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Abstract

Polygenic risk scores derived from genotype data (PRS) and family history of disease (FH) both
provide valuable information for predicting disease risk, enhancing prospects for clinical utility.
PRS perform poorly when applied to diverse populations, but FH does not suffer this limitation.
Here, we explore methods for combining both types of information (PRS-FH). We analyzed 10
complex diseases from the UK Biobank for which family history (parental and sibling history)
was available for most target samples. PRS were trained using all British individuals (N=409K),
and target samples consisted of unrelated non-British Europeans (N=42K), South Asians
(N=7K), or Africans (N=7K). We evaluated PRS, FH, and PRS-FH using liability-scale R?,
focusing on three well-powered diseases (type 2 diabetes, hypertension, depression) with R? >
0.05 for PRS and/or FH in each target population. Averaging across these three diseases, PRS
attained average prediction R? of 5.8%, 4.0%, and 0.53% in non-British Europeans, South
Asians, and Africans, confirming poor cross-population transferability. In contrast, PRS-FH
attained average prediction R? of 13%, 12%, and 10%, respectively, representing a large
improvement in Europeans and an extremely large improvement in Africans; for each disease
and each target population, the improvement was highly statistically significant. PRS-FH
methods based on a logistic model and a liability threshold model performed similarly when
covariates were not included in predictions (consistent with simulations), but the logistic model
outperformed the liability threshold model when covariates were included. In conclusion,
including family history greatly improves the accuracy of polygenic risk scores, particularly in
diverse populations.
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Introduction

Polygenic risk scores derived from genetic data (PRS) can provide valuable information for
predicting disease risk, enhancing prospects for clinical utility!?. However, a well-recognized
limitation of PRS methods is their poor cross-population transferability®~’. Family history of
disease (FH) can provide complementary information about disease risk®!!, consistent with the
rich history of leveraging data from ungenotyped but phenotyped relatives in analyses of
quantitative traits in livestock!!"!4, In particular, FH has the potential to alleviate the poor cross-
population transferability suffered by PRS. Combining PRS and FH information is an appealing
paradigm for predicting disease risk, but it is currently unclear how to optimally combine these
two sources of information. Previous studies that combined PRS and FH information restricted
the PRS component to genome-wide significant loci®!>!6, instead of leveraging genome-wide
polygenic signals; did not differentially incorporate family history for each type of relative®!3-1%,
to allow for differential environmental effects® (in particular, ref. ° relies on external narrow-
sense heritability estimates); and did not model contributions of PRS and FH that vary as a
function of the target population®!>-!7, to optimize cross-population transferability. In addition,
ref. ° did not incorporate covariates; is not applicable to UK Biobank data, in which sibling
history is reported as a binary variable (at least one sibling has the disease), rather than the
number of affected siblings; and relies on external data to estimate model parameters. Other
studies only considered PRS and FH information separately!®2!,

Here, we develop a framework for predicting an individual’s risk of disease conditional on both
their PRS and their family history of disease (PRS-FH), using either a logistic model*? or a
liability threshold model**. We show via simulations and application to complex diseases from
the UK Biobank?* that incorporating family history using PRS-FH greatly improves the accuracy
of polygenic risk scores, with a particularly large improvement in diverse populations. The
logistic model outperforms the liability threshold model in analyses with covariates, and we thus
recommend the use of the logistic model.
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Results
Overview of methods

We considered two PRS-FH methods based on a logistic model (PRS-FHiog) and a
liability threshold model (PRS-FHiiab), respectively (see Methods). Both methods require a large
training sample to estimate SNP effect sizes for the PRS (in this study, we use European training
data), and a small additional training sample (e.g. Ner>500; see Methods) from the target
population to fit PRS-FH model parameters, which are specific to the target population. Both
PRS-FHioe and PRS-FHiia, allow for sibling history to be reported as the presence or absence of
at least one affected sibling (together with the total number of siblings), as in the UK Biobank.
Both PRS-FH methods can be extended to incorporate covariates. We have publicly released
open-source software implementing both methods as well as model parameters (specific to each
target population) for both methods (see URLS).

The PRS-FHi,; method relies on a logistic model and consists of 3 main steps (Figure 1):
(1) compute PRS in all target population individuals by applying standard methods to training
data; (2) use the training individuals from the target population to estimate logistic model
coefficients, and (3) for each target individual, compute their predicted risk of disease,
conditional on their PRS and the disease status of their first-degree relatives. In step 1, we apply
BOLT-LMM?%-%¢ to training data to jointly fit SNP effect sizes under a non-infinitesimal model,
and compute PRS in target population individuals using these SNP effect sizes. In step 2, we
estimate the contributions of the PRS and the disease status of first-degree relatives (mother,
father, siblings; we allow different coefficients for each type of relative, to allow for differential
environmental effects?®) to the log-odds of disease, making a strong assumption that the log-odds
of disease depends linearly on the PRS and disease status of first-degree relatives (see
Discussion). These parameters are specific to the target population, requiring an extra layer of
training data from the target population; in this study, we use 10-fold cross-validation in the
target population. In step 3, we predict the risk of disease for each target individual as the log-
odds of disease based on the PRS and disease status of first-degree relatives.

The PRS-FHiia, method relies on a liability threshold model®* and consists of 3 main steps
(Figure 1): (1) compute PRS in all target population individuals by applying standard methods to
training data; (2) use the training individuals from the target population to estimate liability
threshold model parameters, and (3) for each target individual, compute their predicted risk of
disease, conditional on their PRS and the disease status of their first-degree relatives. In step 1,
we use BOLT-LMM?>26 (see above). In step 2, we estimate the variance/covariance matrix for a
target individual’s total liability, their PRS, and the total liabilities of their first-degree relatives
(we allow different covariances for each type of relative, analogous to above). As above, these
target population-specific parameters require an extra layer of training data from the target
population. In step 3, we predict the risk of disease for each target individual as the posterior
probability of disease based on the PRS and disease status of first-degree relatives. The
prevalence of disease (determined by the liability threshold) among target individuals may vary
as a function of number of siblings, consistent with empirical data. The PRS-FHj;ap method is
conceptually related to the method of ref. °, but key differences include the incorporation of
genome-wide polygenic risk scores, the incorporation of different covariances for each type of
relative, the way in which model parameters are estimated, the incorporation of target
population-specific model parameters, and the way in which covariates are incorporated.

We compare PRS-FHio; and PRS-FHiiap to PRS alone as well as a predictor based on
family history (FH) alone. The PRS method (and the PRS used within both PRS-FH methods)
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can employ any PRS algorithm; in this study, we use BOLT-LMM, which has been shown to
attain high polygenic prediction accuracy in the UK Biobank?>2°, The FH predictor can be
constructed using a logistic model (FHiog) or a liability threshold model (FHiiab). Under a logistic
model, the disease status of relatives linearly impacts the log-odds of disease for an individual.
Under a liability threshold model, the posterior risk of disease is computed conditional on family
history alone. We evaluate all methods using liability-scale R? (ref. 27). We compute the standard
error of liability-scale R?, and associated p-values, via a jackknife across individuals. Further
details of all methods are provided in the Methods section.

Simulations

We simulated genotypes at 100,000 unlinked SNPs for 400K unrelated PRS training samples and
40K unrelated target samples from the same population. We simulated case-control status for
the PRS training samples, and case-control status plus family history (parental history for both
parents) for the target samples (we did not include sibling history in these simulations); we
simulated genotypes for both parents, used these to simulate genotypes for target samples
(offspring), and simulated case-control status for both parents and target samples using a liability
threshold model. PRS training samples and target samples were not ascertained for case-control
status. Our default parameter settings involved 10,000 causal SNPs, total liability-scale
heritability (h*) equal to 50%, liability-scale SNP-heritability (h3) equal to 25%, and disease
prevalence (K) equal to 1% (very low prevalence), 5% (low prevalence) or 25% (high
prevalence) (implying liability threshold (7) equal to 2.33, 1.64, or 0.67 and total observed-scale
heritability equal to 4%, 11% or 27%, respectively), with the same prevalence for parents and
target samples; other parameter settings were also explored. Further details of the simulation
framework are provided in the Methods section and Supplementary Table 1. We note that
simulations using real LD patterns are essential for methods impacted by LD between SNPs, and
that LD can impact the performance of PRS methods!; however, PRS-FHiog and PRS-FHjiap are
not otherwise impacted by LD between SNPs, as no genotype data is used except for computing
the PRS. We further note that simulations with LD using a subset of individuals from UK
Biobank would not be feasible, as simulations of family history require genotypes of both target
samples and relatives (in order to simulate the case-control status of both target samples and
relatives), but genotypes of relatives are not available for (nearly all) UK Biobank samples.

We assessed the prediction accuracy of PRS, FHiog, FHiiab, PRS-FHiog, and PRS-FHiiap by
computing liability-scale R? (ref. 2’). Results are reported in Figure 2 and Supplementary Table 2.
PRS attained much higher accuracy at higher prevalence, as expected due to higher observed-
scale SNP-heritability (as PRS training samples were not ascertained for case-control status).
FHioe and FHiiap performed similarly, and also attained higher accuracy at higher prevalence; at
lower prevalence, most individuals have no affected parents, allowing little discrimination of risk
based on family history. PRS and FH methods (FHioz and FHiian) performed similarly at low
(5%) prevalence, but PRS outperformed FH at high (25%) prevalence—opposite to the results
reported in ref. 1; this difference can be explained by the fact that we analyzed unascertained
case-control data.

PRS-FHiog and PRS-FHiiap performed similarly, and substantially outperformed both PRS and
FH methods at all prevalence values. Given that PRS-FHii., makes assumptions that match the
generative model used in these simulations, the strong performance of PRS-FHio, is supportive
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of the flexibility of the logistic model, even though it imposes a strong linearity assumption (on
the log-odds scale). Differences in prediction R? between PRS-FHiqg (resp. PRS-FHjian) vs. PRS
were smaller than the prediction R? achieved by FHiog (resp. FHiian), due to positive correlations
between PRS and FH predictions (average correlation = 0.03, 0.08, and 0.18 at very low, low,
and high prevalence, respectively). Due to the poor performance (liability-scale R* < 0.05) of all
methods at very low prevalence, we restricted all further analyses to low or high prevalence.

We performed five secondary analyses. First, we assessed the calibration of each method (PRS,
FHiog, FHiiab, PRS-FHiog, and PRS-FHiian) by regressing observed disease status on the predictor
(a slope of 1 implies correct calibration?®). All methods were well-calibrated in both the low and
high prevalence scenarios (Supplementary Table 3). Second, we increased the parental
prevalence to twice the offspring prevalence. In these simulations, the predictive accuracy for all
methods that incorporate family history (FHiog, FHiiab, PRS-FHiog, and PRS-FHjiab) increased
(Supplementary Table 4). Third, we introduced environmental correlation, considering two
scenarios in which the offspring had either the same or different environmental correlations with
the mother and father. In both scenarios, the predictive accuracy for methods that incorporate
family history (FHiog, FHiiab, PRS-FHiog, and PRS-FHiiap) increased (Supplementary Table 5).
Fourth, we decreased or increased the heritability. Prediction accuracies increased with
increasing heritability, but PRS-FH attained similar improvements (Supplementary Table 6).
Fifth, we decreased or increased the polygenicity (number of causal SNPs) while keeping
heritability constant. Prediction accuracies decreased with increasing polygenicity for methods
incorporating a PRS predictor, but again PRS-FH attained similar improvements (Supplementary
Table 7).

We conclude that, in these simulations, incorporating family history of disease (PRS-FHiog and
PRS-FHiiap) greatly increases prediction accuracy as compared to polygenic risk scores alone
(PRS). We further conclude that PRS-FHioe and PRS-FHiiay generally perform similarly in these
simulations. We note that the generative model in all of our simulations was the same as the
liability threshold model that FHiia and PRS-FHiiab use for prediction, and thus these simulations
should be viewed as a best-case scenario for FHiiab and PRS-FHiiab.

Analysis of complex diseases from the UK Biobank

We analyzed data for 10 complex diseases from the UK Biobank?*, consisting of genotype data,
case-control status, and family history information for parents and siblings (Table 1). PRS were
trained using all British individuals (N=409K), applying BOLT-LMM to autosomal genotyped
SNPs with missingness <10% and minor allele frequency (MAF) >0.1% (672,288 SNPs). Target
samples consisted of unrelated non-British Europeans (N=42K), South Asians (N=7K), or
Africans (N=7K); target samples were unrelated to training samples and to each other (see
Methods). Our primary focus was on three well-powered diseases (type 2 diabetes, depression,
and hypertension) with (liability-scale) prediction R?> > 0.05 for PRS and/or FH methods in each
target population; two of these diseases (type 2 diabetes, hypertension) have higher prevalence in
South Asians and Africans (Table 1). We report averages across the three well-powered diseases.
We also report results for each of the 10 diseases, defined as the set of diseases in the UK
Biobank for which (i) family history (parental and sibling history) was available for most target
samples and (ii) prediction R? was statistically significant (after Bonferroni correction) for PRS
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and/or FH methods in the largest target population (non-British Europeans; Supplementary Table
8).

We assessed the prediction accuracy of PRS, FHiog, FHiiab, PRS-FHioe and PRS-FHjiab. Results
are reported in Figure 3a and Supplementary Table 9. Across the three well-powered diseases,
PRS attained average prediction R? of 5.8%, 4.0%, and 0.53% in non-British Europeans, South
Asians, and Africans, confirming poor cross-population transferability*~’. In contrast, FHiog
attained similar prediction R? across populations: 8.0%, 8.6% and 9.6%, with similar results for
FHiiab. Notably, PRS-FHio, attained average prediction R? of 13%, 12%, and 10%, with similar
results for PRS-FHiian. Thus, PRS-FHioe and PRS-FHiiap attained a large relative improvement vs.
PRS in Europeans (consistent with simulations) and an extremely large relative improvement vs.
PRS in Africans. For each disease and each target population, the difference between PRS-FHio,
(or PRS-FHiiab) and PRS was highly statistically significant (p < 2 x 10%). Differences in
prediction R? between PRS-FHiog (or PRS-FHiiav) and PRS were generally slightly smaller than
the prediction R? attained by FH, due to slight correlations between PRS and FH predictions
(average = 0.07 across the three well-powered diseases and 0.05 across all 10 diseases;
Supplementary Figure 1, Supplementary Table 10). Parameters estimated by PRS-FHio, and
PRS-FHjiab are reported in Supplementary Table 11. Across the three well-powered diseases,
sibling history was assigned higher weight than parental history regardless of target population
(likely due to differential shared environmental effects®®), whereas the weight assigned to PRS
depended on the target population.

More broadly, PRS-FHio (and PRS-FHiiav) consistently attained higher prediction R? than PRS
across all 10 diseases (Supplementary Table 9). The prediction accuracy of PRS increased as a
function of observed-scale SNP-heritability (which is partly determined by prevalence)
(Supplementary Figure 2), and the prediction accuracy of FH increased as a function of both the
covariance between liabilities of target samples and first-degree relatives (which is largely
determined by total narrow-sense heritability) and the prevalence in first-degree relatives
(Supplementary Figure 2, Supplementary Tables 4 and 6). The correlations between PRS and
FH predictions were low for all diseases (—0.02 to 0.13), but increased as a function of
prevalence and SNP-heritability (Supplementary Figure 1, Supplementary Table 10).

We performed eight secondary analyses. First, we assessed the calibration of each method. We
determined that PRS-FHi, attained better calibration than PRS-FHiiap (average regression slope
0f 0.93 vs. 0.60 across 3 well-powered diseases; Supplementary Table 12). Second, we decreased
the number of training samples from the target population used to fit PRS-FH model parameters
below its default level (which is based on 10-fold cross-validation; see Overview of methods).
For both PRS-FHi,z and PRS-FHiiab, the number of training samples from the target population
had little impact on predictive accuracy for values of Ner>500 (Supplementary Figure 3). Third,
we compared the performance of both FH and PRS-FH methods when incorporating parental
history only vs. both parental and sibling history. Incorporating both parental and sibling history
attained moderately higher predictive accuracy (Supplementary Table 13). Fourth, we assessed
the performance of a simplified logistic regression-based method that used a single binary
independent variable for overall (parental and sibling) family history. We determined that PRS-
FHiog attained significantly higher prediction accuracy than this method (Supplementary Table
14). Fifth, we assessed the potential benefit to FHiog and PRS-FHiog of including in the logistic
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model an interaction term between number of siblings and sibling history. We determined that
there was no significant benefit (Supplementary Table 15). Sixth, we assessed whether FHiog and
PRS-FHiog would benefit from incorporating the total number of siblings of each target
individual using indicator variables in addition to a continuous variable. We determined that
disease prevalence empirically varied non-linearly as a function of the number of siblings (which
is known to correlate with socioeconomic factors) (Supplementary Table 16), and that
accounting for this generally produced non-significant improvements (Supplementary Table 17).
Seventh, we assessed whether FHiiab and PRS-FHiiap benefit from allowing the prevalence of
disease (determined by the liability threshold) among target individuals to vary as a function of
the number of siblings. We determined that FHijia, and PRS-FHiiab attained slightly higher
prediction accuracy than corresponding methods that do not allow the prevalence of disease to
vary as a function of the number of siblings (Supplementary Table 18); we elected to allow the
primary FHiiab and PRS-FHiiap methods to benefit from this information as a conservative choice,
as they were not ultimately the methods of choice (see below). Eighth, for each of the 5 methods,
we evaluated the prevalence of disease in each percentile of predicted disease risk?>. We
confirmed that PRS-FHi,; and PRS-FHiiap also performed best under this metric (Supplementary
Figure 4).

We conclude that incorporating family history of disease (PRS-FHio, and PRS-FHiiap) greatly
increases prediction accuracy as compared to polygenic risk scores alone (PRS), particularly in
Africans. We further conclude that PRS-FHioz and PRS-FHiiap generally perform similarly in
analyses without covariates.

Incorporation of covariates in UK Biobank analyses

We repeated the analyses of 10 complex diseases from the UK Biobank by incorporating
covariates into each method: PRS*, FH"1og, FHliab, PRS-FH 10 and PRS-FH"jiab; the covariates
included age, sex, BMI and 20 principal components (see Methods). PRS™ incorporates
covariates by training a logistic model with PRS and all covariates. FH"og and PRS-FH" 1o,
incorporate covariates by including them as independent variables in the logistic model. FH j;ap
and PRS-FH"ji,» incorporate covariates by estimating a disease threshold for the liability
(exclusive of covariates) that varies based on the covariates (see Methods). We evaluated the
predictive accuracy of each method using difference in liability-scale R? (defined as liability-
scale R? minus the liability-scale R? attained using covariates alone). As above, our primary
focus was on the three well-powered diseases (type 2 diabetes, depression, and hypertension);
the impact of covariates on these diseases was substantial, as covariates alone attained average
prediction R? of 20%, 17%, and 15% in non-British Europeans, South Asians, and Africans, with
most of the prediction R? contributed by age and BMI (Supplementary Table 19).

We assessed the prediction accuracy of PRS*, FH 10g, FH jiab, PRS-FH"1og and PRS-FH"jiap.
Results are reported in Figure 3b and Supplementary Table 20. Across the three well-powered
diseases, PRS" attained average prediction accuracy (difference in liability-scale R?) of 7.4%,
4.7%, and 0.62% in non-British Europeans, South Asians, and Africans, again reflecting poor
cross-population transferability>~’. In contrast, FH"iog attained similar prediction accuracy across
populations: 8.8%, 8.0% and 10%; results were also similar across populations for FH"jiqp.
Notably, PRS-FH"|o, outperformed PRS-FH"jia, with prediction accuracies of 15%, 12%, and
11% for PRS-FH"og in the three populations vs. 13%, 9.1%, and 8.0% for PRS-FH"jia» (most
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differences were statistically significant: p=0.0001-0.0007 for T2D, p=0.05-0.6 for depression,
p=6x10"22-5x10" for HTN); similarly, FH"io; outperformed FHjiab. We note that PRS-FH "1, and
FH"1o¢ model the effects of family history and covariates jointly, whereas PRS-FH"jiap and FHjiap
model the effects of covariates marginally (see Methods); as both family history and PRS is
correlated with covariates (Supplementary Table 21), this may explain the better performance of
PRS-FH"10g and FH"1os. The differences in prediction R? attained by PRS*, FH"1og, FHjiab, PRS-
FH"1og and PRS-FH"jiab vs. a prediction model based on covariates alone were generally similar
to the absolute predictive R? attained by PRS, FHiog, FHiiab, PRS-FHiog, and PRS-FHiiab, with
limited exceptions (Supplementary Table 9 and 20). Surprisingly, the relative prediction
accuracy of PRS" was sometimes larger than the prediction accuracy of PRS alone, which is
mathematically possible under a logistic model. The pairwise correlations between PRS, FHiog,
FHiiab, and a prediction based on covariates alone ranged from -0.06 to 0.16 (Supplementary
Table 21).

We performed three secondary analyses. First, we assessed the calibration of each method. We
determined that PRS-FH"og attained better calibration than PRS-FHjia (average regression slope
0f 0.92 vs 0.68 across 3 well-powered diseases; Supplementary Table 22). Second, we compared
the performance of both FH* and PRS-FH" methods when incorporating parental history only vs.
both parental and sibling history. Incorporating both parental and sibling disease history attained
moderately higher predictive accuracy for FH'io; and PRS-FH ", but results were mixed for
FH"iiab and PRS-FH"iiap (Supplementary Table 23). Third, we assessed the performance of a
simplified logistic regression-based method (incorporating covariates) that used a single binary
independent variable for overall (parental and sibling) family history. We determined that PRS-
FH"o, attained significantly higher prediction accuracy than this method (Supplementary Table
24; analogous to Supplementary Table 14).

We conclude that when covariates are included in the predictions, incorporating family history of
disease (PRS-FH"jog and PRS-FH"jiap) continues to greatly increase prediction accuracy as
compared to polygenic risk scores alone (PRS™), particularly in Africans. We further conclude
that PRS-FH"1og outperforms PRS-FH"jia in analyses with covariates.
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Discussion

We have explored methods for combining polygenic risk scores and family history (PRS-FH) to
predict risk of disease, using a logistic model or a liability threshold model. We determined that
PRS-FH greatly increases prediction accuracy as compared to polygenic risk scores alone across
a broad set of simulations and empirical analyses, including analyses incorporating covariates.
We recommend the use of the logistic model, which outperforms the liability threshold model in
analyses with covariates (however, we note that the liability threshold model has proven valuable
in other settings?>**-33), The increase in prediction accuracy attained by PRS-FH is particularly
large in diverse populations (e.g. Africans), suggesting that PRS-FH will be a method of choice
for closing the well-documented gap in disease risk prediction accuracy in diverse populations®~
7. Our findings emphasize the value of collecting and incorporating family history data, as well
as data on clinical covariates, whenever it is practical to do so.

PRS-FH differs from previous approaches for combining PRS and FH information®!3-1? in
several key ways. First, previous methods restricted the PRS component to genome-wide
significant loci, but PRS-FH leverages genome-wide polygenic signals, which have higher
predictive value'. Second, previous methods incorporate each type of relative equally, but PRS-
FH incorporates each type of relative separately, to allow for differential environmental effects?.
In particular, a recent study that used a single binary independent variable for overall (parental
and sibling) family history reported no significant improvement from incorporating family
history in prostate cancer analyses of UK Biobank Europeans* (AUC = 0.836 vs. 0.833;
analogous to Supplementary Table 14), whereas PRS-FH"jog attained a significant improvement
from incorporating family history in prostate cancer analyses of UK Biobank Europeans (R? =
0.100 vs. 0.069, p=0.029, Supplementary Table 9; p=0.0035 in analyses with covariates,
Supplementary Table 20). Third, previous methods do not allow the contributions of PRS and
FH to vary as a function of the target population, but PRS-FH optimizes these contributions as a
function of the target population, increasing prediction accuracy in diverse populations. Fourth,
ref.? did not incorporate covariates; furthermore, in our work all effects of family history and
covariates are modeled jointly, in contrast to ref. ! (and the approach for incorporating
covariates discussed as a future direction in ref.?). Fifth, ref.  is not applicable to UK Biobank
data, in which sibling history is reported as a binary variable (at least one sibling has the
disease). Sixth, PRS-FH differs from ref. ? in that model parameters are estimated within the
target population of interest, rather than relying on external data sources.

Although PRS-FH greatly increases prediction accuracy, it has several limitations. First, PRS-FH
requires an additional layer of training data from the target population in order to optimize the
contributions of PRS and FH to the target population. However, this requires only a small
number of training samples from the target population (e.g. Net£>500; see Supplementary Figure
3), and the additional training step can be omitted for the diseases and target populations that we
have analyzed here (for which these model parameters are reported in Supplementary Table 11).
Second, the logistic model makes a strong assumption that the log-odds of disease depends
linearly on the PRS and disease status of first-degree relatives—an assumption that lacks a strong
theoretical justification. However, simulations and empirical results are strongly supportive of
the practical ramifications of this assumption. Third, family history may reflect a different
underlying genetic architecture than case-control status, for example, due to differences in the
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etiology of early-onset versus late-onset disease or differences in diagnostic criteria over time;
however, we previously reported very high genetic correlations between case-control and family
history phenotypes in the UK Biobank??. Fourth, self-reported family history information may be
inaccurate. However, we previously determined that self-reported family history is reasonably
accurate in the UK Biobank (~80% correlation between true and self-reported family history,
based on sibling concordance®); the imperfect accuracy is explicitly accounted for by PRS-FH
model parameters, and incorporating self-reported family history clearly improves prediction
accuracy in our study. Fifth, we did not perform analyses in which we trained and validated in
different cohorts. We anticipate that this will become possible in the future with the emergence
of large biobanks collecting a rich set of phenotypes including family history*>3¢ . Finally,
incorporating training data from auxiliary traits has substantial potential to improve polygenic
prediction accuracy®’#, but was not implemented in our study; incorporating auxiliary traits into
PRS-FH is straightforward under the PRS-FH framework, and remains as a future research
direction. Despite these limitations, we anticipate that PRS-FH will attain large increases in
prediction accuracy in future studies, particularly in diverse populations.
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PRS Training Data Target Data
British Non-British South Asian African
European

Diseases h? |N K N K N K N K

Lung Cancer 0.096 | 408903 | 0.006 | 41842 | 0.006 | 7048 0.002 | 7087 | 0.003
Bowel Cancer 0.160 | 408903 | 0.013 | 41842 | 0.011 | 7048 0.005 | 7087 | 0.009
Stroke 0.090 | 408903 | 0.024 | 41842 | 0.020 | 7048 0.025 | 7087 | 0.025
COPD 0.172 | 408903 | 0.035 | 41842 | 0.035 | 7048 0.022 | 7087 | 0.013
Prostate Cancer | 0.296 | 187889 | 0.038 | 18192 | 0.032 | 3811 0.014 | 3096 | 0.050
T2D 0.372 | 407565 | 0.042 | 41642 | 0.040 | 6881 0.155 | 6961 | 0.098
Breast Cancer 0.204 | 221014 | 0.061 | 23650 | 0.061 | 3237 0.036 | 3991 | 0.028
Depression 0.116 | 408903 | 0.073 | 41842 | 0.075 | 7048 0.054 | 7087 | 0.044
CAD 0.206 | 408903 | 0.085 | 41842 | 0.077 | 7048 0.140 | 7087 | 0.063
HTN 0.311 | 408903 | 0.323 | 41842 | 0.293 | 7048 0.377 | 7087 | 0.425

Table 1: List of 10 UK Biobank diseases analyzed. For each disease, we report the SNP-
heritability (h7) in UK Biobank British training data and the number of samples (V) and disease
prevalence (K) in each UK Biobank training and target population. We note that the sample size
and prevalence in British training data includes information from related individuals, but SNP-
heritability was estimated using unrelated British individuals. Diseases are listed in order of
disease prevalence in British training data. Our primary focus was on three well-powered
diseases (type 2 diabetes, depression, and hypertension; denoted in bold) with (liability-scale)
prediction R? > 0.05 for PRS and/or FH in each target population. COPD, chronic obstructive
pulmonary disease, defined as chronic bronchitis/emphysema; T2D, type 2 diabetes; CAD,
coronary artery disease; HTN, hypertension.
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Step 1: Construct PRS
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Figure 1: Overview of PRS-FH methods. We list the 3 steps of PRS-FHj,; and PRS-FHj;ap.
Although the PRS-FHio, model coefficients and PRS-FHiiab prior covariance shown here are the
same for each parent, they may differ between mother and father. In addition, both methods can
incorporate sibling history.
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Figure 2: PRS-FH,; and PRS-FHiiab increase prediction accuracy in simulations. We report
mean liability-scale R? across 10 simulations for PRS alone, family history alone (FHiog and
FHiiab), and PRS-FH methods (PRS-FHioe and PRS-FHiiab), for different values of disease
prevalence. Error bars denote standard errors. Numerical results (including standard errors for
FHioe and FHiiap) are reported in Supplementary Table 2.


https://doi.org/10.1101/2021.04.15.439975
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439975; this version posted April 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Liability-scale R?

Difference in liability-scale R> O

o
[N

=]

0.0

0.2

0.

0.0

Non-British European
| PRS-FH
FH
PRS

' DII m DII I

South Asian
I PRS-FH
FH
PRS

DII T DII DII

African
I PRS-FH
FH
PRS

PRS Log Liab PRS Log Liab PRS Log Liab PRS Log Liab
T2D Depression HTN Average

BPRS-FH+
‘ L FH+
‘I EDIIII

UPRS+

h b

PRSLogLiab PRSLogLiab PRSLogLiab PRSLogLiab
T2D Depression HTN Average

B PRS-FH+
UFH+
UPRS+

mll whd

PRSLogLiab PRSLogLiab PRSLogLiab PRSLogLiab
T2D Depression HTN Average

I PRS-FH+
UFH+
LUPRS+

PRS Log Liab PRS Log Liab PRS Log Liab PRS Log Liab PRSLogLiab PRSLogLiab PRSLogliab PRSLogliab PRSLogLiab PRSLogLiab PRSLogliab PRSLogLiab

T2D Depression HTN Average

T2D Depression HTN Average

T2D Depression HTN Average

Figure 3: PRS-FH increases prediction accuracy in analyses of UK Biobank diseases. (a)
Analyses without covariates. We report liability-scale R? for PRS alone, family history alone
(FHiog and FHiiap), and PRS-FH methods (PRS-FHioe and PRS-FHiiap), for different diseases and
target populations. (b) Analyses with covariates. We report difference in liability-scale R? (see
text) for the corresponding methods incorporating covariates (PRS*, FH*, PRS-FH"), for
different diseases and target populations. We focus on three well-powered diseases with R? >
0.05 for PRS and/or FH in each target population. Numerical results (including standard errors
for FHiog and FHiiap) are reported in Supplementary Table 9 and Supplementary Table 20.
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Methods

PRS-FH,og method
The PRS-FHio; method models the PRS and the disease status of relatives as linearly impacting
the log-odds of disease for an individual, as detailed below.

logl —p = ﬁO + ﬁlel + ﬁZDpZ + ,83Dsib + B4Nrel.sib + BSPRS (1)

where Dyq, Dp,, and Dg;;, are the binary disease status variables for an individual’s parents and
siblings, respectively, N,.; sip 1S the number of relevant siblings of an individual (number of total
siblings for non-sex-specific diseases, number of sisters for breast cancer, and number of
brothers for prostate cancer), and PRS is the individual’s PRS. An individual’s PRS is
constructed as a weighted sum of their genotypes:

PRS= ) fugi @)

where g; are an individual’s genotypes at SNP i (0,1,2) and f; are the per-allele effect sizes of
SNP i estimated using training data. We note that there are multiple algorithms for constructing
PRS, however the construction of PRS is not the primary focus of this work.

We considered a logistic model incorporating the PRS (as a continuous covariate), the 3 binary
indicators for the disease status of mother, father, and siblings, and a continuous covariate for the
number of relevant siblings (see equation (1)). We elected not to use indicator variables for the
number of total siblings an individual has (e.g. [(Ng;, = 1), I(Ng;, = 2), ..., [(Ng;, = 5)) in the
primary method as this generally produced non-significant improvements (Supplementary Table
17) and increased model complexity.

PRS-FHjiap

The PRS-FHiiab method models the family history of disease and PRS using a liability threshold
model?. The liability threshold model assumes an individual has an underlying liability, €,
which is normally distribution with a mean of 0 and variance of 1. An individual is a case (z =
1) if and only if € = T otherwise the individual is a control (z = 0). T determines the disease

prevalence K; K = 1 — ®(T) where ®(T) is the normal cumulative distribution function, i.e.
®(T) = Pr (N(0,1) < T).

We assume a multivariate normal distribution for the individual’s liability, the individual’s PRS,
and the target individual’s relatives’ liabilities. For example, to incorporate the individual’s PRS
as well as the parental and a sibling’s disease history we assume,
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€o 0 2 2 2
PRS, 0 P2 % 72
€1 | ~MVNs|| o[, %1 > 1 0 % , (3)
6p2 0 ~ ~
h?, v h?
€s 0 P2 " 1 P2
2 2
BovE R
2 2 2

where €, is the total liability of the target individual, PRS,, is the PRS of the target individual,
and €4, €57, and € are the liabilities of the parents and the sibling, respectively, ﬁzz,l, flf,z, and
h? are the pseudo-heritabilities of the disease on the liability scale of the parents and the sibling,
respectively, and V is the amount of variance the PRS can explain on the liability scale. The
pseudo-heritabilities of the disease reflect a combination of heritability and shared environmental
effects (which may vary across classes of relatives), and can be estimated using maximum-
likelihood methods (see Supplementary Note and Supplementary Table 25 for justification of
pseudo-heritability and details on its estimation). We can estimate the variance explained by the
PRS on the liability scale as
K(1-K)

¢(1T)* '
where K is the disease prevalence, Z is the disease status, T = ®~1(K), and ¢ is the normal
probability density function. This estimate of V' is similar to previous derivations converting
between the observed-scale and the liability-scale (see Supplementary Note)?®. After estimating
the liability-scale variance explained by the PRS (V), the raw PRS is scaled to have mean zero
and the desired variance prior to being utilized by PRS-FHiiab. Setting h2, = h2, = hZ = h?
models PRS and family history of disease assuming no environmental correlation.

V = corr(PRS, Z)? (4)

Using the distribution shown in equation (1), we can compute the posterior mean and variance of
€,, conditional on the individual’s PRS and the disease status of family members (e.g. if parent 1
is a case we can condition on €,; = Tp4). Given the mean and variance of the posterior
distribution, denoted u. . and 0620|, respectively, we assume normality and compute the posterior
risk of disease for an individual to be:

T, ing — :
r=1—® l of fspring ”60| l' (5)
O'Eo|.
where Tofrspring 18 €ither Cb‘l(Ko F fspn-ng) or a function of covariates, depending on the model

being implemented (see below). We note that the posterior risk of disease is distinct from the
posterior mean (and variance) of liability. We elected to use the posterior risk of disease, rather
than simply the posterior mean or variance, as this appropriately weights the mean and variance
of the liability for disease. Conditioning on family history will result in a non-normal
distribution, however, this deviation from normality is generally small®?*, We elected to have

Toffspring depend on the number of total siblings an individual has through the use of indicator
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variables (e.g. I(Ng;, = 1), I(Ngip = 2), ..., I(Ng;, = 5)) as a conservative choice as it optimized
the performance of PRS-FHiian (Supplementary Table 18), which ultimately was not the
recommended method.

We use the Pearson-Aitken formula, as well as properties about truncated normal distributions,
to compute posterior distributions®>°. Sibling history is reported as a binary condition in UK
Biobank; individuals report whether at least one or none of their siblings are affected. For
individuals who report at least one of their siblings is affected, the posterior mean and variance is
estimated analytically (see Supplementary Note).

Missing family history for some relatives is not an issue as the posterior distribution is computed
conditional on known information, and therefore the number of relatives being modeled is
reduced when missing family history exists. We use estimates of disease prevalence which differ
for mother, father, and offspring as well as estimates of pseudo-heritability which differ for
mother and father.

Simulations

We simulated genotypes at 100,000 unlinked SNPs and case-control status for 400,000 unrelated
training samples. For computational simplicity we generated 10 genotype matrices for the
training data and given these genotype matrices, can then generate 10 different case-control
vectors represent different scenarios of ranging prevalence, h?, hZ, and polygenicity (number of
causal SNPs). To obtain PRS, we computed prediction § for all 100,000 unlinked SNPs using
BOLT-LMM%-2¢,

We simulated genotypes at 100,000 unlinked SNPs and case-control status plus family history
(parental history for both parents) for 40,000 unrelated target samples. We simulated genotypes
for both parents using the same minor allele frequency (MAF) values as the training data, used
these to simulate genotypes for target samples (offspring), and simulated case-control status for
both parents and target samples using a liability threshold model; target samples were not
ascertained for case-control status. Again, for computational simplicity we generated 10
genotype matrices for the testing data and given these genotype matrices, then generated case-
control and family history information under 16 different scenarios; the same 10 scenarios as the
training data as well as 4 additional scenarios in which family members shared environmental
correlation and 2 additional scenarios in which the parental disease prevalence was double that of
the offspring (Supplementary Table 1). We note that environmental correlation and differing
parental prevalence does not impact our training data as we are using case-control data only (not
family history data) to train.

Within the target samples we use 10-fold cross-validation: for each fold we use the remaining 9
folds to estimate relevant model parameters. Given these parameters, the predicted risk of
disease can be estimated for each individual within the held-out fold.

UK Biobank data set

We analyzed 10 complex diseases from the UK Biobank?*. To construct PRS, we computed
prediction S for genotyped SNPs using all British individuals using BOLT-LMM?>-%6, These
individuals were individuals of European ancestry (based on self-reported white-ethnicity) and
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British-ancestry individuals passing principal component analysis filters®* . Our PRS consisted of
672,288 SNPs with missingness <10% and minor allele frequency (MAF) >0.1%; we mean
normalized PRS based on the allele frequency within the training population.

We considered three distinct testing sets; these consisted of non-British European, South Asian
(Indian, Pakistani, Bangladeshi), and African individuals (Black or Black British, Caribbean,
African, Any other Black background). These testing sets were constructed through self-reported
ethnicity; non-British European were individuals of European ancestry (based on self-reported
white-ethnicity; White, British, Irish, Any other white background) who did not pass British-
ancestry principal component analysis filters. We restricted to unrelated individuals (both
unrelated to other individuals within the testing sets as well as unrelated to the training set). We
use 10-fold cross-validation within the three testing sets to estimate relevant model parameters
for both PRS-FHioz and PRS-FHiia. In detail, for individuals in a given fold we estimate the
relevant parameters using the remaining 9-folds and use these parameters to predict risk.

UK Biobank collects family history of disease information for 12 diseases, in this work we
focused on the 10 diseases for which PRS or FH produces a positive liability-scale R with a p-
value less than the nominal 0.05/36 within non-British Europeans (Table 1; Supplementary Table
8). We primarily focused on three well-powered diseases (type 2 diabetes, depression, and
hypertension) with (liability-scale) prediction R? > 0.05 for PRS and/or FH in each target
population (Supplementary Table 9). We note that depression was included as a well-powered
disease despite its low SNP-heritability, because the contribution of sibling disease history
(Supplementary Table 11) led to prediction R?> > 0.05 for FH in each target population. On the
other hand, CAD was not included as a well-powered disease, due to poor performance of both
PRS and FH in the African target population. For any individuals who reported 0 relevant
siblings, disease status of siblings was set to 0.

Application of PRS-FH.g to UK Biobank data

We applied PRS-FHi,g to 10 complex diseases from the UK Biobank. Prior to model training and
fitting, individuals with missing parental disease status for a given parental class (mother or
father) were assigned the mean parental disease status for the respective parental class across the
9 training folds. Individuals with missing sibling disease status (for whom the number of
siblings must be at least one or unknown) were assigned the mean sibling disease status across
all individuals in the 9 training folds if the number of siblings was unknown, or the mean sibling
disease status across individuals in the 9 training folds with at least one sibling if the number of
siblings was known. Individuals with missing number of siblings were assigned the mean
number of siblings across the 9 training folds if the sibling disease status was unknown, or the
mean number of siblings subject to the same sibling disease status if known.

Application of PRS-FHiia to UK Biobank data

We applied PRS-FHiiap to 10 complex diseases from the UK Biobank. We used different
estimates of disease prevalence for mother, father, siblings, and offspring; in any fold, when the
prevalence of disease was 0 (for mother, father, sibling, or offspring) we set it equal to
1/(number of individuals within that fold). For all analyses that included sibling history, except
when otherwise specified, the liability threshold for disease used to predict disease risk
accounted for number of siblings (indicator variables for 0, 1, 2, 3, 4, >5 siblings), as we
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generally observed a U-shaped relationship between disease prevalence and number of siblings
(Supplementary Table 16).

We used estimates of pseudo-heritability that differ for mother, father, and siblings; pseudo-
heritability was estimated using maximum-likelihood (see Supplementary Note). If there were
pairs of individuals with concordant disease status (e.g. both offspring and relative have disease),
pseudo-heritability was set to 0 and the liability was not conditioned on this relative. UK
Biobank collects sibling disease history as a binary “at least one” affected indicator, and as such
we could estimate pseudo-heritability either using individuals with exactly one sibling or using
all individuals with at least one sibling (see Supplementary Note). We elected to estimate
pseudo-heritability using all individuals with at least one sibling, as the number of individuals
with exactly one sibling can be prohibitively low (and may include no concordant disease pairs
for diseases of low prevalence). In some of our early experiments in this project, we observed
computational problems when estimated pseudo-heritability > 1.8 (i.e. pseudo-heritability/2 >
0.9). Our software thus caps estimates of pseudo-heritability at 1.8. However, this did not impact
any of the analyses reported in the current manuscript.

We estimated the amount of variance explained by the PRS on the liability scale, ¥, that varied
based on the target population (Equation (4)). For each fold, we ran a permutation test (1000
permutations) of Hy: V = 0, if we failed to reject the null hypothesis with p > 0.05 weset V =0
(i.e. we did not use PRS to inform posterior disease risk).

Decreasing the number of training samples from the target population

We decreased the number of training samples from the target population to different values of
expected effective training sample size (N, which can vary with the number of cases sampled;
see Equation (6)). For a given value of expected N,z we constructed multiple independent
training sample sets of that size by down-sampling individuals from each of the 10 folds, and
averaged the resulting prediction accuracies across the training sample sets of that size
(Supplementary Table 26 and Supplementary Figure 3).

The effective sample size (Nep) is computed for a training sample as:

Nesr = —3 L1 (6)

N, cases N, ctrls

Incorporation of covariates in UK Biobank analyses

We repeated the analyses of 10 complex diseases from the UK Biobank by incorporating
covariates into each method. We included 23 covariates: age, sex, BMI, and 20 principal
components. Prior to model training and fitting, individuals with missing BMI, age, or sex were
assigned the mean age, sex, and BMI across the 9 training folds. The prediction method based
solely on covariates modeled the 23 covariates linearly impacting the log-odds of disease for an
individual; PRS+ (the prediction method based on covariates and PRS) models PRS and the 23
covariates (age, sex, BMI, and 20 principal components) linearly impacting the log-odds of
disease for an individual. PRS-FHie, simply adds the 23 covariates into the logistic model
incorporating family history of disease (FHiog) or PRS and family history of disease (PRS-FHioy).
For FHiiab and PRS-FHjiab, covariates were modeled as impacting the threshold for disease; a
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logistic model for disease as a function of covariates (23 covariates as well as indicators for
number of siblings) was used to predict the risk of disease for an individual, thereby estimating
the threshold for disease conditional on covariates.

Jackknife standard errors of prediction accuracy and differences in prediction accuracy
We report estimates of liability-scale R? (R?) or the difference in R? between two methods
(AR?). Given predicted disease risks (r) and observed phenotypes (Z), R, is estimated as R,

i ;2 )I? (ref. 27) for which corr(r,Z) =

max (corr(r,Z),0). (When using 10-fold cross-validation within a testing set to estimate

corr(r,Z) and R? is estimated as i?? = corr(r,Z)

relevant model parameters, I/i’? for a method is computed by concatenating across the 10 folds
and computing a single R7, rather than computing the average of R? across the 10 folds.)

To test for significantly non-zero prediction accuracy or differences between methods we assess
whether R, or AR, (where A denotes either the difference between 2 prediction methods, or the
difference versus a covariates-only predictor in the setting with covariates) is significantly
different from zero. We compute both jackknife standard errors as well as jackknife p-values (for
Hy: R, > 0or Hy: AR, = 0), employing a jackknife across individuals (we note that the
alternative of employing a genomic block-jackknife is of interest for evaluation of PRS methods,
but is not applicable to evaluation of FH and PRS-FH methods). We let all individuals in fold

i be represented by D; and we construct n jackknife samples (#=100 in this study) by deleting
each of the 7 folds as follows, Dj;) = {Dy, Dy, ..., Di_1, Di44, ..., Dy }. Each of these Dy;; are
denoted blocks. We then compute R, on each Dy, denoting each such value as R, ;. We then
define the jackknife variance as

~ N2
var(R,) = =—Y".(R,; — R,.) (7)
where ﬁo,. = % [ ﬁo,i. The jackknife variance for the difference in R, (or for R? ) between two

methods is computed in a similar manner. We computed a jackknife p-value by constructing
pseudovalues as }?o,pseudwaluei =nR,— (n— DR, o; and test the hypothesis Hy: R, = 0 by
using the fact that

\/E(R\o,pseudovalue - Ro)

1 ~ ~ 2
\/Tl _ 1 (Z(Ro,pseudovaluei - Ro,pseudovalue-) )

-~ 1 ~ . .
where R, yseudovatue: = ;ZROlpseudomlue ;- The jackknife p-value for Hy: AR, = 0 between two

- N(0,1),

methods is computed in a similar manner. (We note the » folds used when computing jackknife
standard errors and p-values are unrelated to the 10-folds used during cross-validation:
individuals are concatenated across the 10 cross-validation-folds and then randomly assigned to
the n jackknife folds.)

Jackknife assumes independence between blocks, while individuals are independent (by
construction), individual predictions within a fold could use information from other folds, thus
potentially inducing a correlation. To determine the potential effect of this we assessed the
calibration of jackknife standard errors in simulations. For every simulation scenario, we
computed an estimated variance of R, across the 10 simulation replicates (denoted empirical
variance), as well as the average jackknife variance across the 10 simulation replicates (denoted
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mean jackknife variance). Across all simulation scenarios, the sum of the empirical variance was
0.00063 and 0.00059 while the sum of the mean jackknife variance was 0.00060 and 0.00057 for
PRS-FHiog and PRS-FHiiab, respectively . This suggests the standard errors are well-calibrated.
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