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Abstract

Every human inherits one copy of the genome from their mother and another from their father.
Parental inheritance helps us understand the transmission of traits and genetic diseases, which
often involve de novo variants and rare recessive alleles. Here we present DeepTrio, which
learns to analyze child-mother-father trios from the joint sequence information, without explicit
encoding of inheritance priors. DeepTrio learns how to weigh sequencing error, mapping error,
and de novo rates and genome context directly from the sequence data. DeepTrio has higher
accuracy on both Illumina and PacBio HiFi data when compared to DeepVariant. Improvements
are especially pronounced at lower coverages (with 20x DeepTrio roughly equivalent to 30x
DeepVariant). As DeepTrio learns directly from data, we also demonstrate extensions to exome
calling solely by changing the training data. DeepTrio includes pre-trained models for Illumina
WGS, Illumina exome, and PacBio HiFi.

Introduction

Genomic sequencing can identify variants informative1 for diseases2, traits3, and ancestry4.
Sequencing is particularly informative in rare genetic disease5 caused by high-impact pathogenic
variants6. In a mother-father-child trio, each parent contributes half of their genome, with the
addition of a small number of de novo variants7. Sequencing for rare disease often includes the
parents in order to use this information for accurate variant identification and interpretation8.
Rare disease studies analyze multiple families with the same suspected disease to resolve
undiagnosed cases9.

A number of methods can discover germline variants in an individual sample. Traditional
methods model the evidence for a variant with known contributors to uncertainty, such as the
rate of sequencing errors10, the probability that a read is mapped incorrectly11, and the reliability
of the sequence quality scores12. Software tools which employ these statistical approaches
include Freebayes13, GATK14, Octopus15, 16GT16, and Strelka217.

Recent approaches have used deep learning, which learns representations directly from data18.
This allows a variant caller to capture aspects of the problem which are incompletely
understood, or to rapidly adapt to a new sequencing technology by training on data. Deep
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learning variant callers include DeepVariant19, Clairvoyante20, and Neusomatic21. Deep learning
was used in a majority of short-read and virtually all long-read submissions to the PrecisionFDA
Truth Challenge V222.

Some variant callers can use information about a trio to jointly call variants. The approaches
range from joint calling without consideration of family information (e.g. GATK
GenotypeGVCF), those which model parental transmission probabilities (e.g, FamSeq, GATK
CalculateGenotypePosteriors), and those which use a deep learning approach for individual
samples and postprocess with statistical methods (e.g. dv-trio23)

Correctly incorporating parental information requires integrating the existing uncertainties in
error sources across multiple samples. A deep learning approach can directly learn from trio
data how to value evidence from parents in making a call. It is also easy to adapt to different
coverages, preparations, and technologies.

In this work, we build and assess DeepTrio, a deep learning-based variant caller for parent-child
trios. We start from the code base of DeepVariant, a germline caller which won multiple awards
in the PrecisionFDA Truth Challenge V222, noted for high accuracy on genomes and exomes24,
and shown to increase detection rate of pathogenic germline variants25.

We train DeepTrio to call variants in both parent and child samples, with one model for Illumina
WGS, one for Illumina exome, and one for PacBio HiFi26. To ensure accurate performance over a
range of conditions, DeepTrio is trained with a diversity of preparations (PCR-free,
PCR-positive, and multiple exome kits), and across a range of child and parent coverages.
DeepTrio is also trained for duo-calling. DeepTrio can write output as individual VCFs27, gVCFs,
or as a merged family VCF. The gVCFs of multiple families can be combined with GLnexus28,
which has been optimized for combining DeepVariant gVCFs29, to scalably create large joint
callsets of trios, duos, and individual samples.

We show that DeepTrio has superior accuracy to both individual sample and trio-based samples,
measured by concordance with the Genome in a Bottle truth set30,31. We show that DeepTrio is
still able to accurately call de novo variants, despite their lack of support in the parents. Finally,
we quantify the performance of DeepTrio across coverage, showing that DeepTrio allows high
accuracy to be retained at lower coverage for both proband and parent samples.

Results

Modifying DeepVariant to call trios

DeepVariant calls variants in three steps: make_examples, call_variants, and
postprocess_variants. In the make_examples step, a simple heuristic identifies positions
which might differ from the reference. For Illumina sequencing, this requires a fraction of reads
supporting an alternate allele at 0.12 for SNPs and 0.06 for Indels. For PacBio sequencing, the
threshold is 0.12 for both SNPs and Indels.
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The call_variants step represents BAM data as a multi-dimensional pileup of a 221-bp window
in the genome around a candidate. As of DeepVariant v1.0, there are 8 input channels
representing 1) the bases in the read, 2) their base quality, 3) the mapping quality of the read, 4)
the strand mapped to, 5) whether the read supports a variant, 6) bases which differ from the
reference and (in the case of PacBio data) 7,8), realignments of the reads to the alternate alleles.
postprocess_variants converts the output probabilities of the neural network into a variant
call and confidence, and resolves multi-allelic candidates into their most likely alleles.

To modify make_examples for Trio calling, we perform candidate generation on each
individual sample in the same manner. We also generate candidates from the union of reads
from all samples with a reduced threshold for reads supporting the alternate allele, which allows
discovery of alleles at a lower fraction but which are reinforced by appearing in multiple
samples. When a candidate allele is identified in any single sample, it is also generated at the
same position in the other samples. This allows us to generate an output variant probability for
every candidate in every sample.

The call_variants stage uses a deep neural network to classify the probabilities for the
genotype of each variant candidate. This process learns the important factors for classification
directly from the input data. We generate tensor pileups where each sample has a fixed height
with the child pileup in the middle, one parent’s pileup on top, and the other parent at the
bottom. Using labels from Genome in a Bottle, we train two models: a child model and a parent
model. To generate calls for each parent, two sets of examples are made, with a different parent
as the top pileup.

The concept of Mendelian inheritance, or any explicit modeling of parent-child relationship is
never provided to DeepTrio. Training simply creates these pileups and associated labels. The
child model would learn that the reads in the middle pileup are most informative for calling, and
the parent reads as supporting evidence. The parent model would learn that the topmost reads
are most informative for the call, with child reads providing some supporting information, and
the other parent marginal additional information.

The postprocess_variants stage is not altered. The final outputs are a VCF and a gVCF for
each sample. Merging multiple gVCFs uses GLnexus28 in a manner optimized for DeepVariant
outputs29.  Figure 1 shows a representation of the calling process.

DeepTrio is trained on Genome in a Bottle samples32 with sequencing conducted on Novaseq,
HiSeqX, HiSeq4000, and PacBio Sequel II instruments with both PCR-Free and PCR+
preparations. Exome models are trained on Agilent SureSelect v7, IDT-xGen, and Truseq
capture kits. This data has been previously described and released33. DeepTrio is trained on
examples from chromosomes 1-19. Chromosomes 21 and 22 are used as a tuning set to select the
model checkpoint by determining when accuracy on the withheld set has peaked. Chromosome
20 is fully withheld as an independent evaluation set to assess accuracy.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438434doi: bioRxiv preprint 

https://paperpile.com/c/HVfmF7/XXV3
https://paperpile.com/c/HVfmF7/dqKm
https://paperpile.com/c/HVfmF7/bf70
https://paperpile.com/c/HVfmF7/sbzq
https://doi.org/10.1101/2021.04.05.438434
http://creativecommons.org/licenses/by/4.0/


Figure 1. DeepTrio inputs channels and processing pipeline
DeepTrio represents data from the BAM file of a child and one or two parents as a pileup of a
221-bp long window (x-axis) with reads (y-axis). Each sample has a fixed height with parent
and child reads in a different row. DeepTrio presents 8 input channels (z-axis). Example
shown is PacBio HiFi (top). One model is trained to call variants in the child and another in the
parent. DeepTrio makes multiple examples, alternating the position of each parent (bottom).
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Assessing variant calling accuracy

To determine the improvements of trio calling, we compared DeepTrio to DeepVariant, GATK4
HaplotypeCaller (non-trio), GATK4 CalculateGenotypePosteriors (trio), dv-trio, Octopus, and
FamSeq for the Genome in a Bottle (GIAB) Ashkenazi Jewish trio (HG002-HG003-HG004)
datasets from the PrecisionFDA v2 Truth Challenge22. Accuracy is determined by concordance
with the GIAB v4.2.1 truth set30,31,34 using hap.py35.

Figure 2. Variant calling accuracy of DeepTrio varying depth of all trio samples
Accuracy for DeepTrio and other pipelines over coverages, determined by concordance with
the Genome in a Bottle v4.2 truth set for the child (top) and parent (bottom), with the same
coverage on all three samples. All samples use the same Illumina data, except for the black
lines DeepVariant PacBio and DeepTrio PacBio. Trio methods are shown with a solid line and
non-trio with a dotted line. F1 is determined from the total errors and correct calls for total
Indels and SNPs for chromosome20. The F1 for FamSeq was much lower, and was excluded.
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Table 1. HG002 SNP accuracy at 35 x Coverage (all trio members)

Tool Data
Type

F1 Recall Prec FN FP FP.
gt

TP de
novo

FP
de
novo

DeepTrio (trio) Illumina 0.9979 0.9962 0.9996 269 29 4 31/34 3

DeepVariant Illumina 0.9973 0.9953 0.9993 334 48 12 34/34 20

GATK4 (trio) Illumina 0.9921 0.9947 0.9895 380 754 61 32/34 11

GATK4 Illumina 0.9917 0.9943 0.9892 407 775 62 34/34 144

dv-trio (trio) Illumina 0.9964 0.9946 0.9983 385 122 38 0/34 0

Octopus (trio) Illumina 0.9935 0.9948 0.9923 370 551 33 21/34 0

Octopus Illumina 0.9943 0.9956 0.9929 309 494 31 - -

Famseq (trio) Illumina 0.9653 0.9857 0.9458 1021 4033 622 31/34 10

DeepTrio-PB PacBio 0.9994 0.9992 0.9997 60 20 16 34/34 0

DeepVariant-PB PacBio 0.9995 0.9995 0.9998 60 15 9 34/34 0

Table 2. HG002 Indel accuracy at 35 x Coverage (all trio members)

Tool Data
Type

F1 Recall Prec FN FP FP.
gt

TP de
novo

FP
de
novo

DeepTrio (trio) Illumina 0.9971 0.9957 0.9985 48 18 11 3/4 1

DeepVariant Illumina 0.9964 0.9946 0.9982 61 21 15 4/4 2

GATK4 (trio) Illumina 0.9926 0.9931 0.9922 78 92 36 3/4 1

GATK4 Illumina 0.9929 0.9926 0.9933 83 79 34 4/4 11

dv-trio (trio) Illumina 0.9955 0.9932 0.9979 77 24 15 4/4 2

Octopus (trio) Illumina 0.9941 0.9947 0.9936 60 74 12 1/4 0

Octopus Illumina 0.9939 0.9931 0.9946 73 60 24 - -

Famseq (trio) Illumina - - - - - - - -

DeepTrio-PB PacBio 0.9950 0.9963 0.9938 42 73 24 3/4 2

DeepVariant-PB PacBio 0.9913 0.9913 0.9916 95 93 57 2/4 1
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We observe that DeepTrio has higher accuracy than DeepVariant for both Illumina and PacBio
HiFi data (Figure 2 top, Tables 1 and 2), with a more pronounced effect at lower coverage depths
(Supplementary Tables 1 and 2).

Assessing variant calling accuracy in the parent samples

Accurate variant calling of parent samples is important in order to give context for proband
variants, to accurately catalog incidental findings, and to correctly generate research cohorts. To
assess the accuracy of parent calling, we compared DeepTrio’s parent model performance with
DeepVariant and other trio and non-trio methods (Figure 2 bottom). DeepTrio outperforms
other pipelines across a range of coverage, with a larger effect at lower coverages. DeepTrio’s
advantage is less pronounced for the parent model as compared to its advantage on the child
model. This finding is reasonable, since the genotype of the child is less informative regarding
the genotype of the parent than the parent’s genotype is informative regarding the genotype of
the child. The improvement in accuracy allows a lower coverage for the parent sample to be used
while retaining the accuracy one would normally achieve with a non-trio pipeline.

Precision and recall of de novo variants

The ability to identify de novo variants which may have a dominant inheritance pattern is of
particular interest in identifying rare genetic disease. Because de novo variants violate the
assumptions of Mendelian inheritance, it is reasonable to think that trio calling approaches may
have a more pronounced effect on the sensitivity and specificity of de novo variants. When the
analysis is constrained to cases where a child is called as 0/1 and each parent is confidently
called as 0/0, we observe far more pronounced differences between trio and non-trio pipelines,
even in cases like GATK4 where the overall accuracy as determined by Genome in a Bottle
comparison is very similar.

The trio-aware pipelines (DeepTrio, dv-trio, famseq, GATK CalculateGenotypePosteriors), and
Octopus have a greatly reduced false positive rate for de novo variants, but have slightly reduced
recall of true de novo variants, whether these are defined as identifying the call as de novo by
confidently genotyping the child as 0/1 and the parents as 0/0, or by detecting the child variant,
but with an unknown or incorrect all in a parent (Figure 3, Tables 1,2, Supplementary tables
1,2).
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Figure 3. True positive and false positives for de novo variants
The number of false positive de novo variants (confident genotype calls of child 0/1, parents
0/0) called in each pipeline (top left). The number of de novo variants in Genome in a Bottle
with confident genotype calls for each individual (child 0/1, parents 0/0) (top right).

Assessing the effect of parental depth on variant calling accuracy in the proband

In trio sequencing for rare disease, there is often greater importance in sequencing a child
proband. To manage sequencing costs, studies often take the approach of sequencing the
parents at a lower coverage than the child36. In order to evaluate performance in these scenarios,
we performed downsampling of the parent samples while keeping the child coverage at 35x.
Variant calls were generated with the same tools used for the coverage titration of the full trio
and evaluated using the same methods.
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For the child sample, which contains the same reads for each titration point, we observe a slight
accuracy improvement for DeepTrio in both Illumina and PacBio HiFi across the parent
coverage ranges observed (15x-35x). For the parent samples, which do vary in coverage over the
titration range, we observe a much greater advantage for DeepTrio compared to DeepVariant
and other methods (Figure 4). For PacBio HiFi, the parent model has higher accuracy when the
child is at 35x, as compared to when all three samples are coverage-titrated.

Figure 4. Variant calling accuracy of DeepTrio varying only parent coverage
Accuracy for DeepTrio and other pipelines over coverage titrations of the parent samples with
the child sample at 35x. All samples use the same Illumina data, except for the black lines
DeepVariant PacBio and DeepTrio PacBio. Accuracy is determined by concordance with the
Genome in a Bottle v4.2 truth set for the child (bottom left) and parent (bottom right). Trio
methods are shown with a solid line and non-trio with a dotted line. F1 is determined from the
total errors and correct calls for Indels added to SNPs for chromosome20. The F1 for FamSeq
was much lower and was excluded.
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Inspecting examples of variant calls improved by DeepTrio

In order to better understand cases where DeepTrio makes a correct call where other methods
do not, we inspected IGV37 images of positions which DeepTrio called correctly that were errors
in DeepVariant. Since the F1 of SNP calling at 35x is already 0.9973, all inspected sites were
difficult (low coverage, low mappability, presence of repeats and segmental duplications). Errors
corrected by DeepTrio were often either through the ability to identify supporting evidence at
low coverage and difficult to map regions (Figure 5), or the ability to better estimate the correct
genotype in sites with substantial allelic bias (Supplementary Figure 1).

HG002

HG003

HG004

Figure 5. Example of a variant called correctly by DeepTrio but not DeepVariant
IGV image of chr20:18602424 in 35x Illumina WGS PrecisionFDA v2 Truth Challenge samples
for HG002-HG003-HG004. HG002 (child) is shown in the top row. This position is not called
as a variant in DeepVariant and is correctly called as a heterozygous variant in DeepTrio. IGV
marks reads with MAPQ 0 as white instead of gray, indicating that this region is difficult to
map with Illumina reads.
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Computational efficiency of DeepTrio and other trio-calling pipelines

To assess the computational efficiency of DeepTrio compared to other methods of generating
trio calls, we ran pipelines on the Illumina 35x WGS samples using the same hardware: a 16-
CPU thread machine (n1-standard-16) available on Google Cloud Platform. This was chosen as
representative of typical runs, though there are faster (and more expensive) or slower (but
cheaper) methods to run these pipelines (an analysis of single-machine scaling can be found in
the DeepVariant-GLnexus paper38).

Some components of DeepTrio are more computationally efficient when compared to
DeepVariant, for example DeepTrio can reuse calculations in the example generation stage.
Other components require more compute in DeepTrio: the size of the pileup images is larger,
which corresponds to a larger neural network and more compute. Also, more examples are
identified across the samples and any example in one sample requires making a call in the other.
We observe that DeepTrio requires more time to run when compared to DeepVariant, but
slightly less time than GATK4 when using these hardware settings (Figure 6).

Figure 6. Time required to run DeepTrio and other pipelines
Compute time required for each stage of trio calling pipelines for a 35x Illumina WGS trio of
HG002-HG003-HG004. Analysis is conducted on the full genome. The same machine type is
used in each case, a 16-CPU thread instance n1-standard-16.
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Accuracy on ChromosomeX

The Genome in a Bottle truth sets do not contain chromosomeX or chromosomeY variants in a
male individual. As a result, DeepTrio has never been trained with hemizygous sites. Because we
train DeepTrio to perform duo calling, it is likely that DeepTrio would call variants on
chromosomeX similar to how it would call a duo sample. To assess this, we ran DeepVariant and
DeepTrio on chromosomeX of the son (HG002) and measured the number of heterozygous
variant calls in the non-PAR regions of chromosomeX.

For DeepVariant, 4.45% (455/101866) of calls in non-PAR regions of chromosomeX are
heterozygous. In DeepTrio, 24.5% (21633/88314) are heterozygous. This substantial difference
suggests that applying DeepTrio directly to chromosomeX in male samples is problematic.

Since chromosomeX in males is inherited from the mother, we performed calling on
chromosomeX with only the mother provided as the parent. This reduced heterozygous calls to
3.37% (3518/104427), which is better than in the DeepVariant case. For male samples, this
recommends that variant calling should be run with both parents on the autosomal and PAR
regions using a BED file to restrict location, and additional variant calling should be performed
using only the mother’s file provided as parent for the non-PAR regions of chromosomeX, and
only the father’s provided for the non-PAR regions of chromosomeY.

This experiment indicates that allowing the model to infer a hemizygous chromosome through
coverage and explicitly training for hemizygous variants is an opportunity for improvement,
both for DeepVariant and DeepTrio.

Discussion

Here we discuss how DeepTrio’s performance characteristics relate to the motives for trio calling
and the data which is generally available. In this work, we considered accuracy across all
variants, and separately for de novo variants. In the context of rare disease, both of these
formulations of accuracy are important. Some rare genetic diseases are caused by the
combination of recessive variants from each parent. While others, especially those with a
dominant inheritance pattern, will arise de novo.

We demonstrate that DeepTrio has strictly superior accuracy compared to DeepVariant and
other trio and non-trio methods. When considering highest overall accuracy, DeepTrio would
always be preferred. The case of de novo variants is more nuanced. DeepTrio has much higher
precision when calling de novo variants but has slightly lower recall. If only F1 is considered,
DeepTrio’s F1 (0.8947) is superior to the next highest trio method (GATK4
CalculateGenotypePosteriors - 0.8235), and non-trio method (DeepVariant - 0.7755). But in
terms of recall, non-trio methods like DeepVariant have a higher recall of de novo calls. As a
result, if investigators have a greater interest in the highest recall of de novo events, as opposed
to overall accuracy, one option would be to run DeepVariant on each sample, and to re-run
DeepTrio on the smaller number of regions where DeepVariant identified a de novo variant, in
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order to prioritize real variants first. In addition, we have previously shown that the output of
the neural network is very well calibrated (Figure 2 of poplin et al. 2018)19, and it may be
possible to rank putative de novo events by the reported confidence of the call in order to tune
DeepTrio more towards recall of de novo.

The accuracy analyses above are conducted at deep coverage (35x). Sequencing a trio of samples
is more expensive than a single sample, and studies often compensate for this extra expense by
sequencing at a lower coverage, especially for the parents. Reducing coverage is often considered
when sequencing non-human disease samples, where the importance of accurately calling every
variant is balanced against larger, more comprehensive studies. DeepTrio’s advantage over other
methods is substantially greater at lower coverages. DeepTrio is about as accurate in ~20x
coverage as DeepVariant is at 28-30x coverage for both Illumina WGS and PacBio HiFi.
DeepTrio is more accurate at 15x coverage than either GATK4 method at the highest coverage
evaluated (35x). By maintaining high accuracy at reduced coverage, as well as by including
training examples which reduce parent coverage while keeping child coverage, DeepTrio
increases the flexibility of investigators to plan their trio sequencing to maximize cost-benefit.

As a deep learning method, DeepTrio does not explicitly encode the relationship between
samples. DeepTrio’s ability to improve accuracy of calling, and to do so in a manner which is
similar to human intuition regarding de novo variants, demonstrates an ability to capture rules
which mirror general knowledge. This is similar to a recent demonstration which re-trained
DeepVariant to use population allele frequencies39. It is a strong indicator that deep-learning
based variant callers can be further improved by finding ways to expose information which
captures the underlying biology of samples and populations. Similarly, the framework of
DeepTrio could, in theory, be further expanded to use sibling information, or to leverage more
distant family relationships. Overall, the success of DeepTrio is a strong demonstration that
thoughtfully identifying data which captures relevant biological or bioinformatics intuition, is a
critical element to the development of strong machine learning methods in the genomics
domain.

Methods

Generation of Sequencing Data

The generation of sequencing data for training is described in detail in Baid et al. 2020 33 and
the WGS and PacBio evaluation data in Olson et al. 202022. In summary, all WGS and exome
runs were conducted with 151-bp paired-end reads at 50x intended coverage from NovaSeq and
HiSeqX platforms. For WGS, sequencing for both PCR-Free and PCR-Positive preparations. All
sequencing was performed on HG001-HG007, NA12891, and NA12892. For exomes, sequencing
was performed with multiple capture kits, Agilent v7, IDT-xGen, and Nextera at a target of 200x
coverage from NovaSeq and HiSeq4000 platforms.

For PacBio HiFi data, we requested 3 SMRT Cells 8M for each sample of HG003, HG004,
HG006, and HG007. Libraries were prepared targeting a 15kb insert size and sequenced on
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Sequel II System with Chemistry 2.0. This was supplemented by data from Human Pangenome
Reference Consortium (https://github.com/human-pangenomics/HG002_Data_Freeze_v1.0) .

Training models

Training DeepTrio requires a set of BAM or CRAM files and a set of truth labels. Examples are
generated in the same manner used for calling and are annotated with the truth labels. A
training tutorial for DeepVariant from input data is available at:
(https://github.com/google/deepvariant/blob/r1.1/docs/deepvariant-training-case-study.md).

Using the trio data sets described in the prior section, DeepTrio was trained across a range of
coverages achieved by random downsampling of ~50x BAM files at fractions of 0.7 (~35x), 0.5
(~25x), and 0.3 (~15x). This random downsampling helps DeepTrio to generalize well across
coverages, and we observe that having more difficult examples results in overall better models.
Examples are generated for trios where each sample is downsampled at the same fraction, and
those where only the parents are further downsampled while the child is kept at a higher
coverage. To train DeepTrio to natively handle duo calling, training also occurs in the same
manner, but omitting one of the parents. Training occurs over the entire set of WGS samples to
generate the WGS model.

For exomes, the data described in the prior section is used in the same manner as in WGS, but
with different downsample fractions. The downsample fractions for exomes are 0.8, 0.6, and
0.4. The resulting coverages are diverse, since exome capture varies substantially by exon and
sample. For PacBio, different combinations of 8M SMRT cell runs provide the training inputs,
over a range of 2, 3, 4, 5, and 6 merged cells as the input files.

Mapping and Variant Calling

Samples were mapped to GRCh3840 with BWA MEM41 in an ALT-aware manner and
deduplicated with Picard MarkDuplicates 42.

Variant calling was performed using DeepVariant v1.019, DeepTrio, GATK4.1.6.014, FamSeq1

(https://github.com/wwylab/FamSeq/commit/63be74f39183077c98fceed97d71bf51dfb80929),
and dv-trio v1.0.023. Timing estimates for DeepVariant used DeepVariant v1.1, using the
OpenVINO acceleration by Intel, a recent contribution which speeds execution.

For DeepVariant, calling was performed following DeepVariant’s best practices in multi-sample
calling (https://github.com/google/deepvariant/blob/r1.1/docs/trio-merge-case-study.md).

For GATK, non-trio aware calling was performed by HaplotypeCaller followed by
GenotypeGVCFs. For GATK trio-aware calling, this VCF was further refined by
CalculateGenotypePosteriors.
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For FamSeq, GATK HaplotypeCaller and GATK GenotypeGVCFs were run, and FamSeq was run
on the resulting multi-sample VCF. Since FamSeq only refines the call of SNPs, Indel calls were
taken from the GATK VCF without modification.

For dv-trio, single sample calling was performed as described in DeepVariant’s best practices in
multi-sample calling, and the dv-trio scripts were applied to the output of this file.

For Octopus, single sample variant calling for single samples was performed using the v0.7.2
release, with the matched v0.7.2 germline forest model. Because Octopus does not generate a
gVCF, we did not attempt to generate a joint call for the individual samples, to avoid introducing
issues with harmonizing allele representation.

For Octopus trio calling, we ran both v0.7.2 and v0.7.0 and observed higher accuracy with
v0.7.0. Benchmark numbers for Octopus are from the better performance we observed in v0.7.0.

For all de novo analyses, only PASS entries were used for calculations across all callers. No call
(./.) positions were excluded.

Assessing accuracy

Call sets were assessed using v0.3.9 of the haplotype comparison tool, hap.py35. The v4.2.1 truth
sets from GIAB30,35 were used to benchmark HG002-4 samples mapped to GRCh38.

Code and Data Availability

All DeepTrio code is available under a BSD-3 license at:
https://github.com/google/deepvariant/tree/r1.1/deeptrio

All evaluation data are derived the Illumina and PacBio FASTQ files available from the
PrecisionFDA v2 Truth Challenge22 at: https://precision.fda.gov/challenges/10

Training datasets are described in <An Extensive Sequence Dataset of Gold-Standard Samples
for Benchmarking and Development=33 and download links for all sequence data are available in
the supplement of that paper:
https://www.biorxiv.org/content/10.1101/2020.12.11.422022v1.supplementary-material
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Supplementary Material

HG002

HG003

HG004

Supplementary Figure 1. Example of a variant called correctly by DeepTrio but not
DeepVariant
IGV image of chr20:12449460 in 35x Illumina WGS PrecisionFDA v2 Truth Challenge samples
for HG002-HG003-HG004. HG002 (child) is shown in the top row. This position is incorrectly
genotyped as a homozygous variant in HG002 by DeepVariant and is correctly called a
heterozygous variant in DeepTrio. This position is difficult to call because only a few reads are
non-reference in HG002, and because some reads in this window are mapped discordantly.
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Supplementary Table 1. SNP accuracy at 20x Coverage (all trio members)

Tool Data
Type

F1 Recall Prec FN FP FP.
gt

TP de
novo
(all)

FP
de
novo

DeepTrio (trio) Illumina 0.9970 0.9950 0.9991 359 66 25 27/34 13

DeepVariant Illumina 0.9950 0.9930 0.9971 498 205 59 32/34 54

GATK4 (trio) Illumina 0.9906 0.9923 0.9889 550 795 116 9/34 9

GATK4 Illumina 0.9902 0.9914 0.9890 612 790 132 34/34 202

dv-trio (trio) Illumina 0.9946 0.9933 0.9960 481 285 76 0/34 0

Famseq (trio) Illumina 0.9605 0.9807 0.9410 1374 4387 894 28/34 7

DeepTrio-PB PacBio 0.9992 0.9989 0.9995 81 33 23 34 14

DeepVariant-PB PacBio 0.9992 0.9986 0.9997 103 18 11 33/34 10

Supplementary Table 2. Indel accuracy at 20x Coverage (all trio members)

Tool Data
Type

F1 Recall Prec FN FP FP.
gt

TP de
novo
(all)

FP
de
novo

DeepTrio (trio) Illumina 0.9920 0.9890 0.9951 124 57 41 1/4 3

DeepVariant Illumina 0.9854 0.9799 0.9910 226 104 74 1/4 15

GATK4 (trio) Illumina 0.9824 0.9810 0.9836 213 191 99 1/4 2

GATK4 Illumina 0.9824 0.9794 0.9854 232 170 104 3/4 40

dv-trio (trio) Illumina 0.9847 0.9788 0.9907 239 107 75 1/4 15

Famseq (trio) Illumina - - - - - - - -

DeepTrio-PB PacBio 0.9869 0.9881 0.9856 134 169 78 2/4 7

DeepVariant-PB PacBio 0.9721 0.9702 0.9740 335 302 167 2/4 5
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Commands Used

BWA

bwa mem -t 16 references/grch38_bwa_index/genome.fa

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.R1.fastq.gz

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.R2.fastq.gz -R

"@RG\\tID:${SAMPLE}\\tPL:ILLUMINA\\tPU:NONE\\tLB:${SAMPLE}\\tSM:${SAMPLE}" |

samtools sort -O BAM -o${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.grch38.bam

MarkDuplicates

java -jar gatk-package-4.1.2.0-local.jar MarkDuplicates -I

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.grch38.bam -O

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam -M

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.metrics

GATK HaplotypeCaller

java -jar gatk-4.1.2.0/gatk-package-4.1.2.0-local.jar HaplotypeCaller -I

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam -R

references/GRCh38.no_alt_analysis_set.fa.gz -O

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.gatk.g.vcf -L chr1 -L

chr2 -L chr3 -L chr4 -L chr5 -L chr6 -L chr7 -L chr8 -L chr9 -L chr10 -L

chr11 -L chr12 -L chr13 -L chr14 -L chr15 -L chr16 -L chr17 -L chr18 -L chr19

-L chr20 -L chr21 -L chr22 -L chrX -L chrY --emit-ref-confidence GVCF

GATK CombineGVCF

java -jar gatk-4.1.2.0/gatk-package-4.1.2.0-local.jar CombineGVCFs -V

HG002.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.gatk.g.vcf -V

HG003.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.gatk.g.vcf -V

HG004.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.gatk.g.vcf -R

references/GRCh38.no_alt_analysis_set.fa.gz -O

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.combine_gvcf.g.vcf.gz

GATK GenotypeGVCF

java -jar gatk-4.1.2.0/gatk-package-4.1.2.0-local.jar GenotypeGVCFs -V

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.combine_gvcf.g.vcf.gz

-R references/GRCh38.no_alt_analysis_set.fa.gz -O

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.genotype_gvcf.g.vcf.gz

GATK CalculateGenotypePosteriors
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java -jar gatk-4.1.2.0/gatk-package-4.1.2.0-local.jar

CalculateGenotypePosteriors -V

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.genotype_gvcf.g.vcf.gz

-ped HG002-HG003-HG004.gatk.ped --skip-population-priors -O

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.calculate_genotype_posteriors

.g.vcf.gz

DeepVariant

sudo docker run \

-v "${PWD}/input":"/input"   \

-v "${PWD}/output":"/output"  \

-v "${PWD}/reference":"/reference" \

google/deepvariant:1.1.0 \

/opt/deepvariant/bin/run_deepvariant \

--model_type WGS \

--call_variants_extra_args="use_openvino=true" \

--ref /reference/GRCh38.no_alt_analysis_set.fa.gz \

--reads /input/${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam

--output_vcf

/output/${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deepvariant.vcf.

gz \

--num_shards 16  \

--intermediate_results_dir /output/intermediate_results_dir \

--output_gvcf

/output/${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deepvariant.g.vc

f.gz

GLnexus

sudo docker run \

-v "${PWD}/data":"/data" \

quay.io/mlin/glnexus:v1.2.7 \

/usr/local/bin/glnexus_cli \

--config DeepVariantWGS \

/data/HG002.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deepvariant.g.vcf.gz \

/data/HG003.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deepvariant.g.vcf.gz \

/data/HG004.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deepvariant.g.vcf.gz \

| bcftools view - | bgzip -c >

${PWD}/data/HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.grch38.deepvariant.co

hort.vcf.gz

DeepTrio
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sudo docker run \

-v "${PWD}/input":"/input"   \

-v "${PWD}/output":"/output"  \

-v "${PWD}/reference":"/reference" \

gcr.io/deepvariant-docker/deeptrio:1.0.1rc \

/opt/deepvariant/bin/deeptrio/run_deeptrio \

--model_type WGS \

--call_variants_extra_args="use_openvino=true" \

--ref /reference/GRCh38.no_alt_analysis_set.fa.gz \

--reads_child

/input/HG002.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam \

--reads_parent1

/input/HG003.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam \

--reads_parent2

/input/HG004.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.bam \

--output_vcf_child

/output/HG002.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.vcf.gz \

--output_vcf_parent1

/output/HG003.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.vcf.gz \

--output_vcf_parent2

/output/HG004.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.vcf.gz \

--sample_name_child 'HG002' \

--sample_name_parent1 'HG003' \

--sample_name_parent2 'HG004' \

--num_shards $(nproc)  \

--intermediate_results_dir /output/intermediate_results_dir \

--output_gvcf_child

/output/HG002.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.g.vcf.gz \

--output_gvcf_parent1

/output/HG003.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.g.vcf.gz \

--output_gvcf_parent2

/output/HG004.novaseq.pcr-free.${COVERAGE}x.dedup.grch38.deeptrio.g.vcf.gz

dv-trio Famseq

./FamSeq vcf -vcfFile

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.grch38.deepvariant.cohort.vcf

-pedFile HG002-HG003-HG004.ped -output

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.grch38.dvtrio.vcf.gz

Octopus (non-trio)
./octopus/bin/octopus -R references/GRCh38.no_alt_analysis_set.fa -I

${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.dedup.bam -o

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.05.438434doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.05.438434
http://creativecommons.org/licenses/by/4.0/


${SAMPLE}.novaseq.pcr-free.${COVERAGE}x.vcf.gz --forest

octopus/resources/forests/germline.v0.7.2.forest --threads 16

Octopus (trio)

time ./octopus/bin/octopus -R references/GRCh38.no_alt_analysis_set.fa -I

HG002.novaseq.pcr-free.${COVERAGE}x.dedup.bam

HG003.novaseq.pcr-free.${COVERAGE}x.dedup.bam

HG004.novaseq.pcr-free.${COVERAGE}x.dedup.bam -o

HG002-HG003-HG004.novaseq.pcr-free.${COVERAGE}x.octopus_trio.vcf.gz -F HG003

-M HG004 --threads 16

Accuray Comparison with hap.py

sudo docker run -i \

-v "${INPUT_DIR}":"/input" \

-v "${OUTPUT_DIR}":"/output" \

pkrusche/hap.py /opt/hap.py/bin/hap.py \

/input/"${TRUTH_VCF}" \

/output/output.vcf.gz \

-f /input/"${TRUTH_BED}" \

-r /input/"${REF}" \

-o /output/happy.output \

--engine=vcfeval

-l "${EVAL_REGION}"

The truth VCF and BED files for Hap.py comparison are the v4.2.1 Truth Set from Genome in a
Bottle:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio
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