, computational efficiency, and increase the range of434

possible experiments. First, more detailed neural controllers could already be implemented includ-435

ing Integrate-and-Fire, or Hodgkin-Huxley type neurons [15]. This would aid in the comparison436

of discovered artificial neural networks and their dynamics with measured connectomes [40, 41] and437

functional recordings [38], respectively. Second, to increase the realism of movement control, Hill-438

type muscle models that have nonlinear force generation properties could be implemented based on439

species-specific muscle properties—slack tendon lengths, attachment points, maximum forces, and440

pennation angles [58, 75]. Third, to study more complex motor tasks, one can already use the Py-441

Bullet framework [42] to increase the complexity of the physical environment. For example, one can442

study locomotor stability by introducing external objects (Video 10), or locomotor strategies for443

navigating heightfield terrains.444

In the near-term, we envision that NeuroMechFly will be used to test theories for neuromechani-445

cal behavioral control. For example, one might investigate the respective roles of feedforward versus446

feedback mechanisms in movement control (i.e., to what extent movements are generated by central447

versus sensory-driven signals). This can be tested by systematically modifying coupling strengths448

and sensory feedback gains in the simulation. Outcomes may then be experimentally validated. In449

the longer-term, this modeling framework might also be used in closed-loop with ongoing neural and450

behavioral measurements. Real-time 3D poses might be replayed through NeuroMechFly to predict451

joint torques and contact forces. These leg state predictions might then inform the delivery of pertur-452

bations to study how proprioceptive or tactile feedback are used to achieve robust movement control.453

In summary, NeuroMechFly promises to accelerate the investigation of how passive biomechanics454

and active neuromuscular control orchestrate animal behavior, and can serve as a bridge linking455

fundamental biological discoveries to applications in artificial intelligence and robotics.456
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4 Materials and Methods457

4.1 Constructing an adult Drosophila biomechanical model458

4.1.1 Preparing adult flies for x-ray microtomography459

The protocol used to prepare flies for microtomography was designed to avoid distorting the exoskele-460

ton. We observed that traditional approaches for preparing insects for either archival purposes or for461

high resolution microscopy, including scanning electron microscopy [76], result in the partial collapse462

or bending of some leg segments and dents in the exoskeleton of the thorax and abdomen. These463

alterations mostly occur during the drying phase and while removal of ethanol by using supercritical464

carbon dioxide drying reduces these somewhat, it is still not satisfactory. We therefore removed this465

step altogether, and instead embedded flies in a transparent resin. This resulted in only a small466

surface artifact over the dorsal abdominal segments A1, A2, and A3.467

Flies were heavily anaesthetized with CO2 gas, then carefully immersed in a solution of 2%468

paraformaldehyde in phosphate buffer (0.1M, pH 7.4) containing 0.1% Triton 100, to ensure fixative469

penetration, and left for 24 h at 4°C. Care was taken to ensure the flies did not float on the surface,470

but remained just below the meniscus. They were then washed in 0.1M cacodylate buffer (2 x 3471

min washes), and placed in 1% osmium tetroxide in 0.1M cacodylate buffer, and left at 4°C for an472

additional 24 h. Flies were then washed in distilled water and dehydrated in 70% ethanol for 48473

h, followed by 100% ethanol for 72 h, before being infiltrated with 100% LR White acrylic resin474

(Electron Microscopy Sciences, US) for 24 h at room temperature. This was polymerised for 24 h at475

60°C inside a closed gelatin capsule (size 1; Electron Microscopy Sciences) half-filled with previously476

hardened resin to ensure the insect was situated in the center of the final resin block, and away from477

the side.478

4.1.2 X-ray microtomography479

We glued the sample onto a small carbon pillar and scanned it using a 160 kV open type, microfocus X-480

ray source (L10711/-01; Hamamatsu Photonics K.K., Japan). The X-ray voltage was set to 40 kV and481

the current was set to 112 uA. The voxel size was 0.00327683 mm. To perform the reconstruction, we482

used X-Act software from the microtomography system developer (RX-solutions, Chavanod, France)483

obtaining a stack of 982 tiff images of 1046x1636 pixels each.484

4.1.3 Building a polygonal mesh volume from processed microtomography data485

First, we isolated cuticle and wings from the microtomography data using Fiji [77]. We selected 360486

images from the tiff stack as the region of interest (ROI) beginning at slice 300. The tiff stack with487

the ROI was then duplicated. The first copy was binarized using a threshold value of 64 to isolate the488

cuticle. The second copy was cropped to keep the upper half of the image—where the wings are—489

and then binarized using a lower threshold value of 58. Finally, we applied a closing morphological490

operation to isolate the wings. Both binarized stacks were stored as tiff files.491

We developed custom Python code to read the tiff stacks, and to fill empty holes within the body492

and wings. Finally, we used the Lewiner marching cubes algorithm [43] (implemented in the scikit-493

image package [78]) to obtain a polygon mesh for each stack. Both meshes were then exported to a494

standard compressed mesh storage format.495

4.1.4 Separating and reassembling articulated body parts496

We used Blender (Foundation version 2.81 [79]) to clean and manipulate polygon meshes obtained497

from microtomography data.498

After importing these meshes into Blender, we removed noise by selecting all vertices linked to499

the main body (or wings), inverting the selection, and deleting these vertices. We explored the500

resulting meshes, looking for spurious features, and then manually selected and deleted the related501

vertices. We obtained 65 body segments (Table 1) based on [80]. More recent literature corroborated502

these propositions for body morphology and joint degrees-of-freedom. We manually selected and503

deleted vertices from our imported 3D body and wing models. Segments were then separated at joint504

locations based on published morphological studies. We made some simplifications. Most notably,505
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in the antennae, we considered only one segment instead of three because cutting this small element506

into a few pieces would alter its morphology.507

Each wing was separated into an individual segment from the wing model. The body model508

was separated into 63 segments as described below. The abdomen was divided into five segments509

according to tergite divisions. The first and second tergites were combined as the first segment510

(A1A2), and the last segment (A6) included the sixth to tenth tergites. Each antenna was considered511

a single segment and separated from the head capsule at the antennal foramen. Both eyes and the512

proboscis were separated from the head. The latter was divided into two parts, the first containing513

the rostrum (Rostrum), and the second containing the haustellum and labellum (Haustellum). Each514

leg was divided in eight parts: the coxa, trochanter/femur, tibia, and five tarsal segments. The thorax515

was considered a single segment and only the halteres were separated from it.516

Each segment was processed in Blender to obtain closed meshes. First, a remesh modifier was used517

in ‘smooth mode’, with an octree depth of 8, and a scale of 0.9 to close the gaps generated in the meshes518

after been separated from the original model. Smooth shading was enabled and all disconnected519

pieces were removed. Then, we used ‘sculpt mode’ to manually compensate for depressions/collapses520

resulting from the microtomography preparation, or from separating body segments.521

Then, all segments were copied into a single *.blend file and rearranged into a natural resting pose522

(Figure 2F). We made the model symmetric to avoid inertial differences between contralateral legs523

and body parts. For this, we used the more detailed microtomography data containing the right side524

of the fly. First, the model was split along the longitudinal plane using the bisect tool. Then the left525

side was eliminated and the right side was duplicated and mirrored. Finally, the mirrored half was526

repositioned as the left side of the model, and both sides of the head capsule, rostrum, haustellum,527

thorax, and abdominal segments were joined.528

At this point, the model consisted of approximately nine million vertices, an intractable number529

for commonly used simulators. We therefore used the decimate tool to simplify the mesh and collapse530

its edges at a ratio of 1% for every segment. This resulted in a model with 87,000 vertices that531

conserved the most important details but eliminated small bristles and cuticular textures.532

4.1.5 Rigging the Blender model533

We added an Armature object alongside our model to build the skeleton of the fly. To actuate the534

model, we created a ’bone’—a tool in Blender that is used to animate characters—for each segment.535

Bones were created such that the thorax would be the root of the skeleton and each bone would536

be the child of its proximal bone, as indicated in Table 1. Then, the bones were positioned along537

the longitudinal axis of each segment with their heads and tails over the proximal and distal joints,538

respectively. Each joint was positioned at a location between neighboring segments. Each bone539

inherited the name of its corresponding mesh.540

We used the Custom Properties feature in Blender to modify the properties of each bone. These541

properties can be used later in a simulator to e.g., define the maximum velocity, or maximum effort of542

each link. Furthermore, we added a limit rotation constraint (range of motion) to each axis of rotation543

(DoF) for every bone. The range of motion for each rotation axis per joint was defined as −180◦ to544

180◦ to achieve more biorealistic movements. Because, to the best of our knowledge, there are no545

reported angles for these variables, these ranges of motion should be further refined once relevant546

data become available. The DoF of each bone (segment) were based on previous studies [44, 81, 82]547

(see Table 1). Any bone can be rotated in Blender to observe the constraints imposed upon each axis548

of rotation. These axes are defined locally for each bone.549

Finally, we defined a ‘zero-position’ for our model. Most bones were positioned in the direction550

of an axis of rotation (Figure S7). Each leg segment and the proboscis were positioned along the Z551

axis. Each abdominal segment and the labellum were positioned along the X axis. Wings, eyes, and552

halteres were positioned along the Y axis. The head and the antennae are the only bones not along553

a rotational axis: the head is rotated 20◦ along the Y axis, and the antennae are rotated 90◦ with554

respect to the head bone. Positioning the bones along axes of rotation makes it easier to intuit a555

segment’s position with its angular information and also more effectively standardizes the direction556

of movements.557
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4.1.6 Exporting the Blender model into the Bullet simulation engine558

We used a custom Python script in Blender to obtain the name, location, global rotation axis, range559

of motion, and custom properties for each bone. As mentioned above, the axes of rotation are defined560

locally for each bone. Therefore, our code also transforms this information from a local to a global561

reference system, obtaining the rotation matrix for each bone.562

We used the Simulation Description Format (SDF, http://sdformat.org/) convention to store563

the model’s information. This format consists of an *.xml file that describes objects and environments564

in terms of their visualization and control. The SDF file contains all of the information related to565

the joints (rotational axes, limits, and hierarchical relations) and segments (location, orientation, and566

corresponding paths of the meshes) of the biomechanical model. We can modify this file to add or567

remove segments, joints, or to modify features of existing segments and joints. To implement joint568

DoFs, we used hinge-type joints because they offer more freedom to control individual rotations.569

Therefore, for joints with more than one DoF, we positioned in a single location as many rotational570

joints as DoFs needed to describe its movement. The parenting hierarchy among these extra joints571

was defined as roll-pitch-yaw. The mass and collision mesh were related to the segment attached to572

the pitch joint—present in every joint of the model. The extra segments were defined with a zero573

mass and no collision shape.574

Our model is based upon the physical properties of a real fly. The full body length and mass575

of the model are set to 2.8mm and 1mg, respectively. To make the center of mass and the rigid-576

body dynamics of the model more similar to a real fly, rather than having a homogeneous mass577

distribution, we used different masses (densities) for certain body parts as measured in a previous578

study [83]. Specifically, these masses were: head (0.125mg), thorax (0.31mg), abdomen (0.45mg),579

wings (0.005mg), and legs (0.11mg).580

In PyBullet, contacts are modeled based on penetration depth between any two interacting bodies.581

The contact parameters are set to 0.02 units of length (1 unit = 1 m in SI units). It is preferable to582

have the bodies of size larger than 0.02 units. Therefore, we performed dynamic scaling to rescale583

the model, the physical units, and quantities such as gravity while preserving the dynamics and584

improving the numerical stability of the model. Notably, we are not compromising the dynamics of585

the simulated behaviors. Specifically, we scaled up the units of mass and length when setting up the586

physics of the simulation environment, and then scaled down the calculated values when recording the587

results. Therefore, the physics engine was able to compute the physical quantities without numerical588

errors, and the model could also more accurately reflect the physics of a real fly.589

4.1.7 Comparing leg sizes between NeuroMechFly and real flies590

We dissected the right legs from ten wild-type female adult flies, 2-4 days-post-eclosion. Flies were591

cold anesthetized using ice. Then the legs were removed using forceps from the sternal cuticle to avoid592

damaging the coxae. Dissected legs were straightened onto a glass slide and fixed with UV-curable593

glue (Figure S1A). We used a Leica M205 C stereo microscope to take images from the legs placed594

next to a 0.5 mm graduated ruler. Joints in the legs were manually annotated and then distances595

between them were measured in pixels and converted to mm using the ruler as a reference. Lengths596

between joints were compared to rigged bone lengths in NeuroMechFly.597

4.2 Kinematic replay and analysis598

4.2.1 Forward walking data599

We recorded spontaneous behaviors from wild-type females 3-4 days-post-eclosion. Flies were mounted600

on a custom stage and allowed to acclimate for 15 min on an air-supported spherical treadmill [38].601

Experiments were conducted in the evening Zeitgeber time. Flies were recorded five times for 30 s602

at 5 min intervals. Data were excluded if forward walking wasn’t present for at least five continuous603

seconds in 10 s windows. To record data, we used a 7-camera system as in [33]. However, we replaced604

the front camera’s InfiniStix lens with a Computar MLM3X-MP lens at 0.3x zoom to visualize the605

spherical treadmill. After the fifth trial of each experiment, we recorded an extra 10 s trial, having606

replaced the lens from a lateral camera with another Computar MLM3X-MP lens. We used these607

images to calculate the longitudinal position of the spherical treadmill with respect to the fly for the608

preceding five trials.609
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4.2.2 Foreleg/antennal grooming data610

Data for kinematic replay of foreleg/antennal grooming were obtained from a previous study de-611

scribing DeepFly3D, a deep learning-based 3D pose estimation tool [33]. These data consist of612

images from seven synchronized cameras obtained at 100 fps (https://dataverse.harvard.edu/613

dataverse/DeepFly3D). Time axes (Figure 5E, F ) correspond to time points from the original,614

published videos. Data were specifically obtained from experiment #3, taken of an animal (#6)615

expressing aDN-GAL4 driving UAS-CsChrimson.616

4.2.3 Processing 3D pose data617

We used DeepFly3D v0.4 [33] to obtain 3D poses from the images acquired for each behavior. 2D poses618

were examined using the GUI to manually correct 10 frames during walking and 72 frames during619

grooming. DeepFly3D, like many other pose estimation softwares, uses a local reference system based620

on the cameras’ positions to define the animal’s pose. Therefore, we first defined a global reference621

system for NeuroMechFly from which we could compare data from experiments on different animals622

(see Figure S7).623

Aligning both reference systems consisted of six steps. First, we defined the mean position of each624

Thorax-Coxa (ThC) keypoint as fixed joint locations. Second, we calculated the orientation of the625

vectors formed between the hind and middle coxae on each side of the fly with respect to the global626

x-axis along the dorsal plane. Third, we treated each leg segment independently and defined its origin627

as the position of the proximal joint. Fourth, we rotated all data points on each leg according to628

its side (i.e., left or right) and previously obtained orientations. Fifth, we scaled the real fly’s leg629

lengths for each experiment to fit NeuroMechFly’s leg size: A scaling factor was calculated for each leg630

segment as the ratio between its mean length throughout the experiment and the template’s segment631

length and then each data point was scaled using this factor. Finally, we used the NeuroMechFly632

exoskeleton as a template to position all coxae within our global reference system; the exoskeleton633

has global location information for each joint. Next, we translated each data point for each leg (i.e.634

CTr, FTi, and TiTa joints) with respect to the ThC position based on this template.635

4.2.4 Calculating joint angles from 3D poses636

We considered each leg a kinematic chain and calculated the angle of each DoF to reproduce real poses637

in NeuroMechFly. We refer to this process as ‘kinematic replay’. Angles were obtained by computing638

the dot product between two vectors with a common origin. We obtained 42 angles in total, seven per639

leg. The angles’ names correspond to the rotational axis of the movement—roll, pitch, or yaw—for640

rotations around the anterior-posterior, mediolateral, and dorsoventral axes, respectively.641

The thorax-coxa joint (ThC) has three DoFs. The yaw angle is measured between the dorsoventral642

axis and the coxa’s projection in the transverse plane. The pitch angle is measured between the643

dorsoventral axis and the coxa’s projection in the sagittal plane. To calculate the roll angle, we644

aligned the coxa to the dorsoventral axis by rotating the kinematic chain from the thorax to the FTi645

joint using the yaw and pitch angles. Then we measured the angle between the anterior-posterior646

axis and the projection of the rotated FTi in the dorsal plane.647

Initially, we considered only a pitch DoF for the CTr joint. This was measured between the coxa648

and femur’s longitudinal axis. Subsequently, we discovered that a CTr roll DoF would be required649

to accurately match the kinematic chain. To calculate this angle, we rotated the tibia-tarsus joint650

(TiTa) using the inverse angles from the coxa and femur and measured the angle between the anterior-651

posterior axis and the projection of the rotated TiTa in the dorsal plane.652

The pitch angle for the FTi was measured between the femur and tibia’s longitudinal axis. The653

pitch angle for the TiTa was measured between the tibia and tarsus’s longitudinal axis. The direction654

of rotation was calculated by the determinant between the vectors forming the angle and its rotational655

axis. If the determinant was negative, the angle was inverted.656

To demonstrate that the base six DoFs were not sufficient for accurate kinematic replay, we also657

compared these results to angles obtained using inverse kinematics. In other words, we assessed658

whether an optimizer could find a set of angles that could precisely match our kinematic chain using659

only these six DoFs. To compute inverse kinematics for each leg, we used the optimization method660

implemented in the Python IKPy package (L-BFGS-B from Scipy). We defined the zero-pose as a661

kinematic chain and used the angles from the first frame as an initial position (seed) for the optimizer.662
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4.2.5 Calculating forward kinematics and errors with respect to 3D poses663

To quantify the contribution of each DoF to kinematic replay, we used the forward kinematics method664

to compare original and reconstructed poses. Since 3D pose estimation noise causes leg segment665

lengths to vary, we first fixed the length of each segment as its mean length across all video frames.666

We then calculated joint angles from 3D pose estimates with the addition of each DoF (see previous667

section). We formed a new kinematic chain including the new DoF. This kinematic chain allowed us668

to compute forward kinematics from joint angles, which were then compared with 3D pose estimates669

to calculate an error. We performed an exhaustive search to find angles that minimize the overall670

distance between each 3D pose joint position and that joint’s position as reconstructed using forward671

kinematics. The search spanned from −90◦ to 90◦ with respect to the ‘zero pose’ in 0.5◦ increments.672

The error between 3D pose-based and angle-based joint positions per leg was calculated as the673

average distance across every joint. We note that differences in errors can vary across legs and leg pairs674

because each joint’s 3D pose estimate is independent and each leg acts as an independent kinematic675

chain adopting its own pose. Thus, errors may also be asymmetric across the body halves. As well,676

errors integrate along the leg when using forward kinematics (FK) for walking (Figure S2) and for677

grooming (Figure S3). By contrast, inverse kinematics (IK) acts as an optimizer and minimizes the678

error at the end of the kinematic chain (i.e., where the FK error is highest) for walking (Figure S2D)679

and for grooming (Figure S3D). This explains why errors using FK are generally higher than those680

using IK—with the exception of adding a roll degree-of-freedom at the Coxa-Trochanter joint. To681

normalize the error with respect to body length, we measured the distance between the antennae and682

genitals in our Blender model (2.88mm). Errors were computed using 400 frames of data: frames683

300-699 for forward walking from fly 1 and frames 0-399 for foreleg/antennal grooming.684

We ran a Kruskal-Wallis statistical test to compare kinematic errors across the eight methods685

used. We then applied a posthoc Conover’s test to perform a pairwise comparison. We used the686

Holm method to control for multiple comparisons. The resulting p-value matrices for walking and687

foreleg/antennal grooming behaviors are shown in Table 2 and Table 3, respectively. Our statistical688

tests suggested that adding a CTr roll DoF uniquely improved kinematic replay compared with all689

other methods.690

4.2.6 Transferring real 3D poses into the NeuroMechFly reference frame691

To incorporate the additional CTr roll DoF into NeuroMechFly, we enabled rotations along the z axis692

of CTr joints. Then, we created new SDF configuration files using custom Python scripts to include693

a CTr roll DoF for each leg. To simulate the fly tethering stage used in our experiments, we added694

three support joints (one per axis of movement) that would hold our model in place. We removed695

these supports for ground walking experiments (Videos 8 and 10).696

We used position control for each joint in the model. We fixed the position of non-actuated joints697

to the values shown in Table 4. The actuated joints (i.e. the leg joints) were controlled to achieve the698

angles calculated from 3D pose data. The simulation was run with a time step of 0.5ms, allowing699

PyBullet to accurately perform numerical calculations. Since the fly recordings were only captured700

at 100 fps, we up-sampled and interpolated pose estimates to match the simulation time steps before701

calculating joint angles.702

4.2.7 Comparing real and simulated spherical treadmill rotations703

We obtained spherical treadmill rotational velocities from real experiments using Fictrac [57]. We704

also obtained the relative inclination of each tethered fly (Φ) (Figure S9A) as the angle between705

the ground plane and the axis between the hind leg ThC joint and the dorsal part of the neck.706

Finally, we estimated the position of the ball with respect to the fly from both front and lateral views707

(Figure S9B-C) by identifying the ball and fly using a Hough transform and standard thresholding,708

respectively. For axes observed from both views, we averaged the expected position.709

For the simulated environment we created a spherical body in PyBullet with three hinge joints710

along the x, y, and z axes, allowing our sphere to rotate in each direction like a real spherical treadmill.711

Rolling and spinning frictions were set to zero to obtain virtually frictionless conditions similar to a712

real treadmill floating on air. The mass of the simulated spherical treadmill was set to 54.6mg: the713

measured mass of the real foam sphere. Finally, the sphere’s diameter was measured and set into the714

simulation as 9.96mm.715

17

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.04.17.440214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440214
http://creativecommons.org/licenses/by-nc/4.0/


We ran kinematic replay of walking by setting the simulated spherical treadmill position and716

fly inclination based on measurements from experimental images. We used predefined values for717

kinematic replay of grooming. Then, we empirically determined the following parameters:718

• Global ERP = 0.0719

• Friction ERP = 0.0720

• Solver iterations = 1000721

• Treadmill lateral friction = 1.3722

After running the simulation, we compared the rotational velocities estimated for each axis with723

the real velocities obtained with Fictrac. First, we smoothed both Fictrac and estimated signals using724

a median filter with a window size of 0.1 s. Second, we interpolated Fictrac data from time steps of725

0.1 s (100 fps) to the simulation time step. Then, we established each signal’s baseline as the mean726

of the first 0.2 s of data. Finally, we computed the Spearman correlation coefficient (ρ) to assess727

correlations of forward, lateral, and heading (yaw) velocities for both signals.728

4.2.8 Constraint parameter sensitivity analysis729

Simulated spherical treadmill velocity estimates depend on constraint force mixing (CFM) and contact730

error reduction (contact ERP) parameters. These parameters change the ‘softness’ of joint and contact731

constraints in the physics engine. Therefore we performed a sensitivity analysis to determine the best732

combination of CFM and ERP. CFM values were swept from 0 to 10, and ERP from 0 to 1.0. Then,733

we ran a simulation for each of 121 combinations. We assessed their performance by calculating the734

Spearman correlation coefficient for each axis (Figure S8A-C).735

Finally, to select optimal parameter values, we applied a weighted sum to the results as shown in736

Equation 1:737

WSi = α ∗ Fw(ρi) + β ∗ Lat(ρi) + γ ∗Head(ρi) (1)

where Fw, Lat, and Head are the rotational axes, ρi is the Spearman correlation coefficient738

obtained for each CFM-ERP combination, and α, β, and γ are the standard deviation contributions739

for each axis calculated as shown in Equations 2, 3, and 4, respectively. Therefore, we favored the740

axis with the largest amplitude of variation.741

α =
std(Fw)

std(Fw) + std(Lat) + std(Head)
(2)

β =
std(Lat)

std(Fw) + std(Lat) + std(Head)
(3)

γ =
std(Head)

std(Fw) + std(Lat) + std(Head)
(4)

Finally, we normalized WS (NWS) with respect to its maximum and minimum values (Fig-742

ure S8D). Consequently, a combination with NWS equal to 1 was selected: CFM = 3 and ERP743

= 0.1.744

4.2.9 Controller gain sensitivity analysis745

We performed kinematic replay using a built-in PD position controller in PyBullet [42]. A PD
controller was used rather than the more widely known PID controller because the integral component
(‘I’ in PID) is mainly used to correct steady state errors (e.g., while maintaining a fixed posture).
Thus, it is not used for time-varying postures like those during locomotion. We used PyBullet’s
built-in position control method because it operates with proportional and derivative gains that are
stable and efficient. This PD controller minimizes the error:

error = Kp(θr − θa) +Kd(ωr − ωa) (5)
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where θr and θa denote reference and actual positions, ωr and ωa are desired and actual velocities,746

and Kp and Kd are proportional and derivative gains, respectively, which provides some compliance747

in the model.748

Because the outputs of our model—dynamics of motion—depend on the controller gains Kp and749

Kd, we first systematically searched for optimal gain values. To do this, we ran the simulation’s750

kinematic replay for numerous Kp and Kd pairs, ranging from 0.1 to 1.0 with a step size of 0.1751

(i.e., 100 simulations in total). Target position and velocity signals for the controller were set as the752

calculated joint angles and angular velocities, respectively. To compute joint angular velocities, we753

used a Savitzky–Golay filter with a first-order derivative and a time-step of 0.5 ms on the joint angles.754

Feeding the controller with only the joint angles could also achieve the desired movements of the755

model. However, including the velocity signal ensured that the joint angular velocities of the fly and756

the simulation were properly matched. We then calculated the mean squared error (MSE) between757

the ground truth—joint angles obtained by running our kinematic replay pipeline on pose estimates758

from DeepFly3D [33]—and joint angles obtained from PyBullet. Then, we averaged the MSE values759

across the joints in one leg, and summed the mean MSEs from each of six legs to obtain a total error.760

We made the same calculations for the joint angular velocities as well. Our results (Figure S4) show761

that our biomechanical model can replicate real 3D poses while also closely matching real measured762

velocities. In particular, an MSE of 360 (rad/sec)2 for the six legs corresponds approximately to 7.74763

rad/sec per leg, i.e., 1.27 Hz. This is acceptable given the rapid, nearly 20 Hz, leg movements of the764

real fly.765

After validating the accuracy of kinematic replay, we performed a sensitivity analysis to measure766

the impact of varying controller gains on the estimated torques and ground reaction forces. This767

analysis showed that torques and ground reaction forces are highly sensitive to changing proportional768

gains (Kp) (Figure S5) but are robust to variations in derivative gain (Kd). These results are ex-769

pected since high proportional gains cause “stiffness” in the system whereas derivative gains affect770

the “damping” in a system’s response. We observed rapid changes in estimated torques and ground771

reaction forces at high Kp values (Figure S5). Notably, in principle there can also be internal forces772

affecting contact forces. For example, a fly’s legs can squeeze the spherical treadmill with different773

internal forces but have identical postures.774

As shown in Figure S4, our model can match the real kinematics closely for almost every controller775

gain combination except for the low Kp,Kd band. By contrast, varying the gains proportionally776

increased the torque and force readings. Because there are no experimental data to validate these777

physical quantities, we selected gain values corresponding to intermediate joint torques and ground778

contact forces (Figure S5). Specifically, we chose 0.4 and 0.9 forKp andKd, respectively. These values779

were high enough to generate smooth movements, and low enough to reduce movement stiffness.780

4.2.10 Comparing tethered and flat ground walking781

To test the ability to run NeuroMechFly in an untethered context, we replayed the kinematics of782

a tethered walking experiment (Figure 4) but removed body supports and placed the model on the783

floor. To remove body supports, we deleted the corresponding links from the model’s description784

(SDF configuration file). The physics engine parameters remained the same. The lateral friction for785

the floor was set to 0.1.786

4.2.11 Application of external perturbations787

To test the stability of the untethered model walking over flat ground, we set the floor’s lateral friction
to 0.5 and introduced external perturbations. Specifically, we propelled solid spheres at the model
according to the following equation of motion,

~p = ~r0 + ~u0t+
1

2
~gt2 (6)

where, ~p is the 3D target position(fly’s center of mass ), ~r0 is the initial 3D position of the sphere, ~u0788

is the initial velocity vector, ~g is the external acceleration vector due to gravity in the z-direction, t789

is the time taken by the sphere to reach the target position ~p from ~r with an initial velocity ~u. The790

mass of the sphere was 3 mg and its radius 50 µm. Spheres were placed at a distance of 2 mm from791

the fly’s center of mass in the y-direction. With t set to 20 ms, the initial velocity of the projectile792

was computed using Equation 6. The spheres were propelled at the model every 0.5 s. Finally, at 3793
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s into the simulation, a 3 g sphere with a radius of 150 µm was propelled at the fly to topple it over794

(Video 10).795

4.2.12 Analyzing NeuroMechFly’s contact and collision data796

The PyBullet physics engine generates forward dynamics simulations and collision detections. We797

plotted joint torques as calculated from PyBullet. To infer ground reaction forces (GRFs), we com-798

puted and summed the magnitude of normal forces resulting from contact of each tarsal segment with799

the ball. Gait diagrams were generated by thresholding GRFs; a leg was considered to be in stance800

phase if its GRFs was greater than zero. These gait diagrams were compared with a ground truth801

(Figure S10) obtained by manually annotating when the legs were in contact with the ball for each802

video frame. Gait prediction accuracy was calculated by dividing the frames correctly predicted as803

being in stance or swing over the total number of frames.804

Self-collisions are disabled by default in PyBullet. Therefore, for kinematic replay of grooming, we805

enabled self-collisions between the tibia and tarsal leg segments, as well as the antennae. We recorded806

normal forces generated by collisions between (i) the right and left front leg, (ii) the left front leg807

and left antenna, and (iii) the right front leg and right antenna. Grooming diagrams were calculated808

as for gait diagrams: a segment experienced a contact/collision if it reported a normal force greater809

than zero.810

4.2.13 Comparing grooming behaviors as a function of NeuroMechFly’s morphological811

accuracy812

We replayed foreleg/antennal grooming kinematics (Figure 5) for three conditions to assess the degree813

to which biomechanical realism is important for collision estimation. We tested two experimental814

conditions: one in which both front legs were modelled as sticks, and one in which the front legs as815

well as the antennae were modelled as sticks. Notably, multisegmented tarsi are not found in other816

published insect stick models [64]. Thus, as for our previous model [24], each stick leg consisted817

of four segments: coxa, trochanter/femur, tibia, and one tarsal segment. Each leg and antennal818

stick segment had a diameter equal to the average diameter of the corresponding segment in our819

more detailed NeuroMechFly model. These changes were accomplished by modifying the model’s820

description (SDF configuration file) and by changing the collision and visual attributes for each821

segment of interest.822

4.3 Neural network parameter optimization823

4.3.1 CPG network architecture824

For evolutionary optimization of neuromusculuar parameters, we designed a CPG-based controller825

composed of 36 nonlinear oscillators (Figure 6), as for a previous investigation of salamander locomo-826

tion [62]. These CPGs consisted of mathematical oscillators that represent neuronal ensembles firing827

rhythmically in the Ventral Nerve Cord (VNC) [84]. The CPG model was governed by the following828

system of differential equations:829

θ̇i = 2πνi +
∑

j

rjwij sin(θj − θi − φij) (7)

ṙi = ai(Ri − ri) (8)

Mi = ri(1 + sin(θi)) (9)

where the state variables—phase and amplitude of the oscillator i—are denoted θi and ri, respectively;830

νi and Ri represent oscillator i’s intrinsic frequency and amplitude, ai is a constant. The coupling831

strength and phase bias between the oscillator i and j are denoted wij and φij , respectively.832

During optimization, for the entire network of coupled oscillators, we set the intrinsic frequency ν833

as an open parameter ranging from 6 to 10 Hz, matching the frequencies of our measured Drosophila834

joint angle movements and reported stepping frequencies [65]. The intrinsic amplitude R was set835

to 1, and the constant ai was set to 25. To ensure a faster convergence to a phase-locked regime836
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between oscillators, we set coupling strengths to 1000 [85]. Mi represents the cyclical activity pattern837

of neural ensembles activating muscles. We solved this system of differential equations using the838

explicit Runge-Kutta method of 5th-order with a time step of 0.1 ms.839

Each oscillator pair sends cyclical bursts to flexor and extensor muscles which apply antagonistic840

torques to the corresponding revolute joint. We considered three DoFs per leg that were sufficient841

for locomotion in previous hexapod models [64] and that had the most pronounced joint angles842

(Figure S13). These DoFs were (i) ThC pitch for the front legs, (ii) ThC roll for the middle and hind843

legs, and (iii) CTr pitch and FTi pitch for all legs. Thus, there were three pairs of oscillators optimized844

per leg, for a total of 36. We coupled (i) the intraleg oscillators in a proximal to distal chain, (ii)845

the interleg oscillators in a tripod-like fashion (the ipsilateral front and hind legs to the contralateral846

middle leg from anterior to posterior), (iii) both front legs to each other, and (iv) coxa extensor and847

flexor oscillators to one another. Intraleg coordination is equally important to generate a fly-like gaits848

since stance and swing phases depend on intrasegmental phase relationships. For this reason, both849

interleg (phase relationships between ThC joints) and intraleg (phase relationships within each leg)850

couplings were optimized for one half of the body and mirrored on the other.851

4.3.2 Muscle model852

We adapted an ‘Ekeberg-type’ muscle model [63] to generate torques on the joints. This model
simulates muscles as a torsional spring and damper system, allowing torque control of any joint as a
linear function of motor neuron (CPG output) activities driving antagonist flexor (MF ) and extensor
(ME) muscles controlling that joint. The torque exerted on a joint is given by the equation:

T = α(MF −ME) + β(MF +ME + γ)∆ϕ+ δϕ̇ (10)

where α, β, γ, and δ represent the gain, stiffness gain, tonic stiffness, and damping coefficient, respec-853

tively [9]. ∆ϕ is the difference between the current angle of the joint and its resting pose. ϕ̇ is the854

angular velocity of the joint. This muscle model makes it possible to control the static torque and855

stiffness of the joints based on optimized muscle coefficients—α, β, γ, δ, and ∆ϕ.856

4.3.3 CPG network and muscle parameter optimization857

To identify neuromuscular network parameters that could coordinate fast and statically stable lo-858

comotion, we optimized the phase differences for each network connection, the intrinsic frequency859

of the oscillators, and five parameters controlling the gains and resting positions of each spring and860

damper muscle (i.e., α, β, γ, δ, and ∆ϕ). To simplify the problem for the optimizer, we (i) fixed ThC861

flexor-extensor phase differences to 180◦, making them perfectly antagonistic, (ii) mirrored the phase862

differences from the right leg oscillators to the left leg oscillators, (iii) mirrored muscle parameters863

from the right joints to the left joints, and (iv) mirrored phase differences from ThC-ThC flexors864

to ThC-ThC extensors. Thus, a total of 63 open parameters were set by optimization: five phases865

between ThC CPGs (Figure 6, A), 12 phases between intraleg CPGs (ThC-FTi extensor/flexor,866

FTi-TiTa extensor/flexor per leg), 45 muscle parameters (five per joint), and one parameter ( ν)867

controlling the intrinsic frequency of the oscillators. We empirically set the lower and upper bounds868

for the parameters so leg movements would stay stable along the boundaries (Table 6). Upper and869

lower bounds for the resting positions of the joints used in the muscle model were set as the first and870

third quartiles of measured locomotor angles. Finally, we optimized the intrinsic frequency of CPGs,871

denoted by ν in Eq. 7 to be between 6 and 10 Hz for the reasons described above.872

For parameter optimization, we used NSGA-II [67], a multi-objective genetic algorithm imple-873

mented in Python using the jMetalPy library [86]. We defined two objective functions. First, we874

aimed to maximize locomotor speed, as quantified by the number of spherical treadmill rotations875

(Equation 11) along the Y axis within a specific period of time. Second, we maximized static sta-876

bility. In small animals like Drosophila, static stability is a better approximation for overall stability877

than dynamic stability [83]. We measured static stability by first identifying a convex hull formed878

by the legs in stance phase. If there were less than three legs in stance and a convex hull could not879

be formed, the algorithm returned -1, indicating static instability. Then, we measured the closest880

distance between the fly’s center of mass—dynamically calculated based on the fly’s moving body881

parts—and the edges of the convex hull. Finally, we obtained the minimum of all measured distances882
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at that time step. If the center of mass was outside the convex hull, we reversed the sign of the mini-883

mum distance to indicate instability. Because the optimizer works by minimizing objective functions,884

we inverted the sign of speed and stability values: the most negative values meant the fastest and885

most stable solutions, respectively.886

Four penalties were added to the objective functions. First, to make sure the model was always887

moving, we set a moving lower and upper threshold for the angular rotation of the ball, increasing from888

−0.2 rad to 1.0 rad and from 0 to 7.2 rad in one second, respectively. These values were determined889

such that the lower moving boundary was slower than the slowest reported walking speed of Drosophila890

(10mm/s = 2 rad when the ball radius r is 5mm) [65] and the upper moving boundary would exceed891

the highest reported walking speed (34 mm/s = 6.8 rad) [28]. Second, to avoid high torque and892

velocities at each joint, we set joint angular velocities to have an upper limit of 250 rad/s, a value893

measured from real fly experiments. Third, because we do not introduce physical joint limits in894

the model, we emulated these joint limits by setting a penalty on the difference between the joint895

angle range observed during kinematic replay of walking and the joint angles of individual solutions.896

We used this penalty to prevent joint angles from generating unrealistic movements (e.g., one full897

rotation around a DoF). Fourth, because the optimizer can exploit the objective function by simply898

leaving all legs on the ground—the highest possible stability—or can rotate the ball by using as few899

as two legs while the remaining legs are constantly on the ground, we introduced a penalty on duty900

factors. Specifically, we computed the ratio of stance phase duration to the entire epoch and penalized901

solutions whose duty factors for each leg were outside of the range [0.4, 0.9], based on [28].902

The optimization was formulated as follows903

min −10 ·Rb · θb,‖ + 0.1 · pv + 0.05 · pjl + 0.1 · pm + 100 · pd (Distance & penalties) (11)

min −0.01 · s+ 0.1 · pv + 0.05 · pjl + 0.1 · pm + 100 · pd (Stability & penalties), (12)

with the following penalty terms904

pim =

{

pi−1

t + 1 if θb,‖ ≤ ( t
ttotal

· 1.20− 0.20) or θb,‖ ≥ ( t
ttotal

· 7.20)

pi−1

t otherwise
(Moving boundary penalty)

(13)

piv =

{

pi−1

v + 1 if ω > 250 rad/sec

pi−1

v otherwise
(Angular velocity penalty)

(14)

pijl =











pi−1

jl +
∑

k θk −max(joint limitk) if θk ≥ max(joint limitk)

pi−1

jl +
∑

k −θk +min(joint limitk) if θk ≤ min(joint limitk)

pi−1

jl otherwise

(Joint limit penalty)

(15)

pid =

{

pi−1

d + 1 if
tk
stance

tk
bout

< 0.4 or
tl
stance

tl
bout

> 0.9 for l = 1, 2, .., 6

pi−1

d otherwise
(Duty factor penalty),

(16)

where Rb is the ball radius (5 mm), θb,‖ is the angle of the ball in the direction of walking, ttot is905

the maximum simulation duration, θk is the angular position of the joint k, tlstance and tlbout are the906

total times spent in stance and the entire walking epoch duration of the leg l. Every penalty was907

multiplied by its corresponding weight and added to the objective function. Objective functions were908

evaluated for 2 s (ttotal), a period that was sufficiently long for the model to generate locomotion.909

We ran 60 generations with the weights given in Equation 11 and Equation 12.910

To avoid a high computational cost during optimization, we reduced the model’s complexity911

by removing collision shapes, like the wings and head, that were not required for locomotion, and912

converting joints that are not used in the simulation (see Table 4) from revolute to fixed. This model913

was saved as a new SDF file. Thus, we could reduce computational time and memory needed to check914

for collisions on unused body segments, and for the position controller to set unused joints to fixed915

positions. This simplification increased the speed of the simulation, allowing us to reduce the time916
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step to 0.1 ms and to run optimization with larger populations. In the simulation, we used a spherical917

treadmill with a mass, radius, and friction coefficient of 54.6 mg, 5 mm, and 1.3, respectively. We918

additionally increased the friction coefficient of the leg segments from the default value of 0.5 to 1.0.919

Each optimization generation had a population of 200 individuals. Optimization runs lasted for 60920

generations, a computing time of approximately 20 hours per run on an Intel(R) Core(TM) i9-9900K921

CPU at 3.60GHz. Mutations occurred with a probability of 1.0 divided by number of parameters922

(63), and a distribution index of 20. We set the cross-over probability to 0.9 and the distribution923

index to 15 (for more details see [86]).924

4.3.4 Analysis of optimization results925

After optimization, we selected three individual solutions from the last generation for deeper analysis.926

First, the objective functions were normalized with respect to their maximum and minimum values.927

Note that the signs of the objective functions were inverted. Then, solutions were selected as follows:928

Longest distance traveled (fastest): i = argmin(dg)

Highest stability coefficient (most stable): i = argmin(sg)

Distance-Stability minimum 2-norm (trade-off): i = argmin
(√

d2g + s2g

)

,

where dg and ss are the vectors containing the distance and stability values, respectively, from all929

individuals in a given generation g.930

We plotted CPG activity patterns (as represented by the couple oscillators’ outputs), joint torques,
joint angles, GRFs, and ball rotations from this final generation of solutions. GRFs were used to
generate gait diagrams as previously described. Ball rotations were used to reconstruct the mod-
els’ walking paths. The distances travelled along the longitudinal (x) and transverse (y) axes were
calculated from the angular displacement of the ball according to the following formula:

∆x = ∆θtr ∆y = ∆θlr,

where ∆θt and ∆θl denote the angular displacement around the transverse and longitudinal axes,931

respectively, and r is the radius of the ball.932
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5 Supplementary Tables933

Table 1: Model body parts and degrees-of-freedom between each segment and its parent.

Body part Segment Parent
Degrees of
freedom

Abdomen

A1A2 Thorax 1
A3 A1A2 1
A4 A3 1
A5 A4 1
A6 A5 1

Head

Head capsule Thorax 3
Eyes (x2)

Head
0

Antennae (x2) 1
Rostrum 1
Haustellum Rostrum 1

Legs

Coxa (x6) Thorax 3
Trochanter/Femur (x6) Coxa 2
Tibia (x6) Femur 1
Tarsus1 (x6) Tibia 1
Tarsus2 (x6) Tarsus1 1
Tarsus3 (x6) Tarsus2 1
Tarsus4 (x6) Tarsus3 1
Tarsus5-Claw (x6) Tarsus4 1

Thorax
Halteres (x2)

Thorax
3

Wings (x2) 3
Thorax - 0

Table 2: Matrix of p-values from pairwise comparisons of position errors after calculating forward
kinematics for walking. Numbers in bold (except in the case of identity) indicate that the p-value >
0.001 (i.e., no statistical difference).

Base IK
Base &
CTr roll

Base &
CTr yaw

Base &
FTi roll

Base &
FTi yaw

Base &
TiTa roll

Base &
TiTa yaw

Base 1.00 5.42e-13 0.00 7.08e-184 2.28e-133 4.53e-50 9.95e-01 1.53e-197
IK 5.42e-13 1.00 0.00 4.48e-285 4.37e-222 6.82e-110 5.42e-13 8.62e-302
Base &
CTr roll

0.00 0.00 1.00 5.49e-138 2.96e-189 0.00 0.00 1.57e-126

Base &
CTr yaw

7.08e-184 4.48e-285 5.49e-138 1.00 2.52e-05 5.13e-45 7.83e-184 5.38e-01

Base &
FTi roll

2.28e-133 4.37e-222 2.96e-189 2.52e-05 1.00 8.33e-22 2.44e-133 1.08e-07

Base &
FTi yaw

4.53e-50 6.82e-110 0.00 5.13e-45 8.33e-22 1.00 4.53e-50 6.05e-52

Base &
TiTa roll

9.95e-01 5.42e-13 0.0 7.83e-184 2.44e-133 4.53e-50 1.00 1.71e-197

Base &
TiTa yaw

1.53e-197 8.63e-302 1.57e-126 5.38e-01 1.08e-07 6.05e-52 1.71e-197 1.00
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Table 3: Matrix of p-values matrix from pairwise comparisons of position errors after calculating
forward kinematics for grooming. Numbers in bold (except in the case of identity) indicate that the
p-value > 0.001 (i.e., no statistical difference).

Base IK
Base &
CTr roll

Base &
CTr yaw

Base &
FTi roll

Base &
FTi yaw

Base &
TiTa roll

Base &
TiTa yaw

Base 1.00 4.34e-128 0.00 7.57e-149 2.59e-131 4.72e-32 1.00 2.47e-192
IK 4.34e-128 1.00 0.00 2.02e-01 1.00 4.30e-34 3.27e-126 1.11e-07
Base &
CTr roll

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

Base &
CTr yaw

7.57e-149 2.02e-01 0.00 1.00 3.04e-01 2.56e-45 8.05e-147 1.08e-03

Base &
FTi roll

2.59e-131 1.00 0.00 3.04e-01 1.00 8.96e-36 2.08e-129 5.70e-07

Base &
FTi yaw

4.72e-32 4.30e-34 0.00 2.56e-45 8.96e-36 1.00 3.84e-31 4.86e-71

Base &
TiTa roll

1.00 3.27e-126 0.00 8.05e-147 2.08e-129 3.84e-31 1.00 4.85e-190

Base &
TiTa yaw

2.47e-192 1.11e-07 0.00 1.08e-03 5.70e-07 4.86e-71 4.85e-190 1.00

Table 4: Fixed angles for body joints during kinematic replay and optimization.

Body part Joint
Fixed angle

(deg)
Body part Joint

Fixed angle
(deg)

Abdomen

A1A2 0

Thorax

Left haltere roll 0
A3 -15 Left haltere pitch 0
A4 -15 Left haltere yaw 0
A5 -15 Right haltere roll 0
A6 -15 Right haltere pitch 0

Head

Head capsule roll 0 Right haltere yaw 0
Head capsule pitch 10 Left wing roll 90
Head capsule yaw 0 Left wing pitch 0
Left antenna 35 Left wing yaw -17
Right antenna -35 Right wing roll -90
Rostrum 90 Right wing pitch 0
Haustellum -60 Right wing yaw 17

Table 5: Fixed angles for leg joints during optimization (deg).

Body Part Side ThC yaw ThC pitch ThC roll CTr pitch CTr roll FTi TiTa

Front
Left 0 actuated 10 actuated 0 actuated -39
Right 0 actuated -10 actuated 0 actuated -39

Middle
Left 7.45 -5 actuated actuated 0 actuated -54
Right -7.45 -5 actuated actuated 0 actuated -54

Hind
Left 3.45 6.2 actuated actuated 0 actuated -45
Right -3.45 6.2 actuated actuated 0 actuated -45

Table 6: Lower and upper limits for the muscle parameters during optimization.

Body part Joint
∆ϕ

[Lower limit,
Upper limit]

α
[Lower limit,
Upper limit]

β
[Lower limit,
Upper limit]

γ
[Lower limit,
Upper limit]

δ
[Lower limit,
Upper limit]

Front leg
ThC pitch [0.0, 0.47] [1× 10−10, 5× 10−9]

[1× 10−10,
1× 10−9]

[1.0, 10.0]
[5× 10−13,
1× 10−11]

CTr pitch [−2.0,−1.68] [1× 10−10, 1× 10−9]
FTi [1.31, 2.05] [1× 10−10, 1× 10−9]

Middle leg
ThC pitch [2.18, 2.01] [1× 10−10, 5× 10−9]
CTr pitch [−2.14,−2.01] [1× 10−10, 1× 10−9]
FTi [1.96, 2.22] [1× 10−10, 1× 10−9]

Hind leg
ThC pitch [2.69, 2.53] [1× 10−10, 5× 10−9]
CTr pitch [−2.14,−1.55] [1× 10−10, 1× 10−9]
FTi [1.43, 2.26] [1× 10−10, 1× 10−9]
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6 Supplementary Figures934

935

Figure S1: Leg segment lengths for real female Drosophila melanogaster and NeuroMechFly. (A) Legs

were dissected, straightened, and fixed onto a glass slide for measurements. Scale bar is 0.5mm. (B) The lengths of leg

segments from 1-3 dpe animals (pink) and NeuroMechFly (red) are shown. Violin plots indicate median, upper, and

lower quartiles.
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941

Figure S2: The position error for every joint in the distal leg during walking as a function of kinematic

chain configuration. Body-length normalized mean absolute errors (MAE) comparing measured 3D poses and

angle-derived joint positions during walking. Errors are compared among different DoF configurations for (A) Coxa-

Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus joints, and (D) Claw positions. For each condition, n =

2400 samples were computed across all six legs from 4s of 100 Hz video data. Data for each leg are color-coded. ‘R’ and

‘L’ indicate right and left legs, respectively. ‘F’, ‘M’, and ‘H’ indicate front, middle, and hind legs, respectively. Violin

plots indicate median, upper, and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to

based DoFs are highlighted in light gray.

942

943

944

945

946

947

948

949950

27

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.04.17.440214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.17.440214
http://creativecommons.org/licenses/by-nc/4.0/


951

Figure S3: The position error for every joint in the distal leg during grooming as a function of kinematic

chain configuration. Body-length normalized mean absolute errors (MAE) comparing measured 3D poses and angle-

derived joint positions during grooming. Errors are compared among different DoF configurations for (A) Coxa-

Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus joints, and (D) Claw positions. For each condition, n =

2400 samples were computed across all six legs from 4s of 100 Hz video data. Data for each leg are color-coded. ‘R’ and

‘L’ indicate right and left legs, respectively. ‘F’, ‘M’, and ‘H’ indicate front, middle, and hind legs, respectively. Violin

plots indicate median, upper, and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to

based DoFs are highlighted in light gray.
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961

Figure S4: Mean squared error between tracked and simulated joint positions and velocities as a

function of position and velocity gain values. MSE of (A) joint angles and (B) joint velocities as a function of

derivative (Kd) and positional gain (Kp). Selected Kp and Kd values are indicated in blue. White areas indicate Kp

and Kd pairs rendering the simulation nonfunctional.
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967

Figure S5: Sensitivity of estimated joint torques and contact forces to proportional and derivative gains.

(A) Estimated torques during forward walking as a function of proportional gain (Kp). The derivative gain (Kd) is

fixed at 0.9. Shown are measurements of ThC pitch torques for the right legs. Measurements for the contralateral

legs were nearly symmetrically identical and are not shown. (B) Contact force measurements of the right legs during

forward walking as a function of Kp values. Results from the selected Kp and Kd values are shown in red. (C)

Estimated torques during forward walking as a function of derivative gain (Kd). The proportional gain (Kp) is fixed

at 0.4. Shown are measurements of ThC pitch torques for the right legs. Measurements for the contralateral legs were

nearly symmetrically identical and are not shown. (D) Contact force measurements of the right legs during forward

walking as a function of Kd. Results from the selected Kp and Kd values are shown in red.
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978

Figure S6: Leg joint degrees-of-freedom and their rotational axes. Each leg is composed of 11 hinge joints.

Joints with more than one DoF were modeled as a union of multiple hinge joints. The left foreleg observed from (A)

front and (B) side views. The global coordinate system’s x, y, and z axes are red, green, and blue, respectively.
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Figure S7: The ‘zero pose’ of NeuroMechFly. Each body segment (Table 1) is aggregated using hinge joints.

Rotational axes of joints are shown. (A) Zero pose from (A) front and (B) side views. The global coordinate system’s

x, y, and z axes are shown (red, green, and blue, respectively).
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988

Figure S8: Sensitivity of simulated spherical treadmill rotation prediction accuracy during tethered

walking to ERP and CFM constraint parameters. Spherical treadmill rotational velocities resulting from

Kinematic Replay of walking depend on simulation constraint parameters. Shown are Spearman correlation coefficients

computed between measured and estimated treadmill rotational velocities for (A) forward, (B) lateral, and (C) yaw

axes when varying the simulation’s error reduction parameter (ERP), and the constraint force mixing (CFM). (D)

The best combination of ERP and CFM—0.1 and 3, respectively (black outline)—was selected through a normalized

weighted sum (NWS) of the correlation coefficients for each axis.
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997

Figure S9: Comparing real to simulated spherical treadmill rotational velocities during tethered walk-

ing. Spherical treadmill rotations depend on a tethered fly’s (A) inclination (Φ, green), (B) lateral, and (C) longi-

tudinal positions with respect to the ball (green outlines). These positions (orange dots) were automatically detected

and recreated in the simulation. Rotational velocities of the spherical treadmill generated by three real flies (blue) were

compared with those generated by NeuroMechFly (orange) for (D) forward, (E) lateral, and (F) yaw axes. Spearman

correlation coefficients (ρ) comparing blue and orange traces are indicated.
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1005

Figure S10: Comparing real and simulation predictions for gait diagrams during tethered walking. Gait

diagrams showing manually-annotated stance phases for three real flies (A-C, gold) as well as those obtained from

estimated ground reaction forces in NeuroMechFly (blue). Percentage of overlap in real and simulated stance phases

(green) is quantified. ‘R’ and ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’, and ‘H’ indicate front, middle, and

hind legs, respectively.
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1012

Figure S11: The impact of the morphological realism on estimates of leg-leg and leg-antenna contact

during grooming. Collision diagrams from kinematic replay of foreleg/antennal grooming when using either (A)

NeuroMechFly’s morphologically detailed legs and antennae, or after replacing its (B) forelegs, or (C) forelegs and

antennae with simple cylinders, as in a conventional stick skeletal model.
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1018

Figure S12: Comparison of walking paths and velocities for real tethered walking versus kinematic

replay in a tethered or untethered model. Leg kinematics from a tethered walking experiment (blue) were used

for kinematic replay in NeuroMechFly either tethered on a simulated spherical treadmill (orange) or freely walking on

flat ground (green). Shown are resulting (A) integrated walking paths, as well as associated (B) forward, (C) lateral,

and (D) yaw velocities.
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1025

Figure S13: Measured joint angles during real forward walking. Joint angles for the (A) left and (B) right

legs measured from a real fly during forward walking. Only the three DoFs with the highest amplitudes (solid lines)

were controlled during optimization. These were: for the front legs: ThC pitch, CTr pitch, and FTi pitch; for the

middle and hind legs: ThC roll, CTr pitch, and FTi pitch DoFs. The remaining four DoFs (dashed lines) for each leg

did not exhibit pronounced angular changes and were fixed to their mean values during optimization.
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1032

Figure S14: Objectives, penalties, and individual solutions over generations when optimizing for fast

and statically stable tethered walking. (A) Pareto front approximations for six optimization generations. Later

generations are more negative because the optimizer aims to minimize the distance and stability objective functions,

whose signs are inverted. Four individual solutions dominated by the pareto optimal solutions were selected for more

in-depth analysis (10th (purple), 20th (blue), 30th (green), and 50th (dark red); all are outlined in black). (B) Gait

diagrams from selected solutions. Stance (black) and swing (white) phases were calculated by reading-out tarsal ground

contacts for each leg. Indicated are the velocities of each solution as calculated by averaging the spherical treadmill

forward velocity. (C) Progression of weighted objective values (shown without sign inversion) and penalties over the

course of 60 generations. Objectives (distance and stability coefficients) increase across generations, while penalties

decrease or converge to, or near, zero. The objective distance (mm) is the distance traveled in 2 s. The penalty duty

factor is the number of legs violating the duty factor constraint. The remaining penalties are shown in Arbitrary Units.
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7 Supplementary Videos1045

Video 1: Constructing a data-driven biomechanical model of adult Drosophila. An adult1046

female fly is encased in resin for x-ray microtomography. The resulting x-ray microtomography1047

data reveals cuticle, muscles, nervous tissues, and internal organs. These data are thresholded to1048

separate the foreground from background. Then the exoskeleton is voxelized into a 3-dimensional1049

polygon mesh. Articulated body segments are separated from one another and then reassembled into1050

a natural pose. Bones are added and rigged to permit actuation. Finally, textures are added to the1051

model for visualization purposes.1052

https://www.dropbox.com/s/pkbh4o81bdomx1x/Video1.mov?dl=01053

Video 2: Visualization of possible additional leg degrees-of-freedom. NeuroMechFly’s left-1054

middle leg is sequentially actuated along DoFs that are later analyzed to test their requirement for1055

accurate replay of real fly leg kinematics. The articulated joint (e.g., ‘CTr’) and type of movement1056

(‘roll’) are indicated.1057

https://www.dropbox.com/s/8uhi9cyzhdntyd4/Video2.mov?dl=01058

Video 3: The effect of additional degrees-of-freedom on the accuracy of replaying forward1059

walking. Measured 3D poses (solid lines) and forward kinematic replay (dashed lines) for forward1060

walking. Forward kinematics are determined either (top-left) using no additional degrees-of-freedom1061

(Base DoF, dot product), (top-middle) instead using inverse kinematics to optimize joint angles and1062

minimize error with only base degrees-of-freedom (Base DoF, inverse kinematics), or (top-right and1063

bottom row) by adding a single new DoF (BaseDoF & ‘joint’ ‘DoF’). Legs are color-coded.1064

https://www.dropbox.com/s/3f23rdpvz7os640/Video3.mov?dl=01065

Video 4: The effect of additional degrees-of-freedom on the accuracy of replaying fore-1066

leg/antennal grooming. Measured 3D poses (solid lines) and forward kinematic replay (dashed1067

lines) for foreleg/antennal grooming. Forward kinematics are determined either (top-left) using no1068

additional degrees-of-freedom (Base DoF, dot product), (top-middle) instead using inverse kine-1069

matics to optimize joint angles and minimize error with only base degrees-of-freedom (Base DoF,1070

inverse kinematics), or (top-right and bottom row) by adding a single new DoF (BaseDoF &1071

‘joint’ ‘DoF’). Legs are color-coded.1072

https://www.dropbox.com/s/zv860h9ic2r8li2/Video4.mov?dl=01073

Video 5: Kinematic replay of Drosophila forward walking using NeuroMechFly. (top-1074

left, ‘Raw data’) A tethered adult fly is shown walking on a spherical treadmill. One of six1075

synchronized camera views is shown. Data are replayed at 0.2x real time. (bottom-left, ‘2D1076

tracking’) 2D poses (filled circles) and connecting ‘bones’ (lines) are superimposed for the proximal1077

three legs. (bottom-right, ‘3D reconstruction’) These six 2D poses are triangulated to obtain1078

3D poses. Overlaid are triangulated 3D poses (solid lines) and 3D poses obtained by solving forward1079

kinematics from joint angles (dashed lines). (top-right, ‘Kinematic replay’) These 3D joint angles1080

actuate NeuroMechFly leg movements while it walks on a simulated spherical treadmill. Tarsal1081

contacts with the ground are indicated (green). Estimated ground reaction force vectors for the1082

proximal three legs are superimposed on the original video data (top-left).1083

https://www.dropbox.com/s/iieuwgmx8bazzmd/Video5.mov?dl=01084

Video 6: Kinematic replay of Drosophila foreleg/antennal grooming using NeuroMech-1085

Fly. (top-left, ‘Raw data’) A tethered adult fly is shown grooming on a spherical treadmill. One1086

of six synchronized camera views is shown. Data are replayed at 0.2x real time. (bottom-left, ‘2D1087

tracking’) 2D poses (filled circles) and connecting ‘bones’ (lines) are superimposed for the proximal1088

three legs. (bottom-right, ‘3D reconstruction’) These six 2D poses are triangulated to obtain1089

3D poses. Overlaid are triangulated 3D poses (solid lines) and 3D poses obtained by solving forward1090

kinematics from joint angles (dashed lines). (top-right, ‘Kinematic replay’) These joint angles1091

actuate NeuroMechFly leg movements while it grooms on a simulated spherical treadmill. Leg seg-1092

ments and antennal collisions are indicated (green). Estimated collision force vectors for the front1093

legs and antennae are subsequently superimposed on the original video data (top-left).1094

https://www.dropbox.com/s/m3j6wfevzenhfkn/Video6.mov?dl=01095
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Video 7: The influence of leg and antenna morphological detail on collision predic-1096

tions. (top-left, ‘Raw data’) Real fly grooming as recorded from the front camera. (top-right,1097

‘NeuroMechFly’) NeuroMechFly performing kinematic replay of grooming. (bottom-left, ‘Stick1098

model legs’) NeuroMechFly with stick legs but detailed antennae. (bottom-right, ‘Stick model1099

legs and antennae’) NeuroMechFly with stick legs and stick antennae.1100

https://www.dropbox.com/s/7wpnf2a8s4pzi65/Video7.mov?dl=01101

Video 8: Kinematic replay of tethered Drosophila forward walking using NeuroMechFly1102

on flat terrain without body support. (Right) Pose estimates obtained from a real tethered fly1103

walking on a spherical treadmill are replayed in NeuroMechFly as it walks untethered on flat terrain1104

without body support. (Left) Integrated paths are shown for tethered (orange) and flat ground1105

(green) scenarios.1106

https://www.dropbox.com/s/e7qvz4tm1exhefl/Video8.mov?dl=01107

Video 9: Forward walking across optimization generations. Forward walking for four solu-1108

tions shown across optimization generations 15, 30, 45 and 60. Tarsal contacts with the ground are1109

indicated (green). Videos are replayed at 0.1x real time. Solutions shown are: (top-left) a random1110

individual, (top-right) the fastest individual (i.e., with the longest distance traveled), (bottom-left)1111

the most stable individual, and (bottom-right) the best trade-off achieving both high speed and static1112

stability.1113

https://www.dropbox.com/s/lizgd3ss2yftlxb/Video9.mov?dl=01114

Video 10: Replaying real tethered walking kinematics on flat terrain and applying ex-1115

ternal perturbations. Pose estimates obtained from a real tethered fly walking on a spherical1116

treadmill are replayed in NeuroMechFly as it walks untethered on flat terrain without body support.1117

Simulated spheres are projected at the model to illustrate perturbations and the possibility of using1118

more complex physical environments in PyBullet.1119

https://www.dropbox.com/s/ae6zrejhddwduun/Video10.mov?dl=01120

8 Code and data availability1121

Data are available at:1122

https://doi.org/10.7910/DVN/Y3TAEC1123

1124

Code, and documentation are available at:1125

https://github.com/NeLy-EPFL/NeuroMechFly1126

https://nely-epfl.github.io/NeuroMechFly1127
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We thank Stéphanie Clerc Rosset and Graham Knott (Biological Electron Microscopy Facility, EPFL,1138

Lausanne, Switzerland) for preparing Drosophila melanogaster samples for X-ray microtomography.1139

We thank Halla Sigurthorsdottir for early work on fly leg degrees-of-freedom.1140

40

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 11, 2021. ; https://doi.org/10.1101/2021.04.17.440214doi: bioRxiv preprint 

https://www.dropbox.com/s/7wpnf2a8s4pzi65/Video7.mov?dl=0
https://www.dropbox.com/s/e7qvz4tm1exhefl/Video8.mov?dl=0
https://www.dropbox.com/s/lizgd3ss2yftlxb/Video9.mov?dl=0
https://www.dropbox.com/s/ae6zrejhddwduun/Video10.mov?dl=0
https://doi.org/10.7910/DVN/Y3TAEC
https://github.com/NeLy-EPFL/NeuroMechFly
https://nely-epfl.github.io/NeuroMechFly
https://doi.org/10.1101/2021.04.17.440214
http://creativecommons.org/licenses/by-nc/4.0/


11 Author Contributions1141

V.L.R. - Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data1142

Curation, Validation, Writing – Original Draft Preparation, Writing – Review & Editing, Visualiza-1143

tion.1144

S.T.R. - Conceptualization, Methodology, Software, Validation, Writing – Review & Editing, Visual-1145

ization.1146

P.G.O. - Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data1147

Curation, Writing – Review & Editing, Visualization.1148

J.A. - Conceptualization, Methodology, Software, Validation, Writing – Review & Editing.1149

A.J.I. - Conceptualization, Methodology, Resources, Writing - Review & Editing, Supervision, Project1150

Administration, Funding Acquisition.1151

P.R. - Conceptualization, Methodology, Resources, Writing – Original Draft Preparation, Writing -1152

Review & Editing, Supervision, Project Administration, Funding Acquisition.1153

1154

12 Competing interests1155

The authors declare that no competing interests exist.1156

References1157

[1] Chiel, H. J. & Beer, R. D. The brain has a body: adaptive behavior emerges from interactions1158

of nervous system, body and environment. Trends in neurosciences 20, 553–557 (1997).1159

[2] Webb, B. A framework for models of biological behaviour. International journal of neural1160

systems 9, 375–381 (1999).1161
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