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1 Abstract

Animal behavior emerges from a seamless interaction between neural network dynamics, mus-
3 culoskeletal properties, and the physical environment. Accessing and understanding the interplay
between these intertwined elements requires the development of integrative and morphologically
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5 realistic neuromechanical simulations. Until now, there has been no such simulation framework
6 for the widely studied model organism, Drosophila melanogaster. Here we present NeuroMech-
7 Fly, a data-driven model of the adult female fly within a physics-based simulation environment.
8 NeuroMechFly combines a series of independent computational modules including a biomechan-
9 ical exoskeleton with articulating body parts—Ilegs, halteres, wings, abdominal segments, head,
10 proboscis, and antennae—muscle models, and neural network controllers. To enable illustrative
11 use cases, we first define minimal leg degrees-of-freedom by analyzing real 3D kinematic mea-
12 surements during real Drosophila walking and grooming. Then, we show how, by replaying these
13 behaviors using NeuroMechFly’s biomechanical exoskeleton in its physics-based simulation envi-
14 ronment, one can predict otherwise unmeasured torques and contact reaction forces. Finally, we
15 leverage NeuroMechFly’s full neuromechanical capacity to discover neural networks and muscle
16 parameters that enable locomotor gaits optimized for speed and stability. Thus, NeuroMech-
17 Fly represents a powerful testbed for building an understanding of how behaviors emerge from
1 interactions between complex neuromechanical systems and their physical surroundings.

» 1 Introduction

2 Uncoupling the contributions to behavior of many neuronal and biomechanical elements is daunting.
a1 Systems-level numerical simulations can assist in this ambitious goal by consolidating data into a
» dynamic framework, generating predictions to be tested, and probing the sufficiency of prevailing
23 theories to account for experimental observations [1-6]. Computational models, including neurome-
2 chanical simulations, have long played a particularly important role in the study of movement control
»s  in vertebrates [7-10] and invertebrates, including stick insects [11-14], cockroaches [15,16], praying
s mantises [17], and ants [18].

27 For animals like invertebrates with a relatively small number of neurons that can be identified
;s across individuals, a mapping of real to simulated biomechanical or circuit elements might enable
2 a cross-talk whereby models make predictions that can then be tested experimentally. However,
s for many of the animals for which neuromechanical models currently exist, there is a dearth or
s absence of genetic tools that would facilitate repeatedly recording, or perturbing the same neurons
3 across animals. By contrast, for a few commonly studied ‘model’ organisms, a dialogue between
33 experimental results and computational predictions represents an exciting but largely unrealized
u opportunity. This is recently enabled by advances in computing power, the realism of physics-based
3 simulation environments, and improvements in numerical optimization approaches. Neuromechanical
s models of some commonly studied organisms have already been developed including for the worm
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s (Caenorhabditis elegans [19,20]), maggots (larval Drosophila melanogaster [21]), and rodents [22].
;s However, for the adult fly, Drosophila melanogaster, only 2-dimensional (2D) [23] and morphologically
s unrefined [24] neuromechanical models exist.

a0 Adult flies are an ideal organism for establishing a synergy between experimental and computa-
a1 tional neuroscience. First, flies generate a large repertoire of complex behaviors including groom-
# ing [25], courtship [26], flight [27], and walking [28,29] which they use to navigate complex environ-
»» ments [30]. The kinematics of these behaviors can now be quantified precisely using deep learning-
w based computer vision tools [31,32] in 3-dimensions (3D) [33,34]. Second, flies have a relatively
»s small number of neurons that can be repeatedly genetically targeted [35] for recordings or perturba-
s tions in tethered, behaving animals [36-39]. These neurons can also be placed within their circuit
w context using recently acquired brain and ventral nerve cord (VNC) connectomes [40,41]. We pre-
s viously developed a simple physics-based simulation of adult Drosophila melanogaster to investigate
» hexapod locomotor gaits [24]. However, this older model has a number of important limitations that
so  restrict its widespread use: it lacks (i) the morphological accuracy needed to simulate mass distribu-
st tions, compliance, and physical constraints, (ii) muscle models and their associated passive dynamical
2 properties, as well as (iii) neural networks or other control architectures.

53 Here we describe NeuroMechFly, a neuromechanical model of adult Drosophila that fills this
s« methodological gap by incorporating a new, open-source computational framework consisting of ex-
ss changeable modules which provide access to biomechanics, neuromuscular control, and parameter
s optimization approaches. These modules maintain the capacity for whole organism simulation while
sz also facilitating further open source extensions and improvements by the scientific community. Thus,
ss  NeuroMechFly is a completely new modeling framework and not simply an improvement of an earlier
so model [24].
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s Figure 1: Data-driven development and applications of NeuroMechFly. (A) Body
62 structures—morphology, joint locations, and degrees-of-freedom—were defined by x-ray microtomog-
s raphy and kinematic measurements. (B) Real 3D poses were used to replay kinematics in the model
s permitting the prediction of unmeasured contact reaction forces and joint torques. (C) Real limb
e kinematics were used to constrain the evolutionary optimization of neuromuscular parameters aiming
e to satisfy high-level objectives for walking—speed and static stability. The properties of optimized
e networks could then be more deeply analyzed.

69 The biomechanical exoskeleton of NeuroMechFly was obtained from a detailed CT-scan of an
7o adult female fly which was then digitally rendered. We defined the model’s leg degrees-of-freedom
7 based on an investigation of Drosophila 3D leg kinematics (Figure 1A4), allowing us to discover that a
2 previously unreported coxa-trochanter leg degree-of-freedom (DoF) is required to accurately recapitu-
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7 late real fly walking and grooming. Using this biomechanical exoskeleton and replaying experimental
n  leg kinematics within the PyBullet physics-based simulation environment (Figure 1B) [42], we then
7 explored how one can estimate quantities that cannot be experimentally measured in behaving flies—
7 ground reaction forces (GRFS), joint torques, and tactile contacts. As a second use-case illustration
7 of NeuroMechFly’s potential, we leveraged the full neuromechanical framework—mnow including neu-
7 ral and muscle models—to show how the parameters of a central pattern generator (CPG)-inspired
70 coupled-oscillator network and associated torsional spring and damper muscle model could be opti-
s mized to discover and explore controllers for fast and stable walking (Figure 1C). Importantly, the
s NeuroMechFly framework is modular and open-source, enabling future extensions including the use
s of more detailed neural and muscle models that permit more interpretable experimental predictions
ss  that can inform our understanding of real Drosophila neural circuits. Thus, NeuroMechFly represents
e an important step towards comprehending how behaviors emerge from a complex interplay between
s neural dynamics, musculoskeletal biomechanics, and physical interactions with the environment.

« 2 Results

# 2.1 Constructing a data-driven biomechanical model of adult Drosophila

s Behavior depends heavily on the body’s physical constraints and its interactions with the environment.
s Therefore, morphological realism is critical to accurately model leg movements and their associated
o self-collisions, joint ranges of motion, mass distributions, and mechanical loading. To achieve this
o1 level of realism in our model, we first measured the morphology of an adult female fly using x-ray mi-
e crotomography (Video 1). We first embedded the animal in resin to reduce blurring associated with
s scanner movements (Figure 24). Then we processed the resulting microtomography data (Figure 2B)
w by binarizing it to discriminate between foreground (fly) and background (Figure 2C'). Finally, we
s applied a Lewiner marching cubes algorithm [43] to generate a polygon mesh 3D reconstruction of
o the animal’s exoskeleton (Figure 2D).
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¢ Figure 2: Constructing a data-driven biomechanical model of adult Drosophila. (A) An
o adult female fly is encased in resin for x-ray microtomography. (B) Cross-section of the resulting
wo  x-ray scan. Cuticle, muscles, nervous tissues, and internal organs are visible. (C) A threshold is
1 applied to these data to separate the foreground (white) from the background (black). (D) A 3D
102 polygon mesh of the exoskeleton and wings is constructed. (E) Articulated body parts are separated
03 from one another. (F) These parts are reassembled into a natural resting pose. Joint locations are
e defined and constraints are introduced to create an articulated body (dark red). (G) Textures are
105 added to improve the visual realism of the model.

107 Subsequently, to articulate appendages from this polygon mesh, we separated the body into 65
s segments (see Table 1)(Figure 2F) and reassembled them into an empirically defined natural resting

3


https://doi.org/10.1101/2021.04.17.440214
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.17.440214; this version posted November 11, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

09 pose. Joints were added manually to permit actuation of the antennae, proboscis, head, wings,
o halteres, abdominal segments, and leg segments. Leg articulation points were based on observations
w from high-resolution videography [33], and previously reported leg DoFs [44-46](Table 1)(Figure 2F).
2 By measuring leg segment lengths across animals (n = 10), we confirmed that the model’s legs are
us  within the range of natural size variation (Figure S1).

114 To facilitate the control of each DoF in the physics engine, we used hinge-type joints to connect
us each of the body parts. We later show that this approximation permits accurate replay of leg end-
ue effector trajectories. Therefore, to construct thorax-coxa joints with three DoF's, we combined three
uwr  hinge joints along the yaw, pitch, and roll axes of the base link. Finally, we textured the model for
us visualization purposes (Figure 2G). This entire process yielded a rigged model of adult Drosophila
ne  with the morphological accuracy required for biomechanical studies as well as, in potential future
o work, model-based computer vision tasks like pose estimation [47-51].

w 2.2 Identifying minimal joint degrees-of-freedom required to accurately
122 replay real 3D leg kinematics

123 After constructing an articulating biomechanical model of an adult fly, we next asked whether the
e six reported and implemented leg DoFs—(i-iii) thorax-coxa (ThC) elevation/depression, protrac-
s tion/retraction, and rotation, (iv) coxa-trochanter (CTr) flexion/extension, (v) femur-tibia (FTi)
s flexion/extension, and (vi) tibia-tarsus (TiTa) flexion/extension [44,45]—would be sufficient to accu-
w7 rately replay measured 3D leg kinematics. We did not add a trochanter-femur (TrF) joint because
s the Drosophila trochanter is thought to be fused to the femur [45]. For the middle and hind legs, ThC
1o protraction/retraction occurs along a different axis than similarly named movements of the front legs.
1o Therefore, we chose to instead use the notations ‘roll’; ‘pitch’, and ‘yaw’ to refer to rotations around
1 the anterior/posterior, medial/lateral, and dorsal/ventral axes of articulated segments, respectively
132 (Video 2)

133 For our studies of leg kinematics, we focused on forward walking and grooming, two of the most
13 common spontaneously-generated Drosophila behaviors. First, we used DeepFly3D [33] to acquire 3D
135 poses from recordings of tethered flies behaving spontaneously on a spherical treadmill. Due to 3D
136 pose estimation-related noise and some degree of inter-animal morphological variability (Figure S1),
17 directly actuating NeuroMechFly using raw 3D poses was impossible. To overcome this issue, we
18 fixed the positions of base ThC joints as stable reference points and set each body part’s length to its
139 mean length for a given experiment. Then, we scaled relative ThC positions and body part lengths
1o using our biomechanical model as a template. Thus, instead of using 3D cartesian coordinates, we
w1 could now calculate joint angles that were invariant across animals and that matched the DoF's used
12 by NeuroMechFly. At first we calculated these joint angles for the six reported DoFs [44, 45] by
13 computing the dot product between the global rotational axes and coxal joints and between adjacent
1 leg segments joined by single-rotational joints (see Materials and Methods).

145 When only these six DoF's were used to replay walking and grooming, we consistently observed
us a large discrepancy between 3D pose-derived cartesian joint locations and those computed from
w7 joint angles via forward kinematics (Figure 3, Base DoF Dot product). Visualization of these errors
us  showed significant out-of-plane movements of the tibia and tarsus (Video 3, top-left). This was
1o surprising given that each leg is thought to consist of a ball-and-socket joint (three DoFs in the ThC
10 joint) followed by a series of one DoF hinge joints that, based on their orientations, should result
11 in leg segments distal to the coxa residing in the same plane. Therefore, we next tried to identify
152 alternative leg configurations that might better match 3D poses. First we performed an inverse
13 kinematics optimization of joint angles rather than dot product operations. This would allow us to
14 identify angle configurations that minimize error at the most distal tip of the kinematic chain—in this
155 case, the pretarsus. Although inverse kinematics yielded a lower discrepancy (Figure 3, Base DoF
156 Inverse kinematics), we still observed consistent out-of-plane leg movements (Video 3, top-middle).
168 We next examined whether an extra DoF might be needed at the CTr joint to accurately replicate
160 real fly leg movements. This analysis was motivated by the fact that: (i) other insects use addi-
wo  tional stabilizing rotations at or near the TrF joint [52-55], (ii) unlike other insects, the Drosophila
wm  trochanter and femur are fused, and (iii) Drosophila hosts reductor muscles of unknown function
> near the CTr joint [44]. To ensure that any improvements did not result simply from overfitting by
173 increasing the number of DoF's, we also tested the effect of adding one roll or yaw DoF to each of the
e  more distal hinge-type joints (CTr, FTi and TiTa)(Video 2). Indeed, for both walking (Video 3,
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158 Figure 3: Adding a CTr roll DoF to base DoF's enables the most accurate kinematic replay
150 of real walking and grooming. Body-length normalized mean absolute errors (MAE) comparing
1o measured 3D poses and angle-derived joint positions for various DoF configurations. Measurements
1 were made for representative examples of (A) forward walking, or (B) foreleg/antennal grooming.
12 For each condition, n = 2400 samples were computed for all six legs across 4 s of 100 Hz video data.
13 Data for each leg are color-coded. ‘R’ and ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’
e and ‘H’ indicate front, middle, and hind legs, respectively. Violin plots indicate median, upper, and
s lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to based DoFs are
w6 highlighted in light gray.

s top-right) and foreleg/antennal grooming (Video 4, top-right), we observed that adding a CTr roll
ws  DOF to the six previously reported (‘base’) DoFs significantly and uniquely reduced the discrepancy
177 between 3D pose-derived and forward kinematics-derived joint positions, even when compared with
ws improvements from inverse kinematics (Figure 3, Base DoF & CTr roll; for statistical analysis, see
w  Table 2 and Table 3). This improvement was also evident on a joint-by-joint basis for walking (Fig-
1o ure S2) and grooming (Figure S3) and it was not achieved by any other kinematic chain tested—a
1 result that argues against the possibility of over-fitting (Figure 3, Base DoF & CTr yaw, Base DoF
12 & FTi roll, Base DoF & FTi yaw, Base DoF & TiTa roll, Base DoF & TiTa yaw). These findings
113 demonstrate that accurate kinematic replay of Drosophila leg movements requires seven DoF's per leg:
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e the previously reported six DoFs [44,45] as well as a roll DoF near the CTr joint. Thus, by default,
s NeuroMechFly’s biomechanical exoskeleton incorporates this additional DoF for each leg (Table 1).

w 2.3 Using NeuroMechFly to estimate joint torques and contact forces
167 through kinematic replay of real fly behaviors

188 Having identified a suitable set of leg DoF's, we next aimed to illustrate the utility of NeuroMechFly
189 as a biomechanical model within the PyBullet physics-based environment. PyBullet is an integrative
1w framework that not only gives access to collisions, reaction forces, and torques but also imposes gravity,
1 time, friction, and other morphological collision constraints, allowing one to explore their respective
12 roles in observed animal behaviors. Specifically, we focused on testing the extent to which one might
13 use kinematic replay of real behaviors to infer torques, and contact forces like body part collisions and
e ground reaction forces (GRFs)—quantities that remain technically challenging to measure in small
105 insects like Drosophila [18,56]. Although kinematic replay may not provide information about internal
s forces that are not reflected in 3D poses (e.g., how tightly the legs grip the spherical treadmill without
17 changes in posture), estimates of collisions and interaction forces may be a good first approximation
s of an animal’s proprioception and mechanosensation.

199 We explored this possibility by using a proportional-derivative (PD) controller implemented in
20  PyBullet to actuate the model’s leg joints, replaying measured leg kinematics during forward walking
21 and foreleg/antennal grooming. We used joint angles and angular velocities as target signals for
22 the controller. Because, when applying this kind of controller, there is no unique set of contact
203 solutions that match forces and torques to prescribed kinematics (i.e., experimental validation of
24 force estimates would ultimately be necessary), we first quantified how sensitive torque and force
205 estimates were to changes in PD controller gains. Based on this sensitivity analysis, we selected gain
206 values that optimized the precision of kinematic replay (Figure S4, blue squares) and for which small
27 deviations did not result in large variations in measured physical quantities (Figure S5, red traces).
208 We included all seven leg degrees-of-freedom from our error analysis (Figure S6) and the model’s
200 ‘zero-angle pose’ was selected to make joint angles intuitive (Figure S7). We also set fixed values for
a0 the orientation of abdominal segments, wings, halteres, head, proboscis, and antennae to generate a
au natural pose (Table 4).

226 When we replayed walking (Figure 44-C)(Video 5) and foreleg/antennal grooming (Figure 5A-
2 C) (Video 6), we observed that the model’s leg movements were largely identical to those measured
28 from Drosophila. By measuring real ball rotations [57] and comparing them with simulated spherical
20 treadmill rotations, for a range of soft constraint parameters (Figure S8), we quantified high similarity
20 between real and simulated spherical treadmill forward velocities (Figure S9D), and to some extent,
a1 yaw velocities (Figure SOF). Sideways velocities were smaller and, thus, difficult to compare (Fig-
a2 ure S9F). This was notable given that the ball’s rotations were not explicitly controlled but emerged
233 from tarsal contacts and forces in our simulation. These observations support the accuracy of our
2 computational pipeline in processing and replaying recorded joint positions.

235 Next, we more directly validated collisions and forces computed within the PyBullet physics-based
2 simulation environment. From kinematic replay of joint angles during walking (Figure 4E, top), we
2 measured rich, periodic torque dynamics (Figure 4E, middle). These were accompanied by ground
23 reaction forces (GRFs) that closely tracked subtle differences in leg placement across walking cycles
20 (Figure 4F, bottom). Superimposing these GRF vectors on raw video recordings of the fly allowed
20 Us to visualize expected tarsal forces (Figure 4D)(Video 5, top-left) which could also be used to
21 generate predicted gait diagrams during tethered walking (Figure 4F). These predictions were highly
22 accurate (83.5 - 87.3% overlap) when compared with manually labeled ground-truth gait diagrams for
23 three different animals and experiments (Figure S10). This result was notable given that the thorax
a4 is fixed and, in principle, subtle changes in attachment height could increase or decrease the duration
xs  of leg-treadmill contacts.

246 Similarly, for foreleg/antennal grooming (Figure 5A-C), we observed that measured joint angles
27 (Figure 5E, top) could give rise to complex torque dynamics (Figure 5F, middle). Associated leg
2#s and antennal contact forces (Figure 5D, E, bottom) reached magnitudes about three times the fly’s
29 weight. These fall within the range of previously observed maximum forces measured at the tip of the
0 tibia (~100uN) for ballistic movements [58], but further experimental data will be required to fully
s validate these measurements. These leg and antennal contact forces were used to generate groom-
2 ing diagrams—akin to locomotor gait diagrams—that illustrate predicted contacts between distal leg
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a3 Figure 4: Kinematic replay of forward walking allows the estimation of ground contacts
22 and reaction forces. (A) Multiple cameras and deep learning-based 2D pose estimation are used
25 to track the positions of each leg joint while a tethered fly is walking on a spherical treadmill. (B)
26 Multiview 2D poses (solid lines) are triangulated and processed to obtain 3D joint positions (dashed
ar lines). These are further processed to compute joint angles for seven DoFs per leg. (C) Joint
xs angles are replayed using PD control in NeuroMechFly. Body segments in contact with the ground
a0 are indicated (green). (D) Estimated ground reaction force vectors (red arrows) are superimposed
20 on original video data. (E, top) Kinematic replay of real 3D joint angles permits estimation of
a1 unmeasured (E, middle) joint torques, and (E, bottom) ground reaction forces. Only data for
22 the left front leg (LF) are shown. Grey bars indicate stance phases when the leg is in contact with
23 the ground. Joint DoF's are color-coded. (F) A gait diagram illustrating stance (black) and swing
25  (white) phases for each leg as computed by measuring simulated tarsal contacts with the ground.

3 segments and the antennae (Figure 5F'). During leg-leg grooming, we observed collisions that moved
»s - continuously along the leg segments in proximal to distal sweeps. These collision data provide a richer
»s  description of grooming beyond classifying the body part that is being cleaned and can enable a more
»6  precise physical quantification of many other behaviors including, for example, inter-animal boxing or
»7  courtship tapping. This approach also revealed the importance of having a morphologically accurate
s biomechanical model. When we replaced our CT scan-based leg segments and antennae with more
20 conventional stick segments having similar diameters and lengths, we observed less rich collision dy-
0 namics including the elimination of interactions between the tarsi and antennae (Figure S11) (Video
261 7)

277 Because our 3D pose estimates were made on a tethered fly behaving on a spherical treadmill,
s we also ‘tethered’ our simulation by fixing the thorax position. Next, we asked to what extent
29 our model might be able to walk without body support (i.e., keeping its balance while carrying
20 its body weight). To do this, we replayed 3D kinematics from tethered walking (Figure 4)(Video
s 5) while NeuroMechFly could walk freely (untethered) on flat terrain. Indeed, we observed that
22 our model walked stably on the ground (Video 8). Although an animal’s legs would naturally
23 be positioned differently on a curved versus a flat surface, the flexibility of NeuroMechFly’s tarsal
2 segments allowed it to walk freely with a natural pose using 3D poses taken from tethered walking on
25 a curved spherical treadmill. As expected, flat ground locomotion matched the velocities of tethered
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%3 Figure 5: Kinematic replay allows the estimation of self-collisions and reaction forces
x during foreleg/antennal grooming. (A) Multiple cameras and deep learning-based 2D pose
25 estimation are used to track the positions of each leg joint while a tethered fly grooms its forelegs
w6 and antennae. (B) Multiview 2D poses (solid lines) are triangulated and processed to obtain 3D
»7  joint positions (dashed lines). These are further processed to compute joint angles for seven DoFs per
% leg. (C) Joint angles are replayed using PD control in NeuroMechFly. Body segments undergoing
x0 collisions are indicated (green). (D) Estimated leg-leg and leg-antennae contact forces (red arrows)
a0 are superimposed on original video data. (E, top) Kinematic replay of real joint angles permits
o1 estimations of unmeasured (E, middle) joint torques, and (E, bottom) contact forces. Only data
a2 for the right front (RF) leg are shown. Dark grey bars indicate leg-leg contacts. Light grey bars
a3 indicate leg-antenna contacts. Joints are color-coded. (F) A grooming diagram illustrating contacts
as (black) made by the front leg’s five tarsal segments (‘Tal’ and ‘Ta5’ being the most proximal and the
o most distal, respectively), tibia (‘Ti’), and both antennae (‘Ant’).

26 walking (Figure S12) better than walking paths (Video 8): small deviations in heading direction
sr yield large changes in trajectories.

288 In summary, we have shown how NeuroMechFly’s biomechanical exoskeleton—without muscle
250 or neuron models—can be used to replay real 3D poses to estimate otherwise inaccessible physical
20 quantities like joint torques, collisions, and reaction forces that are accessible from its physics-based
2 simulation engine.

» 2.4 Using NeuroMechFly to explore locomotor controllers by optimizing
203 CPG-oscillator networks and muscles

2s  As a full neuromechanical model, NeuroMechFly consists not only of biomechanical elements, like
25 those used for kinematic replay, but also neuromuscular elements. In our computational framework,
206 these represent additional modules that the investigator can define to be more abstract—e.g., leaky
27 integrate-and-fire neurons and spring-and-damper models—or more detailed—e.g., Hodgkin-Huxley
s neurons and Hill-type muscle models. Parameters for neural networks and muscles that maximize
29 user-defined objectives and minimize penalties can be identified using evolutionary optimization.

300 Here, to provide a proof-of-concept of this approach, we aimed to discover neuromuscular con-
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s trollers that optimize fast and statically stable tethered walking. Insect walking gaits are commonly
a2 thought to emerge from the connectivity and dynamics of networks of CPGs within the ventral nerve
s cord (VNC) [15,16,59,60]. Although alternative, decentralized approaches have also been pro-
s0¢  posed [14,61], we focused on exploring a CPG-based model of locomotor control. First, we designed
55 a neural network controller consisting of a CPG-like coupled oscillator [62] for each joint (Figure 6A).
w6 For simplicity, we denote the output of each coupled oscillator as the activity of a CPG. These CPGs,
sr  in turn, were connected to spring-and-damper (‘Ekeberg-type’) muscles [63]. This simple muscle
w8 model has been used to effectively simulate lamprey [63], stick insect [11], and salamander [9]
a0 locomotion.
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su  Figure 6: Using evolutionary optimization to identify oscillator network and muscle pa-
a2 rameters that achieve fast and stable locomotion. (A) A network of coupled oscillators
a3 modeling CPG-based intra- and interleg circuits in the ventral nerve cord of Drosophila. Oscillator
ae  pairs control specific antagonistic leg DoFs (gray). Network parameter values are either fixed (black),
a5 modified during optimization (red), or mirrored from oscillators on the other side of the body (pink).
a6 (B) Multi-objective optimization of network and muscle parameters maximizes forward walking dis-
ar  tance traveled (speed) and static stability. (C) A ‘trade-off’ solution’s locomotor trajectory (distance
ae  traveled over x and y axes) across 60 optimization generations. (D) Pareto front of solutions from
a0 the final (60th) optimization generation. Three individuals were selected from the population using
a0 different criteria: the longest distance traveled (fastest, purple), the most statically stable solution
s (‘most stable’, green), and the solution having the smallest 2-norm of both objective functions after
s normalization (trade-off). (E) Gait diagrams for selected solutions from generation 60. Stance (black)
23 and swing (white) phases were determined based on tarsal ground contacts for each leg. Velocity val-
2 ues were obtained by averaging the ball’s forward velocity over 2 s. (F) Central Pattern Generator
25 (CPQG) outputs, joint torques, and joint angles of each leg’s femur for the "trade-off” solution. Intraleg
36 joint angles for the left front, middle, and hind legs are also shown. Legs are color-coded and joints
s are shown in different line styles.

329 We aimed to identify suitable neuromuscular parameters for walking in an reasonably short period
a0 of optimization time (less than 24 h per run on a workstation). Therefore, we reduced the number
s of parameters and, thus, the search space. Specifically, we limited controlled DoFs to those which (i)
s were sufficient to generate walking in other insect simulations [64] and (ii) had the most pronounced
a3 effect on overall leg trajectories in our kinematic analysis of real flies (Figure S13). Thus, we used
s the following three DoF's per leg that satisfied these criteria: CTr pitch, and FTi pitch for all legs as
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35 well as ThC pitch for the forelegs and ThC roll for the middle and hind legs.

336 Each DoF was controlled by two coupled CPGs that drove the extensor and antagonistic flexor
a7 muscles. We assumed left-right body symmetry and optimized intraleg joint phase differences and
s muscle parameters for the right legs, mirroring these results for the left legs. In the same manner,
39 we optimized the phase differences between the coxae flexor CPGs and mirrored them for the coxae
auo  extensor CPGs. Thus, we could connect 36 coupled oscillators in a minimal configuration to remove
s redundancy and reduce the optimization search space (Figure 6A4). Finally, to permit a wide range
w2 of joint movements, each CPG’s intrinsic frequency was set as an open parameter, whose limits
w3 were constrained to biologically relevant frequencies observed from real fly joint movements during
us  walking [28, 65](Figure S13). In total, 63 open parameters were optimized including CPG intrinsic
us  frequencies, CPG phase differences, and muscle parameters (see Materials and Methods).

346 We performed multi-objective optimization [66] using the NSGA-II genetic algorithm [67] to
s identify neuromuscular parameters that drove walking gaits satisfying two high-level objective func-
us tions: forward speed and static stability. Notably, these objectives can be inversely correlated: fast
us  walking might be achieved by minimizing stance duration and reducing static stability. Forward speed
0 was defined as the number of backward ball rotations within a fixed period of time and quantified
s as fictive distance traveled (Figure 6B, top). Static stability refers to the stability of an animal’s
2 given pose if, hypothetically, tested while immobile. This metric can be quantified during walking as
33 the minimal distance between the model’s center-of-mass (COM) and the closest edge of the support
3¢ polygon formed by the legs in stance phase (i.e., in contact with the ground). This means that the
35 closer the COM is to the center of the support polygon, the higher the static stability score. (Fig-
6 ure 6B, bottom). Additionally, we defined four penalties to discourage unrealistic solutions including
37 those with excessive joint velocities (these cause jittering or muscle instability), speeds slower or faster
s than real locomotion (a ‘moving boundary’), as well as joint angle ranges of motion and duty factors
9 that violate those observed in real flies. Because the optimizer minimizes the objective functions, we
0 inverted the sign for both functions. Thus, during optimization the Pareto front of best solutions
s evolved toward more negative values (Figure S144) and forward walking speeds became faster over
2 generations (Figure 6C)(Video 9).

363 To more deeply investigate our optimization results, we examined three individual solutions from
e the final generation. These were: (i) the fastest solution, (ii) the most stable solution, and (iii) a
w5 ‘trade-off” solution that was the best compromise between speed and static stability (see Methods for a
w6 precise mathematical definition) (Figure 6D). By generating gait diagrams for each of these solutions,
7 we found a diversity of strategies—non-tripod gaits were observed in all generations (Figure S14B)
s even after objectives were maximized and penalties minimized at generation 60 (Figure S14C'). How-
w0 ever, the trade-off solution—a compromise between speed and static stability—closely resembled a
s typical insect tripod gait [28,68], supporting the notion that tripod locomotion satisfies a need for
s stability during fast insect walking [24].

a7 Because NeuroMechFly provides access to neuromuscular dynamics and physical interactions,
sz we could also analyze then further analyze how these underlying quantities give rise to optimized
s locomotor gaits. To illustrate this, we focused on the femur flexors of each leg for the ‘trade-off’
a5 solution (Figure 6F). As expected for a tripod gait, stance and swing phases of the left front (LF)
s and hind (LH) legs were coordinated with those of the right middle (RM) leg. This coordination
sz implies that the middle and hind legs CPG activities (Figure 6F, top, green and brown) are in phase
s with each other and phase shifted by 180° with respect to the front leg (Figure 6F, top, orange). This
s is because, during stance phases, the front legs flex while the middle and hind legs extend. However,
0 for the tripod generated by other three legs, the CPG activity of the left, middle (LM) femur was
s phase shifted with respect to the right front (RF) and hind (RH) legs (Figure 6 F, top, red). Torques
;2 were highest for the hind legs, suggesting an important role for driving ball rotations (Figure 6F,
;s middle, purple and brown). Finally, we confirmed that the increased torque of the hind legs was
s associated with a larger range of motion as measured by joint angles (Figure 6F, bottom).

385 These results illustrate how, by combining our biomechanical exoskeleton with neuromuscular
s elements and an optimization framework, we could discover control strategies that maximize high-
sz level behavioral objectives and minimize penalties informed by real measurements of Drosophila.
s For these solutions, neuromuscular dynamics, collisions, and forces could then be further examined
0 because of their instantiation within a physics-based simulation environment.
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w 3 Discussion

s Here we have introduced NeuroMechFly, a computational model of adult Drosophila that can be
a2 used for biomechanical, and—by also including available neural and muscle models—neuromechanical
33 studies. We first illustrated a biomechanical use case in which one can estimate joint torques and
34 contact forces including ground-reaction forces and body part collisions by replaying real, measured
55 fly walking and grooming. In the future, directly through force measurements [69,70] or indirectly
w6 through recordings of proprioceptive and tactile neurons [38,71], these estimates might be further
s7 validated. Next, we demonstrated a neuromechanical use case by showing how high-level optimiza-
s tion of a neural network and muscles could be used to discover and more deeply study locomotor
39 controllers. Although here we optimized for speed and static stability during tethered locomotion,
w0  NeuroMechFly can also locomote without body support, opening up the possibility of optimizing
w1 neuromuscular controllers for diverse, untethered behaviors.
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w3 Figure 7. Modules that can be independently modified in NeuroMechFly. A neural con-
ss  troller’s output drives muscles to move a biomechanical model in a physics-based environment. Each
ws of these modules can be independently modified or replaced within the NeuroMechFly simulation
ws framework. The controller generates neural-like activity to drive muscles. These muscles produce
w7 torques to operate a biomechanical model embedded in PyBullet’s physics-based environment. When
ws  replacing any module it is only necessary to preserve the inputs and outputs (colored arrows).

a2 3.1 Limitations and future extensions of the biomechanical module

a1 The biomechanical exoskeleton of NeuroMechFly can benefit from several near-term extensions by
a2 the community. First, actuation is currently only implemented for leg joints. Additional effort will
a3 be required to actuate other body parts including the head, or abdomen by defining their DoF's, joint
as  angle ranges and velocities based on 3D pose measurements. Second, the model currently achieves
a5 compliant joints during kinematic replay through position control (akin to a spring-and-damper)
as  in PyBullet. However, future work may include implementing compliant joints with stiffness and
a7 damping based on measurements from real flies. Third, NeuroMechFly employs rigid bodies that
as  do not reflect the flexibility of insect cuticle. Although our modeling framework could potentially
a0 include soft-bodied elements—these are supported by the underlying physics engine—we have chosen
w20 not to because it would first require challenging measurements of cuticular responses to mechanical
a1 stresses and strains (i.e. Young’s modulus) [72,73], and this would increase the model’s computational
a2 complexity, making it less amenable to evolutionary optimization. NeuroMechFly currently supports
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w3 flexibility in terms of compliance because the muscle model includes stiffness and damping terms.
20 Additionally, the fact that kinematic replay is already accurate—with similar real and simulated joint
w5 angle and end-effector positions—suggests that modeling additional cuticular deformations might only
w6 have negligible effects. Therefore, we currently offer what we believe to be a practical balance between
a7 accuracy and computational cost. Finally, future iterations of our biomechanical model might also
w8 include forces that are observed at small scales, including Van der Waals and attractive capillary
2o forces of footpad hairs [74].

=2 3.2 Limitations and future extensions of the neuromuscular modules

a1 In addition to its biomechanical exoskeleton, NeuroMechFly includes modules for neural controllers,
2 muscle models, and the physical environment (Figure 7). These interact with one another to gen-
a3 erate rich in silico motor behaviors. Each of these modules can be independently modified in fu-
2 ture work to improve biological interpretability, computational efficiency, and increase the range of
.5 possible experiments. First, more detailed neural controllers could already be implemented includ-
s ing Integrate-and-Fire, or Hodgkin-Huxley type neurons [15]. This would aid in the comparison
a7 of discovered artificial neural networks and their dynamics with measured connectomes [40,41] and
ss  functional recordings [38], respectively. Second, to increase the realism of movement control, Hill-
a9 type muscle models that have nonlinear force generation properties could be implemented based on
w0  species-specific muscle properties—slack tendon lengths, attachment points, maximum forces, and
w1 pennation angles [58,75]. Third, to study more complex motor tasks, one can already use the Py-
w2 Bullet framework [42] to increase the complexity of the physical environment. For example, one can
w3 study locomotor stability by introducing external objects (Video 10), or locomotor strategies for
ws  navigating heightfield terrains.

s In the near-term, we envision that NeuroMechFly will be used to test theories for neuromechani-
us  cal behavioral control. For example, one might investigate the respective roles of feedforward versus
wr feedback mechanisms in movement control (i.e., to what extent movements are generated by central
ws  versus sensory-driven signals). This can be tested by systematically modifying coupling strengths
wo and sensory feedback gains in the simulation. Outcomes may then be experimentally validated. In
w0 the longer-term, this modeling framework might also be used in closed-loop with ongoing neural and
w1 behavioral measurements. Real-time 3D poses might be replayed through NeuroMechFly to predict
s2  joint torques and contact forces. These leg state predictions might then inform the delivery of pertur-
ss3 bations to study how proprioceptive or tactile feedback are used to achieve robust movement control.
s In summary, NeuroMechFly promises to accelerate the investigation of how passive biomechanics
w5 and active neuromuscular control orchestrate animal behavior, and can serve as a bridge linking
s fundamental biological discoveries to applications in artificial intelligence and robotics.
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« 4 Materials and Methods

s 4.1 Constructing an adult Drosophila biomechanical model
s 4.1.1 Preparing adult flies for x-ray microtomography

w0 The protocol used to prepare flies for microtomography was designed to avoid distorting the exoskele-
w1 ton. We observed that traditional approaches for preparing insects for either archival purposes or for
w2 high resolution microscopy, including scanning electron microscopy [76], result in the partial collapse
w3 or bending of some leg segments and dents in the exoskeleton of the thorax and abdomen. These
ws  alterations mostly occur during the drying phase and while removal of ethanol by using supercritical
w5 carbon dioxide drying reduces these somewhat, it is still not satisfactory. We therefore removed this
ws step altogether, and instead embedded flies in a transparent resin. This resulted in only a small
w7 surface artifact over the dorsal abdominal segments A1, A2, and A3.

468 Flies were heavily anaesthetized with CO5 gas, then carefully immersed in a solution of 2%
w0 paraformaldehyde in phosphate buffer (0.1M, pH 7.4) containing 0.1% Triton 100, to ensure fixative
s penetration, and left for 24 h at 4°C. Care was taken to ensure the flies did not float on the surface,
a1 but remained just below the meniscus. They were then washed in 0.1M cacodylate buffer (2 x 3
w2 min washes), and placed in 1% osmium tetroxide in 0.1M cacodylate buffer, and left at 4°C for an
s additional 24 h. Flies were then washed in distilled water and dehydrated in 70% ethanol for 48
s h, followed by 100% ethanol for 72 h, before being infiltrated with 100% LR White acrylic resin
a5 (Electron Microscopy Sciences, US) for 24 h at room temperature. This was polymerised for 24 h at
w6 60°C inside a closed gelatin capsule (size 1; Electron Microscopy Sciences) half-filled with previously
a7 hardened resin to ensure the insect was situated in the center of the final resin block, and away from
as  the side.

w  4.1.2 X-ray microtomography

a0 We glued the sample onto a small carbon pillar and scanned it using a 160 kV open type, microfocus X-
s ray source (L10711/-01; Hamamatsu Photonics K.K., Japan). The X-ray voltage was set to 40 kV and
w2 the current was set to 112 uA. The voxel size was 0.00327683 mm. To perform the reconstruction, we
a3 used X-Act software from the microtomography system developer (RX-solutions, Chavanod, France)
s obtaining a stack of 982 tiff images of 1046x1636 pixels each.

ws  4.1.3 Building a polygonal mesh volume from processed microtomography data

w6 First, we isolated cuticle and wings from the microtomography data using Fiji [77]. We selected 360
. images from the tiff stack as the region of interest (ROI) beginning at slice 300. The tiff stack with
ws  the ROI was then duplicated. The first copy was binarized using a threshold value of 64 to isolate the
w0 cuticle. The second copy was cropped to keep the upper half of the image—where the wings are—
w0 and then binarized using a lower threshold value of 58. Finally, we applied a closing morphological
w1 operation to isolate the wings. Both binarized stacks were stored as tiff files.

102 We developed custom Python code to read the tiff stacks, and to fill empty holes within the body
w3 and wings. Finally, we used the Lewiner marching cubes algorithm [43] (implemented in the scikit-
w0 image package [78]) to obtain a polygon mesh for each stack. Both meshes were then exported to a
ws  standard compressed mesh storage format.

ws 4.1.4 Separating and reassembling articulated body parts

w7 We used Blender (Foundation version 2.81 [79]) to clean and manipulate polygon meshes obtained
w8 from microtomography data.

499 After importing these meshes into Blender, we removed noise by selecting all vertices linked to
so the main body (or wings), inverting the selection, and deleting these vertices. We explored the
so  resulting meshes, looking for spurious features, and then manually selected and deleted the related
s vertices. We obtained 65 body segments (Table 1) based on [80]. More recent literature corroborated
s3 these propositions for body morphology and joint degrees-of-freedom. We manually selected and
s deleted vertices from our imported 3D body and wing models. Segments were then separated at joint
ss  locations based on published morphological studies. We made some simplifications. Most notably,
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ss  in the antennae, we considered only one segment instead of three because cutting this small element
sor  into a few pieces would alter its morphology.

508 Each wing was separated into an individual segment from the wing model. The body model
s0  was separated into 63 segments as described below. The abdomen was divided into five segments
s according to tergite divisions. The first and second tergites were combined as the first segment
su  (A1A2), and the last segment (A6) included the sixth to tenth tergites. Each antenna was considered
sz a single segment and separated from the head capsule at the antennal foramen. Both eyes and the
si3 proboscis were separated from the head. The latter was divided into two parts, the first containing
s the rostrum (Rostrum), and the second containing the haustellum and labellum (Haustellum). Each
sis  leg was divided in eight parts: the coxa, trochanter/femur, tibia, and five tarsal segments. The thorax
sie  was considered a single segment and only the halteres were separated from it.

517 Each segment was processed in Blender to obtain closed meshes. First, a remesh modifier was used
sis in ‘smooth mode’, with an octree depth of 8, and a scale of 0.9 to close the gaps generated in the meshes
s after been separated from the original model. Smooth shading was enabled and all disconnected
s0  pieces were removed. Then, we used ‘sculpt mode’ to manually compensate for depressions/collapses
s resulting from the microtomography preparation, or from separating body segments.

522 Then, all segments were copied into a single *.blend file and rearranged into a natural resting pose
s3 (Figure 2F). We made the model symmetric to avoid inertial differences between contralateral legs
s and body parts. For this, we used the more detailed microtomography data containing the right side
s of the fly. First, the model was split along the longitudinal plane using the bisect tool. Then the left
s side was eliminated and the right side was duplicated and mirrored. Finally, the mirrored half was
so7 repositioned as the left side of the model, and both sides of the head capsule, rostrum, haustellum,
s thorax, and abdominal segments were joined.

529 At this point, the model consisted of approximately nine million vertices, an intractable number
s for commonly used simulators. We therefore used the decimate tool to simplify the mesh and collapse
s its edges at a ratio of 1% for every segment. This resulted in a model with 87,000 vertices that
s conserved the most important details but eliminated small bristles and cuticular textures.

s3 4.1.5 Rigging the Blender model

s We added an Armature object alongside our model to build the skeleton of the fly. To actuate the
s model, we created a ’bone’—a tool in Blender that is used to animate characters—for each segment.
s  Bones were created such that the thorax would be the root of the skeleton and each bone would
ss7 - be the child of its proximal bone, as indicated in Table 1. Then, the bones were positioned along
s the longitudinal axis of each segment with their heads and tails over the proximal and distal joints,
s respectively. Each joint was positioned at a location between neighboring segments. Each bone
s inherited the name of its corresponding mesh.

541 We used the Custom Properties feature in Blender to modify the properties of each bone. These
s2  properties can be used later in a simulator to e.g., define the maximum velocity, or maximum effort of
s each link. Furthermore, we added a limit rotation constraint (range of motion) to each axis of rotation
s (DoF) for every bone. The range of motion for each rotation axis per joint was defined as —180° to
sis 180° to achieve more biorealistic movements. Because, to the best of our knowledge, there are no
s reported angles for these variables, these ranges of motion should be further refined once relevant
s data become available. The DoF of each bone (segment) were based on previous studies [44, 81, 82]
ss  (see Table 1). Any bone can be rotated in Blender to observe the constraints imposed upon each axis
sa0 - of rotation. These axes are defined locally for each bone.

550 Finally, we defined a ‘zero-position’ for our model. Most bones were positioned in the direction
ss1 of an axis of rotation (Figure S7). Each leg segment and the proboscis were positioned along the Z
sz axis. Each abdominal segment and the labellum were positioned along the X axis. Wings, eyes, and
53 halteres were positioned along the Y axis. The head and the antennae are the only bones not along
s a rotational axis: the head is rotated 20° along the Y axis, and the antennae are rotated 90° with
55 respect to the head bone. Positioning the bones along axes of rotation makes it easier to intuit a
56 segment’s position with its angular information and also more effectively standardizes the direction
ss7 - of movements.
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s 4.1.6 Exporting the Blender model into the Bullet simulation engine

s We used a custom Python script in Blender to obtain the name, location, global rotation axis, range
s of motion, and custom properties for each bone. As mentioned above, the axes of rotation are defined
sse locally for each bone. Therefore, our code also transforms this information from a local to a global
se  reference system, obtaining the rotation matrix for each bone.

563 We used the Simulation Description Format (SDF, http://sdformat.org/) convention to store
ses  the model’s information. This format consists of an *.xml file that describes objects and environments
ss  in terms of their visualization and control. The SDF file contains all of the information related to
s6  the joints (rotational axes, limits, and hierarchical relations) and segments (location, orientation, and
se7  corresponding paths of the meshes) of the biomechanical model. We can modify this file to add or
s remove segments, joints, or to modify features of existing segments and joints. To implement joint
sso  DoF's, we used hinge-type joints because they offer more freedom to control individual rotations.
s Therefore, for joints with more than one DoF, we positioned in a single location as many rotational
sn joints as DoF's needed to describe its movement. The parenting hierarchy among these extra joints
s2 was defined as roll-pitch-yaw. The mass and collision mesh were related to the segment attached to
si3 the pitch joint—present in every joint of the model. The extra segments were defined with a zero
s mass and no collision shape.

575 Our model is based upon the physical properties of a real fly. The full body length and mass
ss of the model are set to 2.8 mm and 1mg, respectively. To make the center of mass and the rigid-
sz body dynamics of the model more similar to a real fly, rather than having a homogeneous mass
se distribution, we used different masses (densities) for certain body parts as measured in a previous
so  study [83]. Specifically, these masses were: head (0.125mg), thorax (0.31mg), abdomen (0.45mg),
s0  wings (0.005mg), and legs (0.11mg).

581 In PyBullet, contacts are modeled based on penetration depth between any two interacting bodies.
s22 The contact parameters are set to 0.02 units of length (1 unit = 1 m in ST units). It is preferable to
23 have the bodies of size larger than 0.02 units. Therefore, we performed dynamic scaling to rescale
s the model, the physical units, and quantities such as gravity while preserving the dynamics and
ses  improving the numerical stability of the model. Notably, we are not compromising the dynamics of
s the simulated behaviors. Specifically, we scaled up the units of mass and length when setting up the
ss7 physics of the simulation environment, and then scaled down the calculated values when recording the
s results. Therefore, the physics engine was able to compute the physical quantities without numerical
se0  errors, and the model could also more accurately reflect the physics of a real fly.

s0o  4.1.7 Comparing leg sizes between NeuroMechFly and real flies

s We dissected the right legs from ten wild-type female adult flies, 2-4 days-post-eclosion. Flies were
s0  cold anesthetized using ice. Then the legs were removed using forceps from the sternal cuticle to avoid
s3  damaging the coxae. Dissected legs were straightened onto a glass slide and fixed with UV-curable
s glue (Figure S1A). We used a Leica M205 C stereo microscope to take images from the legs placed
s next to a 0.5 mm graduated ruler. Joints in the legs were manually annotated and then distances
s between them were measured in pixels and converted to mm using the ruler as a reference. Lengths
so7  between joints were compared to rigged bone lengths in NeuroMechFly.

s 4.2 Kinematic replay and analysis
s0 4.2.1 Forward walking data

e0 We recorded spontaneous behaviors from wild-type females 3-4 days-post-eclosion. Flies were mounted
s1 on a custom stage and allowed to acclimate for 15 min on an air-supported spherical treadmill [38].
sz Experiments were conducted in the evening Zeitgeber time. Flies were recorded five times for 30 s
63 at b min intervals. Data were excluded if forward walking wasn’t present for at least five continuous
o0e  seconds in 10 s windows. To record data, we used a 7-camera system as in [33]. However, we replaced
es the front camera’s InfiniStix lens with a Computar MLM3X-MP lens at 0.3x zoom to visualize the
e spherical treadmill. After the fifth trial of each experiment, we recorded an extra 10 s trial, having
sor replaced the lens from a lateral camera with another Computar MLM3X-MP lens. We used these
ss images to calculate the longitudinal position of the spherical treadmill with respect to the fly for the
e preceding five trials.
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o0 4.2.2 Foreleg/antennal grooming data

eu  Data for kinematic replay of foreleg/antennal grooming were obtained from a previous study de-
sz scribing DeepFly3D, a deep learning-based 3D pose estimation tool [33]. These data consist of
sz images from seven synchronized cameras obtained at 100 fps (https://dataverse.harvard.edu/
se dataverse/DeepFly3D). Time axes (Figure 5E, F') correspond to time points from the original,
a5 published videos. Data were specifically obtained from experiment #3, taken of an animal (#6)
s16  expressing aDN-GAL4 driving UAS-CsChrimson.

ez 4.2.3 Processing 3D pose data

sis  We used DeepFly3D v0.4 [33] to obtain 3D poses from the images acquired for each behavior. 2D poses
e0  were examined using the GUI to manually correct 10 frames during walking and 72 frames during
e0 grooming. DeepFly3D, like many other pose estimation softwares, uses a local reference system based
e on the cameras’ positions to define the animal’s pose. Therefore, we first defined a global reference
62 system for NeuroMechFly from which we could compare data from experiments on different animals
e (see Figure S7).

624 Aligning both reference systems consisted of six steps. First, we defined the mean position of each
&5 Thorax-Coxa (ThC) keypoint as fixed joint locations. Second, we calculated the orientation of the
66 vectors formed between the hind and middle coxae on each side of the fly with respect to the global
67 x-axis along the dorsal plane. Third, we treated each leg segment independently and defined its origin
68 as the position of the proximal joint. Fourth, we rotated all data points on each leg according to
0 1its side (i.e., left or right) and previously obtained orientations. Fifth, we scaled the real fly’s leg
e lengths for each experiment to fit NeuroMechFly’s leg size: A scaling factor was calculated for each leg
e segment as the ratio between its mean length throughout the experiment and the template’s segment
62 length and then each data point was scaled using this factor. Finally, we used the NeuroMechFly
63 exoskeleton as a template to position all coxae within our global reference system; the exoskeleton
3¢ has global location information for each joint. Next, we translated each data point for each leg (i.e.
es  CTr, FTi, and TiTa joints) with respect to the ThC position based on this template.

e 4.2.4 Calculating joint angles from 3D poses

67 We considered each leg a kinematic chain and calculated the angle of each DoF to reproduce real poses
e in NeuroMechFly. We refer to this process as ‘kinematic replay’. Angles were obtained by computing
63 the dot product between two vectors with a common origin. We obtained 42 angles in total, seven per
a0 leg. The angles’ names correspond to the rotational axis of the movement—roll, pitch, or yaw—for
61 rotations around the anterior-posterior, mediolateral, and dorsoventral axes, respectively.

642 The thorax-coxa joint (ThC) has three DoFs. The yaw angle is measured between the dorsoventral
ss axis and the coxa’s projection in the transverse plane. The pitch angle is measured between the
ea dorsoventral axis and the coxa’s projection in the sagittal plane. To calculate the roll angle, we
es  aligned the coxa to the dorsoventral axis by rotating the kinematic chain from the thorax to the FTi
es joint using the yaw and pitch angles. Then we measured the angle between the anterior-posterior
67 axis and the projection of the rotated FTi in the dorsal plane.

648 Initially, we considered only a pitch DoF for the CTr joint. This was measured between the coxa
s0 and femur’s longitudinal axis. Subsequently, we discovered that a CTr roll DoF would be required
es0 to accurately match the kinematic chain. To calculate this angle, we rotated the tibia-tarsus joint
es1  (TiTa) using the inverse angles from the coxa and femur and measured the angle between the anterior-
62 posterior axis and the projection of the rotated TiTa in the dorsal plane.

653 The pitch angle for the FTi was measured between the femur and tibia’s longitudinal axis. The
e pitch angle for the TiTa was measured between the tibia and tarsus’s longitudinal axis. The direction
o5 of rotation was calculated by the determinant between the vectors forming the angle and its rotational
ess axis. If the determinant was negative, the angle was inverted.

657 To demonstrate that the base six DoFs were not sufficient for accurate kinematic replay, we also
es compared these results to angles obtained using inverse kinematics. In other words, we assessed
69 whether an optimizer could find a set of angles that could precisely match our kinematic chain using
e0 only these six DoFs. To compute inverse kinematics for each leg, we used the optimization method
s implemented in the Python IKPy package (L-BFGS-B from Scipy). We defined the zero-pose as a
2 kinematic chain and used the angles from the first frame as an initial position (seed) for the optimizer.
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o3 4.2.5 Calculating forward kinematics and errors with respect to 3D poses

64 Lo quantify the contribution of each DoF to kinematic replay, we used the forward kinematics method
65 to compare original and reconstructed poses. Since 3D pose estimation noise causes leg segment
es lengths to vary, we first fixed the length of each segment as its mean length across all video frames.
667 We then calculated joint angles from 3D pose estimates with the addition of each DoF (see previous
s section). We formed a new kinematic chain including the new DoF. This kinematic chain allowed us
60 to compute forward kinematics from joint angles, which were then compared with 3D pose estimates
o0 to calculate an error. We performed an exhaustive search to find angles that minimize the overall
en distance between each 3D pose joint position and that joint’s position as reconstructed using forward
o2 kinematics. The search spanned from —90° to 90° with respect to the ‘zero pose’ in 0.5° increments.
673 The error between 3D pose-based and angle-based joint positions per leg was calculated as the
e average distance across every joint. We note that differences in errors can vary across legs and leg pairs
o5 because each joint’s 3D pose estimate is independent and each leg acts as an independent kinematic
e chain adopting its own pose. Thus, errors may also be asymmetric across the body halves. As well,
e errors integrate along the leg when using forward kinematics (FK) for walking (Figure S2) and for
os  grooming (Figure S3). By contrast, inverse kinematics (IK) acts as an optimizer and minimizes the
oo error at the end of the kinematic chain (i.e., where the FK error is highest) for walking (Figure S2D)
s and for grooming (Figure S3D). This explains why errors using FK are generally higher than those
e using IK—with the exception of adding a roll degree-of-freedom at the Coxa-Trochanter joint. To
e2 normalize the error with respect to body length, we measured the distance between the antennae and
3 genitals in our Blender model (2.88mm). Errors were computed using 400 frames of data: frames
sse  300-699 for forward walking from fly 1 and frames 0-399 for foreleg/antennal grooming.

685 We ran a Kruskal-Wallis statistical test to compare kinematic errors across the eight methods
es used. We then applied a posthoc Conover’s test to perform a pairwise comparison. We used the
67 Holm method to control for multiple comparisons. The resulting p-value matrices for walking and
s foreleg/antennal grooming behaviors are shown in Table 2 and Table 3, respectively. Our statistical
o0 tests suggested that adding a CTr roll DoF uniquely improved kinematic replay compared with all
so other methods.

s 4.2.6 Transferring real 3D poses into the NeuroMechFly reference frame

s2 To incorporate the additional CTr roll DoF into NeuroMechFly, we enabled rotations along the z axis
sz of CTr joints. Then, we created new SDF configuration files using custom Python scripts to include
ea a CTr roll DoF for each leg. To simulate the fly tethering stage used in our experiments, we added
s three support joints (one per axis of movement) that would hold our model in place. We removed
00 these supports for ground walking experiments (Videos 8 and 10).

697 We used position control for each joint in the model. We fixed the position of non-actuated joints
00 to the values shown in Table 4. The actuated joints (i.e. the leg joints) were controlled to achieve the
e angles calculated from 3D pose data. The simulation was run with a time step of 0.5ms, allowing
w0 PyBullet to accurately perform numerical calculations. Since the fly recordings were only captured
o1 at 100 fps, we up-sampled and interpolated pose estimates to match the simulation time steps before
2 calculating joint angles.

03 4.2.7 Comparing real and simulated spherical treadmill rotations

¢ We obtained spherical treadmill rotational velocities from real experiments using Fictrac [57]. We
s also obtained the relative inclination of each tethered fly (®) (Figure S9A) as the angle between
706 the ground plane and the axis between the hind leg ThC joint and the dorsal part of the neck.
w7 Finally, we estimated the position of the ball with respect to the fly from both front and lateral views
w8 (Figure S9B-C) by identifying the ball and fly using a Hough transform and standard thresholding,
00 respectively. For axes observed from both views, we averaged the expected position.

710 For the simulated environment we created a spherical body in PyBullet with three hinge joints
m  along the =, y, and z axes, allowing our sphere to rotate in each direction like a real spherical treadmill.
72 Rolling and spinning frictions were set to zero to obtain virtually frictionless conditions similar to a
73 real treadmill floating on air. The mass of the simulated spherical treadmill was set to 54.6 mg: the
na  measured mass of the real foam sphere. Finally, the sphere’s diameter was measured and set into the
ns  simulation as 9.96 mm.
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716 We ran kinematic replay of walking by setting the simulated spherical treadmill position and
77 fly inclination based on measurements from experimental images. We used predefined values for
ns  kinematic replay of grooming. Then, we empirically determined the following parameters:

719 e Global ERP = 0.0
720 e Eriction ERP = 0.0

e e Solver iterations = 1000
e e Treadmill lateral friction = 1.3
723 After running the simulation, we compared the rotational velocities estimated for each axis with

=4 the real velocities obtained with Fictrac. First, we smoothed both Fictrac and estimated signals using
s a median filter with a window size of 0.1 s. Second, we interpolated Fictrac data from time steps of
26 0.1 s (100 fps) to the simulation time step. Then, we established each signal’s baseline as the mean
2z of the first 0.2 s of data. Finally, we computed the Spearman correlation coefficient (p) to assess
28 correlations of forward, lateral, and heading (yaw) velocities for both signals.

= 4.2.8 Constraint parameter sensitivity analysis

70 Simulated spherical treadmill velocity estimates depend on constraint force mixing (CFM) and contact
= error reduction (contact ERP) parameters. These parameters change the ‘softness’ of joint and contact
72 constraints in the physics engine. Therefore we performed a sensitivity analysis to determine the best
73 combination of CFM and ERP. CFM values were swept from 0 to 10, and ERP from 0 to 1.0. Then,
74 we ran a simulation for each of 121 combinations. We assessed their performance by calculating the
75 Spearman correlation coefficient for each axis (Figure S8A-C).

736 Finally, to select optimal parameter values, we applied a weighted sum to the results as shown in
= BEquation 1:

WS; = ax Fw(p;) + B * Lat(p;) + v * Head(p;) (1)

738 where Fw, Lat, and Head are the rotational axes, p; is the Spearman correlation coefficient
70 obtained for each CFM-ERP combination, and «, £, and v are the standard deviation contributions
no  for each axis calculated as shown in Equations 2, 3, and 4, respectively. Therefore, we favored the
1 axis with the largest amplitude of variation.

o std(Fw) @)

 std(Fw) + std(Lat) + std(Head)
5= std(Lat) 3)

 std(Fw) + std(Lat) + std(Head)

std(Head)

V= (4)

std(Fw) + std(Lat) 4 std(Head)
742 Finally, we normalized WS (NWS) with respect to its maximum and minimum values (Fig-

3 ure S8D). Consequently, a combination with NWS equal to 1 was selected: CFM = 3 and ERP
744 = 0.1

us  4.2.9 Controller gain sensitivity analysis

We performed kinematic replay using a built-in PD position controller in PyBullet [42]. A PD
controller was used rather than the more widely known PID controller because the integral component
(‘" in PID) is mainly used to correct steady state errors (e.g., while maintaining a fixed posture).
Thus, it is not used for time-varying postures like those during locomotion. We used PyBullet’s
built-in position control method because it operates with proportional and derivative gains that are
stable and efficient. This PD controller minimizes the error:

error = Kp(6, — 6,) + Kq(wr — wa) (5)
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ns  where 6, and 0, denote reference and actual positions, w, and w, are desired and actual velocities,
» and K, and K, are proportional and derivative gains, respectively, which provides some compliance
s in the model.

749 Because the outputs of our model-—dynamics of motion—depend on the controller gains K, and
w0 Kg, we first systematically searched for optimal gain values. To do this, we ran the simulation’s
= kinematic replay for numerous K, and K pairs, ranging from 0.1 to 1.0 with a step size of 0.1
= (i.e., 100 simulations in total). Target position and velocity signals for the controller were set as the
73 calculated joint angles and angular velocities, respectively. To compute joint angular velocities, we
4 used a Savitzky—Golay filter with a first-order derivative and a time-step of 0.5 ms on the joint angles.
s Feeding the controller with only the joint angles could also achieve the desired movements of the
s model. However, including the velocity signal ensured that the joint angular velocities of the fly and
w7 the simulation were properly matched. We then calculated the mean squared error (MSE) between
s the ground truth—joint angles obtained by running our kinematic replay pipeline on pose estimates
70 from DeepFly3D [33]—and joint angles obtained from PyBullet. Then, we averaged the MSE values
o across the joints in one leg, and summed the mean MSEs from each of six legs to obtain a total error.
w1 We made the same calculations for the joint angular velocities as well. Our results (Figure S4) show
% that our biomechanical model can replicate real 3D poses while also closely matching real measured
73 velocities. In particular, an MSE of 360 (rad/sec)? for the six legs corresponds approximately to 7.74
we  rad/sec per leg, i.e., 1.27 Hz. This is acceptable given the rapid, nearly 20 Hz, leg movements of the
s real ﬂy.

766 After validating the accuracy of kinematic replay, we performed a sensitivity analysis to measure
w7 the impact of varying controller gains on the estimated torques and ground reaction forces. This
s analysis showed that torques and ground reaction forces are highly sensitive to changing proportional
w0 gains (K,) (Figure S5) but are robust to variations in derivative gain (Kjy). These results are ex-
o pected since high proportional gains cause “stiffness” in the system whereas derivative gains affect
m  the “damping” in a system’s response. We observed rapid changes in estimated torques and ground
m  reaction forces at high K, values (Figure S5). Notably, in principle there can also be internal forces
73 affecting contact forces. For example, a fly’s legs can squeeze the spherical treadmill with different
s internal forces but have identical postures.

s As shown in Figure S4, our model can match the real kinematics closely for almost every controller
76 gain combination except for the low K,, K; band. By contrast, varying the gains proportionally
77 increased the torque and force readings. Because there are no experimental data to validate these
s physical quantities, we selected gain values corresponding to intermediate joint torques and ground
7 contact forces (Figure S5). Specifically, we chose 0.4 and 0.9 for K, and Ky, respectively. These values
70 were high enough to generate smooth movements, and low enough to reduce movement stiffness.

w  4.2.10 Comparing tethered and flat ground walking

w2 To test the ability to run NeuroMechFly in an untethered context, we replayed the kinematics of
3 a tethered walking experiment (Figure 4) but removed body supports and placed the model on the
s floor. To remove body supports, we deleted the corresponding links from the model’s description
s (SDF configuration file). The physics engine parameters remained the same. The lateral friction for
7 the floor was set to 0.1.

wr 4.2.11 Application of external perturbations

To test the stability of the untethered model walking over flat ground, we set the floor’s lateral friction
to 0.5 and introduced external perturbations. Specifically, we propelled solid spheres at the model
according to the following equation of motion,

§= 7% ot + gt (6)
s where, p'is the 3D target position(fly’s center of mass ), 7 is the initial 3D position of the sphere, g
o is the initial velocity vector, g is the external acceleration vector due to gravity in the z-direction, ¢
0 is the time taken by the sphere to reach the target position p from 7 with an initial velocity «. The
71 mass of the sphere was 3 mg and its radius 50 um. Spheres were placed at a distance of 2 mm from
72 the fly’s center of mass in the y-direction. With ¢ set to 20 ms, the initial velocity of the projectile
73 was computed using Equation 6. The spheres were propelled at the model every 0.5 s. Finally, at 3
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s § into the simulation, a 3 g sphere with a radius of 150 um was propelled at the fly to topple it over
795 (Video 10).

we  4.2.12 Analyzing NeuroMechFly’s contact and collision data

7 The PyBullet physics engine generates forward dynamics simulations and collision detections. We
s plotted joint torques as calculated from PyBullet. To infer ground reaction forces (GRFSs), we com-
0 puted and summed the magnitude of normal forces resulting from contact of each tarsal segment with
a0 the ball. Gait diagrams were generated by thresholding GRF's; a leg was considered to be in stance
s1  phase if its GRFs was greater than zero. These gait diagrams were compared with a ground truth
s2  (Figure S10) obtained by manually annotating when the legs were in contact with the ball for each
g3 video frame. Gait prediction accuracy was calculated by dividing the frames correctly predicted as
s being in stance or swing over the total number of frames.

805 Self-collisions are disabled by default in PyBullet. Therefore, for kinematic replay of grooming, we
ss enabled self-collisions between the tibia and tarsal leg segments, as well as the antennae. We recorded
sor normal forces generated by collisions between (i) the right and left front leg, (ii) the left front leg
ws  and left antenna, and (iii) the right front leg and right antenna. Grooming diagrams were calculated
s0  as for gait diagrams: a segment experienced a contact/collision if it reported a normal force greater
a0 than zero.

s 4.2.13 Comparing grooming behaviors as a function of NeuroMechFly’s morphological
812 accuracy

a3 We replayed foreleg/antennal grooming kinematics (Figure 5) for three conditions to assess the degree
sia  to which biomechanical realism is important for collision estimation. We tested two experimental
a5 conditions: one in which both front legs were modelled as sticks, and one in which the front legs as
ais well as the antennae were modelled as sticks. Notably, multisegmented tarsi are not found in other
siv  published insect stick models [64]. Thus, as for our previous model [24], each stick leg consisted
as  of four segments: coxa, trochanter/femur, tibia, and one tarsal segment. Each leg and antennal
a0 stick segment had a diameter equal to the average diameter of the corresponding segment in our
w20 more detailed NeuroMechFly model. These changes were accomplished by modifying the model’s
e description (SDF configuration file) and by changing the collision and visual attributes for each
s22  segment of interest.

o3 4.3 Neural network parameter optimization
22 4.3.1 CPG network architecture

e For evolutionary optimization of neuromusculuar parameters, we designed a CPG-based controller
w26 composed of 36 nonlinear oscillators (Figure 6), as for a previous investigation of salamander locomo-
er  tion [62]. These CPGs consisted of mathematical oscillators that represent neuronal ensembles firing
w28 rhythmically in the Ventral Nerve Cord (VNC) [84]. The CPG model was governed by the following
s system of differential equations:

0; = 2mv; + Z rjwij sin(0; — 0 — ij) "
7y = a;(R; — 1) (®)
M; = r;(1+sin(6;)) ©)

s where the state variables—phase and amplitude of the oscillator i—are denoted 6; and r;, respectively;
s v; and R; represent oscillator ¢’s intrinsic frequency and amplitude, a; is a constant. The coupling
sz strength and phase bias between the oscillator ¢ and j are denoted w;; and ¢;;, respectively.

833 During optimization, for the entire network of coupled oscillators, we set the intrinsic frequency v
s as an open parameter ranging from 6 to 10 Hz, matching the frequencies of our measured Drosophila
s joint angle movements and reported stepping frequencies [65]. The intrinsic amplitude R was set
s to 1, and the constant a; was set to 25. To ensure a faster convergence to a phase-locked regime
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s between oscillators, we set coupling strengths to 1000 [85]. M; represents the cyclical activity pattern
ss  of neural ensembles activating muscles. We solved this system of differential equations using the
a0 explicit Runge-Kutta method of 5th-order with a time step of 0.1 ms.

840 Each oscillator pair sends cyclical bursts to flexor and extensor muscles which apply antagonistic
s torques to the corresponding revolute joint. We considered three DoF's per leg that were sufficient
s> for locomotion in previous hexapod models [64] and that had the most pronounced joint angles
a3 (Figure S13). These DoFs were (i) ThC pitch for the front legs, (ii) ThC roll for the middle and hind
ss  legs, and (iii) CTr pitch and FTi pitch for all legs. Thus, there were three pairs of oscillators optimized
ws  per leg, for a total of 36. We coupled (i) the intraleg oscillators in a proximal to distal chain, (ii)
s the interleg oscillators in a tripod-like fashion (the ipsilateral front and hind legs to the contralateral
s middle leg from anterior to posterior), (iii) both front legs to each other, and (iv) coxa extensor and
as flexor oscillators to one another. Intraleg coordination is equally important to generate a fly-like gaits
a9 since stance and swing phases depend on intrasegmental phase relationships. For this reason, both
so interleg (phase relationships between ThC joints) and intraleg (phase relationships within each leg)
es1 couplings were optimized for one half of the body and mirrored on the other.

2 4.3.2 Muscle model

We adapted an ‘Ekeberg-type’ muscle model [63] to generate torques on the joints. This model
simulates muscles as a torsional spring and damper system, allowing torque control of any joint as a
linear function of motor neuron (CPG output) activities driving antagonist flexor (M) and extensor
(MEg) muscles controlling that joint. The torque exerted on a joint is given by the equation:

es3  where «, 8,7, and § represent the gain, stiffness gain, tonic stiffness, and damping coefficient, respec-
e tively [9]. Ay is the difference between the current angle of the joint and its resting pose. ¢ is the
es  angular velocity of the joint. This muscle model makes it possible to control the static torque and
ss  stiffness of the joints based on optimized muscle coefficients—a, 3,7, §, and Ae.

g7 4.3.3 CPG network and muscle parameter optimization

ss Lo identify neuromuscular network parameters that could coordinate fast and statically stable lo-
g0 comotion, we optimized the phase differences for each network connection, the intrinsic frequency
so of the oscillators, and five parameters controlling the gains and resting positions of each spring and
s damper muscle (i.e., o, 3,7, 9, and Ap). To simplify the problem for the optimizer, we (i) fixed ThC
w2 flexor-extensor phase differences to 180°, making them perfectly antagonistic, (ii) mirrored the phase
s differences from the right leg oscillators to the left leg oscillators, (iii) mirrored muscle parameters
se  from the right joints to the left joints, and (iv) mirrored phase differences from ThC-ThC flexors
g5 to ThC-ThC extensors. Thus, a total of 63 open parameters were set by optimization: five phases
ss between ThC CPGs (Figure 6, A), 12 phases between intraleg CPGs (ThC-FTi extensor/flexor,
sr  FTi-TiTa extensor/flexor per leg), 45 muscle parameters (five per joint), and one parameter ( v)
ss controlling the intrinsic frequency of the oscillators. We empirically set the lower and upper bounds
wo for the parameters so leg movements would stay stable along the boundaries (Table 6). Upper and
s lower bounds for the resting positions of the joints used in the muscle model were set as the first and
sn  third quartiles of measured locomotor angles. Finally, we optimized the intrinsic frequency of CPGs,
sz denoted by v in Eq. 7 to be between 6 and 10 Hz for the reasons described above.

873 For parameter optimization, we used NSGA-II [67], a multi-objective genetic algorithm imple-
s mented in Python using the jMetalPy library [86]. We defined two objective functions. First, we
e almed to maximize locomotor speed, as quantified by the number of spherical treadmill rotations
ss  (Equation 11) along the Y axis within a specific period of time. Second, we maximized static sta-
gz bility. In small animals like Drosophila, static stability is a better approximation for overall stability
e than dynamic stability [83]. We measured static stability by first identifying a convex hull formed
sro by the legs in stance phase. If there were less than three legs in stance and a convex hull could not
s0  be formed, the algorithm returned -1, indicating static instability. Then, we measured the closest
s1  distance between the fly’s center of mass—dynamically calculated based on the fly’s moving body
sz parts—and the edges of the convex hull. Finally, we obtained the minimum of all measured distances
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ss  at that time step. If the center of mass was outside the convex hull, we reversed the sign of the mini-
ss  mum distance to indicate instability. Because the optimizer works by minimizing objective functions,
ss  we inverted the sign of speed and stability values: the most negative values meant the fastest and
ss Most stable solutions, respectively.

887 Four penalties were added to the objective functions. First, to make sure the model was always
ss  moving, we set a moving lower and upper threshold for the angular rotation of the ball, increasing from
a0 —0.27ad to 1.0rad and from 0 to 7.2rad in one second, respectively. These values were determined
a0 such that the lower moving boundary was slower than the slowest reported walking speed of Drosophila
sn  (10mm/s = 2rad when the ball radius r is 5mm) [65] and the upper moving boundary would exceed
g2 the highest reported walking speed (34 mm/s = 6.8rad) [28]. Second, to avoid high torque and
203 velocities at each joint, we set joint angular velocities to have an upper limit of 250rad/s, a value
sa  measured from real fly experiments. Third, because we do not introduce physical joint limits in
ss the model, we emulated these joint limits by setting a penalty on the difference between the joint
a6 angle range observed during kinematic replay of walking and the joint angles of individual solutions.
sv  We used this penalty to prevent joint angles from generating unrealistic movements (e.g., one full
ws rotation around a DoF). Fourth, because the optimizer can exploit the objective function by simply
s leaving all legs on the ground—the highest possible stability—or can rotate the ball by using as few
a0 as two legs while the remaining legs are constantly on the ground, we introduced a penalty on duty
o1 factors. Specifically, we computed the ratio of stance phase duration to the entire epoch and penalized
o2 solutions whose duty factors for each leg were outside of the range [0.4,0.9], based on [28].

903 The optimization was formulated as follows

min  —10- Ry - 60y +0.1-p, +0.05-pj; +0.1-p,, +100-pg (Distance & penalties) — (11)

min —0.01-s+0.1-p, +0.05-p;j; + 0.1 p,, + 100 - py (Stability & penalties), (12)
904 with the following penalty terms
i—1 . ¢
- 1 if 6, <(+—/—-1.20—0.20 Oy > (——-7.20
pl. = p;l T bl = (o yor by = (7 ) (Moving boundary penalty)
Dy otherwise
(13)
. i1 41 ifw> 250 rad
p, = {p? . Tt ] rad/sec (Angular velocity penalty)
. otherwise
(14)
pé{l + >, 0k — max(joint limit,)  if 65 > max(joint limit,)
ph = pé{l + >, =0k + min(joint limit,) if 6 < min(joint limit,,) (Joint limit penalty)
p;; ! otherwise
(15)
. pirt 1 if Lgence < 0.4 or Lgence > 0.9 for 1 =1,2,..,6
Py = : thout thout (Duty factor penalty),
pzd_1 otherwise
(16)

s where Ry is the ball radius (5 mm), 6 is the angle of the ball in the direction of walking, ;0 is
s the maximum simulation duration, 6 is the angular position of the joint k, t.,,,,.. and t|_ . are the
o7 total times spent in stance and the entire walking epoch duration of the leg [. Every penalty was
os multiplied by its corresponding weight and added to the objective function. Objective functions were
wo evaluated for 2 s (t4ota1), a period that was sufficiently long for the model to generate locomotion.
a0 We ran 60 generations with the weights given in Equation 11 and Equation 12.

o11 To avoid a high computational cost during optimization, we reduced the model’s complexity
o1z by removing collision shapes, like the wings and head, that were not required for locomotion, and
a3 converting joints that are not used in the simulation (see Table 4) from revolute to fixed. This model
ois  was saved as a new SDF file. Thus, we could reduce computational time and memory needed to check
a5 for collisions on unused body segments, and for the position controller to set unused joints to fixed
a6 positions. This simplification increased the speed of the simulation, allowing us to reduce the time
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a7 step to 0.1 ms and to run optimization with larger populations. In the simulation, we used a spherical
ais  treadmill with a mass, radius, and friction coefficient of 54.6 mg, 5 mm, and 1.3, respectively. We
oo additionally increased the friction coefficient of the leg segments from the default value of 0.5 to 1.0.
920 Each optimization generation had a population of 200 individuals. Optimization runs lasted for 60
e generations, a computing time of approximately 20 hours per run on an Intel(R) Core(TM) i9-9900K
o2 CPU at 3.60GHz. Mutations occurred with a probability of 1.0 divided by number of parameters
o3 (63), and a distribution index of 20. We set the cross-over probability to 0.9 and the distribution
o« index to 15 (for more details see [86]).

s 4.3.4 Analysis of optimization results

o After optimization, we selected three individual solutions from the last generation for deeper analysis.
o7 First, the objective functions were normalized with respect to their maximum and minimum values.
o8 Note that the signs of the objective functions were inverted. Then, solutions were selected as follows:

Longest distance traveled (fastest): i = argmin(dy)

Highest stability coefficient (most stable): i = argmin(sy)
Distance-Stability minimum 2-norm (trade-off): 1= argmin(, [d2 + 83),

a0 where dy and s, are the vectors containing the distance and stability values, respectively, from all
o0 individuals in a given generation g.

We plotted CPG activity patterns (as represented by the couple oscillators’ outputs), joint torques,
joint angles, GRFs, and ball rotations from this final generation of solutions. GRF's were used to
generate gait diagrams as previously described. Ball rotations were used to reconstruct the mod-
els” walking paths. The distances travelled along the longitudinal (z) and transverse (y) axes were
calculated from the angular displacement of the ball according to the following formula:

Azr = Abyr Ay = Ao;r,

o1 where Af; and A#; denote the angular displacement around the transverse and longitudinal axes,
o2 respectively, and r is the radius of the ball.
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Table 1: Model body parts and degrees-of-freedom between each segment and its parent.

Degrees of
Body part Segment Parent froedom

A1A2 Thorax 1
A3 A1A2 1
Abdomen | A4 A3 1
A5 A4 1
A6 A5 1
Head capsule Thorax 3
Eyes (x2) 0
Head Antennae (x2) Head 1
Rostrum 1
Haustellum Rostrum 1
Coxa (x6) Thorax 3
Trochanter/Femur (x6) | Coxa 2
Tibia (x6) Femur 1
Legs Tarsusl (x6) Tibia 1
i Tarsus2 (x6) Tarsusl 1
Tarsus3 (x6) Tarsus2 1
Tarsus4 (x6) Tarsus3 1
Tarsus5-Claw (x6) Tarsus4 1
Halteres (x2) 3
Thorax Wings (x2) Thorax 3
Thorax - 0

Table 2: Matrix of p-values from pairwise comparisons of position errors after calculating forward
kinematics for walking. Numbers in bold (except in the case of identity) indicate that the p-value >

0.001 (i.e., no statistical difference).

B IK Base & Base & Base & Base & Base & Base &
ase CTr roll | CTr yaw | FTi roll | FTi yaw | TiTa roll | TiTa yaw

Base 1.00 5.420-13 0.00 7.08c-184 | 2.280-133 | 4.530-50 | 9.95e-01 | 1.53¢-197
K 5.420-13 1.00 0.00 1.480-285 | 4.370-222 | 6.820-110 | 5.420-13 | 8.620-302
Base & 0.00 0.00 1.00 5.49¢-138 | 2.96¢-189 0.00 0.00 1.57e-126
CTr roll
Base & |/ 00 184 | 4.48¢.285 | 5.49¢-138 1.00 92.52¢-05 | 5.13¢-45 | 7.83¢-184 | 5.38e-01
CTr yaw
Base & = | ) o0 133 | 4.37¢.222 | 2.96¢-189 | 2.520-05 1.00 8.33¢-22 | 2.44e-133 | 1.08¢-07
FTi roll
Base & 4.53¢-50 | 6.82e-110 0.00 5.13e-45 | 8.33e-22 1.00 4.53¢-50 | 6.05¢-52
FTi yaw
Base & | g g5 01 | 542013 0.0 7.83¢-184 | 2.44¢-133 | 4.53¢-50 1.00 1.71e-197
TiTa roll
Base & 1 oo 107 | 8.630:302 | 1.57¢.126 | 5.380-01 | 1.08¢07 | 6.05e.52 | 1.71e-197 1.00
TiTa yaw
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Table 3: Matrix of p-values matrix from pairwise comparisons of position errors after calculating
forward kinematics for grooming. Numbers in bold (except in the case of identity) indicate that the
p-value > 0.001 (i.e., no statistical difference).

B IK Base & Base & Base & Base & Base & Base &
ase CTr roll | CTr yaw | FTiroll | FTi yaw | TiTa roll | TiTa yaw

Base 1.00 | 4340128 | 0.00 7570-149 | 2.590-131 | 4.720-32 1.00 2.470-192
K 4346128 | 1.00 0.00 2.026-01 1.00 4300-34 | 3.270-126 | 1.116-07
Base &
P 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
Base & |+ o7 149 | 2.02e-01 0.00 1.00 3.04e-01 | 2.56e-45 | 8.05¢-147 | 1.08e-03
CTr yaw
Base & 1 ) 50,131 | 1.00 0.00 3.04e-01 1.00 8.96e-36 | 2.08¢-129 | 5.70e-07
FTi roll
Base & 4.72e-32 | 4.30e-34 0.00 2.56e-45 | 8.96e-36 1.00 3.84e-31 | 4.86e-71
FTi yaw
Base & 1.00 | 3.27¢-126 | 0.00 8.05¢-147 | 2.08¢-129 | 3.84¢-31 1.00 4.85¢-190
TiTa roll
Base & 1) 170102 | 1.11e-07 0.00 1.08e-03 | 5.70e-07 | 4.86e-71 | 4.85¢-190 1.00
TiTa yaw

Table 4: Fixed angles for body joints during kinematic replay and optimization.

. Fixed angle . Fixed angle
Body part Joint (deg) Body part Joint (deg)
AT1A2 0 Left haltere roll 0
A3 -15 Left haltere pitch 0
Abdomen A4 -15 Left haltere yaw 0
A5 -15 Right haltere roll 0
A6 -15 Right haltere pitch 0
Head capéule r(.)ll 0 Thorax Right haltere yaw 0
Head capsule pitch 10 Left wing roll 90
Head capsule yaw 0 Left wing pitch 0
Head Left antenna 35 Left wing yaw -17
Right antenna -35 Right wing roll -90
Rostrum 90 Right wing pitch 0
Haustellum -60 Right wing yaw 17

Table 5: Fixed angles for leg joints during optimization (deg).

Body Part | Side | ThC yaw | ThC pitch | ThC roll | CTr pitch | CTr roll FTi TiTa
Front Left 0 actuated 10 actuated 0 actuated -39
Right 0 actuated -10 actuated 0 actuated | -39
Middle Left 7.45 -5 actuated actuated 0 actuated | -54
Right -7.45 -5 actuated actuated 0 actuated | -5H4
Hind Left 3.45 6.2 actuated actuated 0 actuated -45
Right -3.45 6.2 actuated actuated 0 actuated | -45

Table 6: Lower and upper limits for the muscle parameters during optimization.

Agp @ Ié] ~ )
Body part Joint [Lower limit, [Lower limit, [Lower limit, | [Lower limit, | [Lower limit,
Upper limit] Upper limit] Upper limit] | Upper limit] | Upper limit]
ThC pitch [0.0,0.47] 1x10710,5x 1077
Front leg | CTr pitch [-2.0, —1.68] 1x10719,1 x 1077
FTi 1.31,2.05 1x 107101 x 1077
. ThC pitch | [2.18,2.01 XI5 0| oo 5 x 10-19
Middle leg | CTr pitch | [-2.14,-2.01] | [1 x 107101 x 107° 1 % 1079]’ (1.0,10.0] 1 x 10711]’
FTi 1.96,2.22 1x10719,1 x 1077
TRC pitch | [2.69,2.53 1x10° 5107
Hind leg CTr pitch | [-2.14,-1.55] | [1 x 1071V, 1 x 1077
FTi [1.43,2.26] 1x 107101 x 1077
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% 6 Supplementary Figures

A Front legs
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Leg segment length (mm)
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Coxa Femur Tibia Tarsus Coxa Femur Tibia Tarsus Coxa Femur Tibia Tarsus

Front Leg Middle Leg Hind Leg

935

036 Figure S1: Leg segment lengths for real female Drosophila melanogaster and NeuroMechFly. (A) Legs
937 were dissected, straightened, and fixed onto a glass slide for measurements. Scale bar is 0.5mm. (B) The lengths of leg
938 segments from 1-3 dpe animals (pink) and NeuroMechFly (red) are shown. Violin plots indicate median, upper, and

930 lower quartiles.
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Figure S2: The position error for every joint in the distal leg during walking as a function of kinematic
chain configuration. Body-length normalized mean absolute errors (MAE) comparing measured 3D poses and
angle-derived joint positions during walking. Errors are compared among different DoF configurations for (A) Coxa-
Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus joints, and (D) Claw positions. For each condition, n =

2400 samples were computed across all six legs from 4s of 100 Hz video data. Data for each leg are color-coded. ‘R’ and

‘L’ indicate right and left legs, respectively. ‘F’, ‘M’; and ‘H’ indicate front, middle, and hind legs, respectively. Violin
plots indicate median, upper, and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to

based DoF's are highlighted in light gray.
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951

o2 Figure S3: The position error for every joint in the distal leg during grooming as a function of kinematic
953 chain configuration. Body-length normalized mean absolute errors (MAE) comparing measured 3D poses and angle-
954 derived joint positions during grooming. Errors are compared among different DoF configurations for (A) Coxa-
955 Trochanter joints, (B) Femur-Tibia joints, (C) Tibia-Tarsus joints, and (D) Claw positions. For each condition, n =
o6 2400 samples were computed across all six legs from 4s of 100 Hz video data. Data for each leg are color-coded. ‘R’ and
57 ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’; and ‘H’ indicate front, middle, and hind legs, respectively. Violin
958 plots indicate median, upper, and lower quartiles (dashed lines). Results from adding a coxa-trochanter roll DoF to

90 based DoFs are highlighted in light gray.
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962 Figure S4: Mean squared error between tracked and simulated joint positions and velocities as a
93 function of position and velocity gain values. MSE of (A) joint angles and (B) joint velocities as a function of
964 derivative (K4) and positional gain (K}). Selected K, and K, values are indicated in blue. White areas indicate K,

96 and Ky pairs rendering the simulation nonfunctional.
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s Figure S5: Sensitivity of estimated joint torques and contact forces to proportional and derivative gains.
960 (A) Estimated torques during forward walking as a function of proportional gain (K}). The derivative gain (K, ) is
o0  fixed at 0.9. Shown are measurements of ThC pitch torques for the right legs. Measurements for the contralateral
911 legs were nearly symmetrically identical and are not shown. (B) Contact force measurements of the right legs during
o2 forward walking as a function of K} values. Results from the selected K, and K, values are shown in red. (C)
o3 Estimated torques during forward walking as a function of derivative gain (Kg4). The proportional gain (Kp) is fixed
o74 at 0.4. Shown are measurements of ThC pitch torques for the right legs. Measurements for the contralateral legs were
975 nearly symmetrically identical and are not shown. (D) Contact force measurements of the right legs during forward

ors  walking as a function of K4. Results from the selected K) and K, values are shown in red.
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A Thcroll=

ThC yaw/
CTr roll=—

978

oo Figure S6: Leg joint degrees-of-freedom and their rotational axes. Each leg is composed of 11 hinge joints.

<9

980 Joints with more than one DoF were modeled as a union of multiple hinge joints. The left foreleg observed from (A)

92 front and (B) side views. The global coordinate system’s x, y, and z axes are red, green, and blue, respectively.

@

983

oe  Figure S7: The ‘zero pose’ of NeuroMechFly. Each body segment (Table 1) is aggregated using hinge joints.

-3

985 Rotational axes of joints are shown. (A) Zero pose from (A) front and (B) side views. The global coordinate system’s

98 X, y, and z axes are shown (red, green, and blue, respectively).
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a0 Figure S8: Sensitivity of simulated spherical treadmill rotation prediction accuracy during tethered
90 walking to ERP and CFM constraint parameters. Spherical treadmill rotational velocities resulting from
91 Kinematic Replay of walking depend on simulation constraint parameters. Shown are Spearman correlation coefficients
92 computed between measured and estimated treadmill rotational velocities for (A) forward, (B) lateral, and (C) yaw
993 axes when varying the simulation’s error reduction parameter (ERP), and the constraint force mixing (CFM). (D)
994 The best combination of ERP and CFM—0.1 and 3, respectively (black outline)—was selected through a normalized

996 weighted sum (NWS) of the correlation coefficients for each axis.
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98 Figure S9: Comparing real to simulated spherical treadmill rotational velocities during tethered walk-
999 ing. Spherical treadmill rotations depend on a tethered fly’s (A) inclination (®, green), (B) lateral, and (C) longi-
1000 tudinal positions with respect to the ball (green outlines). These positions (orange dots) were automatically detected
w01 and recreated in the simulation. Rotational velocities of the spherical treadmill generated by three real flies (blue) were
102 compared with those generated by NeuroMechFly (orange) for (D) forward, (E) lateral, and (F) yaw axes. Spearman

1008 correlation coefficients (p) comparing blue and orange traces are indicated.
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w6 Figure S10: Comparing real and simulation predictions for gait diagrams during tethered walking. Gait
w07 diagrams showing manually-annotated stance phases for three real flies (A-C, gold) as well as those obtained from
1008 estimated ground reaction forces in NeuroMechFly (blue). Percentage of overlap in real and simulated stance phases
1000 (green) is quantified. ‘R’ and ‘L’ indicate right and left legs, respectively. ‘F’, ‘M’, and ‘H’ indicate front, middle, and
w10 hind legs, respectively.
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1012

w3 Figure S11: The impact of the morphological realism on estimates of leg-leg and leg-antenna contact
1014 during grooming. Collision diagrams from kinematic replay of foreleg/antennal grooming when using either (A)
1015 NeuroMechFly’s morphologically detailed legs and antennae, or after replacing its (B) forelegs, or (C) forelegs and

1016 antennae with simple cylinders, as in a conventional stick skeletal model.
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w9 Figure S12: Comparison of walking paths and velocities for real tethered walking versus kinematic
1020 replay in a tethered or untethered model. Leg kinematics from a tethered walking experiment (blue) were used
1021 for kinematic replay in NeuroMechFly either tethered on a simulated spherical treadmill (orange) or freely walking on
1022 flat ground (green). Shown are resulting (A) integrated walking paths, as well as associated (B) forward, (C) lateral,
w23 and (D) yaw velocities.
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1025

w6 Figure S13: Measured joint angles during real forward walking. Joint angles for the (A) left and (B) right
1027 legs measured from a real fly during forward walking. Only the three DoFs with the highest amplitudes (solid lines)
1028 were controlled during optimization. These were: for the front legs: ThC pitch, CTr pitch, and FTi pitch; for the
1020 middle and hind legs: ThC roll, CTr pitch, and FTi pitch DoFs. The remaining four DoFs (dashed lines) for each leg

1030 did not exhibit pronounced angular changes and were fixed to their mean values during optimization.
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033 Figure S14: Objectives, penalties, and individual solutions over generations when optimizing for fast
1034 and statically stable tethered walking. (A) Pareto front approximations for six optimization generations. Later
1035 generations are more negative because the optimizer aims to minimize the distance and stability objective functions,
1036  whose signs are inverted. Four individual solutions dominated by the pareto optimal solutions were selected for more
1037 in-depth analysis (10th (purple), 20th (blue), 30th (green), and 50th (dark red); all are outlined in black). (B) Gait
1038 diagrams from selected solutions. Stance (black) and swing (white) phases were calculated by reading-out tarsal ground
1039 contacts for each leg. Indicated are the velocities of each solution as calculated by averaging the spherical treadmill
140 forward velocity. (C) Progression of weighted objective values (shown without sign inversion) and penalties over the
141 course of 60 generations. Objectives (distance and stability coefficients) increase across generations, while penalties
1042 decrease or converge to, or near, zero. The objective distance (mm) is the distance traveled in 2 s. The penalty duty

143 factor is the number of legs violating the duty factor constraint. The remaining penalties are shown in Arbitrary Units.
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ws 7 Supplementary Videos

w6 Video 1: Constructing a data-driven biomechanical model of adult Drosophila. An adult
e female fly is encased in resin for x-ray microtomography. The resulting x-ray microtomography
s data reveals cuticle, muscles, nervous tissues, and internal organs. These data are thresholded to
w0 separate the foreground from background. Then the exoskeleton is voxelized into a 3-dimensional
w0 polygon mesh. Articulated body segments are separated from one another and then reassembled into
ws1 & natural pose. Bones are added and rigged to permit actuation. Finally, textures are added to the
w2 model for visualization purposes.

1053 https://www.dropbox.com/s/pkbh4o81bdomx1x/Videol.mov?d1=0

wss  Video 2: Visualization of possible additional leg degrees-of-freedom. NeuroMechFly’s left-
wss  middle leg is sequentially actuated along DoFs that are later analyzed to test their requirement for
s accurate replay of real fly leg kinematics. The articulated joint (e.g., ‘CTr’) and type of movement
w7 (‘roll’) are indicated.

wss  https://www.dropbox.com/s/8uhi9cyzhdntyd4/Video2.mov?d1l=0

e Video 3: The effect of additional degrees-of-freedom on the accuracy of replaying forward
wo  walking. Measured 3D poses (solid lines) and forward kinematic replay (dashed lines) for forward
st walking. Forward kinematics are determined either (top-left) using no additional degrees-of-freedom
e (Base DoF, dot product), (top-middle) instead using inverse kinematics to optimize joint angles and
063 minimize error with only base degrees-of-freedom (Base DoF, inverse kinematics), or (top-right and
s bottom row) by adding a single new DoF (BaseDoF & ‘joint’ ‘DoF’). Legs are color-coded.

w065 https://www.dropbox.com/s/3f23rdpvz70s640/Video3.mov?d1l=0

ws  Video 4: The effect of additional degrees-of-freedom on the accuracy of replaying fore-
w7 leg/antennal grooming. Measured 3D poses (solid lines) and forward kinematic replay (dashed
s lines) for foreleg/antennal grooming. Forward kinematics are determined either (top-left) using no
e additional degrees-of-freedom (Base DoF, dot product), (top-middle) instead using inverse kine-
oo matics to optimize joint angles and minimize error with only base degrees-of-freedom (Base DoF,
n  inverse kinematics), or (top-right and bottom row) by adding a single new DoF (BaseDoF &
w2 ‘joint’ ‘DoF’). Legs are color-coded.

w3 https://www.dropbox.com/s/zv860h9ic2r81i2/Video4 .mov?d1l=0

s Video 5: Kinematic replay of Drosophila forward walking using NeuroMechFly. (top-
ws  left, ‘Raw data’) A tethered adult fly is shown walking on a spherical treadmill. One of six
s synchronized camera views is shown. Data are replayed at 0.2x real time. (bottom-left, ‘2D
w7 tracking’) 2D poses (filled circles) and connecting ‘bones’ (lines) are superimposed for the proximal
ws  three legs. (bottom-right, ‘3D reconstruction’) These six 2D poses are triangulated to obtain
we 3D poses. Overlaid are triangulated 3D poses (solid lines) and 3D poses obtained by solving forward
e kinematics from joint angles (dashed lines). (top-right, ‘Kinematic replay’) These 3D joint angles
w1 actuate NeuroMechFly leg movements while it walks on a simulated spherical treadmill. Tarsal
02 contacts with the ground are indicated (green). Estimated ground reaction force vectors for the
s proximal three legs are superimposed on the original video data (top-left).

w84 https://www.dropbox.com/s/iieuwgmx8bazzmd/Video5.mov?d1l=0

s Video 6: Kinematic replay of Drosophila foreleg/antennal grooming using NeuroMech-
wss  Fly. (top-left, ‘Raw data’) A tethered adult fly is shown grooming on a spherical treadmill. One
g7 of six synchronized camera views is shown. Data are replayed at 0.2x real time. (bottom-left, ‘2D
s tracking’) 2D poses (filled circles) and connecting ‘bones’ (lines) are superimposed for the proximal
e three legs. (bottom-right, ‘3D reconstruction’) These six 2D poses are triangulated to obtain
w00 3D poses. Overlaid are triangulated 3D poses (solid lines) and 3D poses obtained by solving forward
w0 kinematics from joint angles (dashed lines). (top-right, ‘Kinematic replay’) These joint angles
w2 actuate NeuroMechFly leg movements while it grooms on a simulated spherical treadmill. Leg seg-
103 ments and antennal collisions are indicated (green). Estimated collision force vectors for the front
w0 legs and antennae are subsequently superimposed on the original video data (top-left).

w005 https://www.dropbox.com/s/m3j6wfevzenhfkn/Video6.mov?d1l=0
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we Video 7: The influence of leg and antenna morphological detail on collision predic-
v tions. (top-left, ‘Raw data’) Real fly grooming as recorded from the front camera. (top-right,
ws  ‘NeuroMechFly’) NeuroMechFly performing kinematic replay of grooming. (bottom-left, ‘Stick
1w model legs’) NeuroMechFly with stick legs but detailed antennae. (bottom-right, ‘Stick model
uo legs and antennae’) NeuroMechFly with stick legs and stick antennae.

uo  https://www.dropbox.com/s/7wpnf2a8s4pzi65/Video7 .mov?d1l=0

ne  Video 8: Kinematic replay of tethered Drosophila forward walking using NeuroMechFly
ues  on flat terrain without body support. (Right) Pose estimates obtained from a real tethered fly
noa  walking on a spherical treadmill are replayed in NeuroMechFly as it walks untethered on flat terrain
ues  without body support. (Left) Integrated paths are shown for tethered (orange) and flat ground
uos  (green) scenarios.

uor  https://www.dropbox.com/s/e7qvz4tmlexhefl/Video8.mov?d1=0

mis  Video 9: Forward walking across optimization generations. Forward walking for four solu-
e tions shown across optimization generations 15, 30, 45 and 60. Tarsal contacts with the ground are
uwo  indicated (green). Videos are replayed at 0.1x real time. Solutions shown are: (top-left) a random
un  individual, (top-right) the fastest individual (i.e., with the longest distance traveled), (bottom-left)
2 the most stable individual, and (bottom-right) the best trade-off achieving both high speed and static
m3  stability.

ma  https://www.dropbox.com/s/lizgd3ss2yftlxb/Video9.mov?d1l=0

ms Video 10: Replaying real tethered walking kinematics on flat terrain and applying ex-
me ternal perturbations. Pose estimates obtained from a real tethered fly walking on a spherical
wr  treadmill are replayed in NeuroMechFly as it walks untethered on flat terrain without body support.
wms  Simulated spheres are projected at the model to illustrate perturbations and the possibility of using
me more complex physical environments in PyBullet.

w0 https://www.dropbox.com/s/aebzrejhddwduun/Video10.mov?d1=0

= 8 Code and data availability

uz Data are available at:

s https://doi.org/10.7910/DVN/Y3TAEC

1124

us  Code, and documentation are available at:

us  https://github.com/NeLy-EPFL/NeuroMechFly
uz  https://nely-epfl.github.io/NeuroMechFly
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